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1. INTRODUCTION

Collins and Hutchinson [3] conjectured that every Eulerian triangu-
lation of an orientable surface is 4-colourable if its representativeness is
sufficiently high, and obtained some partial results for the torus. (The
representativeness of a graph drawn in a surface is the minimum number of
times a non-null-homotopic closed curve must hit the drawing.) It is easy to
see that Eulerian triangulations of the torus need not be 3-colourable,
because for instance their duals need not be bipartite, and so the number 4
is best possible in Collins and Hutchinson’s conjecture. It follows from
[10] that all these graphs can be 5-coloured.



Our objective is to prove that conjecture; we shall show that the result
holds for every orientable surface, but not for the projective plane. More
precisely:

(1.1) For every orientable surface S of genus \ 1 there is a number
c(S) so that every Eulerian triangulation of S with representativeness \ c(S)
is 4-colourable.
(1.2) For the projective plane S there is no c(S) as in (1.1).

We prove (1.1) in Section 4, after some preliminary lemmas in Sections 2
and 3; and prove (1.2) in Section 5.
Since for i \ 1, K12i+3 can be embedded as an Eulerian triangulation in
the orientable surface of genus i(12i−1), the condition about representa-
tiveness cannot be omitted from (1.1). (On the other hand, we do not
know whether c(S) must depend on S—it seems possible that (1.1) is
true with c(S)=100, for all S.) Also, examples of Ballantine [2] and of
Fisk [4] show that (1.1) does not hold when a triangulation contains two
odd-degree vertices.
Incidentally, an application of our main lemma (2.5)(i) gives an alterna-
tive proof of the main result of [6], that every quadrangulation of an
orient able surface can be 3-coloured provided its representativeness is
sufficiently high.

2. A HOMOTOPY LEMMA

Let us make some terms more precise. A surface means a compact, con-
nected 2-manifold without boundary. We need to define homotopy for
several different kinds of objects in a surface. First, a closed curve in a
surface S means a continuous map f : [0, 1]Q S such that f(0)=f(1),
and its basepoint is f(0). We speak of (fixed basepoint) homotopy of closed
curves with a given basepoint in the usual way. The equivalence class of
curves homotopic to a given curve f is denoted by OfP and called the
homotopy type of f. The natural product on homotopy types (defined by
concatenation) yields a group, the fundamental group of S (with the given
basepoint, v say), which we denote by p1(S, v).
Second, we need free homotopy of closed curves; closed curves f, k :
[0, 1]Q S are freely homotopic if there is a continuous mapw: [0, 1]×[0, 1]
Q S such that

w(x, 0)=f(x) (0 [ x [ 1)

w(x, 1)=k(x) (0 [ x [ 1)

w(0, y)=w(1, y) (0 [ y [ 1).
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In particular, f and k need not have the same basepoint to be freely
homotopic.
Third, an O-arc in S means a subset of S homeomorphic to a circle.
A closed curve f : [0, 1]Q S is said to trace an O-arc F if

(a) f(x) ¥ F (0 [ x [ 1)
(b) for each y ¥ F there is a unique x ¥ [0, 1) with f(x)=y.

We say two O-arcs are homotopic if there are closed curves tracing them
that are freely homotopic; and similarly an O-arc F is homotopic to a closed
curve k if there is a closed curve f tracing F freely homotopic to k.
Fourth and fifth, given a drawing G in S (defined below), if W is a
closed walk in G then we may speak of a closed curve ‘‘tracing’’W with the
natural meaning, and this enables us to speak of homotopy of walks (free
homotopy, or with fixed basepoint).
A drawing G in a surface S is a pair (U(G), V(G)), where U(G) ı S is
closed, V(G) ı U(G), |V(G)| is finite, U(G)−V(G) has only finitely many
connected components, and for every connected component e of U(G)−
V(G), its closure ē contains precisely two elements u, v ¥ V(G), and ē is
homeomorphic to [0, 1]. We regard drawings as graphs in the usual way.
Thus we permit multiple edges, but not loops.
Let G be a drawing in a surface S, not the sphere. We say G has
representativeness \ k if |F 5 U(G)| \ k for every non-null-homotopic
O-arc F.
Let G be a drawing in S and k \ 0 an integer. A closed curve f is said to
be k-wide in G if f is not null-homotopic, and there are circuits C1, ..., Ck
of G, pairwise vertex-disjoint and each homotopic to f. (Circuits by defini-
tion have no ‘‘repeated’’ vertices or edges.) A homotopy type is k-wide if its
members are k-wide. An O-arc is k-wide if some closed curve tracing it is
k-wide.
The main result of this section is the following.

