
Induced subgraphs of bounded treewidth and the container
method∗

Tara Abrishami† Maria Chudnovsky‡ Marcin Pilipczuk§ Paweł Rzążewski¶

Paul Seymour‖

Abstract
A hole in a graph is an induced cycle of length at least 4. A hole is long if its length is at

least 5. By Pt we denote a path on t vertices. In this paper we give polynomial-time algorithms
for the following problems:
• the Maximum Weight Independent Set problem in long-hole-free graphs, and
• the Feedback Vertex Set problem in P5-free graphs.

Each of the above results resolves a corresponding long-standing open problem.
An extended C5 is a five-vertex hole with an additional vertex adjacent to one or two con-

secutive vertices of the hole. Let C be the class of graphs excluding an extended C5 and holes
of length at least 6 as induced subgraphs; C contains all long-hole-free graphs and all P5-free
graphs. We show that, given an n-vertex graph G ∈ C with vertex weights and an integer k,
one can in time nO(k) find a maximum-weight induced subgraph of G of treewidth less than k.
This implies both aforementioned results.

To achieve this goal, we extend the framework of potential maximal cliques (PMCs) to
containers. Developed by Bouchitté and Todinca [SIAM J. Comput. 2001] and extended by
Fomin, Todinca, and Villanger [SIAM J. Comput. 2015], this framework allows to solve high
variety of tasks, including finding a maximum-weight induced subgraph of treewidth less than
k for fixed k, in time polynomial in the size of the graph and the number of potential maximal
cliques. Further developments, tailored to solve the Maximum Weight Independent Set
problem within this framework (e.g., for P5-free [SODA 2014] or P6-free graphs [SODA 2019]),
enumerate only a specifically chosen subset of all PMCs of a graph. In all aforementioned works,
the final step is an involved dynamic programming algorithm whose state space is based on the
considered list of PMCs.

Here we modify the dynamic programming algorithm and show that it is sufficient to con-
sider only a container for each potential maximal clique: a superset of the maximal clique
that intersects the sought solution only in the vertices of the potential maximal clique. This
strengthening of the framework not only allows us to obtain our main result, but also leads to
significant simplifications of reasonings in previous papers.

∗M. Chudnovsky is supported by NSF grant DMS-1763817. This material is based upon work supported in part by
the U. S. Army Research Office under grant number W911NF-16-1-0404. P. Rzążewski is supported by Polish National
Science Centre grant no. 2018/31/D/ST6/00062. P. Seymour is supported by AFOSR grant A9550-19-1-0187 and
NSF grant DMS-1800053. This research is a part of a project that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant Agreement
no. 714704.
†Princeton University, Princeton, NJ 08544
‡Princeton University, Princeton, NJ 08544
§Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
¶Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland, and Institute of

Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
‖Princeton University, Princeton, NJ 08544

1 Introduction

An independent set (or stable set) in a simple graph G is a set I ⊆ V (G) such that no edge in
E(G) has both endpoints in I. Given a graph G with non-negative vertex weights, the Maximum
Weight Independent Set problem (MWIS) asks for an independent set of G with the greatest
total weight. The MWIS problem is NP-hard in general [?]. Over the last several decades researchers
have been trying to understand what restrictions on the input graph allow efficient algorithms for
MWIS.

Given a graph G, a hole in G is an induced cycle of length at least four, and an antihole in
G is an induced subgraph which is the complement of a cycle of length at least four.1 A hole (or
antihole) is long if it has at least five vertices, even if it has an even number of vertices, and odd if
it has an odd number of vertices. Probably the best known result concerning an efficient algorithm
for MWIS is the polynomial-time algorithm for MWIS in perfect graphs due to Grötschel, Lovász,
and Schrijver [12]. Recall that, by the Strong Perfect Graph Theorem [11], a graph G is perfect if
and only if G contains no odd holes and no odd antiholes. However, the algorithm of Grötschel,
Lovász, and Schrijver [12] relies on the ellipsoid method. Designing a combinatorial polynomial-
time algorithm for MWIS in perfect graphs remains an important open problem. Furthermore,
the question of the existence of a combinatorial polynomial-time algorithm for Maximum Weight
Clique in perfect graphs without long antiholes was open and received a considerable amount of
attention. Note that, in the complement of the input graph, this task is equivalent to MWIS in
perfect graphs with no long holes, i.e., graphs with no long holes and no odd antiholes.

Meanwhile, it turned out that our toolbox for proving NP-hardness of MWIS leaves some
interesting graph classes where MWIS can be tractable. Following the discussion in the previous
paragraph, no NP-hardness result is known for MWIS in long-hole-free graphs, that is, graphs with
no long holes. The question of the existence of an efficient algorithm for MWIS in this graph class
remained a long-standing open problem with a number of tractability results in subclasses [2,3,6–9].
Here we answer this question in the affirmative.

Theorem 1.1. The Maximum Weight Independent Set problem in long-hole-free graphs can
be solved in polynomial time.

Similarly, no NP-hardness result for MWIS is known for Pt-free graphs for any t, where Pt is the
path on t vertices. Since P4-free graphs have bounded cliquewidth, many computational problems,
including MWIS, can be solved in P4-free graphs in linear time. Only recently, polynomial-time
algorithms for MWIS in P5-free [16] and P6-free graphs [14] were developed, and a quasi-polynomial
time algorithm for arbitrary t [?] has been just announced. The question of a polynomial-time
algorithm for P7-free graphs remains open.

Given a graph G, the Feedback Vertex Set problem (FVS) asks for a minimum-sized set
X ⊆ V (G) such that G−X is a forest. Equivalently, we can ask for a maximum-sized set Y ⊆ V (G)
that induces a forest in G; the latter formulation is sometimes called Maximum Induced Forest.
The problem is one of the classic NP-hard optimization problems, with its directed version on the
Karp’s list of 21 NP-hard problems [?]. Similarly as for MWIS, FVS is polynomial-time solvable in
P4-free graphs due to their simple nature, while no NP-hardness nor polynomial-time tractability
result is known in Pt-free graphs for any t ≥ 5. Thus, the complexity of FVS in P5-free graphs
remained open with [?,?,?,?] among partial results. In this work, we show tractability of FVS in
P5-free graphs.

1Sometimes a hole is defined to have length at least five, that is, a cycle of length 4 is not a hole. Since we use
the notion of chordal graphs in this work (which are exactly hole-free graphs by our definition), we prefer to treat a
four-vertex cycle as a hole and call all other holes long.

1

Theorem 1.2. The Feedback Vertex Set problem in P5-free graphs can be solved in polynomial
time.

Both Theorem 1.1 and Theorem 1.2 are straightforward corollaries of the following more general
result. A graph H is an extended C5 if H is obtained from a five-vertex hole by adding a simplicial
vertex, i.e., a vertex adjacent to one or two consecutive vertices of the cycle. Let C be the family
of graphs with no hole of length at least 6 and no extended C5 as an induced subgraph. We prove
the following.

Theorem 1.3. Given an n-vertex graph G ∈ C with vertex weights w : V (G) → N and an integer
k, one can in time nO(k) find a maximum-weight induced subgraph of G of treewidth less than k.

In Theorems 1.1 and 1.3 and in the remainder of the paper, we assume that addition and
comparison of weights of subsets of vertices of G can be done in constant time. The definitions of
treewidth and tree decompositions can be found in Section 2.

Since C contains all P5-free graphs and all long-hole-free graphs, while a set Y ⊆ V (G) is
independent if and only if Y induces a graph of treewidth less than 1, and Y induces a forest if
and only if Y induces a graph of treewidth less than 2, Theorem 1.3 directly implies Theorem 1.1
and Theorem 1.2. It also generalizes the result of Lokshtanov, Villanger, and Vatshelle [16] on
tractability of MWIS in P5-free graphs.

The framework of potential maximal cliques. A cornerstone technique for solving the MWIS
problem in various graph classes was introduced by Bouchitté and Todinca [4, 5]. To explain it in
more detail, we need some definitions (see also Section 2 for the notation).

A graph is chordal if it contains no holes. Equivalently, a graph is chordal if it admits a tree
decomposition where every bag is a maximal clique.

Let G be a graph. A set S ⊆ V (G) is a minimal separator if there are two distinct connected
components A,B of G−S with N(A) = N(B) = S. A set E ⊆

(
V (G)
2

)
\E(G) is a chordal completion

or fill-in of G if G + E := (V (G), E(G) ∪ E) is chordal; a chordal completion is minimal if it is
inclusion-wise minimal. A set Ω ⊆ V (G) is a potential maximal clique (PMC) if there exists a
minimal chordal completion E such that Ω is a maximal clique in G + E . A graph class G has a
polynomial number of minimal separators (PMCs) if there exists a constant c such that every G ∈ G
has at most (|V (G)|)c minimal separators (PMCs, respectively).

The core of the contributions of Bouchitté and Todinca [4, 5] can be summarized as follows:

1. A graph class has a polynomial number of minimal separators if and only if it has a polynomial
number of PMCs.

2. All minimal separators and all PMCs of a graph can be enumerated in time polynomial in the
input and output.

3. Given a graph G and a list of all PMCs of G, one can solve MWIS in G in time polynomial in
|V (G)| and the size of the list. The algorithm is an involved dynamic programming algorithm
whose state space is based on the list of PMCs of G.

Consequently, MWIS is polynomial-time solvable in any class of graphs that has a polynomial
number of PMCs or minimal separators. This result generalizes a number of earlier tractability
results for specific graph classes.

The framework of Bouchitté and Todinca has been generalized by Fomin and Villanger [?] and
Fomin, Todinca, and Villanger [?] to other problems than just MWIS, including the problem of

2

finding a maximum-weight induced subgraph of treewidth less than k for constant k and satisfying
some fixed property expressible in counting monadic second order logic (CMSO). Note that this
general problem includes Feedback Vertex Set.

However, the above technique has limitations. Consider the following example. A p-prism is
a graph consisting of two cliques of size p and a matching of their vertices. More precisely, a p-
prism has vertex set {a1, . . . , ap, b1, . . . , bp}, and its set of edges consists of the pairs of the following
form: aiaj and bibj for 1 ≤ i < j ≤ p, and aibi for 1 ≤ i ≤ p. It is easy to see that a p-prism
has 2p − 2 minimal separators and p2p−1 PMCs, while being P5-free and long-hole-free. Thus, the
framework of Bouchitté and Todinca per se cannot provide a polynomial-time algorithm for MWIS
in long-hole-free graphs or Pt-free graphs for any t ≥ 5. In [10], it is proven that in long-hole-free
graphs p-prisms are the only obstacles to a polynomial number of PMCs and minimal separators:
an n-vertex long-hole-free graph without a p-prism as an induced subgraph has np+O(1) minimal
separators.

