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Abstract

A graph is prismatic if for every triangle T , every vertex not in T has exactly one neighbour in T . In
this paper and the next in this series, we prove a structure theorem describing all prismatic graphs.
This breaks into two cases depending whether the graph is 3-colourable or not, and in this paper we
handle the 3-colourable case. (Indeed we handle a slight generalization of being 3-colourable, called
being “orientable”.)

Since complements of prismatic graphs are claw-free, this is a step towards the main goal of this
series of papers, providing a structural description of all claw-free graphs (a graph is claw-free if no
vertex has three pairwise nonadjacent neighbours).



1 Introduction

Let G be a graph. (All graphs in this paper are finite and simple.) A clique in G is a set of pairwise
adjacent vertices, and a triangle is a clique with cardinality three. We say G is prismatic if for every
triangle T , every vertex not in T has exactly one neighbour in T . Our objective, in this paper and
the next [1] of this series, is to describe all prismatic graphs.

A graph is claw-free if no vertex has three pairwise nonadjacent neighbours. The main goal of
this series of papers is to give a structure theorem describing all claw-free graphs. Complements of
prismatic graphs are claw-free, and we find it best to handle such graphs separately from the general
case, since they seem to require completely different methods.

A 3-colouring of a graph G is a triple (A,B,C) such that A,B,C are pairwise disjoint stable
subsets of V (G) with union V (G); and we call the quadruple (G,A,B,C) a 3-coloured graph. One
way to make a (3-colourable) prismatic graph is to take several smaller prismatic graphs, each with
a 3-colouring, and piece them together in a “chain”. (We explain the details later.) This kind of
chain construction is only needed in the 3-colourable case, and for this reason and others, it seems
best to treat 3-colourable prismatic graphs separately, and that is one of our goals in this paper.

The graph G we construct by this chaining process depends not only on the graphs that are the
building blocks, but also on the 3-colouring selected for each; so for this to count as a “construction”
for G, we need constructions for all these smaller 3-coloured graphs. For this reason, our aim in
this paper is to construct not only all 3-colourable prismatic graphs, but all 3-colourings of such
graphs. But it turns out that, with a few small exceptions, a prismatic graph that admits none of
our decompositions has at most one 3-colouring (up to exchanging the colour classes), so enumerating
its 3-colourings is not a problem.

Let T = {a, b, c} be a set with a, b, c distinct. There are two cyclic permutations of T , and we
use the notation a → b → c → a to denote the cyclic permutation mapping a to b, b to c and c to a.
(Thus a → b → c → a and b → c → a → b mean the same permutation.)

Let G be a prismatic graph. If S, T are triangles of G with S ∩ T = ∅, then since every vertex
of S has a unique neighbour in T and vice versa, it follows that there are precisely three edges of
G between S and T , forming a 3-edge matching. An orientation O of G is a choice of a cyclic
permutation O(T ) for every triangle T of G, such that if S = {s1, s2, s3} and T = {t1, t2, t3} are
triangles with S ∩ T = ∅, and siti is an edge for 1 ≤ i ≤ 3, then O(S) is s1 → s2 → s3 → s1 if
and only if O(T ) is t1 → t2 → t3 → t1. We say that G is orientable if it admits an orientation.
Every 3-colourable prismatic graph is orientable, as we shall see later. It turns out that orientable
prismatic graphs are not much more general than 3-colourable ones, and it is convenient to handle
them at the same time.

In order to state our main results (a construction for all 3-colourable prismatic graphs, and a
construction for all orientable prismatic graphs), we need a number of further definitions, and it is
convenient to postpone the full statement of these theorems until section 11.

2 A construction

First we give a construction for a subclass of prismatic graphs. We present this in the hope of
aiding the reader’s understanding for what will come later; the truth of the claims in this section
is not crucial, and we leave the proofs to the reader. (Our main result is that every orientable
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prismatic graph can be built from the graphs presented in this section and one other class, by certain
composition operations.)

There are four stages in the construction. First, we need what we call “linear vines” and “circular
vines”.

• Start with a directed path or directed cycle S with vertices s1, . . . , sn in order with n ≥ 1, such
that if S is a cycle then n ≥ 5 and n = 2 modulo 3.

• Choose a stable subset W ⊆ V (S) (with s1, sn /∈ W if S is a path).

• For each si ∈ W , duplicate si arbitrarily often (that is, add a set of new vertices to the
digraph, each incident with the same in-neighbours and out-neighbours as si). Let X̂2i be the
set consisting of si and these copies, and for 1 ≤ i ≤ n with si /∈ W , let X̂2i = {si}. Let the
digraph just constructed be J1.

• For every edge uv of J1, add a new vertex w to J1, adjacent only to u and v, in such a way
that the cycle with vertex set {u, v, w} is a directed cycle. For 1 ≤ i < n, let M2i+1 be the set
of all such w where u ∈ X̂2i and v ∈ X̂2i+2. (If S is a path, let M1 = M2n+1 = ∅.) Let this
form a digraph J2.

• For each si /∈ W , add arbitrarily many adjacent pairs of new vertices x, y to J2, such that x, y
are adjacent only to si and to each other, and the cycle with vertex set {x, y, si} is directed.
Let R2i−1, L2i+1 be the set of new out-neighbours and new in-neighbours of si, respectively.
(Ensure that if S is a path then R1, L2n+1 are large enough that in the digraph we construct,
s1, sn are both in at least two triangles.) Define R2i−1 = L2i+1 = ∅ for 1 ≤ i ≤ n with si /∈ W
(and if S is a path let L1 = R2n+1 = ∅).

If S is a path we call the digraph we construct a linear vine, and if S is a cycle we call it a circular
vine. (We give a more formal definition later.) In the remainder of the construction, we assume that
H is a linear vine; the modifications when H is circular are easy, and we leave them to the reader.
For 1 ≤ i ≤ n + 1 let X2i−1 = L2i−1 ∪ M2i−1 ∪ R2i−1.

The second step of the construction is, we take the undirected graph underlying H, and add some
new vertices to it. For 1 ≤ i ≤ n let X2i be a set including X̂2i, such that the members of X2i \ X̂2i

are new vertices, and in particular the sets X2, . . . , X2n are pairwise disjoint. For each new vertex
w ∈ X2i \ X̂2i, all its neighbours belong to R2i−1 ∪ L2i+1, and w is adjacent to exactly one end of
every edge of H ′ between R2i−1 and L2i+1. Let the graph we obtain be H ′.

Third, now we add more new edges to H ′. We add the edge uv for each choice of vertices
u, v ∈ V (H ′) satisfying the following: u ∈ Xi and v ∈ Xj , where 1 ≤ i < j ≤ 2n + 1 and j ≥ i + 2,
and either

• j ≥ i + 3 and j − i = 2 modulo 3;

• j = i + 2 and i is even;

• j = i + 2 and i is odd, and either u /∈ Ri or v /∈ Li+2, and u, v have no common neighbour in
X̂i+1.
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Let the graph just constructed be G′.
The fourth and final step of the construction is, for all even i, j with 2 ≤ i < j ≤ 2n, we may

arbitrarily delete any of the edges between Xi \ X̂i and Xj \ X̂j. Let the graph we produce be G.
We leave the reader to check that G is prismatic and orientable (and indeed, the edges of G in

cycles of length 3 are precisely the edges of H, and their directions in H define an orientation of G
in the natural way). We call such a graph G a path of triangles graph. (Again, we give a formal
definition later.) There is a similar construction starting from a circular vine, and again the graphs
that result are prismatic and orientable; we call them cycle of triangles graphs.

3 Core structure

Before we begin on the main theorem (or even attempt its statement; the statement of the main
theorem will appear in section 11) we study the question under two simplifying assumptions. We say
G is triangle-covered if every vertex of G belongs to a triangle; and G is triangle-connected if there is
no partition A,B of V (G) into two subsets, both including a triangle, such that every triangle of G
is included in one of A,B. We shall explain the structure of 3-colourable prismatic graphs that are
triangle-covered and triangle-connected.

If X ⊆ V (G), we denote the subgraph of G induced on X by G|X. If Y ⊆ V (G) and x ∈ V (G)\Y ,
we say that x is complete to Y or Y -complete if x is adjacent to every member of Y ; and x is
anticomplete to Y or Y -anticomplete if x is adjacent to no member of Y . If X,Y ⊆ V (G) are
disjoint, we say that X is complete to Y (or the pair (X,Y ) is complete) if every vertex of X is
adjacent to every vertex of Y . We say that X is anticomplete to Y (or (X,Y ) is anticomplete) if
(X,Y ) is complete in G. If X,Y ⊆ V (G), we say that X,Y are matched if X ∩ Y = ∅, |X| = |Y |,
and every vertex in X has a unique neighbour in Y and vice versa.

Let us say that G is a path of triangles graph if for some integer n ≥ 1 there are pairwise
disjoint stable subsets X1, . . . , X2n+1 of V (G) with union V (G), satisfying the following conditions
(P1)–(P7).

(P1) For 1 ≤ i ≤ n, there is a nonempty subset X̂2i ⊆ X2i; |X̂2| = |X̂2n| = 1, and for 0 < i < n, at
least one of X̂2i, X̂2i+2 has cardinality 1.

(P2) For 1 ≤ i < j ≤ 2n + 1

(1) if j − i = 2 modulo 3 and there exist u ∈ Xi and v ∈ Xj, nonadjacent, then either i, j are
odd and j = i + 2, or i, j are even and u /∈ X̂i and v /∈ X̂j ;

(2) if j − i 6= 2 modulo 3 then either j = i + 1 or Xi is anticomplete to Xj.

(P3) For 1 ≤ i ≤ n + 1, X2i−1 is the union of three pairwise disjoint sets L2i−1,M2i−1, R2i−1, where
L1 = M1 = M2n+1 = R2n+1 = ∅.

(P4) If R1 = ∅ then n ≥ 2 and |X̂4| > 1, and if L2n+1 = ∅ then n ≥ 2 and |X̂2n−2| > 1.

(P5) For 1 ≤ i ≤ n, X2i is anticomplete to L2i−1∪R2i+1; X2i \X̂2i is anticomplete to M2i−1∪M2i+1;
and every vertex in X2i \ X̂2i is adjacent to exactly one end of every edge between R2i−1 and
L2i+1.

(P6) For 1 ≤ i ≤ n, if |X̂2i| = 1, then
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(1) R2i−1, L2i+1 are matched, and every edge between M2i−1 ∪ R2i−1 and L2i+1 ∪ M2i+1 is
between R2i−1 and L2i+1;

(2) the vertex in X̂2i is complete to R2i−1 ∪ M2i−1 ∪ L2i+1 ∪ M2i+1;

(3) L2i−1 is complete to X2i+1 and X2i−1 is complete to R2i+1

(4) if i > 1 then M2i−1, X̂2i−2 are matched, and if i < n then M2i+1, X̂2i+2 are matched.

(P7) For 1 < i < n, if |X̂2i| > 1 then

(1) R2i−1 = L2i+1 = ∅;

(2) if u ∈ X2i−1 and v ∈ X2i+1, then u, v are nonadjacent if and only if they have the same
neighbour in X̂2i.

We leave the reader to check that this is equivalent to the definition presented in the previous section.
It is easy to see a vertex of G is in no triangle of G if and only if it belongs to one of the sets X2i \X̂2i.
If for each i we have X̂2i = X2i, then G is triangle-covered, and G is called a core path of triangles
graph. The sequence X1, . . . , X2n+1 is called a (core) path of triangles decomposition of G. We shall
prove the following.

3.1 Let G be a non-null 3-colourable prismatic graph that is triangle-covered and triangle-connected.
Then either G is isomorphic to L(K3,3), or G is a core path of triangles graph.

(K3,3 is the complete bipartite graph on two sets of cardinality three, and L(H) denotes the line
graph of a graph H.) The proof is contained in the next four sections.

4 Orientable prismatic graphs

We defined what we mean by an orientation in the first section, and it is convenient to prove an
extension of 3.1 in which we replace the 3-colourable hypothesis by the weaker assumption that G is
orientable. To begin, let us see that this is indeed weaker.

4.1 Every 3-colourable prismatic graph is orientable.

Proof. Let (A,B,C) be a 3-colouring of an orientable prismatic graph G. For each triangle T ,
define O(T ) to be a → b → c → a where T = {a, b, c} and a ∈ A, b ∈ B and c ∈ C. We claim
that O is an orientation of G. For let S = {s1, s2, s3} and T = {t1, t2, t3} be disjoint triangles where
s1t1, s2t2, s3t3 are edges. Let O(S) be s1 → s2 → s3 → s1; thus we may assume that s1 ∈ A, s2 ∈ B
and s3 ∈ C. We must show that O(T ) is t1 → t2 → t3 → t1. Certainly t1 /∈ A, since s1, t1 are
adjacent, and so either t1 ∈ B or t1 ∈ C. If t1 ∈ B, then since t3 is adjacent to both s3 and t1, it
follows that t3 ∈ A and therefore t2 ∈ C and the claim follows; and if t1 ∈ C, then t2 ∈ A and t3 ∈ B
and again the claim follows. This proves 4.1.

The converse to this is false; there are orientable prismatic graphs that are not 3-colourable.
For instance, let G have vertex set {v0, . . . , v9}, with edges vivi+1 and vivi+5 (for all i), and vivi+2

(for i even), reading subscripts modulo 10. (We call this graph the core ring of five.) Nevertheless,
orientable prismatic graphs are not much more general than 3-colourable prismatic graphs, as we
shall see. We need a slight modification of an earlier definition, as follows.
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Let us say that G is a cycle of triangles graph if for some integer n ≥ 5 with n = 2 modulo
3, there are pairwise disjoint stable subsets X1, . . . , X2n of V (G) with union V (G), satisfying the
following conditions (C1)–(C6) (reading subscripts modulo 2n):

(C1) For 1 ≤ i ≤ n, there is a nonempty subset X̂2i ⊆ X2i, and at least one of X̂2i, X̂2i+2 has
cardinality 1.