(2.1) For every orientable surface S of genus \ 1 and every integer k \ 0
there exists c such that for every drawing G in S with representativeness \ c,
every v ¥ S, and every homomorphism l : p1(S, v)Q S3 (the group of permu-
tations of three objects) there exists d ¥ p1(S, v) such that l(d) is the identity
of S3 and d is k-wide in G.

First we need the following lemma.

(2.2) Let S3 be the group of permutations of a 3-element set, with identity 1
(say).
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(i) If x, y ¥ S3 belong to an abelian subgroup of S3 then at least one of
x, y, xy, xy−1 equals 1.
(ii) If x, y, z ¥ S3 then at least one of x, y, z, xy, xy−1, yz, yz−1, zx,

zx−1, xyz, zyx, xyxz equals 1.

Proof. For (i) we may assume 1, x, y are all distinct. But they belong to
an abelian subgroup of S3, and all such subgroups have [ 3 elements, and
so xy=1 as required.
For (ii), we may assume 1, x, y, z are all distinct. Hence each of x, y, z
has order 2 or 3; say k of them have order 3. Then 0 [ k [ 2 (since there
are only two elements of order 3 in S3), If k=0 then xyxz=1. If k=1
then one of xyz, zyx=1; and if k=2 then one of xy, yz, zx=1. Q.E.D.

We need the following theorem of [9].

(2.3) For every surface S except the sphere, and every drawing H in S,
there is a number c with the following property. For every drawing G in S
with representativeness \ c there is a drawing HŒ in S so that

(i) HŒ can be obtained from a subdrawing of G by contracting edges
(ii) there is a homeomorphism of S to itself taking H to HŒ.

From (2.3) we deduce

(2.4) For every surface S except the sphere, and every choice of finitely
many O-arcs F1, ..., Fn ı S, each non-null-homotopic and two-sided, and
every integer k > 0, there exists c with the following property. For every
drawing G in S with representativeness \ c, there is a homeomorphism h of S
to itself such that h(Fi) is k-wide in G (1 [ i [ n).

Proof. For 1 [ i [ n, since Fi is simple and two-sided, there are k
pairwise disjoint O-arcs in S each homotopic to Fi. Consequently there is a
drawing H in S such that for 1 [ i [ n, Fi is k-wide in H. Choose c as in
(2.3) (with the given S and H). Now let G be a drawing in S with repre-
sentativeness \ c. By (2.3), there is a drawing HŒ in S as in (2.3)(i) and a
homeomorphism h of S to itself taking H to HŒ. It follows that for
1 [ i [ n, h(Fi) is k-wide in HŒ and hence in G, as required. Q.E.D.

We use (2.4) to show the following.

(2.5) For every orientable surface S except the sphere, and every integer
k \ 1, there is a number c with the following property. For every drawing G in
S with representativeness \ c and every v ¥ S
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(i) there exist a, b ¥ p1(S, v) such that a, b, ab, ab−1 are all k-wide
(ii) if S is not a torus, there exist a, b, c ¥ p1(S, v) such that

a, b, c, ab, ab−1, bc, bc−1, ca, ca−1, abc, cba, abac

are all k-wide in G.