The complexity of MWIS in P5-free graphs was a long-standing open problem until 2014, when
Lokshtanov, Vatshelle, and Villanger [16] presented an algorithm based on an ingenious modification
of the framework of Bouchitté and Todinca. The main engine of their approach is encapsulated in
the following statement:

Theorem 1.4 ([16]). Given a graph G and a list Π of potential maximal cliques of G, one can
compute in time O(|Π|n5m) the maximum weight independent set I, such that there exists a minimal
chordal completion E of G such that every maximal clique Ω of G+ E is on the list Π and satisfies
|Ω ∩ I| ≤ 1.

That is, one no longer requires to list all potential maximal cliques of the input graph. Instead,
it is sufficient to find a list Π of polynomial size with the following property: For the sought solution
I there exists a minimal chordal completion E , such that all maximal cliques of G+ E are in Π and
every maximal clique of G+ E intersects I in at most one vertex. Based on this modified approach,
Grzesik, Klimošová, Pilipczuk, and Pilipczuk presented a polynomial-time algorithm for MWIS in
P6-free graphs [14].

The PMC enumeration algorithm for P5-free graphs of [16] enumerates PMCs in three steps.
Let I be the sought solution (an independent set of maximum weight). Initially, the algorithm
observes that there always exists a minimal chordal completion E such that no edge of E is incident
with I, as completing V (G) \ I into a clique turns G into a split graph (in particular, a chordal
graph). Thus, we can restrict to E being I-safe, that is, not containing an edge incident with I.
Then, immediately for every maximal clique Ω of G + E we have that |Ω ∩ I| ≤ 1. In the first
phase of the enumeration, an argument independent of the graph class handles maximal cliques Ω
of G+ E with |Ω ∩ I| = 1. The second phase of the enumeration considers maximal cliques Ω that
are disjoint from I, but contained in the union of the neighborhoods of two elements of I. The
third phase of the enumeration handles the remaining maximal cliques. As shown in [16], in P5-free
graphs there is only a polynomial number of PMCs of the third type (for all choices of a solution
I and an I-safe minimal chordal completion E) and they can be enumerated in polynomial time.
The example of a p-prism shows that there can be exponentially many PMCs of the second type.
In [16], the selection of the PMCs of the second type to list is handled by an insightful argument
specific to P5-free graphs that stops to work in P6-free graphs. Partially due to this, the work for
P6-free graphs [14] is substantially more involved and elaborate.

Our technical contribution. In this work, we generalize the framework to containers of PMCs.
For an induced subgraph F of G, an F -container for a set Ω ⊆ V (G) is a set A ⊆ V (G) such that

3

Ω ⊆ A and A ∩ V (F) = Ω ∩ V (F). A roughly similar notion of a container first appeared in [1,17].
In Section 6 we prove the following:

Theorem 1.5. Assume we are given a graph G with weight function w : V (G)→ N, a family A of
subsets of V (G), and a positive integer k with the following promise:

For every induced subgraph F of G of treewidth less than k and every potential maximal
clique Ω of G, if |V (F) ∩ Ω| ≤ k, then A contains an F -container for Ω.

Then, one can in time |A|2|V (G)|O(k) find a maximum-weight induced subgraph of (G,w) of treewidth
less than k.

Going back to the outlined algorithm for MWIS in P5-free graphs of [16], observe that the
following family:

F(G) := {N [X] \X ′ | X ⊆ V (G) ∧ |X| ≤ 2 ∧X ′ ⊆ X}

is of size O(|V (G)|2) and contains an I-container for every independent set I and PMC of the first
or second type. Thus, with Theorem 1.5 in hand, the algorithm of [16] can be simplified to only its
third phase. That is, the PMCs of the first and second type are handled by arguments independent
of the studied graph class.

We show how to compute a family A suitable for Theorem 1.5 for the class C.

Theorem 1.6. Given an n-vertex graph G ∈ C and an integer k, one can in nO(k) time compute
a family X of size O(n8k+60) such that for every k-colorable induced subgraph F of G and every
potential maximal clique Ω of G there exists S ∈ X such that S is an F -container for Ω.

Due to the notion of containers, the enumeration algorithm and our reasoning in Theorem 1.6
is arguably simpler and shorter than its counterpart for P6-free graphs [14].

Theorem 1.3 follows by pipelining Theorem 1.6 and Theorem 1.5 and observing that a graph of
treewidth less than k is always k-colorable.

Organization. In Section 2, we define minimal separators and potential maximal cliques and
review their properties. Section 3 gives a brief overview of the proof of Theorem 1.5; Theorem 1.5
is formally proven in Section 6.

In Sections 4 and 5 we focus on the class C. Section 4 treats containers for minimal separators
and contains the main structural observations about the class C that allow us to prove Theorem 1.6.
Section 5 wraps up the proof of Theorem 1.6 using the results developed in Section 4.

Finally, Section 7 concludes the paper and includes a discussion on possible extensions of The-
orem 1.5.

2 Preliminaries

Let G be a graph with vertex set V (G) and edge set E(G). Let X ⊆ V (G). We denote by G[X]
the subgraph of G induced by X, and by G − X the subgraph induced by V (G) \ X. The set of
connected components of G − X (as a family of vertex sets) is given by cc(G − X). The open
neighborhood of X in G, denoted NG(X), is the set of vertices in V (G) \ X with a neighbor in
X. The closed neighborhood of X in G, denoted NG[X], is given by NG[X] = NG(X) ∪ X. We
write N(X) and N [X] to mean the open and closed neighborhoods of X in G when G is clear from
context. If Y ⊆ V (G), we say that X is complete to Y if for every x ∈ X and y ∈ Y it holds
that xy ∈ E(G). We say that X is anticomplete to Y if for every x ∈ X and y ∈ Y it holds that

4

xy 6∈ E(G). A path is a graph G with vertex set p1 . . . pn such that pipi+1 ∈ E(G) for 1 ≤ i < n.
The length of a path is its number of edges. A path from a to b through X is a path with endpoints
a and b and interior in X. If a and b are adjacent, the path from a to b through X is the edge ab.

A k-coloring of a graph G is a partition of V (G) into k independent sets. A graph G is k-colorable
if it admits a k-coloring.

A tree decomposition (T, β) of a graph G is a tree T and a function β : V (T)→ 2V (G) such that
the following properties hold: (1) for every uv ∈ E(G), there exists t ∈ V (T) such that u, v ∈ β(t),
and (2) for every v ∈ V (G), the set {t ∈ V (T) : v ∈ β(t)} induces a nonempty connected subgraph
of T . The sets β(t) for t ∈ V (T) are called the bags of (T, β). The width of the decomposition
(T, β) is maxt∈V (T) |β(t)| − 1 and the treewidth of a graph is the minimum possible width of its
decomposition.

Let X ⊆ V (G). The set X is a minimal separator if there exist u, v ∈ V (G) such that u and v
are in different connected components of G−X, and u and v are in the same connected component
of G − Y for every Y (X. The vertices u and v are said to be separated by X. A component
D ∈ cc(G −X) is a full component for X if N(D) = X. I it well known that a set X ⊆ V (G) is
a minimal separator if and only if there are at least two full components for X. Furthermore, two
vertices u, v ∈ V (G) are separated by a minimal separator X if and only if u and v are in different
full components for X.

A potential maximal clique (PMC) of a graph G is a set Ω ⊆ V (G) such that Ω is a maximal
clique of G + E for some minimal chordal completion E of G. The following result characterizes
PMCs:

Theorem 2.1 ([4]). A set Ω ⊆ V (G) is a PMC of G if and only if:

1. for every distinct x, y ∈ Ω with xy 6∈ E(G), there exists D ∈ cc(G−Ω) such that x, y ∈ N(D).
We say that D covers the non-edge xy.

2. for every D ∈ cc(G− Ω) it holds that N(D) (Ω.

Theorem 2.1 gives an algorithm to test whether a set Ω ⊆ V (G) is a PMC of G in time O(mn).
We also have the following result relating PMCs and minimal separators:

Proposition 2.2 ([4]). Let Ω ⊆ V (G) be a PMC of G. Then, for every D ∈ cc(G − Ω), the set
N(D) is a minimal separator of G.

3 Overview of the dynamic programming algorithm

As promised, we now briefly sketch the proof of Theorem 1.5. To this end, it is more convenient
to speak in terms of tree decompositions rather than chordal completions. Using the methodology
developed by Fomin and Villanger [?] and Fomin, Todinca, and Villanger [?], Theorem 1.5 follows
quite easily from the following technical result:

Theorem 3.1. Assume we are given a graph G with weight function w : V (G)→ N, a family A of
subsets of V (G), and a positive integer k with the following promise:

For every induced subgraph F of G of treewidth less than k there exists a tree decompo-
sition (T, β) of G such that

• for every t ∈ V (T), an F -container for β(t) belongs to A,
• (T, βF) is a tree decomposition of F of width less than k, where βF (t) := β(t)∩V (F)
for every t ∈ V (T).

5

Then, one can in time |A|2|V (G)|O(k) find a maximum-weight induced subgraph of (G,w) of treewidth
less than k.

Let us give some intuition how the proof of Theorem 3.1 works and where it differs from the
proofs of analogous statements proved by [?,?]. Fix a solution F and a tree decomposition (T, β)
as in the theorem statement.

In [?,?], we are given a family B that contains all bags of the tree decomposition (T, β). The
dynamic programming state consists of a set B ∈ B, a set Q ⊆ B of size at most k, and a
component D ∈ cc(G − B). The dynamic programming algorithm computes a partial solution
Υ(B,Q,D) ⊆ D that is intended to fit to solutions F ′ with V (F ′) ∩ B = Q. That is, we aim at
achieving Υ(B,Q,D) = D∩V (F) whenever B = β(t) for some t ∈ V (T) and Q = B∩V (F). In one
step of the dynamic programming algorithm, given (B,Q,D), the algorithm tries all possibilities
for B′ ∈ B and Q′ ⊆ B′ of size at most k. For fixed B′ and Q′, the algorithm assembles a candidate
for Υ(B,Q,D) from entries Υ(B′, Q′, D′) for every D′ ∈ cc(G−B′) where D ∩D′ 6= ∅. Whenever
indeed B = β(t) and Q = B ∩ V (F) for some t ∈ V (T), we aim at obtaining the correct solution
when using B′ = β(t′) and Q′ = β(t′) ∩ V (F) for t′ being the neighbor of t in the component of
T − {t} whose bags contain all vertices of D.