(C2) For i ∈ {1, . . . , 2n} and all k with 2 ≤ k ≤ 2n − 2, let j ∈ {1, . . . , 2n} with j = i + k modulo
2n:

(1) if k = 2 modulo 3 and there exist u ∈ Xi and v ∈ Xj , nonadjacent, then either i, j are
odd and k ∈ {2, 2n − 2}, or i, j are even and u /∈ X̂i and v /∈ X̂j ;

(2) if k 6= 2 modulo 3 then Xi is anticomplete to Xj.

(Note that k = 2 modulo 3 if and only if 2n − k = 2 modulo 3, so these statements are
symmetric between i and j.)

(C3) For 1 ≤ i ≤ n + 1, X2i−1 is the union of three pairwise disjoint sets L2i−1,M2i−1, R2i−1.

(C4) For 1 ≤ i ≤ n, X2i is anticomplete to L2i−1∪R2i+1; X2i \X̂2i is anticomplete to M2i−1∪M2i+1;
and every vertex in X2i \ X̂2i is adjacent to exactly one end of every edge between R2i−1 and
L2i+1.

(C5) For 1 ≤ i ≤ n, if |X̂2i| = 1, then

(1) R2i−1, L2i+1 are matched, and every edge between M2i−1 ∪ R2i−1 and L2i+1 ∪ M2i+1 is
between R2i−1 and L2i+1;

(2) the vertex in X̂2i is complete to R2i−1 ∪ M2i−1 ∪ L2i+1 ∪ M2i+1;

(3) L2i−1 is complete to X2i+1 and X2i−1 is complete to R2i+1

(4) M2i−1, X̂2i−2 are matched and M2i+1, X̂2i+2 are matched.

(C6) For 1 ≤ i ≤ n, if |X̂2i| > 1 then

(1) R2i−1 = L2i+1 = ∅;

(2) if u ∈ X2i−1 and v ∈ X2i+1, then u, v are nonadjacent if and only if they have the same
neighbour in X̂2i.

Again, if X̂2i = X2i for 1 ≤ i ≤ n we call G a core cycle of triangles graph. We call the sequence
X1, . . . , X2n a (core) cycle of triangles decomposition of G. We shall prove the following.

4.2 Let G be a non-null orientable prismatic graph that is triangle-covered and triangle-connected.
Then either G is isomorphic to L(K3,3), or G is a core cycle of triangles graph, or G is a core path
of triangles graph.

To show that this implies 3.1, we need the second statement of the following lemma.

4.3 Every core path of triangles graph is 3-colourable, and no core cycle of triangles graph is 3-
colourable.
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Proof. Let X1, . . . , X2n+1 be a core path of triangles decomposition of G. Then

(X1 ∪ X4 ∪ X7 ∪ · · · , X2 ∪ X5 ∪ X8 ∪ · · · , X3 ∪ X6 ∪ X9 ∪ · · · )

is a 3-colouring of G. This proves the first assertion.
For the second, let X1, . . . , X2n be a core cycle of triangles decomposition of G, and for each i

choose xi ∈ Xi, so that xi, xi+1 are adjacent for all i. Let (A,B,C) be a 3-colouring of G. Since n
is not divisible by 3, it is not the case that for all i, the vertices x2i, x2i+2, x2i+4 all have different
colours. Since x2i+2 is adjacent to both x2i and x2i+4, we may therefore assume that (say) x2, x6 ∈ A
and x4 ∈ B, and therefore x3, x5 ∈ C. Since x8 is adjacent to x3 ∈ C and to x6 ∈ A, it follows that
x8 ∈ B; and since x10 is adjacent to x2 ∈ A, x5 ∈ C and to x8 ∈ B, this is impossible. This proves
4.3.

5 Vines and their structure

In this section we prove a lemma that will be needed for the proof of 4.2. If u, v are adjacent vertices
of a digraph H, we write u → v to denote that the edge uv has tail u and head v. (We only use this
notation in digraphs with no directed cycle of length 2.)

We regard a digraph as a graph with additional structure; and in particular, we define the
triangles, paths, cycles etc. of a digraph to mean the corresponding object in the undirected graph.
When we mean a directed cycle or similar, we shall say so explicitly. We say a thorn of a digraph
H is a vertex belonging to only one triangle of H. An edge uv of H is a twig if there is a unique
vertex w such that {u, v, w} is a triangle, and this vertex w is a thorn of H. A path P of H is called
a twig path if all its edges are twigs. We say that a digraph H is a vine if it satisfies the following
conditions (V1)–(V7).

(V1) H has at least one edge, and H is connected (as a graph), and every cycle of H has length at
least three.

(V2) Every edge of H is in a unique cycle of length 3.

(V3) Every cycle of H of length 3 is a directed cycle.

(V4) Every triangle of H contains a thorn of H.

(V5) If h1-h2-h3-h4-h5 are the vertices in order of a 4-edge twig path of H (not necessarily an induced
subgraph), then either h2 → h3 → h4 or h4 → h3 → h2.

(V6) If h1-h2-h3-h4-h1 are the vertices in order of a 4-vertex cycle of H and h1 → h2, then h4 → h3.

(V7) If C is a cycle of H with length at least five, and no vertex of C is a thorn of H, then C has
length 2 modulo 3.

Here is a useful lemma.

5.1 Let uv be an edge of a vine H. If neither of u, v is a thorn then uv is a twig.

Proof. There is a triangle T containing u, v; let T = {u, v, w} say. Since some vertex of T is a
thorn, it follows that w is a thorn, and so uv is a twig.
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In section 2 we introduced linear and circular vines. It is easy to check that they are indeed
vines. What follows is a more formal definition of the same thing. A vine H is said to be linear
(respectively, circular) if there is a directed path (respectively, directed cycle) S of H, with vertices
s1 → s2 → · · · → sn for some n ≥ 1, such that, denoting by NS(v) the set of neighbours in V (S) of
v ∈ V (H) \ V (S), the following conditions (LV1)–(LV4) are satisfied.

(LV1) S is an induced subgraph of H, and none of its vertices are thorns.

(LV2) If S is a cycle then n ≥ 5 and n = 2 modulo 3 (and if so then in what follows subscripts are to
be read modulo n).

(LV3) Every vertex in V (H) \ V (S) has a neighbour in V (S).

(LV4) For every v ∈ V (H) \ V (S), if v is not a thorn then for some i ∈ {1, . . . , n}, where 1 < i < n if
S is a path

– NS(v) = {si−1, si+1}

– every neighbour of si or of v in V (H) \ V (S) is a thorn adjacent to one of si−1, si+1

– si−1 → v → si+1.

In this case we call S a stem of the vine. We will show the following.

5.2 Every vine with at least two triangles is either linear or circular.

Proof. Let H be a vine with at least two triangles. If C is a cycle of H of length at least five, and no
vertex of C is a thorn, then all its edges are twigs by 5.1, and any five consecutive vertices of C form a
five-vertex twig path, in which the two middle edges form a directed path, from (V5). Consequently
every two consecutive edges of C form a directed path, that is, C is a directed cycle. If H has a cycle
of length at least five of which no vertex is a thorn, let S be such a cycle. Otherwise, since H has at
least two triangles and is connected, there is a vertex that is not a thorn, and consequently we may
choose S to be a directed path as long as possible such that no vertex of S is a thorn of H.

Let the vertices of S be s1, . . . , sn in order, where s1 → s2 → · · · → sn, and if S is a cycle then
sn → s1. Thus n ≥ 1.

(1) S is an induced subgraph of H.

For suppose that there exist i, j ∈ {1, . . . , n} such that sisj is an edge of H and not of S. Let
P be a subpath of S between si, sj; then P is a directed path. Let C be the cycle obtained by
adding the edge sisj to P . Then C has length at least four, since no vertex of S is a thorn and every
triangle contains a thorn. Since P is a directed path, (V6) implies that C has length at least five.
Consequently H has a cycle of length at least five in which no vertex is a thorn, and therefore S is
a directed cycle; and so there are two choices in S for the path P . For one of these two choices the
cycle C is not a directed cycle, contrary to (V5). This proves (1).

(2) If u, v ∈ V (H) \ V (S) are adjacent, and u has a neighbour in V (S), then u, v have a com-
mon neighbour in V (S).
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For suppose first that for some i ∈ {1, . . . , n}, u is adjacent to si and v is not. From the sym-
metry we may assume that u → si. Since u has two nonadjacent neighbours, u is not a thorn, and
so usi is a twig by 5.1; and certainly all edges of S are twigs. Let v ′ ∈ V (H) such that {u, v, v′} is
a triangle. Since si has a unique neighbour in this triangle, it follows that si, v

′ are nonadjacent. If
v′ ∈ V (S), then u, v have a common neighbour in V (S) as claimed, so we may assume that v ′ /∈ V (S).
Since one of v, v′ is a thorn, and neither of them has a common neighbour with u in V (S), we may
assume that uv is a twig, by exchanging v, v ′ if necessary.

If either i ≥ 3 or S is a cycle, then the two middle edges of the path si−2-si−1-si-u-v both have the
same head, namely si, a contradiction to (V5). So i ≤ 2 and S is a path. Let S ′ be the directed path
u-si-si+1- · · · -sn. Its length is at least that of S, and u is not a thorn of H; so from the maximality of
the length of S, it follows that i = 2. Since u is not a thorn, no member of {s1, s2, u} is a thorn, and
so this set is not a triangle, that is, u is not adjacent to s1. Since s1 is not a thorn of H, it follows from
(V2) that s1 has a neighbour x 6= s2 with x, s2 nonadjacent. From (1), x /∈ V (S), and x 6= u since
u, s1 are nonadjacent. We claim that we may choose x so that xs1 is a twig. For if xs1 is not a twig,
then x is a thorn; choose w so that {w, x, s1} is a triangle, and so ws1 is a twig. Then w 6= s2 since
x, s2 are nonadjacent, and so w /∈ V (S), and w, s2 are nonadjacent since s2 has only one neighbour in
this triangle; and hence (by exchanging w, x if necessary) we may assume that xs1 is a twig. If x 6= v,
then the two middle edges of the path x-s1-s2-u-v have the same head, contrary to (V5); and so
x = v. But then v-s1-s2-u-v is a cycle of length four, and since u → s2 it follows that v → s1. Since
u, s1 are nonadjacent it follows that v is not a thorn. Also v-s1- · · · -sn is a directed path, contrary
to the maximality of the length of S. This proves that there is no such i, and so NS(u) ⊆ NS(v).
From the symmetry between u, v we deduce that NS(u) = NS(v); and since NS(u) 6= ∅ and at most
one triangle contains both u, v, it follows that |NS(u)| = 1, NS(u) = NS(v) = {si} say. Suppose that
u is not a thorn; then it has a neighbour w different from v, si. Since NS(u) = {si}, it follows that
w /∈ V (S), and so by what we already proved, NS(u) = NS(w); but then w has two neighbours in
the triangle {u, v, si}, a contradiction. Hence u, and similarly v, is a thorn. This proves (2).

(3) If v ∈ V (H) \ V (S), then 1 ≤ |NS(v)| ≤ 2. If |NS(v)| = 2, then either

• NS(v) = {si−1, si+1} for some i ∈ {1, . . . , n} (where 1 < i < n if S is a path), and si−1 → v →
si+1, or

• NS(v) = {si, si+1} for some i ∈ {1, . . . , n} (where i < n if S is a path), and v is a thorn, and
si+1 → v → si.

For if v has no neighbour in V (S), then since H is connected, there is an induced path w-x-y
of H where w ∈ V (S) and x, y /∈ V (S), contrary to (2). Thus v has a neighbour in V (S). If every
two neighbours of v in S are adjacent, then the claim holds, so we may assume that v is adjacent
to si, sj where i < j and si, sj are nonadjacent. Hence v is not a thorn. If every path of S between
si, sj has length at least three, then H has a cycle of length at least five no vertex of which is a
thorn of H, and so S is a directed cycle, and there are two paths in S between si, sj; and for both
of them, their union with the path si-v-sj makes a directed cycle, which is impossible. Thus there
is a path of length two in S between si, sj, and we may assume that 1 ≤ i ≤ n − 2 and j = i + 2.
From the cycle v-si-si+1-si+2-v, it follows that si → v → si+2. If v has another neighbour in S, say
sk, then k 6= i, i + 1, i + 2, and we may assume that k 6= i − 1 from the symmetry. By the same
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argument applied to si, sk, it follows that k = i − 2 (and so i ≥ 3 if S is a path), and that v → si, a
contradiction. Thus NS(v) = {si, si+2}. This proves (3).

(4) If v ∈ V (H) \ V (S) is not a thorn then

• NS(v) = {si−1, si+1} for some i ∈ {1, . . . , n}, where 1 < i < n if S is a path

• every neighbour of si or of v in V (H) \ V (S) is a thorn adjacent to one of si−1, si+1

• si−1 → v → si+1.

For the first and third assertions follow from (3). For the second, suppose that u ∈ V (H) \ V (S)
is adjacent to one of v, si, and either it is not a thorn or it is nonadjacent to both si−1, si+1. Let
{v, si} = {x, y}, where u is adjacent to x. We claim that we may choose u so that ux is a twig. For
suppose it is not; then u is a thorn, and therefore u is nonadjacent to si−1, si+1. Let {w, u, x} be
a triangle; then w 6= si−1, si+1 since u is nonadjacent to them. Since si−1 has only one neighbour
in this triangle, it follows that w, si−1 are nonadjacent, and similarly w, si+1 are nonadjacent, and
so we may replace u by w. This proves that we may assume that ux is a twig. But there is a
five-vertex path u-x-si−1-y-si+1, and all its edges are twigs, and its two middle edges both have tail
si−1, contrary to (V5). This proves (4).

From (1)–(4), it follows that S is a stem and H is either a linear or circular vine. This proves
5.2.