Proof. We assume first that S has genus \ 2. Let H1 be the graph with
four vertices v0, v1, v2, v3 and six edges e1, f2, e3, f1, e2, f3 where for
1 [ i [ 3, ei and fi both have ends v0 and vi. Take a drawing of H1 in S so
that e1e2e3f1f2f3 occur in this cyclic order around v0. (This is possible
since S has genus \ 2.) Let the closed walks v0, ei, vi, fi, v0 have homotopy
type ai (i=1, 2, 3) (with basepoint v0) and choose the drawing so that
there is no non-trivial relation between a1, a2 and a3.
In particular, none of

a1, a2, a3, a1a2, a2a3, a3a1, a1a
−1
2 , a2a

−1
3 , a3a

−1
1 , a1a2a3, a3a2a1, a1a2a1a3

is the identity. But for each of these twelve homotopy types, d say, there is
an O-arc Fd so that Fd is homotopic to a member of d. Each Fd is two-
sided, since S is orientable, and each is non-null-homotopic by choice of
a1, a2, a3. By (2.4) (with n=12) there is an integer c as in (2.4). We claim c
satisfies (2.5)(ii). For let G be a drawing in S with representativeness \ c.
By (2.4) there is a homeomorphism h of S to itself, such that h(d) is k-wide
in G for each d.
Now if (2.5) is true (for given G, S) for some choice of v, then it is true
for all v. To see this, let vŒ be some other choice of v, let f be a curve from v
to vŒ, and for each a ¥ p1(S, v) define f(a) ¥ p1(S, vŒ) by choosing k ¥ a,
letting kŒ be the concatenation of f−1, k and f, and letting f(a) be the
member of p1(S, vŒ) containing kŒ. This is well-defined, and f is an iso-
morphism from p1(S, v) to p1(S, vŒ); and if a is k-wide then so is f(a).
Thus for instance if a, b, c, satisfy (2.5)(ii) for v, then f(a), f(b), f(c)
satisfy (2.5)(ii) for vŒ. This proves our claim.
Consequently it suffices to show that (2.5) holds for one particular value
of v, so let us assume that v=h(v0). Since h is a homeomorphism, h
induces an isomorphism from p1(S, v0) to p1(S, v).
In particular, let a −i=h(ai) (i=1, 2, 3); then a

−

1a
−

2=h(a1a2), and so on
for the other eight members of p1(S, v0) of interest to us. But h(d) is
k-wide in G, for each d, and so if we set a=a −1, b=a

−

2, c=a
−

3 then
(2.5)(ii) holds.
The proof of (2.5)(i) is similar but easier, and we omit it. Q.E.D.
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Proof of (2.1). Let S, k be as in (2.1), and let c be as in (2.5). We claim
c satisfies (2.1). For let G, v and l be as in (2.1). Then by (2.5), (2.5)(i) and
(2.5)(ii) hold.
Suppose first that S is not a torus, and let a, b, c be as in (2.5)(ii). By
(2.2)(ii), l(d) is the identity of S3 for some d among the twelve listed in
(2.5)(ii). But d is k-wide in G, and so satisfies (2.1).
Now suppose S is a torus, and let a, b be as in (2.5)(1). Then p1(S, v) is
abelian, and so the range of l is an abelian subgroup of S3. By (2.2)(i), l(d)
is the identity for some

d ¥ {a, b, ab, ab−1}.

But d is k-wide in G, and so satisfies (2.1). Q.E.D.