In our algorithm, we given a list A that contains only containers for bags β(t), not the bags
exactly. The difficulty in the above approach appears where the container A of β(t) is “much larger”
than the container A′ of β(t′) and for a number of components D′ ∈ cc(G − A′) we have both
D′∩D 6= ∅ and D′∩A 6= ∅ (which cannot happen in the setting of [?,?]). Then, when the optimum
solution is not unique, optimum partial solutions for states (A′, Q′, D′) may intersect A outside β(t),
causing inconsistencies.

The main trick in our proof is to canonize the solution first to a lexicographically-minimum
solution. This removes ambiguities in a way that can be decided on the level of partial solutions for
a fixed state (A,Q,D).

Full proof can be found in Section 6.

4 Containers for minimal separators

Let G be a graph in C and let n := |V (G)|. Fix an integer k ≥ 0. The goal of this section is to
construct a family F ⊆ V (G) of size nO(k), such that for every k-colorable induced subgraph F of
G and for every minimal separator S of G, an F -container for S belongs to F .

We call minimal separators S such that S ⊆ N(v) for some v ∈ V (G) primitive separators. The
following result deals with primitive separators.

Theorem 4.1. Given an n-vertex graph G, one can in polynomial time construct a family F0 of
size at most n2 such that all primitive separators belong to F0.

Proof. Let
F0 :=

⋃
v∈V (G)

{N(C) | C ∈ cc(G−N [v])}.

Suppose S is a minimal primitive separator of G and S ⊆ N(v) for some v ∈ V (G). Note that
v /∈ S. Let D ∈ cc(G − S) be a full component for S with v 6∈ D. Then, D ∈ cc(G − N [v]) and
S = N(D), so S ∈ F0.

In the rest of this section we focus on separators that are not primitive. Let G ∈ C and S be a
minimal separator of G.

6

Lemma 4.2. Let D be a full component for S. Let Z ⊆ D be a minimal connected subset of D
such that N(Z) = S. Then, Z is a clique.

Proof. See Figure 1a for an illustration. Suppose that Z is not a clique. Let P = p1 − . . . − pt be
an induced path in Z of maximum possible length. Then t ≥ 3. The maximality of P implies that
the sets Z \ {p1} and Z \ {pt} induce connected subgraphs. The minimality of Z implies that there
exist s1 and st in S such that s1 ∈ S ∩ (N(p1) \N(Z \ {p1})) and st ∈ S ∩ (N(pt) \N(Z \ {pt})).
Let Q be a shortest path from s1 to st through a full component D′ 6= D for S. Since G ∈ C, and
thus s1 − p1 − P − pt − st −Q− s1 is not a hole of length at least 6, we conclude that t = 3 and s1
is adjacent to st. Let d′ ∈ D′ be a neighbor of s1. Now G[s1, st, p1, p2, p3, d

′] is an extended C5, a
contradiction. This proves that Z is a clique.

Lemma 4.3. Let D be a full component of S and let Z be as in Lemma 4.2. Then, for every z ∈ Z
there exists f(z) ∈ S such that z is the unique neighbor of f(z) in Z.

Proof. By Lemma 4.2, Z is a clique, so Z \ {z} is connected for all z ∈ Z. By the minimality of
Z, it follows that for every z ∈ Z there exists f(z) ∈ S such that z is the unique neighbor of f(z)
in Z.

Let S be a minimal separator of G and let L,R ∈ cc(G − S) be full components for S. Then,
there exists Z ⊆ L such that Z is a clique, N(Z) = S, and (N(z)∩S)\N(Z \{z}) 6= ∅ for all z ∈ Z.
Similarly, there exists Z ′ ⊆ R such that Z ′ is a clique, N(Z ′) = S, and (N(z)∩S)\N(Z ′ \{z}) 6= ∅
for all z ∈ Z ′. Let f : Z ∪ Z ′ → S be as defined in Lemma 4.3, so f(z) ∈ (N(Z) ∩ S) \N(Z \ {z})
for z ∈ Z and f(z′) ∈ (N(Z ′) ∩ S) \N(Z ′ \ {z′}) for z′ ∈ Z ′.

For every z ∈ Z, recall that f(z) ∈ S and denote by g(z) ∈ R an arbitrarily chosen neighbor
of f(z) in R. Similarly, for every z ∈ Z ′ denote by g(z) ∈ L an arbitrarily chosen neighbor of f(z)
in L.

Lemma 4.4. Let x ∈ S. Then, for every z ∈ Z ∪ Z ′, it holds that N(x) ∩ {z, f(z), g(z)} 6= ∅.

Proof. See Figure 1b for an illustration. Let z ∈ Z; the proof for z ∈ Z ′ is symmetrical. The claim
is immediate if x = f(z) as z, g(z) ∈ N(f(z)), so assume otherwise. Suppose that x is anticomplete
to {z, f(z), g(z)}. Since N(Z) ⊇ S, there exists a ∈ Z such that xa ∈ E(G). Let P be a shortest
path from x to f(z) through R. Then, z− f(z)−P −x−a− z is a hole of length at least six unless
P is of length exactly 2. If this is the case, then let q be the middle vertex of P . Note that q 6= g(z)
as g(z) is nonadjacent to x. Then z− f(z)− q− x− a− z is a C5. Furthermore, g(z) is adjacent to
f(z) and possibly also q. Hence, G[{a, z, f(z), g(z), q, x}] is an extended C5, a contradiction.

The set F0 constructed in Theorem 4.1 contains every primitive separator of G. Therefore,
we assume that S is a non-primitive separator, so |Z|, |Z ′| > 1. Let a1, a2 ∈ Z be distinct. For
i ∈ {1, 2} let bi = f(ai) and let ri = g(ai). Similarly, let d1, d2 ∈ Z ′ be distinct, and let ci = f(di)
and li = g(di); see Figure 1c. Note that b1 6= b2 and c1 6= c2 but it may happen that r1 = r2 or
l1 = l2.

Define W := {a1, a2, b1, b2, r1, r2, c1, c2, d1, d2, l1, l2}. A profile is a subset T ⊆ W that meets
each of the sets {a1, b1, r1}, {a2, b2, r2}, {c1, d1, l1}, {c2, d2, l2}. A profile T is L-ambiguous if T ⊆
{a1, a2, b1, b2, c1, c2, l1, l2}, and R-ambiguous if T ⊆ {b1, b2, c1, c2, d1, d2, r1, r2}. A profile is strictly
L-ambiguous if it is L-ambiguous and not R-ambiguous, and strictly R-ambiguous if it is R-
ambiguous and not L-ambiguous.

A few remarks are in place. Lemma 4.4 asserts that for every x ∈ S, the set N(x)∩W is a profile.
Observe that for every x ∈ {b1, b2, c1, c2}, the profile N(x)∩W is neither L- nor R-ambiguous. Also,
note that {b1, b2, c1, c2} is the unique profile that is both L- and R-ambiguous.

7

SD D′

Z

s1

s3

p1

p2

p3

(a) Proof of Lemma 4.2.

SD D′

Z

f(z)

x

q

z

a

g(z)

(b) Proof of Lemma 4.4. The edge g(z)q may not be
present.

SD D′

Z

Z′
d1c1l1

a1 b1 r1

d2c2l2

a2 b2 r2

(c) Definition of the set W .

S R

c1
d1

c2
d2

j1 j2

i1 i2

(d) Proof of Lemma 4.6 in the case when c2 is a com-
mon neighbor of i1 and i2; otherwise we use also l2 to
connect i1 and i2. The edge j1j2 may be present.

Figure 1: Illustrations for Section 4.

Let ZR be the set containing every vertex that is complete to {d1, d2} and anticomplete to
{c1, c2, l1, l2}. Similarly, let ZL be the set containing every vertex that is complete to {a1, a2} and
anticomplete to {b1, b2, r1, r2}. We call ZR and ZL the measuring sets associated to W .

Lemma 4.5. If x ∈ S and N(x) ∩W is an R-ambiguous profile, then x has a neighbor in ZL ∩ L.
Similarly, if x ∈ S and N(x) ∩W is an L-ambiguous profile, then x has a neighbor in ZR ∩R.

Proof. Let x ∈ S and let N(x) ∩W be an R-ambiguous profile. Because x ∈ S and N(Z) ∩ S =
S, there exists y ∈ Z such that xy ∈ E(G) and y 6= a1, a2. Then, y is complete to {a1, a2}.
Furthermore, y is anticomplete to {b1, b2} by the definition of f(·) and y is anticomplete to {r1, r2}
as y ∈ L. Hence, y ∈ ZL. Therefore, x has a neighbor in ZL ∩ L. By symmetry, if N(x) ∩W is an
L-ambiguous profile, then x has a neighbor in ZR ∩R.

Lemma 4.6. Let I be an independent set of G. Suppose i1, i2 ∈ I and N(i1) ∩W and N(i2) ∩W
are both L-ambiguous profiles. Then, N(i1) ∩ ZR and N(i2) ∩ ZR are comparable in the inclusion
order. Similarly, suppose i1, i2 ∈ I and N(i1) ∩W and N(i2) ∩W are both R-ambiguous profiles.
Then, N(i1) ∩ ZL and N(i2) ∩ ZL are comparable in the inclusion order.

Proof. See Figure 1d for an illustration. Let i1, i2 ∈ I and suppose N(i1) ∩ W and N(i2) ∩ W
are both L-ambiguous profiles. Suppose for sake of contradiction that there exist j1, j2 ∈ ZR such

8

that i1j1, i2j2 ∈ E(G) and i1j2, i2j1 6∈ E(G). Let P be the edge j1j2 if j1j2 ∈ E(G), and the path
j1 − d1 − j2 otherwise. Recall that N(i1) ∩W and N(i2) ∩W are profiles, and since i1, i2 are not
adjacent to d2, each of them must have a neighbors in {c2, l2}. Let Q be a shortest path from i1 to
i2 through {c2, l2}; note that Q is of length 2 or 3. Furthermore, by the definition of ZR, the set
{c2, l2} is anticomplete to {j1, j2}. Then i1 − j1 − P − j2 − i2 −Q − i1 is a hole of length at least
six unless j1j2 is an edge and Q is of length 2. However, then i1 − j1 − j2 − i2 − Q − i1, together
with d1, induce an extended C5, a contradiction.

This proves that no such i1, i2, j1, j2 exist, and therefore, N(i1) ∩ ZR and N(i2) ∩ ZR are com-
parable in the inclusion order. By symmetry, if N(i1) ∩W and N(i2) ∩W are both R-ambiguous
profiles, then N(i1) ∩ ZL and N(i2) ∩ ZL are comparable in the inclusion order.