6 The triangular digraph

In this section we make another step in the proof of 4.2. We show that, if G satisfies the hypotheses
of that claim, then (provided that G 6= L(K3,3)) we can associate a vine with G.

Let G be prismatic with an orientation O. Let H be the subgraph of G with V (H) = V (G), and
with edges the edges of G that belong to cycles of length 3. Let us direct the edges of H, so that
H is a digraph, as follows. For every triangle T = {a, b, c} where O(T ) is a → b → c → a, direct
the edges ab, bc, ca of H so that a → b, b → c, c → a. Since every edge of H belongs to exactly one
triangle (since G is prismatic), this gives a well-defined digraph H. We call H the triangular digraph
of G.

6.1 Let G be prismatic, triangle-covered and triangle-connected, and not isomorphic to L(K3,3),
and let O be an orientation. Let H be the corresponding triangular digraph. Then for every triangle
T , some vertex of T is a thorn of H.

Proof. Let T = {t1, t2, t3} and suppose that for i = 1, 2, 3 there is a triangle Ti 6= T containing ti.
Any vertex in T1 ∩T2 would be adjacent in G to both t1, t2, which is impossible since G is prismatic,
and so T1∩T2 = ∅; and similarly T1, T2, T3 are pairwise disjoint. Let Ti = {ri, si, ti} say, where O(Ti)
is ti → ri → si → ti for i = 1, 2, 3. Since t1, t2 are adjacent, it follows that r1r2 and s1s2 are edges,
and similarly that r1r3, r2r3, s1s3, s2s3 are edges. Let W = T1 ∪ T2 ∪ T3. Thus G|W is isomorphic to
L(K3,3).
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Since G is not isomorphic to L(K3,3), it follows that V (G) 6= W . Since G is triangle-connected
and triangle-covered, there is a triangle Q that has nonempty intersection with W and with V (G)\W .
Since every two adjacent vertices in W belong to a triangle included in W , and belong to only one
triangle, it follows that |Q ∩ W | = 1; and we may assume that Q ∩ W = {t1} from the symmetry.
Let Q = {q1, q2, t1}, where O(Q) is t1 → q1 → q2 → t1. For i = 2, 3, since t1, ti are adjacent and
O(Ti) is ti → ri → si → ti, it follows that q1 is adjacent to ri. In particular, q1 has two neighbours
in the triangle {r1, r2, r3}, a contradiction. Thus not all of T1, T2, T3 exist. This proves 6.1.

6.2 Let G be prismatic, triangle-connected, triangle-covered, and not isomorphic to L(K3,3). Let O
be an orientation, and let H be the corresponding triangular digraph. Then H is a vine.

Proof. We must verify the seven conditions (V1)–(V7) in the definition of a vine. Since G is
triangle-covered and triangle-connected, it follows that H is connected. Every cycle of H is a cycle
of G, and therefore has length at least three. Thus (V1) holds. Conditions (V2) and (V3) are
clear, and (V4) follows from 6.1.

For (V5), let h1-h2-h3-h4-h5 be the vertices of a 4-edge twig path P of H. If h1, h3 are adjacent in
H, then since h1h2 is a twig it follows that h3 is a thorn, a contradiction since h3 has three neighbours.
So h1, h3 are nonadjacent, and similarly h3, h5 are nonadjacent. Let m1,m2,m3,m4 ∈ V (H) such
that for i = 1, . . . , 4, Ti = {hi, hi+1,mi} is a triangle. Thus m1,m2,m3,m4 are thorns; and since
m1, . . . ,m4 all have different sets of neighbours, it follows that m1, . . . ,m4 are all different. Since
m1 has only two neighbours h1, h2, it follows that m1 6= h3, h4, h5 and so m1 /∈ V (P ). Since m2 only
has two neighbours h2, h3, it follows that m2 6= h4, h5; and m2 6= h1 since h1, h3 are nonadjacent. So
m2 /∈ V (P ). Similarly m3,m4 /∈ V (P ).

Suppose that h3 is the head of the edge h2h3. Thus O(T2) is m2 → h2 → h3 → m2. Let O(T1) be
x1 → y1 → h2 → x1 say, where {x1, y1} = {h1,m1}; and similarly let O(T4) be x2 → y2 → h4 → x2.
From the pair T2, T4, since h3, h4 are adjacent it follows that y2, h2 are adjacent. From the pair
T1, T4, since y2, h2 are adjacent, it follows that x1, h4 are adjacent. From the pair T1, T3, since x1h4

and h2h3 are edges, it follows that O(T3) is m3 → h3 → h4 → m3, and so h3 → h4 in H. Thus in
this case h3 is the head of exactly one of the two edges. The argument when h3 is the tail of h2h3 is
similar (and indeed can be reduced to the case we already did by reversing the orientation of every
triangle). This proves (V5).

For (V6), let h1-h2-h3-h4-h1 be the vertices in order of a cycle of length 4, where h1 → h2. Let
m1,m2 ∈ V (G) such that {h1, h2,m1} = T1 and {h3, h4,m2} = T2 are triangles. Since no edge
is in two triangles, m1,m2, h1, h2, h3, h4 are all different. Since h1 → h2, it follows that O(T1) is
m1 → h1 → h2 → m1. Since h2h3 and h1h4 are edges, and m2 has a neighbour in T1, it follows that
m1,m2 are adjacent in G, and so O(T2) is m2-h4-h3-m2. Hence h3 → h4 in H. This proves (V6).

For (V7), let h1- · · · -hn-h1 be the vertices of a cycle C of H, in order, with n ≥ 5, such that none
of them are thorns of H. We may assume that h1 → h2. By (V5), h2 → h3, and so on; in general
(reading subscripts modulo n), hi → hi+1. For 1 ≤ i ≤ n, let mi ∈ V (H) such that {mi, hi, hi+1} is
a triangle Ti. Since Ti contains a thorn, it follows that mi is a thorn, and therefore mi /∈ V (C). Now
for 2 ≤ i ≤ n− 2, the triangles Ti, Tn are disjoint, and so if hi is adjacent in G to some x ∈ Tn, then
hi+1 is adjacent (in G) to the image of x under the permutation O(Tn). Since h2 is adjacent to h1,
we deduce that hi is adjacent (in G) to h1 if i = 2 modulo 3, to mn if i = 0 modulo 3, and to hn if
i = 1 modulo 3. Since hn−1 is adjacent to hn and therefore nonadjacent to h1,mn, we deduce that
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n − 1 = 1 modulo 3, that is, n = 2 modulo 3. This proves (V7), and therefore completes the proof
of 6.2.

The next result allows us to reconstruct G from a knowledge of its triangular digraph. If H is
the triangular digraph as usual, and P is a twig path of H of length at least three, we define the
signed length sl(P ) of P as follows. Let P have vertices p1, . . . , pk in order. Since H is a vine and
P is a twig path, the path obtained from P by deleting p1, pk is a directed path Q0; let Q be the
unique maximal directed subpath of P that contains Q0. An edge of P is called a forward edge if it
belongs to Q, and any other edge of P is a backward edge. Thus, all edges of P are forward edges
except possibly for the first and last. We define the signed length sl(P ) of P to be d1 − d2, where
d1, d2 are the numbers of forward edges and backward edges in P , respectively.

6.3 Let G be prismatic, triangle-connected, triangle-covered, and not isomorphic to L(K3,3). Let O
be an orientation of G, and let H be the corresponding triangular digraph. Let P be a twig path of
H of length at least 3. Then the ends of P are adjacent in G if and only if sl(P ) = 1 modulo 3.

Proof. Let P have vertices p1, . . . , pk in order, where k ≥ 4. From 6.2, it follows that by exchanging
p1, pk if necessary, we may assume that p2 → p3 → · · · → pk−1. We claim that for 1 ≤ i ≤ k − 2, pi

and pi+2 are nonadjacent. For suppose they are adjacent; then since pipi+1 and pi+1pi+2 are both
twigs, it follows that pi, pi+2 are both thorns. In particular, since pi has degree 2 it follows that i = 1,
and since pi+2 has degree 2 it follows that i + 2 = k, and so k = 3, a contradiction. This proves our
claim that pi and pi+2 are nonadjacent. It follows that p2, . . . , pk−1 are not thorns.

For each i with 1 ≤ i < k, choose a thorn mi ∈ V (H) such that {pi, pi+1,mi} is a triangle Ti say.
If p1 = mi for some i, then 2 ≤ i < k; i 6= 2 since p1, p3 are nonadjacent, and yet p2 ∈ {pi, pi+1} since
pi, pi+1 are the only neighbours of mi, which is impossible. Thus m1, . . . ,mk−1 6= p1, and similarly
they are different from pk, and therefore they do not belong to V (P ). Moreover, they are all distinct.

Let π be the permutation O(T1). For i ∈ {3, . . . , k}, let xi be the unique vertex of T1 that is
adjacent in G to pi; thus x3 = p2. For 3 ≤ j ≤ k − 2, since pj is mapped to pj+1 by the permutation
O(Tj), it follows that xj+1 = π(xj). Consequently xk−1 = πk−4(p2). Let n = k − 3 if pk−1pk has tail
pk−1, and n = k−5 if it has tail pk. In the first case xk = π(xk−1), and in the second xk = π−1(xk−1),
and so in both cases xk = πn(p2). We claim that xk = πsl(P )−1(p1). For if p1p2 has tail p1, then
sl(P ) = n+2, and p2 = π(p1), and so xk = πsl(P )−1(p1); and if p1p2 has tail p2, then sl(P ) = n, and
p2 = π−1(p1), and so again xk = πsl(P )−1(p1). Consequently xk = p1 if and only if sl(P ) = 1 modulo
3. This proves 6.3.

6.3 can be viewed another way. We are trying to make a “construction” of all orientable triangle-
connected triangle-covered prismatic graphs. We showed so far that such a graph gives rise to a
vine, and it can be reconstructed from a knowledge of the vine. But as we explained in section 2,
every vine can be converted to an orientable triangle-connected triangle-covered prismatic graph, by
following the rule for adjacency described in 6.3, and so we can regard this as a construction for all
orientable triangle-connected triangle-covered prismatic graphs.

7 The proof of 4.2

Now we come to put the pieces of the last few sections together.
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Proof of 4.2. Let G be a non-null orientable prismatic graph that is triangle-covered and triangle-
connected. Let O be an orientation, and let H be the corresponding triangular digraph. We may
assume that G is not isomorphic to L(K3,3), for otherwise the theorem holds. Hence by 6.1, each
triangle contains a thorn of H. By 6.2, H is a vine. We may assume that G has at least two triangles,
for otherwise G is a core path of triangles graph. Consequently by 5.2, H is either a linear or circular
vine. Let s1, . . . , sn be the vertices in order of some stem S of H. For each vertex v ∈ V (H) \ V (S),
let NS(v) be the set of vertices of S adjacent to v in H.

We will show that if S is a cycle then G is a core cycle of triangles graph, and if S is a path then
G is a core path of triangles graph. The two proofs are almost identical, so we only give the second
(the first is a little easier since we do not have to worry about “end effects”). Thus, henceforth S is
a path. (The reader is warned that there is a difference between adjacency in H and adjacency in G
in what follows.)

Let X2 = {s1} and X2n = {sn}. For 1 < i < n, let X2i be the union of {si} and the set of all
vertices v ∈ V (H) \ V (S) such that NS(v) = {si−1, si+1}. Let

Z = X2 ∪ X4 ∪ · · · ∪ X2n.

No member of Z is a thorn, since every member of Z either belongs to V (S) or is adjacent in H to
two nonadjacent vertices of S. Let M1 = M2n+1 = ∅. For 1 ≤ i < n, let M2i+1 be the set of all
vertices in V (G) \ Z adjacent in H to a member of X2i and to a member of X2i+2. Let R2n+1 = ∅,
and for 1 ≤ i ≤ n, let R2i−1 be the set of all thorns v ∈ V (H) \ Z such that si is the unique vertex
of Z adjacent in H to v, and si → v in H. Similarly, let L1 = ∅, and for 1 ≤ i ≤ n, let L2i+1 be
the set of all thorns v ∈ V (H) \ Z such that si is the unique vertex of Z adjacent in H to v, and
v → si in H. It follows that the sets X2, X4, . . . , X2n and all the sets L2i+1,M2i+1, R2i+1 (0 ≤ i ≤ n)
are pairwise disjoint (we shall show below that they have union V (G)). For 1 ≤ i ≤ n + 1 let
X2i−1 = L2i−1 ∪ M2i−1 ∪ R2i−1. We will show that X1, . . . , X2n+1 is a core path of triangles decom-
position.

(1) For every triangle T of G, either there exists i with 1 ≤ i < n such that X2i,M2i+1, X2i+2

each contain a vertex of T , or there exists i with 1 ≤ i ≤ n such that R2i−1, X2i, L2i+1 each contain
a vertex of T .

For let T = {u, v, w}. At least one of u, v, w is a thorn, say w, and so w /∈ V (S) (and indeed,
w /∈ Z); and since by (LV3) w has a neighbour in V (S), we may assume that u = si where
1 ≤ i ≤ n. Thus u ∈ X2i. If v ∈ V (S), then since S is induced in H, we may assume that say
v = si+1; and so v ∈ X2i+2 and w ∈ M2i+1 and the claim holds. So we may assume that v /∈ V (S).
Since w is a thorn, it follows that NS(w) = {u}. Suppose that |NS(v)| ≥ 2. Then since v is adjacent
in H to a vertex not in V (S) (namely w) and hence has at least three neighbours in H, it follows
that v is not a thorn; and from (LV4), we may assume that NS(v) = {si, si+2}; and so v ∈ X2i+2,
and again w ∈ M2i+1 and the claim holds. So we may assume that NS(v) = {u}. From (LV4), it
follows that v is a thorn, and so v /∈ Z and v, w are adjacent in H to no members of Z except si

(since they both have degree two in H). In particular, the symmetry between v, w is restored. From
this symmetry, we may assume that uv has tail v. But then v ∈ L2i+1 and w ∈ R2i−1. This proves
(1).