3. ANGLE PERMUTATIONS

A drawing G in S is said to be closed 2-cell if every region is homeo-
morphic to an open disc and has boundary U(C) for some circuit C of G.
For such a region, r say, bounded by a circuit C, we say a closed walk

v0, e1, v1, ..., ek, vk=v0

is a perimeter walk of r if e1, ..., ek are all distinct and E(C)={e1, ..., ek}.
In general, a region has several perimeter walks, depending on the choice of
basepoint and orientation.
An angle is a pair (v, r) where v ¥ V(G) and r is a region incident with v.
For a vertex v, we define

N(v)={(v, r): r is incident with v},

the set of all ‘‘angles at v’’. Thus, in a closed 2-cell drawing, |N(v)| equals
the degree of v.
A vertex is cubic if it has degree 3; in fact we shall only be concerned
with N(v) when v is cubic.
Let G be a closed 2-cell drawing, and let e ¥ E(G) with ends v1, v2, both
cubic. Let r1, r2 be the two regions incident with e, and for i=1, 2 let si be
the third region incident with vi. Thus

N(vi)={(vi, r1), (vi, r2), (vi, si)} (i=1, 2).
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We define pv1ev2 to be the bijection from N(v1) to N(v2) mapping (v1, r1),
(v1, r2), (v1, s1) to (v2, r1), (v2, r2), (v2, s2) respectively.
IfW is a walk v0, e1, v1, e2, ..., en, vn of G, such that v0, ..., vn are all cubic
(a so-called cubic walk), we define pW to be the product of the pvi−1eivi for
1 [ i [ n; thus, for x ¥ N(v0),

pW(x)=pvn−1envn ( · · · (pv1e2v2 (pv0e1v1 (x))) · · · ).

We observe that, obviously,

(3.1) (i) If W1 is a cubic walk from a to b, and W2 is a cubic walk from
b to c, andW3 is their concatenation, then

pW3 (x)=pW2 (pW1 (x)) (x ¥ N(a)).

(ii) If W is a cubic walk u, e, v, e, u then pW is the identity.

A closed cubic walkW is balanced in G if pW is the identity. LetW be

v0, e1, v1, e2, ..., en, vn=v0;

ifW is balanced, then so is

vi, ei+1, vi+1, ..., en, vn, e1, v1, ..., ei, vi

for any i (1 [ i [ n−1), and also the reverse of W is balanced. Thus, we
may speak of a circuit C of G being balanced without ambiguity (meaning
that some, and hence every, closed walk

v0, e1, v1, ..., en, vn

with e1, ..., en all distinct and E(C)={e1, ..., en} is balanced).
We are basically concerned with cubic drawings in S, but for inductive
purposes we need to permit a few, widely-separated non-cubic vertices. Let
us say an arrangement in S is a pair (G, X) such that

(i) G is a closed 2-cell drawing in S
(ii) X ı V(G), and G0X is closed 2-cell (G0X denotes the drawing

obtained from G by deleting the vertices in X and all incident edges)
(iii) no region of G is incident with more than one member of X
(iv) every vertex of G not in X is cubic.

An arrangement (G, X) is even if for every region of G0X, the circuit
bounding it is balanced (in G).
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(3.2) If (G, X) is an even arrangement in S, then every null-homotopic
closed walk in G0X is balanced in G.

Proof. This follows easily from (3.1)(i) and (3.1)(ii), since (G, X) is
even. Q.E.D.

Let G be a drawing in a surface S. Let T ı S be homeomorphic to

{(x, y) ¥ R2: 1 [ x2+y2 [ 2}.

Then the boundary of T consists of two disjoint O-arcs A, B say. If in
addition k \ 2 is an integer and

(a) A, B are non-null-homotopic in S
(b) A, B ı U(G), and hence there are circuits C1, Ck of G with

U(C1)=A and U(Ck)=B
(c) there are circuits C2, ..., Ck−1 of G with U(C1 2 · · · 2 Ck) ı T, so

that C1, ..., Ck are pairwise disjoint and pairwise homotopic

then we call T a k-wide handle of G (in S), and we call C1, Ck the end-
circuits of T.

(3.3) If G is a drawing in S and v ¥ S, and d ¥ p1(S, v) is k-wide in G
where k \ 2, then there is a k-wide handle in G with end-circuits homotopic
to d.