Now, let F be a k-colorable induced subgraph of G. Fix some k-coloring of F , and let I1, . . . , Ik
be the partition of V (F) into color classes. Let S be a minimal separator of G. Recall that our goal
is to construct an F -container Ŝ of S. For 1 ≤ j ≤ k, let ijL ∈ Ij \ (S ∪R) be such that N(ijL) ∩W
is L-ambiguous and N(ijL) ∩ ZR is inclusion-wise maximal among all vertices of Ij \ (S ∪ R) with
L-ambiguous neighbor sets in W . Similarly, let ijR ∈ Ij \ (S ∪ L) be such that N(ijR) ∩ W is
R-ambiguous, and N(ijR) ∩ ZL is inclusion-wise maximal among all vertices of Ij \ (S ∪ L) with
R-ambiguous neighbor sets inW . We set ijL := ⊥ (ijR := ⊥) if Ij \ (S∪R) (Ij \ (S∪L), respectively)
has no vertex, whose neighborhood in W is L-ambiguous (R-ambiguous, respectively). In what
follows we use the convention that N(⊥) := ∅.

Let Ŝ be the set containing the following vertices:

• the vertices b1, b2, c1, c2

• all vertices v such that N(v) ∩W is an unambiguous profile

• all vertices v such that N(v) ∩W is a strictly L-ambiguous profile and v has a neighbor in
ZR \

⋃k
j=1N(ijL)

• all vertices v such that N(v) ∩W is a strictly R-ambiguous profile and v has a neighbor in
ZL \

⋃k
j=1N(ijR)

• all vertices v such that N(v) ∩ W is L-ambiguous and R-ambiguous, v has a neighbor in
ZR \

⋃k
j=1N(ijL), and v has a neighbor in ZL \

⋃k
j=1N(ijR)

Lemma 4.7. Ŝ is an F -container for S.

Proof. Let W , i1R, . . . , i
k
R, and i

1
L, . . . , i

k
L be as above. First we show that S ⊆ Ŝ. Let s ∈ S. By

Lemma 4.4, N(s) ∩W is a profile for every vertex s ∈ S. If N(s) ∩W is an unambiguous profile,
then s ∈ Ŝ. Suppose N(s) ∩W is an L-ambiguous profile. By Lemma 4.5, there exists x ∈ ZR ∩R
with sx ∈ E(G). Since for every j ∈ {1, . . . , k} we know that ijL 6∈ R and ijL 6∈ S, it follows that
ijLx 6∈ E(G) or ijL = ⊥. Therefore, s has a neighbor in ZR \

⋃k
j=1N(ijL). By symmetry, if N(s)∩W

is an R-ambiguous profile, then s has a neighbor in ZL \
⋃k

j=1N(ijR). If N(s) ∩W is strictly L-
ambiguous, then s has a neighbor in ZR \

⋃k
j=1N(ijL), so s ∈ Ŝ. Similarly, if N(s) ∩W is strictly

R-ambiguous, then s has a neighbor in ZL \
⋃k

j=1N(ijR), so s ∈ Ŝ. If N(s) ∩W is L-ambiguous
and R-ambiguous, then s has a neighbor in ZL \

⋃k
j=1N(ijR) and a neighbor in ZR \

⋃k
j=1N(ijL),

so s ∈ Ŝ. Therefore, S ⊆ Ŝ.
Now we show that Ŝ ∩ V (F) = S ∩ V (F). Suppose there exists u ∈ V (F) \ S; without loss of

generality we may assume that f ∈ I1. Recall that for any v ∈ V (G), if N(v) ∩W is not a profile,
then v 6∈ Ŝ. Therefore suppose that N(u) ∩W is a profile.

9

We claim that N(u) ∩ W is either L-ambiguous or R-ambiguous. For contradition, suppose
that N(u) ∩W is not ambiguous. Since N(u) ∩W is not L-ambiguous, we observe that u must
be adjacent to at least one of r1, r2, d1, d2 ∈ R. Similarly, since N(u) ∩W is not R-ambiguous, u
must be adjacent to at least one of a1, a2, l1, l2 ∈ L. Since u has neighbors both in L and in R, we
conclude that u ∈ S, a contradiction.

If N(u)∩W is an L-ambiguous profile, then Lemma 4.6 asserts that N(u)∩ZR and N(i1L)∩ZR

are comparable or i1L = ⊥. If i1L 6= ⊥ and N(u) ∩ ZR ⊆ N(i1L) ∩ ZR, then u /∈ Ŝ by the definition
of Ŝ. Otherwise, by the choice of i1L and since u /∈ S, we have u ∈ R. This, in turn, implies that
N(u) ∩W is an R-ambiguous profile.

By symmetry, we infer that if N(u)∩W is an R-ambiguous profile, then either u /∈ Ŝ or u ∈ L.
The latter outcome implies that N(u)∩W is an L-ambiguous profile. Since u ∈ L and u ∈ R cannot
happen at the same time, we infer that u /∈ Ŝ. This completes the proof.

Now we can finally show an enumeration algorithm for containers of minimal separators.

Theorem 4.8. Given an n-vertex graph G ∈ C and an integer k, one can in nO(k) time compute
a family F1 of size O(n2k+12) such that for every k-colorable induced subgraph F of G and every
minimal separator S of G there exists Ŝ ∈ F1 such that Ŝ is an F -container for S.

Proof. We first add every separator S ∈ F0 to F1, so F1 contains all primitive separators of G. Next,
we enumerate all possible combinations of W = {a1, a2, b1, b2, c1, c2, d1, d2, l1, l2, r1, r2}, i1R, . . . , ikR,
and i1L, . . . , i

k
L. There are O(n2k+12) possibilities for the tuple (W, i1R, . . . , i

k
R, i

1
L, . . . , i

k
L). For each

tuple (W, i1R, . . . , i
k
R, i

1
L, . . . , i

k
L), we add to F1 the set Ŝ constructed as described above. For every

minimal separator S that is not primitive, Lemma 4.7 implies that Ŝ is an F -container for S for the
correct choice of (W, i1R, . . . , i

k
R, i

1
L, . . . , i

k
L). Therefore, for every k-colorable induced subgraph F of

G and every minimal separator S of G there exists Ŝ ∈ F1 such that Ŝ is an F -container for S.

In the next section we will need the following strengthening of Theorem 4.8:

Theorem 4.9. Given an n-vertex graph G and an integer k, one can in nO(k) time compute a family
F2 of size O(n2k+13) such that for every k-colorable induced subgraph F of G and every minimal
separator S of G there exists Ŝ ∈ F2 such that Ŝ is an F -container for S.

Furthermore, for every k-colorable induced subgraph F of G, every minimal separator S of G
such that S /∈ F2, and every two full components L and R of S, there exist z`, zr ∈ S with N(z`) ∩
(V (F) \ (S ∪ L)) = ∅ and N(zr) ∩ (V (F) \ (S ∪R)) = ∅.

Proof. Let F2 := F1 ∪ {N(D) | D ∈ cc(G − Ŝ), Ŝ ∈ F1}. For every Ŝ ∈ F1, there are at most n
components in cc(G−Ŝ), so there are O(n2k+13) elements in F2. Let S /∈ F2 be a minimal separator
of G, let L and R be two full components of S, and let F be a k-colorable induced subgraph of G.

Consider the F -container Ŝ for S that is added to F1 for L, R, a k-coloring F1, F2, . . . , Fk of F ,
and a tuple (W, i1R, . . . , i

k
R, i

1
L, . . . , i

k
L). If Ŝ ∩L = ∅, then, L ∈ cc(G− Ŝ) and N(L) = S, so S ∈ F2.

So S /∈ F2 implies Ŝ ∩ L 6= ∅ and, symmetrically, Ŝ ∩R 6= ∅.
Let x ∈ Ŝ ∩ L, and let y ∈ Ŝ ∩ R. The vertex x was added to Ŝ because N(x) ∩ W is an

L-ambiguous profile and x has a neighbor in ZR \
⋃k

j=1N(ijL). Let zr ∈ ZR \
⋃k

j=1N(ijL) such that
xzr ∈ E(G). Recall that all vertices from ZR are adjacent to both d1, d2 ∈ R. Since zr is adjacent
to a vertex in L (the vertex x) and a vertex in R (e.g., the vertex d1), we conclude that zr ∈ S.
Therefore, zr ∈ (ZR ∩ S)\

⋃k
j=1N(ijL).

Because zr 6∈
⋃k

j=1N(ijL) and for every j ∈ {1, . . . , k}, the vertex ijL is the vertex in Fj \ (S ∪R)
whose neighborhood in ZR is maximal, we deduce that zD is anticomplete to V (F) \ (S ∪R). The
definition and reasoning for z` is symmetrical. This completes the proof.

10

Ω

D1 D2

D3

x y

z

(a) Proof of Lemma 5.1.

Ω

Dx Dy

D1

d

x y

v

(b) Proof of Lemma 5.2.

Figure 2: Illustrations for Section 5.

5 Containers for PMCs

Let again k be a fixed constant and G ∈ C be an n-vertex graph. In this section, we describe how
to construct a set of containers for the potential maximal cliques of G.

The adhesions of Ω are the minimal separators N(D) for D ∈ cc(G−Ω). We say that Ω is pure
if all adhesions of Ω are in F2, i.e., the family of sets given by Theorem 4.9. A PMC that is not
pure is called impure.

The following two lemmas are slight strengthenings of results from [10].

Lemma 5.1 ([10]). Let G ∈ C and Ω ⊆ V (G) be a PMC of G, and suppose J ⊆ Ω is an independent
set with |J | > 1. Then, there exists D ∈ cc(G− Ω) such that J ⊆ N(D).

Proof. If |J | = 2, the result follows from Theorem 2.1, so assume |J | ≥ 3. Let D1 ∈ cc(G−Ω) be the
component of G−Ω that maximizes |N(D1)∩J |, and suppose J \N(D1) 6= ∅. Since every nonedge
of J is covered by some component, |N(D1) ∩ J | ≥ 2. Let D2 ∈ cc(G− Ω) be the component that
maximizes |J ∩N(D1)∩N(D2)| subject to N(D2)∩(J \N(D1)) 6= ∅. Since for every x ∈ J ∩N(D1)
and y ∈ J \N(D1) there exists a component covering the nonedge xy, such a component D2 exists
and J ∩N(D1) ∩N(D2) 6= ∅. By the choice of D2, there exists y ∈ J ∩ (N(D2) \N(D1)). By the
maximality of |N(D1) ∩ J |, there exists x ∈ J ∩ (N(D1) \N(D2)). By Theorem 2.1, there exists a
component D3 ∈ cc(G − Ω) covering the nonedge xy; note that D3 6= D1, D2. By the maximality
of D2, as x ∈ J ∩ ((N(D1)∩N(D3))\N(D2)) and y ∈ J ∩ ((N(D2)∩N(D3))\N(D1)), there exists
z ∈ J ∩ ((N(D1) ∩ N(D2)) \ N(D3)). Let P1 be a shortest path from x to z via D1, let P2 be a
shortest path from z to y through D2, and let P3 be a shortest path from x to y through D3. Then
x− P1 − z − P2 − y − P3 − x is a hole of length at least six (see Figure 2a), a contradiction.