It follows from (1) that the sets X1, . . . , X2n+1 have union V (G), since G is triangle-covered.
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(2) For 1 ≤ i < n, the following hold:

• one of X2i, X2i+2 has cardinality 1

• X2i, X2i+2 are complete to each other

• every edge between X2i and X2i+2 has tail in X2i

• every edge between X2i and M2i+1 has tail in M2i+1, and

• every edge between M2i+1 and X2i+2 has tail in X2i+2.

For suppose that |X2i|, |X2i+2| > 1. Since |X2| = |X2n| = 1, it follows that 1 < i ≤ n − 2.
Choose u ∈ X2i and v ∈ X2i+2 with u 6= s2i and v 6= s2i+2. From the definition of X2i, it follows
that NS(u) = {si−1, si+1}, and similarly NS(v) = {si, si+2}. In particular, u, v are not thorns. From
(LV4), since NS(u) = {si−1, si+1} it follows that every vertex in V (H) \ V (S) adjacent in H to si

is a thorn, and yet v is adjacent in H to si, a contradiction. This proves that one of X2i, X2i+2

has cardinality 1, and so the first assertion holds. The second holds since we may assume from the
symmetry that X2i+2 = {si+1}, and every member of X2i is adjacent to si+1 from the definition of
X2i. We prove the final three assertions together. By (1), every edge between two of the three sets
X2i,M2i+1, X2i+2 is in a triangle included in the union of these three sets; so let T = {u, v, w} be a
triangle with u ∈ X2i, w ∈ M2i+1 and v ∈ X2i+2. It suffices to show that O(T ) is w → u → v → w. If
u = si and v = si+1, the claim holds since sisi+1 has tail si. Thus we may assume from the symmetry
that v 6= si+1. Consequently |X2i+2| > 1, and so i ≤ n − 2. Choose x so that {si+1, si+2, x} is a
triangle T ′. From (1), x ∈ M2i+3, and so T, T ′ are disjoint. Also O(T ′) is x → si+1 → si+2 → x,
as we saw already. From the pair T, T ′, since usi+1 and vsi+2 are edges, it follows that O(T ) is
w → u → v → w. This proves the final three assertions and so proves (2).

(3) For 1 ≤ i ≤ n, R2i−1, L2i+1 are matched in G, and if R2i−1 ∪ L2i+1 6= ∅ then X2i = {si}.
Moreover, if u ∈ R2i−1 and v ∈ L2i+1 are adjacent, and T is the triangle {u, v, si}, then O(T ) is
si → u → v → si.

For every member of R2i−1 ∪ L2i+1 is adjacent in H to si. Let u ∈ R2i−1; then u ∈ V (H) \ Z,
NS(u) = {si} and the edge usi has tail si. Choose v ∈ V (H) so that {u, v, si} is a triangle. From
(1), v ∈ L2i+1. Consequently every member of R2i−1 is adjacent in H to a member of L2i+1 and vice
versa. Since no edge of H belongs to two triangles, and every edge of G between R2i−1 and L2i+1 is
an edge of H, it follows that R2i−1, L2i+1 are matched in H and in G. This proves the first claim.
For the second, suppose that u ∈ R2i−1 ∪ L2i+1 6= ∅. Then u is a thorn. Since u is adjacent in H to
si and to neither of si−1, si+1, it follows from (LV4) that there is no vertex w ∈ V (H) \ V (S) with
NS(w) = {si−1, si+1}; and therefore X2i = {si}. This proves the second claim. For the third, let
u ∈ R2i−1 and v ∈ L2i+1 be adjacent, and let T = {u, v, si}. Since v ∈ Li+1 it follows that vsi has
tail v in H; that is, O(T ) is si → u → v → si. This proves (3).

(4) For 1 ≤ i ≤ 2n + 1, Xi is stable in G.

For suppose that u, v ∈ Xi are adjacent in G. If i is even, then since |X2| = 1, it follows that
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i > 2, and from (2) s(i/2)−1 is adjacent to both u, v, contrary to (1). Thus i is odd, say i = 2j + 1.
If u ∈ R2j+1, then j < n, and since u is a thorn adjacent in H to sj+1 and to v, it follows that
{u, v, sj+1} is a triangle, contrary to (1). Thus u /∈ R2j+1, and similarly u, v /∈ R2j+1 ∪L2j+1. Hence
u, v ∈ M2j+1. By (2), one of X2j , X2j+2 has only one member say r, and so {r, u, v} is a triangle,
contrary to (1). This proves (4).

(5) For 1 ≤ i, j ≤ 2n + 1 with j ≥ i + 3, if j − i = 2 modulo 3 then Xi is complete in G to
Xj, and otherwise Xi is anticomplete in G to Xj.

For let u ∈ Xi and v ∈ Xj . We must show that u, v are adjacent in G if and only if j − i = 2
modulo 3. In most cases we will choose a twig path P of H between u, v, and prove that sl(P ) = 1
modulo 3 if and only if j − i = 2 modulo 3, and then the claim will follow from 6.3. First sup-
pose that i, j are even; say i = 2s, j = 2t, where 1 ≤ s < t ≤ n. Let P be the path with vertices
u-ss+1-ss+2- · · · -st−1-v in order; then P is directed by (2), it has length > 2 (since j ≥ i+3 by hypoth-
esis), all its edges are twigs (by 5.1, since none of its vertices are thorns) and sl(P ) = t−s = (j−i)/2.
Hence sl(P ) = 1 modulo 3 if and only if j − i = 2 modulo 3, as claimed.

Next suppose that i is odd and j is even; say i = 2s − 1 and j = 2t, where 1 ≤ s < t ≤ n (since
j ≥ i+3). Then u ∈ L2s−1 ∪M2s−1 ∪R2s−1 and v is adjacent in H to st−1. Suppose that u ∈ L2s−1,
and let P have vertices u-ss−1-ss- · · · -st−1-v in order; then P is a directed path by (2), all its edges
are twigs, and sl(P ) = t − s + 2 = (j − i + 3)/2, and so sl(P ) = 1 modulo 3 if and only if j − i = 2
modulo 3 as required. Next suppose that u ∈ R2s−1. If t = s + 1, then u, v are nonadjacent by (1),
since they are both adjacent to ss, and the claim holds; so we may assume that t ≥ s + 2. Let P
be the path with vertices u-ss- · · · -st−1-v in order. Then P has length at least 3, all its edges are
twigs, and sl(P ) = t− s− 1 = (j − i− 3)/2, and so again sl(P ) = 1 modulo 3 if and only if j − i = 2
modulo 3 as required. Thus we may assume that u ∈ M2s−1, and therefore {u, xs−1, xs} is a triangle
for some xs−1 ∈ X2s−2 and xs ∈ X2s. The edges uxs and uxs−1 are not twigs, so in this case we
cannot construct P . Let i1 = i − 1, i2 = i + 1. Then i1, i2 are even, and xs−1 ∈ Xi1 and xs ∈ Xi2 .
From what we already proved, xs−1 is adjacent to v if and only if j − i1 = 2 modulo 3, and xs is
adjacent to v if and only if j − i2 = 2 modulo 3 (this follows from (2) if j − i2 = 2, and from what we
already proved if j − i2 ≥ 3). But j − i = 2 modulo 3 if and only if j − i1, j − i2 6= 2 modulo 3, and
v is adjacent to u if and only if v is nonadjacent to both xs−1, xs, since {u, xs−1, xs} is a triangle.
Thus again u, v are adjacent in G if and only if j − i = 2 modulo 3. The proof is similar if j is odd
and we omit the details. This proves (5).

So far we have verified conditions (P1), (P2) and (P3) in the definition of a core path of trian-
gles decomposition. For (P4) note that s1 is in at least two triangles from the definition of a stem,
and so if R1 = ∅ then from (1), n ≥ 2 and |X4| > 1. This proves (P4). Condition (P5) holds since
if u ∈ L2i−1 and v ∈ X2i are adjacent in G then {si−1, u, v} is a triangle, contrary to (1). Condition
(P6) follows from the next assertion.

(6) For 1 ≤ i ≤ n, if |X2i| = 1, then

• R2i−1, L2i+1 are matched in G, and every edge of G between M2i−1 ∪R2i−1 and L2i+1 ∪M2i+1

is between R2i−1 and L2i+1;

• the vertex in X2i is complete in H to R2i−1 ∪ M2i−1 ∪ L2i+1 ∪ M2i+1;
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• if u ∈ X2i−1 and v ∈ X2i+1 are nonadjacent in G then u ∈ M2i−1∪R2i−1 and v ∈ L2i+1∪M2i+1

• if i > 1 then M2i−1, X2i−2 are matched in G, and if i < n then M2i+1, X2i+2 are matched in
G.

For let |X2i| = 1; then X2i = {si}. From (3), R2i−1, L2i+1 are matched in G. If u ∈ M2i−1∪R2i−1

and v ∈ L2i+1 ∪ M2i+1 are adjacent in G, then since they are both adjacent in H to si, it follows
from (1) that u ∈ R2i−1 and v ∈ L2i+1, and so the first claim of (6) holds. The second is clear. For
the third, suppose that u ∈ X2i−1 and v ∈ X2i+1 are nonadjacent in G, and u ∈ L2i−1. Choose
x ∈ V (H) so that {u, si−1, x} is a triangle; then x ∈ R2i−3 by (1). By (5), v is nonadjacent in G to
x, and therefore is adjacent in G to no member of this triangle, a contradiction. Thus u /∈ L2i−1,
and similarly v /∈ R2i+1. This proves the third claim. For the fourth, suppose that i > 1. From the
definition of M2i−1, every vertex in X2i−2 is adjacent in H to a member of M2i−1 and vice versa; and
since no edge is in two triangles and si is complete to X2i−2 ∪ M2i−1, it follows that X2i−2,M2i−1

are matched in G. Similarly if i < n then X2i+2,M2i+1 are matched in G. This proves the fourth
assertion of (6), and so completes the proof of (6).

Finally, condition (P7) follows from the next assertion.

(7) For 1 < i < n, if |X2i| > 1 then

• R2i−1 = L2i+1 = ∅;

• if u ∈ X2i−1 and v ∈ X2i+1, then u, v are nonadjacent in G if and only if there is a vertex in
X2i adjacent in G to both u, v.

For let |X2i| > 1. The first assertion of (7) follows from (3). For the second, let u ∈ X2i−1 and
v ∈ X2i+1. If in G, u, v have a common neighbour in X2i, then they are nonadjacent in G by (1),
so it remains to prove the converse. Suppose then that u, v are nonadjacent in G. Since |X2i| > 1,
(2) implies that X2i−2 = {si−1}. Since R2i−1 = ∅, it follows that u ∈ L2i−1 ∪M2i−1, and therefore is
adjacent in H to si−1. Choose x ∈ V (H) so that {u, x, si−1} is a triangle T . By (1), either x ∈ R2i−3

and u ∈ L2i−1, or x ∈ X2i and u ∈ M2i−1. Now v is not adjacent in G to si−1 by (5). Since v is
adjacent in G to a member of T and v is not adjacent in G to u, si−1, it follows that v, x are adjacent
in G. Since X2i+1, X2i−3 are anticomplete in G by (5), it follows that x ∈ X2i, and x is adjacent in
G to both u, v. This proves the second assertion, and therefore proves (7).

Consequently the sequence X1, . . . , X2n+1 is indeed a core path of triangles decomposition. This
proves 4.2.

8 A stable neighbourhood

Let G be prismatic and triangle-covered. We say N ⊆ V (G) is a crosscut if N is stable and |N∩T | = 1
for every triangle T . Our next objective is to study crosscuts. The reason for this is, we need to
investigate the structure of prismatic graphs H that are not triangle-covered. The core of H is the
union of all triangles of G. Let H be prismatic with core W , let G = H|W , let v ∈ V (H) \ W , and
let N be the set of members of W that are adjacent to v. Then N is a crosscut in G, since v is in no
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triangles and G is prismatic. Thus an understanding of crosscuts will tell us all possible ways to add
one vertex not in the core to a triangle-covered prismatic graph. (The core ring of five was defined
in section 4.)

8.1 Let X1, . . . , X2n be a core cycle of triangles decomposition of G, and let the sets L2i+1,M2i+1,
R2i+1 (1 ≤ i ≤ n) be as in the definition of a core cycle of triangles graph. Let N ⊆ V (G) be a
crosscut. Then either:

• G is the core ring of five, or

• there exists i ∈ {1, . . . , n} such that N contains exactly one end of every edge between R2i−1

and L2i+1, and (reading subscripts modulo 2n)

N \ (R2i−1 ∪ L2i+1) =
⋃

(X2i+2+k : 0 ≤ k ≤ 2n − 4 and k is divisible by 3).

Proof. Since X1, . . . , X2n is a core cycle of triangles decomposition of G, it follows that n ≥ 5 and
n = 2 modulo 3; and we read the subscripts of Xi modulo 2n. Let

P = {i : 1 ≤ i ≤ n and N ∩ X2i 6= ∅}.

(1) We may assume that P 6= ∅.

For suppose that P = ∅. For each i ∈ {1, . . . , n}, one of X2i, X2i+2 has cardinality 1 and M2i+1

is matched with the other, and in particular, M2i+1 6= ∅ and every vertex of M2i+1 is in a triangle
included in X2i ∪ M2i+1 ∪ X2i+2. Since N meets all these triangles it follows that ∅ 6= M2i+1 ⊆ N .
If n > 5 then this is impossible since M1 is complete to M11 and yet N is stable. Thus n = 5. If
|X2| > 1 then M1,M3 are both matched with X2, and so there exist u ∈ M1 and v ∈ M3 with no
common neighbour in X2; then u, v are adjacent from (C6). But u, v ∈ N and N is stable, which is
impossible. This proves that |X2| = 1, and similarly |X2i| = 1 for i = 1, . . . , 5. Hence |M2i+1| = 1
for i = 1, . . . , 5. Suppose that |V (G)| > 10. Then one of the sets R1, R3, . . . , R9, L1, L3, . . . , L9 is
nonempty, say R1. Choose u ∈ R1. Then there exists v ∈ L3 such that {u, v, s} is a triangle, where
X2 = {s}. Since N meets this triangle we may assume that v ∈ N . But v is complete to M5, by
(C6), a contradiction since N is stable. Hence |V (G)| = 10 and the first outcome of the theorem
holds. This proves (1).