(In case (3.3) presents any difficulty to the reader, let us mention an
alternative approach—define d ¥ p1(S, v) to be ‘‘k-wide’’ only when there is
a handle T as in (3.3); then the proofs of the previous section still work,
and we bypass the need for (3.3).)
The main result of this section is the following:

(3.4) For any orientable surface S of genus \ 1, and every pair of
integers k \ 2 and n \ 0, there exists c \ 0 with the following property. If
(G, X) is an even arrangement in S with |X| [ n and G has representative-
ness \ c, then there is a k-wide handle T in G with T 5X=” and with
balanced end-circuits.

Proof. Let kŒ=k(n+1), and choose cŒ so that (2.1) holds (with c, k
replaced by cŒ, kŒ). Let c=n+cŒ; we shall show that c satisfies (3.4). For
let (G, X) be an even arrangement in S with |X| [ n such that G has
representativeness \ c. Then G0X has representativeness \ c−n=cŒ.
Choose v ¥ V(G)−X. For each a ¥ p1(S, v), define l(a) as follows:
choose a closed walk W in G0X with basepoint v and homotopy type a
(this is possible since G0X is 2-cell) and let l(a)=pW. (By (3.2), this does
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not depend on the choice of W.) From (3.1)(i), l is a homomorphism from
p1(S, v) into S3(v), the group of permutations of N(v). By (2.1) applied to
G0X, cŒ and kŒ, there exists d ¥ p1(S, v) such that l(d) is the identity of
S3(v) and d is kŒ-wide in G0X. By (3.3) applied to G0X, there is a kŒ-wide
handle TŒ of G0X in S, with end-circuits balanced in G. Let us choose kŒ
circuits of G, C1, ..., CkŒ say, pairwise disjoint and pairwise homotopic, with
U(C1 2 · · · 2 CkŒ) ı TŒ, where C1 and CkŒ are the end-circuits of TŒ; and let
us number C1, ..., CkŒ in order on TŒ. For 1 [ i < j [ kŒ, let Ti, j ı TŒ be the
handle with end-circuits Ci and Cj.
Since |X| [ n and kŒ=k(n+1), there exists i with 1 [ i [ kŒ−k such that
X 5 Ti, i+k−1=”; let T=Ti, i+k−1. Then T is a k-wide handle of G, and
T 5X=”, and its end-circuits Ci, Ci+k−1 are balanced since they have
homotopy type d. Q.E.D.

4. THE MAIN PROOF

Let (G, X) be an arrangement in S. A 4-colouring of (G, X) means
a 4-colouring of the regions of G, so that

(i) as usual, any two regions that share an edge receive different
colours

(ii) no region incident with a vertex in X receives colour 4
(iii) no region incident with a vertex in X shares an edge with any

region that receives colour 4.

The main result of the paper is the following:

(4.1) For every orientable surface S except the sphere, and for every
n \ 0, there exists c \ 0 such that every even arrangement (G, X) in S has a
4-colouring provided that |X| [ n and G has representativeness \ c.

If T is an Eulerian triangulation in S, and Tg is its geometric dual in S,
then (Tg,”) is an even arrangement, and since T and Tg have the same
representativeness, we see that (1.1) follows from (4.1) taking n=0. We
permit n > 0 in (4.1) for inductive purposes. To prove (4.1) we need the
following lemma; with X=” this result is due to Heawood [5].

(4.2) If (G, X) is an even arrangement in a sphere S then G is 3-region-
colourable.

Proof. Choose z ¥ V(G)−X.
(1) If (v, r) is an angle of G with v ¨X, and W1, W2 are walks of G0X

from v to z, then

pW1 (v, r)=pW2 (v, r).
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Subproof. This follows from (3.2) since S is a sphere and (G, X) is
even.
Let us define f(v, r) to be the common value of pW(v, r) over all walks
W of G0X from v to z.
(2) If r is a region of G and v1, v2 ¥ V(G)−X are both incident with r,

then f(v1, r)=f(v2, r).