Lemma 5.2 ([10]). Let G ∈ C , let Ω be a PMC of G, and let v ∈ Ω be such that at least
one component D ∈ cc(G − Ω) satisfies v ∈ N(D). Then there exist D1, D2 ∈ cc(G − Ω) with
v ∈ N(D1) ∩N(D2), and Ω \N(v) ⊆ N(D1) ∪N(D2).

Proof. Let D1 ∈ cc(G − Ω) such that v has a neighbor in D1. Let d ∈ D1 ∩ N(v). Suppose
that there is no D ∈ cc(G − Ω) with v ∈ N(D) such that Ω \ (N(v) ∪ N(D1)) ⊆ N(D). Let
M ⊆ Ω\(N(v)∪N(D1)) be such thatM∪{v} 6⊆ N(D) for all D ∈ cc(G−Ω), andM ′∪{v} ⊆ N(D)
for some D ∈ cc(G − Ω) for every M ′ (M . If M is an independent set, M ∪ {v} is also an
independent set, so by Lemma 5.1 we conclude that M ∪ {v} ⊆ D for some D ∈ cc(G − Ω).
Therefore, there exist x, y ∈M such that xy ∈ E(G).

11

By the definition of M we know that (M \ {x}) ∪ {v} ⊆ N(Dy) for some Dy ∈ cc(G − Ω).
Similarly, (M \ {y}) ∪ {v} ⊆ N(Dx) for some Dx ∈ cc(G − Ω). The definition of M implies that
x /∈ N(Dy) and y /∈ N(Dx), so in particular Dx 6= Dy. Moreover, D1 6= Dx, Dy, as x, y /∈ N(D1).
Let Px be a shortest path from x to v through Dx and Py be a shortest path from y to v through
Dy. Then, v − Px − x− y − Py − v is a hole of length at least six or G[V (Px) ∪ V (Py) ∪ {v, d}] is
an extended C5 (see Figure 2b), a contradiction.

We now construct a set of F -containers for impure PMCs Ω.

Theorem 5.3. Given an n-vertex graph G ∈ C and an integer k, one can in nO(k) time compute
a family X1 of size O(n8k+54) such that for every k-colorable induced subgraph F of G and every
impure PMC Ω of G, some member of X1 is an F -container for Ω.

Proof. Define

X1 :=
{(⋃

Z
)
∪ (N(u) ∩N(v)) | Z ⊆ F2, |Z| ≤ 4, u, v ∈ V (G)

}
.

There are O(n2k+13) elements in F2 and n elements in V (G), so X1 has size O(n8k+54).
Suppose F is a k-colorable induced subgraph of G and Ω is an impure PMC of G. Let S be an

adhesion of Ω, such that S /∈ F2. Let L be a component of G − Ω such that S = N(L), and let
R be another full component of S. By Theorem 4.9, as S /∈ F2, there exist z`, zr ∈ S such that
N(z`)∩(V (F)\(L∪S)) = ∅ and N(zr)∩(V (F)\(R∪S)) = ∅. Since N(L) = S and L ∈ cc(G−Ω),
each of z` and zr has a neighbor in V (G) \ Ω. By Lemma 5.2, there exist minimal separators
S`
1, S

`
2, S

r
1 , S

r
2 of G, all contained in Ω, such that Ω \ N(z`) ⊆ S`

1 ∪ S`
2 and Ω \ N(zr) ⊆ Sr

1 ∪ Sr
2 .

Then, Ω ⊆ S`
1 ∪ S`

2 ∪ Sr
1 ∪ Sr

2 ∪ (N(z`) ∩N(zr)).
For i = 1, 2, pick Ŝ`

i , Ŝ
r
i ,∈ F2 such that Ŝ`

i is an F -container for S`
i and Ŝr

i is an F -container
for Sr

i . Consider the set

Ω̂ := Ŝ`
1 ∪ Ŝ`

2 ∪ Ŝr
1 ∪ Ŝr

2 ∪ (N(z`) ∩N(zr)).

Clearly, Ω ⊆ Ω̂ and Ω̂ ∈ X1. Since z` is anticomplete to V (F) \ (S ∪ L) and zr is anticomplete to
V (F) \ (S ∪R), it follows that (N(z`)∩N(zr))∩V (F) ⊆ V (F)∩S ⊆ Ω. Since Ŝ`

i is an F -container
for S`

i and S`
i ⊆ Ω, we obtain that Ŝ`

i ∩V (F) ⊆ Ω∩V (F) for i = 1, 2; a symmetric statement holds
for Sri . Hence, Ω̂∩V (F) ⊆ Ω∩V (F). Since Ω ⊆ Ω̂, we conclude that Ω̂ is an F -container for Ω.

Next, we aim to construct a set X2 such that every pure PMC Ω of G belongs to X2. To this
end, we follow a methodology of survival sequences, implicit in [4], and made explicit and formalized
in [14]. We follow the notation of the full version [13]. A sequence S = (x1, x2, . . . , xt) of distinct
vertices of G is a survival sequence for a PMC Ω if for every 0 ≤ i ≤ t the set Ω \ {x1, x2, . . . , xi}
is a PMC in the graph G− {x1, x2, . . . , xi}. We denote V (S) = {x1, x2, . . . , xt} and we say that S
ends in Ω \ V (S), which is a PMC in G− V (S). We need the PMC Lifting Lemma from [13,14].

Lemma 5.4 (PMC Lifting Lemma [13, Lemma 22]). Let G be a graph and let S = (x1, x2, . . . , xt)
be a sequence of distinct vertices of G. Then for every Ω′ that is a PMC in G− V (S), there exists
a unique Ω that is a PMC in G and S is a survival sequence for Ω ending in Ω′. Moreover, given
G, S, and Ω′, the PMC Ω can be computed in polynomial time.

The next lemma and its proof is the analog of Lemma 25 of [13].

Lemma 5.5. Suppose G ∈ C and let n = |V (G)|. Given a family Y ⊆ 2V (G), one can in time
(n · |Y|)O(1) compute a family Xrec(Y) ⊆ 2V (G), such that |Xrec(Y)| ≤ 3n4|Y|4 and the following
property holds: for every PMC Ω in G, if cc(G− Ω) ⊆ Y, then Ω ∈ Xrec(Y).

12

Proof. Let Ω be a PMC in G, such that cc(G − Ω) ⊆ Y. Let x1, x2, . . . , xn be an arbitrary
enumeration of V (G) and for 0 ≤ i ≤ n, let Xi := {x1, x2, . . . , xi} (where X0 := ∅), Gi := G−Xi,
and Ωi := Ω \ Xi. Let 0 ≤ s ≤ n be the maximum integer such that Ωs is a PMC in Gs; since
Ω = Ω0 is a PMC in G = G0, such an integer exists.

Since cc(G−Ω) ⊆ Y, we have cc(Gs −Ωs) ⊆ Ys, where Ys :=
⋃

D∈Y cc(G[D \Xs]). Note that
|Ys| ≤ (n− s)|Y|.

If s = n, then (x1, x2, . . . , xn) is a survival sequence for Ω ending in Ωn = ∅ in an empty graph
Gn. By Lemma 5.4, there is exactly one such PMC Ω∅ and it can be computed in polynomial time.
We define G0 = {Ω∅}.

Assume then s < n and let v := xs+1. Then Ωs+1 = Ωs \ {v} is not a PMC in Gs+1 = Gs −{v}
due to the choice of s.

First, suppose v ∈ Ω. Then, cc(Gs − Ωs) = cc(Gs+1 − Ωs+1). Therefore, for every nonedge xy
in Ωs+1, there exists a component D ∈ cc(Gs+1 −Ωs+1) that covers xy. It follows that Ωs+1 is not
a PMC of Gs+1 because for some D ∈ cc(Gs+1 − Ωs+1) it holds that NGs+1(D) = Ωs+1. Then,
Ωs = NGs(D)∪{v}. Thus, Ω ∈ G1 where G1 is constructed as follows: for every 0 ≤ s < n and every
D ∈ Ys, compute Z := NGs(D) ∪ {xs+1} and if Z is a PMC in Gs, apply the PMC Lifting Lemma
to the graph G, the sequence (x1, x2, . . . , xs) and the PMC Z, and insert the resulting PMC of G
into G1. Note that |G1| ≤

∑n−1
s=0 (n− s)|Y| =

(
n+1
2

)
|Y|.

Now, suppose v 6∈ Ω. Then, Ωs = Ωs+1 and v ∈ D for some D ∈ cc(Gs − Ωs). For every
D′ ∈ cc(Gs+1 − Ωs+1), either D′ ∈ cc(Gs − Ωs) or D′ ⊆ D, so NGs+1(D′) (Ωs+1 for all D′ ∈
cc(Gs+1 − Ωs+1). It follows that Ωs+1 is not a PMC in Gs+1, because some nonedge xy in Ωs+1

is not covered by a component in cc(Gs+1 − Ωs+1). Therefore, D is the unique component in
cc(Gs−Ωs) covering xy. Furthermore, v ∈ D and (N(x)∩N(y)) \Ωs ⊆ {v}. By Lemma 5.2, there
exist D1, D2, D3, D4 ∈ cc(Gs − Ωs) such that

Ωs =

 ⋃
1≤i≤4

NGs(Di)

 ∪ (N(x) ∩N(y)
) \ {v}.

Hence, Ω ∈ G2 where G2 is constructed as follows: for every 0 ≤ s < n, for everyD1, D2, D3, D4 ∈ Ys,
and for every x, y ∈ V (G), compute

Z :=

 ⋃
1≤i≤4

NGs(Di)

 ∪ (N(x) ∩N(y)
) \ {xs+1},

and if Z is a PMC inGs, apply the PMC Lifting Lemma to the graphG, the sequence (x1, x2, . . . , xs),
and the PMC Z, and insert the resulting PMC of G into G2. Note that |G2| ≤

∑n−1
s=0

(
n
2

)
(n−s)|Y|4 =(

n+1
2

)(
n
2

)
|Y|4.