(2) If i ∈ P then i + 1 /∈ P and one of i + 2, i + 3 ∈ P .

For let 1 ∈ P say; thus N ∩ X2 6= ∅. Since X2 is complete to X4 it follows that N ∩ X4 = ∅,
and so 2 /∈ P . Suppose that 3, 4 /∈ P . Since there is a triangle included in X6 ∪ M7 ∪ X8, it follows
that N ∩ M7 6= ∅; and yet X2 is complete to X7, a contradiction. This proves (2).

Since n is not divisible by 3 and P 6= ∅, it follows from (2) that there exists i ∈ P such that
i + 2 ∈ P , and we may assume that 1, 3 ∈ P . Since X2 is complete to Xi for i = 4, 7, 10, 13, . . . , 2n
and X6 is complete to Xi for i = 8, 11, 14, 17, . . . , 2n − 2, 1, 4, we deduce that

N ⊆ X2 ∪ X3 ∪ X5 ∪ X6 ∪
⋃

(Xi : 9 ≤ i ≤ 2n − 1 and i is divisible by 3.)

16



Let 9 ≤ i ≤ 2n − 1 with i divisible by 3. If i is even then every vertex of Xi belongs to a triangle
included in Xi−2 ∪ Xi−1 ∪ Xi, and so Xi ⊆ N . If i is odd then every vertex in Xi belongs to a
triangle included in one of Xi−2 ∪ Xi−1 ∪ Xi (for a vertex in Li), Xi−1 ∪ Xi ∪ Xi+1 (for a vertex
in Mi), Xi ∪ Xi+1 ∪ Xi+2 (for a vertex in Ri). Since N meets these triangles it follows again that
Xi ⊆ N . Moreover, every vertex in X6 belongs to a triangle included in X6 ∪ X7 ∪ X8, so X6 ⊆ N ,
and similarly X2 ⊆ N . Since every member of L3 ∪ M3 has a neighbour in X2, it follows that
N ∩ X3 ⊆ R3, and similarly N ∩ X5 ⊆ L5. If |X4| > 1, then the second outcome of the theorem
holds, because R3 = L5 = ∅; so we assume that X4 = {w} say. If u ∈ R3, v ∈ L5 are adjacent, then
since |N ∩ {u, v, w}| = 1, it follows that N contains exactly one of u, v, and so the second outcome
of the theorem holds. This proves 8.1.

Let us say a prismatic graph G is k-substantial if for every S ⊆ V (G) with |S| < k there is a
triangle T with S ∩ T = ∅. We need an analogue of 8.1 for paths of triangles, and it is helpful to
assume that the graph is 3-substantial to eliminate some degenerate cases.

8.2 Let G be 3-substantial, let X1, . . . , X2n+1 be a core path of triangles decomposition of G, and
let the sets L2i+1,M2i+1, R2i+1 (1 ≤ i ≤ n) be as usual. Let N ⊆ V (G) be a crosscut. Then either:

• there exists i ∈ {1, . . . , n} such that N contains exactly one end of every edge between R2i−1

and L2i+1 and

N \ (R2i−1 ∪ L2i+1) =
⋃

(Xh : 1 ≤ h ≤ 2n + 1 and |h − 2i| = 2 modulo 3)

or

• there exists k ∈ {0, 1, 2} such that N =
⋃

(Xi : 1 ≤ i ≤ 2n + 1 and i = k modulo 3).

Proof. If n ≤ 2 then X2 ∪ X2n meets all triangles, contradicting that G is 3-substantial. Thus
n ≥ 3. It is convenient to define Xi = ∅ for all integers i /∈ {1, . . . , 2n + 1}. Once again, let
P = {i : 1 ≤ i ≤ n and N ∩ X2i 6= ∅}.

(1) P 6= ∅.

For suppose that P is empty. Then as in the proof of 8.1, ∅ 6= M2i+1 ⊆ N for 1 ≤ i < n. We
claim that R2i−1 ⊆ N for i = 1, . . . , n − 2. For let u ∈ R2i−1, and choose v ∈ L2i+1 so that {u, v, w}
is a triangle, where X2i = {w}. Since v is complete to M2i+3, it follows that v /∈ N , and so u ∈ N .
Hence R2i−1 ⊆ N as claimed. Similarly L2i+1 ⊆ N for i = 3, . . . , n.

We claim that |X2i| = 1 for i = 1, . . . , n. For if i = 1 or i = n the claim holds by (P1), so we
assume that 2 ≤ i ≤ n − 1. Suppose that v1, v2 ∈ Xi are distinct. Then X2i is matched with both
M2i−1,M2i+1 and so there exist u ∈ M2i−1 and w ∈ M2i+1 such that uv1, v2w are edges. Then u,w
are adjacent from (P7), a contradiction since they both belong to N . This proves that |X2i| = 1 for
1 ≤ i ≤ n. Since |X4| = 1, it follows from (P4) that R1 6= ∅, and similarly L2n+1 6= ∅. Thus R1 is a
nonempty subset of N . If n ≥ 4, then R1 is complete to L9 ∪ M9, and L9 ∪ M9 is also a nonempty
subset of N (because M9 6= ∅ if n ≥ 5, and L9 6= ∅ if n = 4), a contradiction. Hence n = 3. Since
R1 is complete to R3, and L7 is complete to L5, it follows that R3 ∪ L5 is disjoint from N , and
since R3, L5 are matched, it follows that R3 = L5 = ∅. But then X2 ∪X6 meets every triangle of G,
contradicting that G is 3-substantial. This proves (1).
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(2) If i ∈ P and i < n then i + 1 /∈ P ; and if i ≤ n − 3 then one of i + 2, i + 3 ∈ P .

The proof is just as in 8.1.

(3) We may assume that there does not exist i with 2 ≤ i ≤ n − 1 such that i − 1, i + 1 ∈ P .

For suppose that i − 1, i + 1 ∈ P . Thus N meets both X2i−2, X2i+2. For 1 ≤ h < 2i − 2 we
claim that N ∩Xh = ∅ if 2i− 2 6= h modulo 3, and Xh ⊆ N if 2i− 2 = h modulo 3. For if 2i− 2 6= h
modulo 3, then 2i − h = 0 or 1 modulo 3. If 2i − h = 0 modulo 3, then (2i + 2) − h = 2 modulo 3
and so Xh is complete to X2i+2; and consequently N ∩ Xh = ∅. If 2i − h = 1 modulo 3, then Xh is
complete to X2i−2 and again N ∩ Xh = ∅. Now let 2i − 2 = h modulo 3. Then N is disjoint from
the four sets Xh−2, Xh−1, Xh+1, Xh+2, because all the numbers h− 2, h− 1, h +1, h +2 are less than
2i − 2 and are different from 2i − 2 modulo 3. But if v ∈ Xh, there is a triangle T containing v with

T \ {v} ⊆ Xh−2 ∪ Xh−1 ∪ Xh+1 ∪ Xh+2,

and since N ∩ T 6= ∅, it follows that v ∈ N . Hence Xh ⊆ N . This proves our claim. Similarly, for
h > 2i + 2, if h 6= 2i + 2 modulo 3 then N ∩ Xh = ∅, and if h = 2i + 2 modulo 3 then Xh ⊆ N .
Since X2i is complete to X2i−2, it follows that N ∩X2i = ∅. We claim that X2i−2 ⊆ N . For suppose
not; then since N ∩ X2i−2 6= ∅, it follows that |X2i−2| > 1, and therefore i > 2. Let v ∈ X2i−2 \ N .
Then there is a triangle T containing v with T \ {v} ⊆ M2i−3 ∪ X2i−4, and therefore N ∩ T = ∅,
a contradiction. This proves that X2i−2 ⊆ N , and similarly X2i+2 ⊆ N . It remains to examine
N ∩ X2i−1 and N ∩ X2i+1. Since every vertex of L2i−1 ∪ M2i−1 has a neighbour in X2i−2 ⊆ N ,
it follows that N ∩ X2i−1 ⊆ R2i−1, and similarly N ∩ X2i+1 ⊆ L2i+1. For every edge uv between
R2i−1 and L2i+1, exactly one end of this edge belongs to N since |X2i| = 1, say X2i = {w}, and
|N ∩ {u, v, w}| = 1. Hence the first outcome of the theorem holds. This proves (3).

(4) We may assume that for 1 ≤ i ≤ n, if N ∩ X2i 6= ∅ then X2i ⊆ N .

For suppose that v, v′ ∈ X2i with v /∈ N and v′ ∈ N . Since |X2i| > 1, it follows that i > 1
and |X2i−2| = 1, and similarly i < n and |X2i+2| = 1. Let X2i−2 = {s2i−2} and X2i+2 = {s2i+2}.
Since X2i is matched with M2i−1, there exists u ∈ M2i−1 such that {s2i−2, u, v} is a triangle, and
similarly there exists w ∈ M2i+1 such that {v, w, s2i+2} is a triangle. Since N meets these triangles
and is disjoint from X2i−2, X2i+2, it follows that u,w ∈ N . If i ≤ n − 3, then by (2) and (3),
N ∩ X2i+6 6= ∅, and yet w ∈ X2i+1 is complete to X2i+6, a contradiction. Thus i ≥ n − 2, and
similarly i ≤ 3. If n = 3, then X2 ∪ X6 meets all triangles, contradicting that G is 3-substantial; so
n ≥ 4, and from the symmetry we may therefore assume that i = 3. Since |X4| = 1, it follows that
R1 6= ∅, and so there exist a ∈ R1, b ∈ L3 such that {a, b, s2} is a triangle, where X2 = {s2}. By (3),
s2 /∈ N , and so one of a, b ∈ N ; yet a ∈ X1 is adjacent to v′ ∈ X6, because X1 is complete to X6,
and b is adjacent to u by (P6), a contradiction. This proves (4).

From (1)–(4), there exists k ∈ {0, 1, 2} such that for all even i with 1 ≤ i ≤ 2n + 1, if i = k
modulo 3 then Xi ⊆ N , and otherwise N ∩ Xi = ∅.
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(5) For 1 ≤ i ≤ 2n + 1 with i odd and i = k modulo 3, if N ∩ Xi−2 = N ∩ Xi+2 = ∅, then
Xi ⊆ N .

For let v ∈ Xi. There is a triangle T containing v with T \ {v} ⊆ Xi−2 ∪ Xi−1 ∪ Xi+1 ∪ Xi+2.
Now N ∩ Xi−1 = N ∩ Xi+1 = ∅ from the choice of k since i = k modulo 3 and i − 1, i + 1 are even,
and N ∩Xi−2 = N ∩Xi+2 = ∅ by hypothesis. Since N ∩T 6= ∅, it follows that v ∈ N , and so Xi ⊆ N .
This proves (5).

Now if there does not exist i ∈ {1, . . . , 2n + 1}, odd, such that i 6= k modulo 3 and N ∩ Xi 6= ∅,
then by (5), Xi ⊆ N for all odd i with i = k modulo 3, and so the second outcome of the theorem
holds. Thus we may assume that N ∩ Xi 6= ∅ for some odd i ∈ {1, . . . , 2n + 1}, such that i 6= k
modulo 3. Let v ∈ N ∩ Xi. By reversing the sequence X1, . . . , X2n+1 if necessary, we may assume
that i = k +2 modulo 3. Since Xi+1 ⊆ N , it follows that v has no neighbour in Xi+1, and so v ∈ Li.
Consequently i ≥ 3, and |Xi−1| = 1. If i ≥ 7, then Xi−5 ⊆ N is complete to Xi, a contradiction, and
so i ≤ 5. Suppose that i = 5. Then since |X4| = 1, it follows that R1 6= ∅, and so there exist a ∈ R1

and b ∈ L3 such that {a, b, s2} is a triangle, where X2 = {s2}. But a ∈ X1 is complete to X6, and
b ∈ X3 is complete to X5, and N ∩ X2 = ∅ by the choice of k. Hence N is disjoint from the triangle
{a, b, s2}, a contradiction. Thus i 6= 5, and so i = 3. Since i = k + 2 modulo 3, it follows that k = 1.
Suppose that there exists i′ 6= i such that 1 ≤ i′ ≤ 2n + 1, i′ 6= k modulo 3 and N ∩ Xi′ 6= ∅. We
assumed that i = k + 2 modulo 3 and deduced that i = 3, and since i′ 6= 3, it follows that i′ 6= k + 2
modulo 3. Thus i′ = k + 1 modulo 3. By reversing the sequence X1, . . . , X2n+1, we deduce that
i′ = 2n − 1. Since k = 1 and i′ = k + 1 modulo 3, it follows that n is divisible by 3. But L3 is
complete to X2n−1 (since X3 is complete to X2n−1 if n > 3, and L3 is complete to X5 from (P6)),
a contradiction. We deduce that for all j with 4 ≤ j ≤ 2n + 1, if j 6= 1 modulo 3 then N ∩ Xj = ∅.
From (5), it follows that for all j with 4 ≤ j ≤ 2n+1, if j = 1 modulo 3 then Xj ⊆ N . But then the
first outcome of the theorem holds, taking i = 1. This proves 8.2.

9 Vertices not in the core

We can use 8.1 and 8.2 to analyze the structure of vertices not in the core. We begin with the
following.

9.1 Let G be prismatic, with core W , such that G|W is a core cycle of triangles graph. Then either
G is a cycle of triangles graph, or G|W is the core ring of five.