Subproof. Let C be the circuit of G bounding r. By condition (iii) in the
definition of ‘‘arrangement’’, at most one vertex of C is in X, and conse-
quently to prove (2) in general it suffices to prove it when some edge e of C
has ends v1, v2. Let W2 be a walk of G0X from v2 to z, let W0 be the walk
v1, e, v2, and letW1 be formed by concatenatingW0 andW2. Then

f(v1, r)=pW1 (v1, r)=pW2 (pW0 (v1, r))

by (3.1). But pW0 (v1, r)=(v2, r) by definition of pW0 , and so

f(v1, r)=pW2 (pW0 (v1, r))=pW2 (v2, r)=f(v2, r).

This proves (2).
For each region r of G, let us define f(r) to be the common value of
f(v, r) over all vertices v ¥ V(G)−X incident with r. (There is such a vertex
since all circuits have length \ 2, by definition of a drawing.)
(3) For any edge e of G, let r1, r2 be the regions of G incident with e;

then f(r1) ] f(r2).

Subproof. Let v be an end of e not in X, and let W be a walk in G0X
from v to z. Then

f(r1)=f(v, r1)=pW(v, r1) ] pW(v, r2)=f(v, r2)=f(r2).

This proves (3).
Since f(r) ¥ N(z) for every region r of G, and |N(z)|=3, it follows from
(3) that f is a 3-region-colouring of G. Q.E.D.

Proof of (4.1). We proceed by induction on the genus of S. For every
orientable surface SŒ (not a sphere) of genus smaller than that of S, and
every integer nŒ, let c(SŒ, nŒ) be such that (4.1) holds with S, n, c replaced
by SŒ, nŒ, c(SŒ, nŒ).
Let t be the maximum of c(SŒ, n+2) over all such SŒ. Let k=2t+4, and
choose c so that (3.4) holds (with S, k, n unchanged). We may assume (by
increasing c) that c \ t and c \ 2. We claim that c satisfies (4.1). For let
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(G, X) be an even arrangement in S, such that |X| [ n and G has represen-
tativeness \ c. We must show that (G, X) has a 4-colouring.
By (3.4) and the choice of c, there is a k-wide handle T in G with
T 5X=” and with balanced end-circuits. Let C1, ..., Ck be circuits as
in the definition of ‘‘k-wide handle’’. By choosing Ct as close to Ct+1 as
possible, we may assume that every region of G between Ct and Ct+1
incident with a vertex of Ct is also incident with a vertex of Ct+1 (let us
call this the bridge property). Similarly, choose Ck−t+1 as close to Ck−t as
possible.
Let SŒ be obtained from S as follows; we delete from S the part strictly
between U(Ct+1) and U(Ck−t), and paste new discs onto the O-arcs
U(Ct+1), U(Ct+4) respectively. Then SŒ is a 2-manifold, but it might not be
connected. If it is not connected then it has exactly two components, both
with genus \ 1 and strictly less than the genus of S, and the argument
below can easily be adapted (working with these two components sepa-
rately) to cover this case. However, we shall assume for simplicity that SŒ
remains connected.
Let D1 be the disc in SŒ bounded by U(Ct) containing U(Ct+1), and let
D2 be the disc in SŒ bounded by U(Ct+5) containing U(Ct+4). Let GŒ be a
drawing in SŒ obtained from G as follows. First we delete all vertices and
edges of G strictly between U(Ct+1) and U(Ct+4), forming G1 say, which we
may regard as a drawing in SŒ. Now contract all edges of G1 that have both
ends strictly inside D1, and similarly for D2. The result is a drawing GŒ in SŒ
with precisely one vertex (say xi) in the interior of Di (i=1, 2), because of
the bridge property. There is a natural 1-1 correspondence between the
regions of GŒ inside D1 and the regions of G between U(Ct) and U(Ct+1)
incident with an edge of Ct.