We output Xrec(Y) := G0 ∪ G1 ∪ G2. By the above estimations, for n > 1 the output is of size at
most 3n4|Y|4, while for n = 1 the output is of size at most 2.

We can now construct a set containing all pure PMCs of G.

Theorem 5.6. Given an n-vertex graph G ∈ C and an integer k, one can in time nO(k) construct
a set X2 of size O(n8k+60) such that every pure PMC Ω of G belongs to X2.

Proof. We apply Lemma 5.5 to G and Y :=
⋃

S∈F2
cc(G− S), where F2 comes from Theorem 4.9.

Since F2 = O(n2k+13), we obtain that |Y| = O(n2k+14) and the size bound follows.

Finally, we can combine the results of Theorems 5.3 and 5.6, giving the following.

13

Theorem 1.6. Given an n-vertex graph G ∈ C and an integer k, one can in nO(k) time compute
a family X of size O(n8k+60) such that for every k-colorable induced subgraph F of G and every
potential maximal clique Ω of G there exists S ∈ X such that S is an F -container for Ω.

6 Dynamic programming algorithm

The goal of this section is to prove Theorem 1.5.

Theorem 1.5. Assume we are given a graph G with weight function w : V (G)→ N, a family A of
subsets of V (G), and a positive integer k with the following promise:

For every induced subgraph F of G of treewidth less than k and every potential maximal
clique Ω of G, if |V (F) ∩ Ω| ≤ k, then A contains an F -container for Ω.

Then, one can in time |A|2|V (G)|O(k) find a maximum-weight induced subgraph of (G,w) of treewidth
less than k.

As discussed in the overview, here it is more convenient use the terms of tree decompositions
instead of chordal completions. Let us recall from the overview the main technical statement of this
section:

Theorem 3.1. Assume we are given a graph G with weight function w : V (G)→ N, a family A of
subsets of V (G), and a positive integer k with the following promise:

For every induced subgraph F of G of treewidth less than k there exists a tree decompo-
sition (T, β) of G such that

• for every t ∈ V (T), an F -container for β(t) belongs to A,
• (T, βF) is a tree decomposition of F of width less than k, where βF (t) := β(t)∩V (F)
for every t ∈ V (T).

Then, one can in time |A|2|V (G)|O(k) find a maximum-weight induced subgraph of (G,w) of treewidth
less than k.

We show how Theorem 1.5 follows from Theorem 3.1 in Section 6.1 and prove Theorem 3.1 in
Section 6.2.

6.1 Proof of Theorem 1.5

We need the following facts on relations between chordal completions and tree decompositions. The
first one is straightforward.

Proposition 6.1. Let G be a graph and let (T, β) be a tree decomposition of G. Then

E :=
⋃

t∈V (T)

(
β(t)

2

)
\ E(G)

is a chordal completion of G. Consequently, if G has treewidth less than k, then there exists a
minimal chordal completion E of G such that every clique of G+ E is of size at most k.

The second one is a well-known characterization of chordal graphs.

14

Proposition 6.2 (see e.g. [16]). A graph G is chordal if and only if there exists a tree decomposition
(T, β) of G such that every bag is a maximal clique in G. If G is chordal, such a tree decomposition
is called a clique tree of G.

The third one has been pivotal to the results of [?,?].

Lemma 6.3 ([?, Lemma 3.1], [?, Lemma 2.9]). Let F be an induced subgraph of G and let EF be
a minimal chordal completion of F . Then there exists a minimal chordal completion EG of G such
that for every clique Ω of G+EG, the intersection Ω∩V (F) is either empty or is a clique of F +EF .

Consider the input tuple (G,w,A, k) as in Theorem 1.5. We claim that we can pass the same
tuple to the algorithm of Theorem 3.1: the output of both the algorithm of Theorem 1.5 and
Theorem 3.1 is the same, we need only to verify the promise of Theorem 3.1.

Let F be an induced subgraph of G of treewidth less than k. By Proposition 6.1, there exists
a minimal chordal completion EF of F such that every clique of F + EF is of size at most k. By
Lemma 6.3, there exists a minimal chordal completion EG of G such that for every clique Ω of
G + EG, the set Ω ∩ V (F) is either empty or is a clique of F + EF . In particular, if (T, β) is the
clique tree of G+ EG (from Proposition 6.2), then |β(t) ∩ V (F)| ≤ k for every t ∈ V (T), so (T, βF)
is a tree decomposition of F of width less than k, where βF (t) = β(t) ∩ V (F) for every t ∈ V (T).
Since β(t) is a maximal clique of G + EG for every t ∈ V (T), by the assumptions of Theorem 1.5,
A contains an F -container for β(t).

This verifies the promise of Theorem 3.1 and thus completes the proof of Theorem 1.5, assuming
Theorem 3.1.

6.2 Proof of Theorem 3.1

As promised in the overview, we start with some canonization definitions. The lexicographic order
on subsets of V (G) is defined as follows. We order the vertices of V (G) arbitrarily as {v1, v2, . . . , vn}
where n = |V (G)| and with a set B ⊆ V (G) we associate a {0, 1}-vector ιB of length n with ιB[i] = 1
if and only if vi ∈ B, for i ∈ [n]. For two subsets B1, B2 ⊆ V (G), we have that B1 is lexicographically
earlier than B2, B1 <lex B2 if ιB1 is lexicographically earlier than ιB2 . Lexicographic order allows
us to define an order ≺ on induced subgraphs of G. If F1 and F2 are two induced subgraphs of
G, then F1 ≺ F2 if w(V (F1)) > w(V (F2)) or w(V (F1)) = w(V (F2)) and V (F1) <lex V (F2). That
is, the ≺-minimum induced subgraph of treewidth less than k is the lexicographically first of all
maximum-weight induced subgraphs of treewidth less than k. Our algorithm will in fact return
such a set.

We immediately have the following property.

Lemma 6.4. If B1, B2 ⊆ V (G) and X ⊆ V (G) such that B1 \X = B2 \X, but B1∩X <lex B2∩X,
then B1 <lex B2. Consequently, if B1, B2 ⊆ V (G) are two vertex sets and X ⊆ V (G) is such that
B1 \X = B2 \X but B1 ∩X ≺ B2 ∩X, then B1 ≺ B2.

We start by defining the set of states of our dynamic programming algorithm. A state is a tuple
(A,Q,D) where A ∈ A, Q ⊆ A is of size at most k, and D is a connected component of G−A. Let
States be the set of states. A set P ⊆ D is a feasible solution to the state (A,Q,D) if G[P ∪ Q]
admits a tree decomposition of width less than k with Q being contained in one of the bags.

Observe that one can verify in time nO(k) whether P is a feasible solution to (A,Q,D) by
applying the algorithm of Arnborg, Corneil, and Proskurowski [?] (that verifies if a given n-vertex
graph has treewidth less than k in time O(nk+1)) to the graph G[P ∪Q] with Q turned into a clique.

15

For every state (A,Q,D) ∈ States the algorithm will compute a set Υ(A,Q,D) that is a feasible
solution to (A,Q,D). The algorithm initializes Υ(A,Q,D) := ∅ for every state (A,Q,D); note that
∅ is a feasible solution to every state due to the assumption |Q| ≤ k.

We will need the following observation.

Lemma 6.5. Let A ∈ A, Q ⊆ A be of size at most k, let D ⊆ cc(G−A), and let (JD)D∈D be such
that JD is a feasible solution to (A,Q,D) for every D ∈ D. Define

F (A,Q,D, (JD)D∈D) := Q ∪
⋃
D∈D

JD.

Then, G[F (A,Q,D, (JD)D∈D)] admits a tree decomposition of width less than k with Q contained
in one of the bags.

Proof. Fix D ∈ D. Since JD is a feasible solution for (A,Q,D), there exists a tree decomposition
(TD, βD) of G[Q ∪ JD] of width less than k with a node tD ∈ V (TD) such that Q ⊆ βD(tD).

Construct a tree decomposition (T, β) of G[F (A,Q,D, (JD)D∈D)] as follows. First, let T be
obtained by taking a disjoint union of all trees TD, for D ∈ D, and adding a new node t, which
is adjacent to tD for every D ∈ D. Second, define β to be the union of all βD for D ∈ D, and
additionally β(t) = Q. Then, (T, β) is a tree decomposition of G[F (A,Q,D, (JD)D∈D)] of width
less than k with β(t) = Q, as desired. y

Let F be the ≺-minimum induced subgraph of G of treewidth less than k. Let (T, β) be the tree
decomposition promised for F in the theorem statement. By standard arguments, we can assume
that |E(T)| ≤ |V (G)|. Indeed, if there is an edge t1t2 ∈ E(T) with β(t1) ⊆ β(t2), we can contract
the edge t1t2, keeping β(t2) as the bag associated to the resulting node. It is straightforward to verify
that such a contraction does not break the promised properties of (T, β). If no such contraction is
possible, root T at an arbitrary node and observe that for every edge t1t2 with t2 being the parent
and t1 being the child, there is at least one vertex in β(t1) \ β(t2) and every vertex of V (G) can be
an element of β(t1) \ β(t2) for at most one pair (t1, t2) where t1 is a child of t2. Thus, there are at
most |V (G)| edges of T .

For every t ∈ V (T), let At ∈ A be the container promised in the theorem statement, that is,
β(t) ⊆ At while At∩V (F) = β(t)∩V (F). In particular, this implies that |At∩V (F)| ≤ k for every
t ∈ V (T), so (At, At ∩ V (F), D) ∈ States for every t ∈ V (T) and D ∈ cc(G−At).

We observe now the following straightforward corollary of the properties of a tree decomposition.

Lemma 6.6. For every t ∈ V (T) and D ∈ cc(G− At) there exists a unique neighbor tD of t in T
such that the vertices of D appear only in bags in the component TD of T −{ttD} that contains tD.

By the choice of (T, β), the decomposition (T, βF) is a tree decomposition of F of width less
than k, where βF (t) = β(t) ∩ V (F) for every t ∈ V (T).

Fix t ∈ V (T) and D ∈ cc(G−At). Let Q = V (F) ∩At; since At is an F -container for β(t), we
know that Q = βF (t). Let tD and TD be as in Lemma 6.6 for t and D. Let T ′D be obtained from
the tree TD by adding the vertex t and the edge ttD. In other words, T ′D is the subtree of T induced
by V (TD) ∪ {t}. Let βF,t,D be defined as βF,t,D(t′) := βF (t′) ∩ (D ∪ At) for all t′ ∈ V (T ′D). Then,
(T ′D, βF,t,D) is a tree decomposition of F [At ∪ D] of width less than k, satisfying Q = βF,t,D(t).
Hence, D ∩ V (F) is a feasible solution to (At, At ∩ V (F), D).