Proof. Let X1, . . . , X2n be a core cycle of triangles decomposition of G|W , and let the sets Li,Mi, Ri

be defined as usual; and we read these subscripts modulo 2n as usual. For each v ∈ V (G) \ W , let
Nv be the set of vertices in W adjacent to v. Thus for each such v, Nv is a crosscut in G|W . For
1 ≤ i ≤ n, let Y2i be the set of all v ∈ V (G) \W such that Nv contains exactly one end of every edge
between R2i−1 and L2i+1 and

Nv \ (R2i−1 ∪ L2i+1) =
⋃

(X2i+2+k : 0 ≤ k ≤ 2n − 4 and k is divisible by 3).

We may assume that G|W is not the core ring of five, and so by 8.1, the sets Y2i (1 ≤ i ≤ n) have
union V (G) \ W .
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We propose to construct a cycle of triangles decomposition X ′

1, . . . , X
′

2n of G, where X ′

i = Xi

for i odd, and X ′

i = Xi ∪ Yi for i even (and then defining X̂ ′

2i = X2i). It remains to verify the six
conditions (C1)–(C6). Since X1, . . . , X2n is a core cycle of triangles decomposition, we need only
to prove the following:

• for 1 ≤ i ≤ n, X2i ∪ Y2i is stable;

• for all i ∈ {1, . . . , n} and all k with 2 ≤ k ≤ 2n− 2, let j ∈ {1, . . . , 2n} with j = 2i + k modulo
2n:

(1) if k = 2 modulo 3 and there exist u ∈ Y2i and v ∈ Xj ∪ Yj, nonadjacent, then j is even,
and v ∈ Yj ;

(2) if k 6= 2 modulo 3 then Y2i is anticomplete to Xj ∪ Yj;

• for 1 ≤ i ≤ n, Y2i is anticomplete to L2i−1 ∪ M2i−1 ∪ M2i+1 ∪ R2i+1, and every vertex in Y2i is
adjacent to exactly one end of every edge between R2i−1 and L2i+1.

Since X2i ∪ Y2i is complete to X2i+2, and no vertex in Y2i is in a triangle, and X2i is stable, the first
assertion follows. The third follows from the definition of Y2i, and it remains to check the second.
Thus, let i ∈ {1, . . . , n}, let 2 ≤ k ≤ 2n − 2, and let j ∈ {1, . . . , 2n} with j = 2i + k modulo 2n.
Suppose first that k = 2 modulo 3 and there exist u ∈ Y2i and v ∈ Xj ∪ Yj, nonadjacent. Since
Xj = X2i+2+(k−2), and 0 ≤ k − 2 ≤ 2n − 4 and k − 2 is divisible by 3, it follows from the definition
of Y2i that Xj ⊆ Nu, and so v /∈ Xj. Consequently j is even, and v ∈ Yj. Finally, for the second half
of the second assertion, suppose that k 6= 2 modulo 3, and that u ∈ Y2i is adjacent to v ∈ Xj ∪ Yj .
Again from the definition of Y2i it follows that j is even and v ∈ Yj. Let h = j/2. Since u, v are
adjacent and they do not belong to triangles, it follows that Nu ∩ Nv = ∅. Let k′ = 2n − k; then
2 ≤ k′ ≤ 2n − 2, and 2i = 2h + k′ modulo 2n, and k′ 6= 2 modulo 3 (since n = 2 modulo 3). Thus
there is symmetry between h and i, and from this symmetry we may assume that 1 ≤ h ≤ i ≤ n and
so 2i = 2h + k′. If i = h + 1 modulo 3, then k′ = 2 modulo 3; if i = h modulo 3, then Nu, Nv both
include X2i+2; and if i = h +2 modulo 3 then they both include X2i−2, in each case a contradiction.
This completes the proof of 9.1.

Again, we need an analogous result for paths of triangles, as follows.

9.2 Let G be a prismatic graph, with core W , such that G|W is a 3-substantial core path of triangles
graph. Let X1, . . . , X2n+1 be a core path of triangles decomposition of G|W , and for k = 0, 1, 2, let
Ak =

⋃
(Xi : 1 ≤ i ≤ 2n + 1 and i = k modulo 3). Then either

• there exists v ∈ V (G) \ W such that the set of neighbours of v in W is one of A1, A2, A3, or

• G is a path of triangles graph.

Proof. Since G|W is 3-substantial, it follows that n ≥ 3. For each v ∈ V (G) \W , let Nv be the set
of vertices in W adjacent to v. For 1 ≤ i ≤ n, let Y2i be the set of all v ∈ V (G) \ W such that Nv

contains exactly one end of every edge between R2i−1 and L2i+1, and

Nv \ (R2i−1 ∪ L2i+1) =
⋃

(Xh : 1 ≤ h ≤ 2n + 1 and |2i − h| = 2 modulo 3).
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We may assume that the first outcome of the theorem does not hold, and so by 8.2, the sets
Y2i (1 ≤ i ≤ n) have union V (G) \ W . Again, we add Y2i to X2i to produce a path of trian-
gles decomposition. The proof is exactly like that in 9.1, except in one step, when we need to prove
the following.

(1) Let 1 ≤ i ≤ j ≤ n, and let u ∈ Y2i and v ∈ Y2j. If u, v are adjacent then 2j − 2i = 2
modulo 3.

For Nu ∩ Nv = ∅. If j = i + 2 modulo 3 then Nu, Nv both include X2i+2, a contradiction, so
we may assume that j = i modulo 3. If i > 1 then Nu, Nv both include X2i−2, so i = 1, and similarly
j = n. Consequently n = 1 modulo 3. But L3 ⊆ X3 is a subset of Nv, since 3 ≤ 2n−2 and 3 = 2n−2
modulo 3, and since Nu ∩ Nv = ∅ it follows that Nu ∩ L3 = ∅. Since u ∈ Y2, and every member of
R1 has a neighbour in L3, it follows that X1 = R1 ⊆ Nu. But also since u ∈ Y2,

Nu \ (R1 ∪ L3) = A1 \ (R1 ∪ L3)

and so Nu = A1 and the first outcome of the theorem holds. This proves (1).

All the other steps of the verification of (P1)–(P7) are obvious modifications of the verification
in the proof of 9.1, and we omit them. This proves 9.2.

10 The degenerate cases

We are almost ready to begin on the general characterization of orientable prismatic graphs, but
first we need to examine the various degenerate cases that were exceptions to the theorems of the
last section.

It is possible to give explicit constructions for all orientable triangle-connected prismatic graphs
that are not 3-substantial. For instance, let k ≥ 1; let K be the set of all subsets of {1, . . . , k}; and
let G be a graph with vertex set the disjoint union of a set W = {a1, . . . , ak, b1, . . . , bk, c}, a set U ,
and for each I ∈ K a set VI . The adjacency in G is as follows. The sets {ai, bi, c} are triangles for
i = 1, . . . , k, and there are no other edges with both ends in W ; c is complete to U , and has no
other neighbours outside of W ; for I ∈ K and 1 ≤ i ≤ k, if i ∈ I then ai is complete to VI and bi is
anticomplete to VI , and vice versa if i /∈ I; each of the sets VI (I ∈ K) is stable, and so is U ; and if
I, I ′ ∈ K and I ′ 6= {1, . . . , k} \ I then VI′ is anticomplete to VI . For I ∈ K, let I ′ = {1, . . . , k} \ I;
the adjacency between members of distinct sets U, VI , VI′ is arbitrary except that there is no triangle
with vertices in U, VI and VI′ . Such a graph G is prismatic, and we call the class of all such graphs
(for all k) P1.

10.1 If G is a prismatic graph with a triangle, such that for some vertex c every triangle contains
c, then G ∈ P1.

Proof. Let the list of all triangles be {ai, bi, c} (1 ≤ i ≤ k); thus the core W of G is

{a1, . . . , ak, b1, . . . , bk, c}.
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Let U be the set of neighbours of c not in W . For each v ∈ V (G) \ (W ∪ U), let

I(v) = {i : 1 ≤ i ≤ k and ai is adjacent to v}.

Since v has a unique neighbour in {ai, bi, c}, it follows that v is adjacent to bi if and only if i /∈ I(v).
Let K be the set of all subsets of {1, . . . , k}, and for each I ∈ K let VI = {v ∈ V (G) \ (W ∪ U) :
I(v) = I}. If v, v′ ∈ V (G) \ (W ∪ U) are adjacent, then they have no common neighbour in W ∪ U ,
and therefore I(v), I(v′) are complementary subsets of {1, . . . , k}. It follows that G ∈ P1. This
proves 10.1.

It is possible to give similar, more complicated constructions for the orientable, triangle-connected
prismatic graphs in which the smallest set of vertices meeting all triangles has cardinality 2; but they
are rather messy, and yet easy for the reader to work out independently. We therefore omit these
“constructions”.

We need two more, when the core is the core ring of five, and when the core is L(K3,3). Thus, let
G be a graph with V (G) the union of the disjoint sets W = {a1, . . . , a5, b1, . . . , b5} and V0, V1, . . . , V5.
Let adjacency be as follows (reading subscripts modulo 5). For 1 ≤ i ≤ 5, {ai, ai+1, bi+3} is a triangle,
and ai is adjacent to bi; V0 is complete to {b1, . . . , b5} and anticomplete to {a1, . . . , a5}; V0, V1, . . . , V5

are all stable; for i = 1, . . . , 5, Vi is complete to {ai−1, bi, ai+1} and anticomplete to the remainder of
W ; V0 is anticomplete to V1 ∪ · · · ∪ V5; for 1 ≤ i ≤ 5 Vi is anticomplete to Vi+2; and the adjacency
between Vi, Vi+1 is arbitrary. We call such a graph a ring of five.

10.2 If G is prismatic and its core is the core ring of five then G is a ring of five.

The proof is straightforward and we omit it.

Finally, let G be a graph with V (G) the union of seven sets

W = {ai
j : 1 ≤ i, j ≤ 3}, V 1, V 2, V 3, V1, V2, V3,

with adjacency as follows. For 1 ≤ i, j, i′, j′ ≤ 3, ai
j and ai′

j′ are adjacent if and only if i′ 6= i and j′ 6= j.

For i = 1, 2, 3, V i, Vi are stable; V i is complete to {ai
1, a

i
2, a

i
3}, and anticomplete to the remainder of

W ; and Vi is complete to {a1
i , a

2
i , a

3
i } and anticomplete to the remainder of W . Moreover, V 1∪V 2∪V 3

is anticomplete to V1 ∪ V2 ∪ V3, and there is no triangle included in V 1 ∪ V 2 ∪ V 3 or in V1 ∪ V2 ∪ V3.
We call such a graph G a mantled L(K3,3).

10.3 If G is prismatic with core W , and G|W is isomorphic to L(K3,3), then G is a mantled
L(K3,3).

Again, the proof is easy and we omit it.

11 Statement of the theorem

Our next goal is to state precisely the main theorem, the structure theorem for 3-coloured prismatic
graphs and for orientable prismatic graphs. Before we can do so we need to introduce a composition
operation for 3-coloured prismatic graphs. Let n ≥ 0, and for 1 ≤ i ≤ n, let (Gi, Ai, Bi, Ci) be a
3-coloured prismatic graph, where V (G1), . . . , V (Gn) are all nonempty and pairwise vertex-disjoint.
Let A = A1 ∪ · · · ∪An, B = B1 ∪ · · · ∪Bn, and C = C1 ∪ · · · ∪Cn, and let G be the graph with vertex
set V (G1) ∪ · · · ∪ V (Gn) and with adjacency as follows:
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• For 1 ≤ i ≤ n, G|V (Gi) = Gi;

• for 1 ≤ i < j ≤ n, Ai is anticomplete to V (Gj) \ Bj; Bi is anticomplete to V (Gj) \ Cj; and Ci

is anticomplete to V (Gj) \ Aj ; and

• for 1 ≤ i < j ≤ n, if u ∈ Ai and v ∈ Bj are nonadjacent then u, v are both in no triangles; and
the same applies if u ∈ Bi and v ∈ Cj , and if u ∈ Ci and v ∈ Aj .

In particular, A,B,C are stable, and so (G,A,B,C) is a 3-coloured graph; we call the sequence
(Gi, Ai, Bi, Ci) (i = 1, . . . , n) a worn chain decomposition or worn n-chain for (G,A,B,C). Note
also that every triangle of G is a triangle of one of G1, . . . , Gn, and G is prismatic. If we replace the
third condition above by the strengthening

• for 1 ≤ i < j ≤ n, the pairs (Ai, Bj), (Bi, Cj) and (Ci, Aj) are complete

we call the sequence a chain decomposition or n-chain for (G,A,B,C). (Thus a worn chain decom-
position is not in general a chain decomposition.)

If X1, . . . , X2n+1 is a path of triangles decomposition of G, let

Ak =
⋃

(Xi : 1 ≤ i ≤ 2n + 1 and i = k modulo 3) (k = 0, 1, 2).

We have already seen that (G,A1, A2, A3) is a 3-coloured graph. For any 3-coloured graph (G,A,B,C),
if there is a path of triangles decomposition X1, . . . , X2n+1 of G and sets A1, A2, A3 as above, with
{A1, A2, A3} = {A,B,C}, we call (G,A,B,C) a canonically-coloured path of triangles graph.

Let Q0 be the class of all 3-coloured graphs (G,A,B,C) such that G has no triangle; let Q1 be
the class of all 3-coloured graphs (G,A,B,C) where G is isomorphic to the line graph of K3,3; and
let Q2 be the class of all canonically-coloured path of triangles graphs. Now we can state the main
theorem.

11.1 Every 3-coloured prismatic graph admits a worn chain decomposition with all terms in Q0 ∪
Q1 ∪Q2.

For general orientable prismatic graphs the analogous result is the following.

11.2 Every orientable prismatic graph that is not 3-colourable is either not 3-substantial, or a cycle
of triangles graph, or a ring of five graph, or a mantled L(K3,3).