(1) GŒ is closed 2-cell in SŒ, and if SŒ is not a sphere then GŒ has
representativeness \ t.

Subproof. For the first, it suffices to check that r̄ is bounded by a
circuit of GŒ for every region r of GŒ incident with x1. But all neighbours of
x1 belong to Ct, and there are at least two such neighbours since G is closed
2-cell, so GŒ is closed 2-cell. For its representativeness, let F be an O-arc
with |F 5 U(GŒ)| < t. If no point of F is in the interior of D1 or D2, then F
is an O-arc in S with |F 5 U(G)| < t [ c, and so F is null-homotopic in S
and hence in SŒ as required. We may assume then that some point of F is
in the interior of D1, say. Let D0 ı SŒ be the closed disc bounded by U(C1)
that includes D1. Since |F 5 U(GŒ)| < t, F does not meet all of U(C1), ...,
U(Ct), and in particular F ı D0, and consequently F is null-homotopic in
SŒ as required. This proves (1).
Let XŒ=X 2 {x1, x2}; then (GŒ, XŒ) is an even arrangement in SŒ, since
Ct and Ck−t+1 are balanced (in S and hence in SŒ).
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(2) (GŒ, XŒ) has a 4-colouring.
Subproof. If SŒ is a sphere this follows from (4.2). If SŒ has genus > 0
then t \ c(SŒ, n+2) and the claim follows from (1) and the definition of
c(SŒ, n+2). This proves (2).
Let o1 be a 4-colouring of (GŒ, XŒ). For i=1, ..., 5, let Bi be the part of
S (non-strictly) between U(Ct−1+i) and U(Ct+i), and let Ri be the set of
regions of G included in Bi. Let S1 be the set of regions of G incident with
an edge of U(Ct), and S2 the regions incident with an edge of U(Ct+5).
Thus, S1 łR1 but S1 5R1 ]”. From the definition of 4-colouring an
arrangement, o1(r) ¥ {1, 2, 3} for every r ¥S1 2S2 (identifying the regions
of GŒ incident with x1 or x2 with regions of G in the natural way.)
For any set R of the regions of G and any subset Y of E(G), a
d-colouring of R relative to Y means a map f : RQ {1, ..., d} such that
f(r1) ] f(r2) for every edge e ¥ Y such that r1, r2 are the regions on either
side of e and r1, r2 ¥R. By adding to B1 2 · · · 2 B5 discs bounded by U(Ct)
and U(Ck−t+1), and drawing a new vertex in each disc adjacent to the ver-
tices in the boundary of the disc which have degree 2 in G | (B1 2 · · · 2 B5),
and letting Xœ be the set of the two new vertices, we obtain an even
arrangement in a sphere, which consequently is 3-region-colourable by
(4.2).
Let Y be the set of all edges of G with at least one end in B1 2 · · · 2 B5.
It follows that there is a 3-colouring of S1 2R1 2R2 2 · · · 2R5 2S2
relative to Y, say o2.
Let Z be the set of edges of G with an end in Ct. The restrictions of both
o1 and o2 to S1 yield 3-colourings of S1 relative to Z. But S1 is uniquely
3-colourable relative to Z, and so the restrictions of o1 and o2 to S1 are
equal (up to permuting colours), and we may therefore choose o2 so that
o1(r)=o2(r) (r ¥S1). By the same argument applied to S2, we may choose
a permutation p : {1, 2, 3}Q {1, 2, 3} so that o1(r)=p(o2(r)) (r ¥S2).
There are, up to symmetry, three possibilities for p, namely

(i) p(i)=i (1 [ i [ 3)

(ii) p(1)=2, p(2)=1, p(3)=3

(iii) p(1)=3, p(2)=1, p(3)=2.