Furthermore, Lemma 6.4 implies that the set D ∩ V (F) is ≺-minimum feasible solution to
(At, At ∩ V (F), D). Indeed, if there were a set J ≺ (D ∩ V (F)) that is also a feasible solution to
(At, At ∩ V (F), D), then F ′ := G[(V (F) \D)∪ J] would also be of treewidth less than k (thanks to
Lemma 6.5) and V (F ′) ≺ V (F), contradicting the choice of F .

16

We will prove that our algorithm actually finds D∩V (F) as a feasible solution for every t ∈ V (T)
and D ∈ cc(G − At). That is, we will prove that in the end the algorithm attains the following
property.

Υ(At, At ∩ V (F), D) = D ∩ V (F) for every t ∈ V (T) and D ∈ cc(G−At). (1)

Assume for the moment that the values Υ(·) are computed such that (1) is satisfied. We show how
to conclude. Iterate over all sets A ∈ A and sets Q ⊆ A of size at most k. For every pair (A,Q)
compute

FA,Q := F (A,Q, cc(G−A), (Υ(A,Q,D))D∈cc(G−A)).

Lemma 6.5 asserts that G[FA,Q] is of treewidth less than k. Our algorithm returns the ≺-
minimum set among all considered sets FA,Q. Clearly, given the values Υ(·), choosing such FA,Q

can be done in time |A| · |V (G)|O(k). Furthermore, for every t ∈ V (T) there is an interation where
the algorithm considers the pair (At, At ∩ V (F)) and then (1) ensures that FAt,At∩V (F) = V (F).
Thus, the algorithm returns V (F). It remains to show how to compute the values Υ(·) so that the
property (1) is satisfied.

Recall that the algorithm initializes Υ(A,Q,D) := ∅ for every (A,Q,D) ∈ States. The algo-
rithm performs |V (G)| rounds. In each round, the algorithm inspects every state (A,Q,D) ∈ States
and performs the following computation. It iterates over every pair (A′, Q′), where A′ ∈ A and
Q′ ⊆ A′ is of size at most k, such that Q ∩ (A ∩A′) = Q′ ∩ (A ∩A′). For a fixed pair (A′, Q′), let

D := {D′ ∈ cc(G−A′) | D′ ∩D 6= ∅}.

The algorithm inspects all values Υ(A′, Q′, D′) for D′ ∈ D and computes

J := D ∩ F (A′, Q′,D, (Υ(A′, Q′, D′))D′∈D).

If J is a feasible solution to (A,Q,D) and J ≺ Υ(A,Q,D), then the algorithm updates the value
Υ(A,Q,D) by setting Υ(A,Q,D) := J . We shall later refer to the above step as considering J as
a candidate for Υ(A,Q,D).

Clearly, the algorithm runs in time |A|2|V (G)|O(k). It remains to show the property (1).
Fix t ∈ V (T) and D ∈ cc(G − At). Since D ∩ V (F) is the ≺-minimum feasible solution to

(At, At ∩ V (F), D), if at some moment the algorithm considers D ∩ V (F) as a candidate value for
Υ(At, At ∩ V (F), D), then it sets Υ(At, At ∩ V (F), D) := D ∩ V (F) and never changes it later.
Thus, it suffices to show that the set D ∩ V (F) is at least once considered as a candidate for
Υ(At, At ∩ V (F), D).

For a pair (t1, t2) of adjacent nodes of T , the depth of (t1, t2) is the maximum number of edges
on a simple path in T that starts in t1 and has t2 as a second vertex. Let tD and TD be as in
Lemma 6.6 for t and D. Let d be the depth of (t, tD). We will show by induction on the depth of
(t, tD) that Υ(At, At ∩ V (F), D) = D ∩ V (F) after d rounds.

To this end, we show that in d-th round we consider J = D ∩ V (F) for the pair (A′, Q′) =
(AtD , AtD ∩ V (F)). Clearly, (At ∩ V (F)) ∩ (At ∩ AtD) = (AtD ∩ V (F)) ∩ (At ∩ AtD), so the pair
(A′, Q′) = (AtD , AtD ∩ V (F)) is considered by the algorithm while iterating over pairs (A′, Q′) for
the state (At, At ∩ V (F), D). Recall that

D = {D′ ∈ cc(G−AtD) | D′ ∩D 6= ∅}.

From the properties of a tree decomposition we infer the following.

Lemma 6.7. For every D′ ∈ D there exists a neighbor sD′ of tD distinct from t such that all vertices
of D′ lie only in bags of the component of T − {tDsD′} that contains sD′.

17

Proof. Since β(tD) ⊆ AtD , for every D
′ ∈ cc(G− AtD) there exists a neighbor sD′ of tD such that

all vertices of D′ lie only in bags of the component of T − {tDsD′} that contains sD′ . The crux is
to show that if D′ ∈ D, then sD′ 6= t.

Pick v ∈ D′ ∩D. There exists a node s ∈ V (T) with v ∈ β(s). By the choice of tD, the node
s lies in the component of T − {ttD} that contains tD. By the choice of sD′ , the node s lies in
the component of T − {tDsD′} that contains sD′ . Hence, t = sD′ would give a contradiction. This
completes the proof. y

Observe that for every neighbor s of tD that is distinct from t, the depth of (tD, s) is strictly
smaller than the depth of (t, tD). Consequently, by the inductive hypothesis, Υ(AtD , AtD∩V (F), D′) =
D′ ∩ V (F) for every D′ ∈ D. Thus, the algorithm considers as a candidate for Υ(At, At ∩ V (F), D)
the value

J = D ∩

(
(AtD ∩ V (F)) ∪

⋃
D′∈D

Υ(AtD , AtD ∩ V (F), D′)

)
= D ∩

(
(AtD ∩ V (F)) ∪

⋃{
D′ ∩ V (F) | D′ ∈ cc(G−AtD) ∧D′ ∩D 6= ∅

})
= D ∩ V (F).

Hence, Υ(At, At ∩ V (F), D) = D ∩ V (F) after d rounds of the algorithm. This completes the proof
of property (1) and thus of Theorem 3.1.

7 Conclusion

In this paper, we modify the dynamic programming algorithm in the framework of potential maximal
cliques to take as input a set of containers of potential maximal cliques. We apply it to the class C
that contains both long-hole-free graphs and P5-free graphs. We hope that the method of containers
will find applications in other scenarios as well.

We would like to discuss here three directions of generalizations of Theorem 1.5. Recall the
requirement of the theorem that for every induced subgraph F of G of treewidth less than k and
every potential maximal clique Ω of G, the supplied family A contains an F -container for Ω.

Allowing O(1) extra vertices of the solution in a container. In the first direction, let us
focus on the requirement A ∩ V (F) = Ω ∩ V (F) for the set A to be an F -container for Ω. We
observe that this requirement can be easily generalized to allow A to contain a constant number of
vertices of F that are not in Ω. More formally, for an integer p and an induced subgraph F of G,
we say that A ⊆ V (G) is an (F, p)-container for Ω ⊆ V (G) if Ω ⊆ A and |(A \ Ω) ∩ V (F)| ≤ p. In
particular, an (F, 0)-container is an F -container.

Assume that we can enumerate a family A with only the promise that A contains an (F, p)-
container for Ω for every F and Ω as in Theorem 1.5. Then, the family

A′ := {A \B | A ∈ A ∧B ⊆ A ∧ |B| ≤ p}

is of size O(|A|np) and contains an F -container for every F and Ω.

Enumerating containers for only selected PMCs. In the second direction, let us focus on the
necessity to enumerate in A a container for every PMC. The main insight of the work of Lokshtanov,
Vatshelle, and Villanger [16] is to enumerate only some PMCs, guaranteeing that for the sought

18

solution I there exists a minimal chordal completion that does not add any edge incident with I
and all maximal cliques of that completion are enumerated. An astute reader can notice that the
statement of Theorem 3.1, a technical statement behind Theorem 1.5, requires only to list containers
for bags of the promised tree decomposition (T, β) of G for any feasible solution F . Furthermore,
in the proof of Theorem 1.5, we use only containers for bags of the decomposition (T, β) for the
≺-minimum solution F (i.e., lexicographically-minimum solution of maximum weight). Hence, we
can state the following generalization of Theorem 1.5.

Theorem 7.1. Assume we are given a graph G with weight function w : V (G)→ N, a family A of
subsets of V (G), and a positive integer k with the following promise:

For every induced subgraph F of G of treewidth less than k there exists a minimal chordal
completion E of G such that

• every clique of (G+ E)[V (F)] is of size at most k, and

• for every maximal clique Ω of G+ E, A contains an F -container for Ω.

Then, one can in time |A|2|V (G)|O(k) find a maximum-weight induced subgraph of (G,w) of treewidth
less than k.

Lemma 6.3, originating in [?,?], is the crucial observation allowing us to go from the world of
tree decompositions in Theorem 3.1 to the world of minimal chordal completions in Theorem 1.5.
For the special case of MWIS (i.e., k = 1 in Theorem 1.5), Lemma 6.3 boils down exactly to an
existence of a minimal chordal completion of G that does not add any edge incident to the ≺-
minimum solution F . Taking into account also the discussion in the previous paragraphs, we can
state the following variant of Theorem 7.1, tailored for MWIS.

Theorem 7.2. Assume we are given a graph G with weight function w : V (G)→ N, a family A of
subsets of V (G), and an integer p with the following promise:

For every maximal independent set I of G there exists a minimal chordal completion E
of G such that

• E does not contain any edge incident with I, and

• for every maximal clique Ω of G+ E, A contains an (I, p)-container for Ω.

Then, one can in time |A|2|V (G)|O(p) find a maximum-weight independent set in (G,w).

That is, Theorem 7.2, being in fact a special case of Theorem 3.1 for k = 1, generalizes Theo-
rem 1.4 to containers.

Counting Monadic Second Order logic. In the third direction, we focus the use of Counting
Monadic Second Order logic (CMSO), as in the work of Fomin, Todinca, and Villanger [?]. The syn-
tax of CMSO consists of basic boolean operations, vertex, edge, vertex set, and edge sets variables,
and equality, containment, and incidence relations. Fomin, Todinca, and Villanger [?] considered
the following problem for fixed CMSO formula φ with one free vertex set variable and an integer
k: given a graph G, find a pair (F,X) maximizing |X| such that F is an induced subgraph of G of
treewidth less than k, X ⊆ V (F), and (F,X) satisfy φ. They show that the problem can be solved
in time polynomial in the size of G and the number of PMCs in G, even if the input is equipped
with vertex weights and we aim at maximizing the weight of X. Note that this (weighted) problem
generalizes the problem considered in Theorem 1.5 by taking φ that requires X = V (F).