12 Chains of 3-coloured prismatic graphs

Our objective in this section is to develop some useful ways to recognize that our graph admits a worn
chain decomposition. We begin with the following. Let us say that a 3-coloured graph (G,A,B,C)
is prime if V (G) 6= ∅ and (G,A,B,C) cannot be expressed as a worn 2-chain.

12.1 Every 3-coloured prismatic graph admits a worn chain decomposition each term of which is
prime.
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Proof. Let (G,A,B,C) be a 3-coloured prismatic graph. We proceed by induction on |V (G)|.
If V (G) = ∅ we may take the null sequence, and if (G,A,B,C) is prime then we may take the
sequence with only one term (G,A,B,C). Hence we may assume that (G,A,B,C) admits a worn
2-chain (G1, A1, B1, C1), (G2, A2, B2, C2). Consequently G1, G2 both have fewer vertices than G,
and so from the inductive hypothesis, each of them admits a worn chain decomposition into prime
terms. The sequence obtained by concatenating these two sequences appropriately is a worn chain
decomposition of (G,A,B,C) into prime terms. This proves 12.1.

In view of 12.1, to construct all 3-coloured prismatic graphs it suffices to construct all prime
3-coloured prismatic graphs, and now we turn to that.

In this paper, a hypergraph H consists of a finite set V (H) of vertices and a finite set E(H) of
edges, where each edge is a nonempty subset of V (H). If H is a hypergraph, we say that X ⊆ V (H)
is connected if X 6= ∅ and there is no partition A,B of X into two nonempty subsets such that every
edge of H included in X is included in one of A,B. We say H is connected if V (H) is connected. A
component of H is a connected subset of V (H) that is maximal under inclusion.

Let G be prismatic. The hypergraph of triangles of G is the hypergraph with vertex set the core
of G and edges the triangles of G. Thus if G has a triangle, then G is triangle-connected if and only
if its hypergraph of triangles is connected.

12.2 Let G be prismatic, and suppose that G|(V1∪V2) admits a 3-colouring for some two components
V1, V2 of the hypergraph of triangles of G. Then:

• G admits a 3-colouring, and

• for every 3-colouring (A,B,C) of G, (G,A,B,C) is not prime.

Proof. Let V1, . . . , Vn be the components of the hypergraph of triangles, and for 1 ≤ i ≤ n let
Gi = G|Vi. By hypothesis, G|(V1 ∪V2) admits a 3-colouring; and so for i = 1, 2 there is a 3-colouring
(Ai, Bi, Ci) of Gi, such that A1 ∪ A2, B1 ∪ B2 and C1 ∪ C2 are stable.

(1) A1 is complete to one of B2, C2 and anticomplete to the other.

For let a1 ∈ A1. We prove first that a1 is complete to one of B2, C2 and anticomplete to the
other. For since a1 ∈ V1, there is a triangle {a1, b1, c1} of G, where b1 ∈ B1 and c1 ∈ C1. For every
triangle {a2, b2, c2} of G2 with a2 ∈ A2, b2 ∈ B2 and c2 ∈ C2, since a1 has a unique neighbour in
this triangle and a1, a2 are nonadjacent (since A1 ∪ A2 is stable), it follows that a1 is adjacent to
exactly one of b2, c2. Similarly b1 is adjacent to exactly one of c2, a2, and c1 to exactly one of a2, b2.
Thus the three edges between {a1, b1, c1} and {a2, b2, c2} are either a1b2, b1c2, c1a2 or a1c2, b1a2, c1b2.
We say {a2, b2, c2} is white in the first case and black in the second. Suppose there is both a white
triangle and a black triangle in G2. Since G2 is triangle-connected, and every triangle in G2 is either
white or black, it follows that there is a white triangle and a black triangle in G2 that share a vertex.
From the symmetry we may assume that {a2, b2, c2} is a white triangle, and {a2, b

′

2, c
′

2} is a black
triangle, where a2 ∈ A2, b2, b

′

2 ∈ B2 and c2, c
′

2 ∈ C2. Since {a2, b2, c2} is white, we deduce that
a1b2, b1c2, c1a2 are edges, and similarly a1c

′

2, b1a2, c1b
′

2 are edges; but then a2 has two neighbours in
{a1, b1, c1}, a contradiction. Thus either all triangles in G2 are white, or they are all black, and from
the symmetry we may assume that they are all white. Hence a1 is complete to B2 and anticomplete
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to C2, as claimed. Choose b2 ∈ B2. Similarly b2 is complete to one of A1, C1 and anticomplete to
the other. Since b2 is adjacent to a1, it is not anticomplete to A1, and so b2 is complete to A1. Since
this holds for all b2 ∈ B2, it follows that A1 is complete to B2. Every vertex in A1 is anticomplete
to one of B2, C2, and therefore A1 is anticomplete to C2. This proves (1).

(2) G admits a 3-colouring.

For from (1) we may assume that the pairs (A1, B2), (B1, C2), (C1, A2) are complete, and the other
three pairs (A1, C2), (B1, A2), (C1, B2) are anticomplete. (Note also that the pairs (A1, A2), (B1, B2),
(C1, C2) are anticomplete.) Define A3, B3, C3 to be the sets of all B2-complete, C2-complete, and
A2-complete vertices in V (G) \ (V1 ∪ V2) respectively. Define A4, B4, C4 to be the sets of all C1-
complete, A1-complete, and B1-complete vertices in V (G) \ (V1 ∪ V2 ∪ A3 ∪ B3 ∪ C3) respectively.
Let A = A1 ∪ A2 ∪ A3 ∪ A4, and define B,C similarly. We claim that (A,B,C) is a 3-colouring of
G. For A,B,C are pairwise disjoint, from their definition. We must check that they are stable and
have union V (G).

To show that A is stable, let a3 ∈ A3. Then a3 is complete to B2, and has only one neighbour in
each triangle of G2, and therefore a3 is anticomplete to A2. Moreover, any two members of A1 ∪A3

have a common neighbour in B2, and therefore are nonadjacent (since V1, V2 are components of the
hypergraph of triangles of G). We deduce that A1 ∪ A2 ∪ A3 is stable, and similarly A1 ∪ A2 ∪ A4

is stable. Suppose that a3 ∈ A3 and a4 ∈ A4 are adjacent. Since a4 ∈ A4, it is not complete to C2;
choose c2 ∈ C2 nonadjacent to a4. Choose a triangle {a2, b2, c2} with a2 ∈ A2 and b2 ∈ B2. Since a4

has a neighbour in this triangle, and we have already seen that a4 is anticomplete to A2, it follows
that a4 is adjacent to b2; but then {a3, a4, b2} is a triangle, a contradiction (since V2 is a component
of the hypergraph of triangles). This proves that A3 is anticomplete to A4, and so A is stable, and
similarly B,C are stable.

To show that A ∪ B ∪ C = V (G), let v ∈ V (G). If v ∈ V1 ∪ V2 then v ∈ A ∪ B ∪ C, so we may
assume that v /∈ V1 ∪ V2. Since A1 is complete to B2, and no triangle meets both A1 and B2, it
follows that v is anticomplete to at least one of A1, B2. Similarly v is anticomplete to at least one
of B1, C2, and to at least one of C1, A2. Hence v is either anticomplete to at least two of A1, B1, C1,
or to at least two of A2, B2, C2. In the first case, since v has a neighbour in every triangle of G1, it
follows that v is complete to one of A1, B1, C1, and therefore belongs to A ∪B ∪C, a contradiction.
The second case is similar. This proves that A ∪ B ∪ C = V (G), and therefore proves (2).

From (2), the first assertion of the theorem follows. To prove the second assertion, let (A,B,C)
be a 3-colouring of G. Let W be the core of G.

(3) The 3-coloured graph (G|W,A ∩ W,B ∩ W,C ∩ W ) is not prime.

To see this, for 1 ≤ i ≤ n, let Ai = A ∩ V (Gi), and define Bi, Ci similarly. For 1 ≤ i, j ≤ n
with i 6= j, we write i → j if the pairs (Ai, Bj), (Bi, Cj) and (Ci, Aj) are complete, and the pairs
(Ai, Cj), (Bi, Aj) and (Ci, Bj) are anticomplete. By (1) (with V1, V2 replaced by Vi, Vj) it follows
that either i → j or j → i, and not both. We claim that this relation is transitive. For let
i, j, k ∈ {1, . . . , n} be distinct, and suppose that i → j and j → k. If k → i, then Ai ∪ Bj ∪ Ck

includes a triangle, which is impossible. Thus i → k, and so the relation is transitive. Hence we may
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renumber V1, . . . , Vn so that i → j if and only if j > i. But then

(G|V1, A1, B1, C1), (G|(W \ V1), A2 ∪ · · · ∪ An, B2 ∪ · · · ∪ Bn, C2 ∪ · · · ∪ Cn)

is a 2-chain for (G|W,A ∩ W,B ∩ W,C ∩ W ), and consequently the latter is not prime. This proves
(3).

In view of (3) and since G|W is triangle-covered, we may choose a 2-chain for (G|W,A ∩ W,B ∩
W,C ∩ W ), say (Fi, Ai, Bi, Ci) (i = 1, 2). Define sets A3, B3, C3, A4, B4, C4 ⊆ V (G) \ W as follows.

• A3 is the set of all B2-complete vertices in A \ W

• B3 is the set of all C2-complete vertices in B \ W

• C3 is the set of all A2-complete vertices in C \ W

• A4 is the set of all C1-complete vertices in A \ (W ∪ A3)

• B4 is the set of all A1-complete vertices in B \ (W ∪ B3)

• C4 is the set of all B1-complete vertices in C \ (W ∪ C3).

(4) A = A1 ∪ A2 ∪ A3 ∪ A4, and analogous statements hold for B,C.

For let v ∈ A, and suppose that v /∈ A1 ∪ A2 ∪ A3. Thus v /∈ W . Since v /∈ A3, v has a non-
neighbour in B2, and since it has no neighbours in A2 (because A is stable), it follows that v has a
neighbour in C2. Since B1 is complete to C2 and no triangle meets both B1 and C2, it follows that v
is anticomplete to B1. Since it is also anticomplete to A1, we deduce that v is complete to C1, and
so v ∈ A4. This proves (4).

Let G3 = G|(V (F1) ∪ A3 ∪ B3 ∪ C3), and G4 = G|(V (F2) ∪ A4 ∪ B4 ∪ C4). Then (A1 ∪ A3, B1 ∪
B3, C1 ∪C3) is a 3-colouring of G3, by (4), and the analogous statement holds for G4. We claim that

(G3, A1 ∪ A3, B1 ∪ B3, C1 ∪ C3), (G4, A2 ∪ A4, B2 ∪ B4, C2 ∪ C4)

is a worn 2-chain for (G,A,B,C). To see this, it suffices from the symmetry to check that

• if a ∈ A1 ∪ A3 and c ∈ C2 ∪ C4, then a, c are nonadjacent, and

• if a ∈ A1 ∪ A3 and b ∈ B2 ∪ B4, and at least one of a, b ∈ W , then a, b are adjacent.

For the first statement, let a ∈ A1 ∪ A3 and c ∈ C2 ∪ C4, and suppose a, c are adjacent. Since a is
complete to B2, it follows that c is anticomplete to B2, and in particular c /∈ C2 (since F2 is triangle-
covered). Since c is anticomplete to C2 (because C is stable), it follows that c is A2-complete. But
then c ∈ C3, a contradiction. For the second statement, suppose that a ∈ A1 ∪ A3 and b ∈ B2 ∪ B4,
and at least one of a, b ∈ W , and a, b are nonadjacent. Since a ∈ A1 ∪ A3, a is B2-complete, and
so b /∈ B2, and similarly a /∈ A1; but then a, b /∈ W , a contradiction. This proves our claim that
(G,A,B,C) admits a worn 2-chain, and consequently is not prime; and therefore completes the proof
of 12.2.
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We deduce the following corollary.

12.3 If (G,A,B,C) is a prime 3-coloured prismatic graph with nonnull core, then G is triangle-
connected.

The proof is clear. The next result is another corollary of 12.2.

12.4 Let G be prismatic and orientable, with nonnull core. If G is not triangle-connected, then G
is 3-colourable.

Proof. Since G has nonnull core and is not triangle-connected, its hypergraph of triangles has at
least two components. Let V1, V2 be two such components. For i = 1, 2, let Si ⊆ Vi be a triangle.
Let O be an orientation of G, and let O(Si) be pi → qi → ri → pi, where p1p2, q1q2, r1r2 are edges.
Every vertex in V1 is adjacent to exactly one of p2, q2, r2; let A1, B1, C1 be the sets of those v ∈ V1

adjacent to p2, q2, r2 respectively. Define A2, B2, C2 similarly. Certainly A1, B1, C1, A2, B2, C2 are all
stable, since no triangle meets both V1 and V2. Since O(S2) is p2 → q2 → r2 → p2 and a1p2, b1q2, c1r2

are edges, we have

(1) Let T1 ⊆ V1 be a triangle, where T1 = {a1, b1, c1} and a1 ∈ A1, b1 ∈ B1 and c1 ∈ C1; then
O(T1) is a1 → b1 → c1 → a1. The analogous statement holds for triangles in V2.

For i = 1, 2, let Ti = {ai, bi, ci} be a triangle with ai ∈ Ai, bi ∈ Bi and ci ∈ Ci. Each of a1, b1, c1

has a neighbour in T2; let us say the pair (T1, T2) is good if every edge between T1 and T2 is either
between A1 and A2, or between B1 and B2, or between C1 and C2; and bad otherwise.

(2) Every pair (T1, T2) is good.