We shall show that the result holds in each case.
In case (i), define o(r)=o1(r) (r ł B1 2 · · · 2 B5) and o(r)=o2(r)
(r ı B1 2 · · · 2 B5); then o is a 4-colouring of (G, X) as required.
In case (ii), for each region r of G, define o(r) as follows. If r ¨

R1 2R2 2 · · · 2R5 let o(r)=o1(r). If r ¥R1, let o(r)=o2(r). If r ¥R2 let

o(r)=˛4 if o2(r)=1
o2(r) otherwise.
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If r ¥R3 let

o(r)=˛4 if o2(r)=1
1 if o2(r)=2
3 if o2(r)=3.

If r ¥R4 2R5 let o(r)=p(o2(r)). Then o is a 4-colouring of (G, X), as
required.
In case (iii), for each region r of G we define o(r) as follows. If
r ¨R1 2 · · · 2R5 let o(r)=o1(r). If r ¥R1 let o(r)=o2(r). If r ¥R2 let

o(r)=˛4 if o2(r)=1
o2(r) otherwise.

If r ¥R3 let

o(r)=˛4 if o2(r)=1
1 if o2(r)=2
3 if o2(r)=3.

If r ¥R4 let

o(r)=˛4 if o2(r)=1
1 if o2(r)=2
2 if o2(r)=3.

If r ¥R5 let o(r)=p(o2(r)). Then again o is a 4-colouring of (G, X), as
required. Q.E.D.

5. THE PROJECTIVE PLANE

Finally we show (1.2), that the analogue of (1.1) is false for the projective
plane. The following result is implicit in Youngs [11], and we include a
proof (essentially that of [11]) for completeness.

(5.1) Let G be a drawing in the projective plane so that every region is
bounded by a circuit of length 4. If G is not bipartite, then for every vertex-
colouring (in any number of colours) there is a region r of G so that the four
vertices incident with r receive four different colours.
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Proof. Let f : V(G)Q {1, ..., k} be the vertex-colouring. Let us direct
every edge of G with ends {u, v} from u to v where f(u) < f(v). Let C be an
odd circuit of G (necessarily non-null-homotopic), and let C have length t
say. Then (by cutting along U(C)) there is a drawing H in the plane, such
that the infinite region of H is bounded by a circuit C0 of length 2t, and
every finite region by a circuit of length 4, such that if we number the
vertices and edges of C0 as

v0, e1, v1, ..., e2t, v2t=v0

in order, then G is obtained by identifying vi and vt+i (1 [ i [ t) and ei with
et+i (1 [ i [ t). Let us direct the edges of H in the same way that their
images in G are directed. Now for each region r of H, let a(r) be the
number of edges of the circuit C(r) bounding r that are traversed in posi-
tive direction as C(r) is traversed in clockwise direction; and b(r)=
|E(C(r))|−a(r). If r0 is the infinite region of H, then (by counting the
contribution of each edge to each region) we see that

a(r0)−b(r0)= C
r ] r0

(a(r)−b(r)).

Now for 1 [ i [ t, ei contributes to a(r0) if and only if et+i does so; and so
a(r0) is even, and since a(r0)+b(r0) is not divisible by 4, it follows that
a(r0)−b(r0) ] 0. Hence there is a finite region r of H with a(r)−b(r) ] 0,
by the equation above. The corresponding region of G satisfies the
theorem. Q.E.D.

Proof of (1.2). Take G as in (5.1), with high representativeness and not
bipartite (it is easy to see this is possible). Now add a new vertex of
degree 4 in each region, forming an Eulerian triangulation. By (5.1) this is
not 4-colourable. Q.E.D.

Since this article was submitted for publication, the non-orientable case
has been completely analyzed. It is now known precisely when a highly
representative quadrangulation and when a highly representative Eulerian
triangulation of a non-orientable surface has chromatic number 2, 3, 4,
or 5. In particular, for every non-orientable surface, there is a highly
representative 5-chromatic Eulerian triangulation. See [1, 7, 8].
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