19

We observe that the same use of CMSO can smoothly and effortlessly be embedded into The-
orems 1.5 and 3.1. That is, instead of asking for induced subgraph F of treewidth less than k
maximizing the weight of V (F), we can fix a CMSO formula φ as above and ask for a pair (F,X)
maximizing the weight of X such that F is an induced subgraph of G of treewidth less than k,
X ⊆ V (F), and (F,X) satisfy φ. Then, the running time bound would be multiplied by a term
depending only on φ and k:

Theorem 7.3. Assume we are given a graph G with weight function w : V (G)→ N, a family A of
subsets of V (G), a positive integer k, and a CMSO formula φ with one free vertex set variable, with
the following promise:

For every induced subgraph F of G of treewidth less than k and every potential maximal
clique Ω of G, if |V (F) ∩ Ω| ≤ k, then A contains an F -container for Ω.

Then, one can in time C(φ, k) · |A|2|V (G)|O(k) find a pair (F,X) maximizing the weight of X subject
to the following constraints: F is an induced subgraph of G of treewidth less than k, X ⊆ V (F),
and φ is satisfied on (F,X). Here, C(φ, k) is a constant depending only on φ and k.

We refer to [?] for examples of problems expressible by this formalism.
The work of [?] relies on previous framework by Borie, Parker, and Tovey [?] to handle the

CMSO property φ. The key property of CMSO formulae is that they define regular properties:
in our setting, given a pair (F,X) with X ⊆ V (F), a vertex separator Q of F of size at most k,
and a component P of G − Q, there is only a bounded in k and the size of φ number of potential
“types of partial behavior” of φ on the tuple (F [Q∪P], Q,X ∩ (Q∪P)). We refer to [?] for a gentle
introduction and precise definitions.

In the dynamic programming algorithm inside the proof of Theorem 3.1, handling a CMSO
requirement φ can be done exactly in the same way as it is done in the analogous dynamic pro-
gramming algorithm in [?]. Recall that the state of the algorithm consists of a container A ∈ A,
a set Q ⊆ A of size at most k (intended intersection of the solution with A) and a component
D ∈ cc(G−A). The state seeks to extend the solution into D: a feasible solution to (A,Q,D) is a
set P ⊆ D such that G[Q∪P] admits a tree decomposition of width less than k with Q contained in
one bag. With the CMSO requirement φ, we need to extend the dynamic programming state to a
tuple (A,Q,QX , c,D), where QX ⊆ Q is the intended intersection of the set X with Q and c is the
φ-type of a sought feasible solution inside D. That is, now a partial solution is a pair (P, Y) with
Y ⊆ P ⊆ D such that G[Q∪P] admits a tree decomposition of width less than k with Q contained
in one bag and the tuple (G[Q∪P], Q,QX ∪Y) has φ-type c; partial solutions are compared by the
weight of Y .

We decided to omit the above generalization in the proof of Theorem 3.1 for the sake of clarity
of the arguments. The above generalization is a straightforward application of the techniques of [?]
that would bring here a large definitional overhead without bringing any new insight.

Outreach. We would like to conclude with discussing a number of potential future research di-
rections.

Our general technique handles automatically the PMCs of the first and second type of [16],
leaving only the third phase of their algorithm. The third phase, very elegant in its nature, contains
the essential combinatorial arguments that make MWIS tractable in the class of P5-free graphs.
Thus, we believe it cannot be substantially further simplified.

Another natural question is whether our approach can be extended for larger graph classes,
in particular, for Pt-free graphs for t ≥ 6. A recent preprint [?] shows limitations of the basic

20

combinatorial toolbox of [14, 16], in particular they show examples of P8-free graphs where one of
the most basic tools breaks down. We note here that a modification of their example is also a
counter-example to the analog of Theorem 4.8 for k = 1 in P7-free graphs. Consider the graph
Gp being an p-theta with paths of length 3; that is, V (Gp) = {s0, s1} ∪ {vi0, vi1 | 1 ≤ i ≤ p} and
E(Gp) = {s0vi0, vi0vi1, vi1t0 | 1 ≤ i ≤ p}. Note that Gp is P7-free. For every f : {1, 2, . . . , p} → {0, 1}
that is not constantly equal 0 or constantly equal 1, let If := {vif(i) | 1 ≤ i ≤ p} and Sf :=

{vi1−f(i) | 1 ≤ i ≤ p}. Then, If is a maximal independent set in Gp and Sf is an If -safe minimal
separator. Since Sf ∩ If ′ 6= ∅ for f 6= f ′, in a hypothetical analog of Theorem 4.8 one would need a
different container for each Sf , leading to a lower bound of 2p − 2 for the size of the output family
of containers.

We were not able to make a similar counter-example for P6-free graphs. Are the analogs of The-
orem 4.8 and Theorem 1.6 true for P6-free graphs? A concrete motivation is to design a polynomial-
time algorithm for FVS in P6-free graphs.

On the other hand, recall that long-hole free graphs may have exponentially many PMCs and
minimal separators, as witnessed by the p-prism. However, an n-vertex long-hole-free graph without
a p-prism as an induced subgraph has np+O(1) minimal separators [10]. Is it possible that analogs
of Theorem 4.8 and Theorem 1.6 hold P7-free graphs, if we additionally forbid a p-theta graph Gp

for some constant p?

Future directions. A natural research direction is to study the possible application of the PMC
container method to wider graph classes, such as Pt-free graphs for t ≥ 6 or even-hole-free graphs
(i.e., graphs with no induced cycle of even length).

Let us point out that our approach cannot work for these classes in the form presented in
this paper. In particular, the following graph is a counterexample for the analog of Theorem 4.8
for k = 1 in P7-free graphs; the construction is based on the recent preprint [?]. Consider the
p-theta graph Θp with paths of length 3; that is, V (Θp) = {s0, s1} ∪ {vi0, vi1 | 1 ≤ i ≤ p} and
E(Θp) = {s0vi0, vi0vi1, vi1t0 | 1 ≤ i ≤ p}. Note that Θp is P7-free. For every f : {1, 2, . . . , p} → {0, 1}
that is not constantly equal 0 or constantly equal 1, let If := {vif(i) | 1 ≤ i ≤ p} and Sf :=

{vi1−f(i) | 1 ≤ i ≤ p}. Then, If is a maximal independent set in Θp and Sf is an If -safe minimal
separator. Since Sf ∩ If ′ 6= ∅ for f 6= f ′, in a hypothetical analog of Theorem 4.8 one would need a
different container for each Sf , leading to a lower bound of 2p − 2 for the size of the output family
of containers.

Similarly, a p-pyramid is the graph Hp consisting of three paths, each with with p vertices,
whose one endpoint was identified, and the other endpoints form a triangle. Similarly to the case
of the p-prim and p-theta, one can verify that p-pyramid has an exponential number of minimal
separators [?].

However, we were not able to make a similar counter-example for P6-free graphs. Are the
analogs of Theorem 4.8 and Theorem 1.6 true for P6-free graphs? A concrete motivation is to
design a polynomial-time algorithm for FVS in P6-free graphs.

On the other hand, recall that long-hole free graphs may have exponentially many PMCs and
minimal separators, as witnessed by the p-prism. However, a long-hole-free graph without a p-prism
as an induced subgraph has polynomially many minimal separators [10]. Analogous statement holds
for even-hole-free graphs without a p-pyramid as an induced subgraph [?]. Is it possible that analogs
of Theorem 4.8 and Theorem 1.6 hold P7-free graphs, if we additionally forbid a p-theta graph Θp

for some constant p?

21

References

[1] J. Balogh, R. Morris, and W. Samotij. The method of hypergraph containers. In Proceedings of the
International Congress of Mathematics, Rio de Janeiro, 2018, pages 3045–3078, 2018.

[2] M. Basavaraju, L. S. Chandran, and T. Karthick. Maximum weight independent sets in hole- and
dart-free graphs. Discrete Applied Mathematics, 160(16-17):2364–2369, 2012.

[3] A. Berry, A. Brandstädt, V. Giakoumakis, and F. Maffray. Efficiently decomposing, recognizing and
triangulating hole-free graphs without diamonds. Discrete Applied Mathematics, 184:50–61, 2015.

[4] V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the minimal separators. SIAM
J. Comput., 31(1):212–232, 2001.

[5] V. Bouchitté and I. Todinca. Listing all potential maximal cliques of a graph. Theor. Comput. Sci.,
276(1-2):17–32, 2002.

[6] A. Brandstädt and V. Giakoumakis. Maximum weight independent sets in hole- and co-chair-free
graphs. Inf. Process. Lett., 112(3):67–71, 2012.

[7] A. Brandstädt, V. Giakoumakis, and F. Maffray. Clique separator decomposition of hole-free and
diamond-free graphs and algorithmic consequences. Discrete Applied Mathematics, 160(4-5):471–478,
2012.

[8] A. Brandstädt, V. V. Lozin, and R. Mosca. Independent sets of maximum weight in apple-free graphs.
SIAM J. Discrete Math., 24(1):239–254, 2010.

[9] A. Brandstädt and R. Mosca. Maximum weight independent sets in odd-hole-free graphs without dart
or without bull. Graphs and Combinatorics, 31(5):1249–1262, 2015.

[10] M. Chudnovsky, M. Pilipczuk, M. Pilipczuk, and S. Thomassé. On the Maximum Weight Independent
Set problem in graphs without induced cycles of length at least five. CoRR, abs/1903.04761, 2019.

[11] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Annals
of Mathematics, 164:51–229, 2006.

[12] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica, 1(2):169–197, 1981.

[13] A. Grzesik, T. Klimošová, M. Pilipczuk, and M. Pilipczuk. Polynomial-time algorithm for maximum
weight independent set on P6-free graphs. CoRR, abs/1707.05491, 2017.

[14] A. Grzesik, T. Klimošová, M. Pilipczuk, and M. Pilipczuk. Polynomial-time algorithm for maximum
weight independent set on P6-free graphs. In T. M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 1257–1271. SIAM, 2019.

[15] R. Karp. Reducibility among combinatorial problems. volume 40, pages 85–103, 01 1972.
[16] D. Lokshtanov, M. Vatshelle, and Y. Villanger. Independent set in P5-free graphs in polynomial time.

In C. Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 570–581. SIAM, 2014.

[17] D. Saxton and A. Thomason. Hypergraph containers. Inventiones mathematicae, 201, 04 2012.

22