For since V1, V2 are components, it suffices (from the symmetry between V1, V2) to show that if T1 is a
triangle in V1, and T2, T

′

2 are triangles in V2 that share a vertex, and (T1, T2) is good, then so is (T1, T
′

2).
Let T1 = {a1, b1, c1}, T2 = {a2, b2, c2}, and T ′

2 = {a′2, b
′

2, c2}, where a1 ∈ A1, b1 ∈ B1, c1 ∈ C1,
{a2, a

′

2} ⊆ A2, {b2, b
′

2} ⊆ B2 and c2 ∈ C2. Since (T1, T2) is good, it follows that c1c2 is an edge. But
from (1), O(T1) is a1 → b1 → c1 → a1 and O(T ′

2) is a′2 → b′2 → c2 → a′2. Since c1c2 is an edge, we
deduce that a1a

′

2 and b1b
′

2 are edges, and so (T1, T
′

2) is good. This proves (2).

Since every vertex of V1 ∪ V2 belongs to a triangle, (2) implies that every edge between V1 and
V2 is either between A1 and A2, or between B1 and B2, or between C1 and C2. In particular,
A1 ∪ B2, B1 ∪ C2, C1 ∪ A2 are three stable sets, and so G|(V1 ∪ V2) is 3-colourable. By 12.2, G is
3-colourable. This proves 12.4.

13 Orientable and not 3-colourable

In this section we complete the proof of 11.2. We need two more lemmas. The first is the following.
(K3,3 \ e is the graph obtained from K3,3 by deleting one edge.)
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13.1 Let G be prismatic and triangle-connected, with core W . Suppose that (G|W,A,B,C) and
(G|W,A′, B′, C ′) are 3-coloured graphs with {A,B,C} 6= {A′, B′, C ′}. Then either

• G|W is isomorphic to L(K3,3) or to L(K3,3 \ e), or

• there is a clique X ⊆ W with 1 ≤ |X| ≤ 2 such that every triangle has nonempty intersection
with X.

Proof. For more convenient notation, let W1 = A,W2 = B,W3 = C and W 1 = A′,W 2 = B′,W 3 =
C ′. For 1 ≤ i, j ≤ 3, let W i

j = W i ∩ Wj . Thus W is the union of the nine pairwise disjoint sets

W i
j . Let T be a triangle of G, with T = {t1, t2, t3}. Let tk ∈ W ik

jk
for k = 1, 2, 3. Thus i1, i2, i3

are distinct, and so are j1, j2, j3; and so the map sending ik to jk for k = 1, 2, 3 is a permutation of
{1, 2, 3}, denoted by π(T ). The sign of this permutation is called the sign of T . (Thus, the identity
map and the two cyclic permutations have positive sign, and the three involutions have negative sign.)

(1) If S, T are triangles with opposite sign, then S ∩ T 6= ∅.

For from the symmetry we may assume that S = {s1, s2, s3} where si ∈ W i
i for i = 1, 2, 3, and

T = {t1, t2, t3} where t1 ∈ W 1
2 , t2 ∈ W 2

1 and t3 ∈ W 3
3 . Suppose that S ∩ T = ∅. Since t1 has a neigh-

bour in S, and is nonadjacent to s1, s2 (because W 1,W2 are stable), it follows that t1 is adjacent to
s3. Similarly t2 is adjacent to s3, and so s3 has two neighbours in T , a contradiction. This proves
(1).

Let Π be the set of all (six) permutations of {1, 2, 3}. For each π ∈ Π, let X(π) be the union of
all the triangles T with π(T ) = π.

(2) Not all triangles have the same sign.

For suppose they do; they all have positive sign say. Let π1, π2, π3 ∈ Π be the permutations with
positive sign. Any two triangles S, T with the same sign with π(S) 6= π(T ) are disjoint, and so
X(π1), X(π2), X(π3) are pairwise disjoint. Moreover their union is W , and since G is triangle-
connected and every triangle is a subset of one of X(π1), X(π2), X(π3), it follows that two of these
sets are empty. We may therefore assume that π(T ) = π1 for all triangles T , where π1 is the identity
permutation say. Since every vertex of W belongs to a triangle, and so belongs to W k if and only
if it belongs to Wk (for k = 1, 2, 3), it follows that W k = Wk for k = 1, 2, 3, contradicting that
{A,B,C} 6= {A′, B′, C ′}. This proves (2).

(3) If there are two triangles T1, T2 with positive sign and with π(T1) 6= π(T2), and two triangles
T1, T2 with negative sign and with π(T3) 6= π(T4), then G|W is isomorphic to L(K3,3) or to L(K3,3\e).

For in this case, suppose that T, T ′ are triangles with π(T ) = π(T ′). From the symmetry we may
assume that π(T ) is the identity permutation. By (1) T, T ′ both meet T3 and T4, and therefore both
contain the unique vertex of T3 that lies in W 1

1 ∪ W 2
2 ∪ W 3

3 , and the unique vertex of T4 that lies in
the same set. Hence |T ∩T ′| ≥ 2 and so T = T ′. Thus G has between four and six triangles, all with
π(T ) different. From this and (1), it follows that |W i

j | ≤ 1 for 1 ≤ i, j ≤ 3; and so G|W is isomorphic
to one of L(K3,3), L(K3,3 \ e), and the theorem holds. This proves (3).
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In view of (3), we may assume that for every triangle T , if T has positive sign then π(T ) is
the identity. From (2), some triangle S has positive sign; say S = {s1

1, s
2
2, s

3
3} where si

i ∈ W i
i for

i = 1, 2, 3. Again from (2), there is a triangle T with negative sign, and by (1) we may assume
T = {t12, t

2
1, s

3
3} where t12 ∈ W 1

2 and t21 ∈ W 2
1 . Suppose that some triangle R 6= S also has positive

sign; say R = {r1
1 , r

2
2, r

3
3} where ri

i ∈ W i
i for i = 1, 2, 3. Since R meets T , it follows that r3

3 = s3
3. We

claim that every triangle contains s3
3. For we have seen this already for triangles of positive sign; and

if T ′ has negative sign then since it meets both R and S, and ri
i 6= si

i for i = 1, 2, it follows that T
contains s3

3 as claimed. Thus in this case the second statement of the theorem holds with X = {s3
3}.

Consequently we may assume that S is the only triangle that has positive sign. Every triangle
with negative sign contains one of s1

1, s
2
2, s

3
3, and so we may assume that there are three triangles

T1, T2, T3, all with negative sign and with si
i ∈ Ti for i = 1, 2, 3 (for otherwise the second statement

of the theorem holds). Thus there exist si
j ∈ W i

j for all distinct i, j ∈ {1, 2, 3}, such that {s1
1, s

2
3, s

3
2},

{s1
3, s

2
2, s

3
1} and {s1

2, s
2
1, s

3
3} are triangles. Since s1

2 has a neighbour in {s1
3, s

2
2, s

3
1}, and is nonadjacent

to s1
3, s

2
2, it follows that s1

2 is adjacent to s3
1. Similarly every two of s1

2, s
2
3, s

3
1 are adjacent; but then

they form a second triangle with positive sign, a contradiction. This proves 13.1.

The next lemma is a convenient corollary of 13.1 and 8.2.

13.2 Let G be prismatic and 3-substantial, with core W . If G|W is a core path of triangles graph,
then G is 3-colourable.

Proof. Let X1, . . . , X2n+1 be a core path of triangles decomposition of G|W . For k = 1, 2, 3, let
Ak =

⋃
(Xi : 1 ≤ i ≤ 2n + 1 and i = k modulo 3). For each vertex v ∈ V (G) \ W , let Nv be the set

of neighbours of v in W . By 8.2, Nv is disjoint from at least one of A1, A2, A3. Let B1 be the set of
all v ∈ V (G)\W such that Nv ∩A2, Nv ∩A3 6= ∅, and define B2, B3 similarly. For i = 1, 2, 3 let Ci be
the set of all v ∈ V (G) \ W such that Nv ⊆ Ai. (Note that if v ∈ Ci then Nv = Ai, since Nv meets
every triangle.) The sets B1, B2, B3, C1, C2, C3 are pairwise disjoint and have union V (G) \ W .

(1) For i = 1, 2, 3, Ai ∪ Bi is stable.

Let i = 3 say. Certainly A3 is stable; and by definition of B3, B3 is anticomplete to A3. Sup-
pose that there exist u, v ∈ B3, adjacent. For i = 1, 2 let Ui, Vi be the set of neighbours in Ai of
u, v respectively. Since u is in no triangle, it follows that Ui ∩ Vi = ∅ for i = 1, 2. We claim that
U1 ∪ V1 = A1; for suppose that there exists a1 ∈ A1 \ (U1 ∪ V1). Choose a triangle {a1, a2, a3} with
a2 ∈ A2 and a3 ∈ A3. Since U2∩V2 = ∅, not both u, v are adjacent to a2, and since neither of them is
adjacent to a1, a3, not both u, v have a neighbour in this triangle, a contradiction. This proves that
U1 ∪ V1 = A1, and similarly U2 ∪ V2 = A2. Hence Nu, Nv are disjoint and have union A1 ∪ A2. But
Nu, Nv are both stable, and so (Nu, Nv, A3) is a 3-colouring of G|W . Since G is 3-substantial and
L(K3,3) is not a core path of triangles graph, 13.1 implies that Nu is one of A1, A2, a contradiction
since u ∈ B3. This proves (1).

Now for i = 1, 2, 3, Ci is stable since its members are not in the core and have a common
neighbour. Moreover, A2 ∪ A3 is anticomplete to C1 by definition, and if x ∈ B2 ∪ B3 then x has a
neighbour (in A1) which is adjacent to every vertex of C1, and therefore x is anticomplete to C1. In
particular, A2 ∪B2 ∪ C1 is stable, and so are A3 ∪B3 ∪ C2 and A1 ∪B1 ∪C3. Since these three sets
have union V (G), it follows that G is 3-colourable. This proves 13.2.
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Proof of 11.2. Let G be prismatic, orientable and not 3-colourable, and let W be its core. We
may assume that G is 3-substantial, for otherwise the theorem holds. By 12.4, it follows that G is
triangle-connected. By 4.2, either G|W is isomorphic to L(K3,3), or G|W is a core cycle of triangles
graph, or G|W is a core path of triangles graph. If G|W is isomorphic to L(K3,3), then G is a
mantled L(K3,3) by 10.3, and the theorem holds. If G|W is a core cycle of triangles graph, then by
9.1 and 10.2, either G is a cycle of triangles graph, or G is a ring of five graph, and in either case the
theorem holds. If G|W is a path of triangles graph, then by 13.2 G is 3-colourable, a contradiction.
This proves 11.2.

14 The 3-colourable case

It remains to prove 11.1; and in view of 12.1, it suffices to show that the following:

14.1 If (G,A,B,C) is a prime 3-coloured triangle-connected prismatic graph, then (G,A,B,C) ∈
Q0 ∪Q1 ∪Q2.

(We recall that Q0,Q1,Q2 were defined just before the statement of 11.1.) This therefore is the goal
of the remainder of the paper. Here is an immensely useful lemma.

14.2 Let (G,A,B,C) be a prime 3-coloured prismatic graph, with nonnull core W . Then every
vertex in V (G) \ W has neighbours in exactly two of W ∩ A,W ∩ B,W ∩ C.

Proof. Certainly no vertex in V (G) \W has neighbours in all three of W ∩A,W ∩B,W ∩C, since
it belongs to one of A,B,C and these three sets are stable. Since W is nonnull and therefore W
includes a triangle, every vertex in V (G) \ W has at least one neighbour in W . Let

A1 = {v ∈ A \ W : v is C ∩ W -anticomplete}

B1 = {v ∈ B \ W : v is A ∩ W -anticomplete}

C1 = {v ∈ C \ W : v is B ∩ W -anticomplete},

and define A2 = A \ A1, B2 = B \ B1 and C2 = C \ C1. Let Vi = Ai ∪Bi ∪Ci, and let Gi = G|Vi for
i = 1, 2. Then W ⊆ V2 and so V2 6= ∅; suppose that also V1 6= ∅. Then (Gi, Ai, Bi, Ci) (i = 1, 2) is a
2-term sequence of 3-coloured prismatic graphs, and we claim it is a worn 2-chain for (G,A,B,C).
To show this, it suffices (from the symmetry between A,B,C) to show that if u ∈ A1 (and hence
u /∈ W ) then

• u is anticomplete to A2 ∪ C2, and

• if u is nonadjacent to v ∈ B2 then v /∈ W .

Now u has no neighbour in A2 and hence none in A ∩ W since A is stable, and no neighbour in
C ∩ W from the definition of A1. On the other hand every vertex in B ∩ W is in a triangle T , and
u has a neighbour in T ; and consequently u is B ∩ W -complete. This proves the second assertion
above. For the first assertion, we already saw that u is A2-anticomplete, so let v ∈ C2. We claim
that v has a neighbour in B ∩W . For if v ∈ W then v belongs to a triangle with a vertex in B ∩W ,
and if v ∈ C \ W then v has a neighbour in B ∩ W since v /∈ C1. This proves the claim. Since u is
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B ∩ W -complete, it follows that there is a vertex in B ∩ W adjacent to both u, v. Since u is in no
triangle, it follows that u, v are nonadjacent. This proves that u is anticomplete to C2, and therefore
proves that (G,A,B,C) admits a worn 2-chain, a contradiction since it is prime. We deduce that
V1 = ∅. Thus every vertex in A \ W has a neighbour in C ∩ W , and similarly has a neighbour in
B ∩ W (and evidently has none in A ∩ W , since A is stable), and the result follows.

To complement 13.1, we prove the following.

14.3 Let (G,A,B,C) be a prime 3-coloured prismatic graph with nonnull core, and let W be the
core of G.

• If G|W is isomorphic to L(K3,3) then (G,A,B,C) ∈ Q1.

• If G is not 3-substantial then (G,A,B,C) ∈ Q2.

Proof. Suppose first that G|W is isomorphic to L(K3,3). Thus |W | = 9, and we may number
W = {wi

j : 1 ≤ i, j ≤ 3} such that distinct wi
j , w

i′

j′ are adjacent if and only if i 6= i′ and j 6= j′. Since
the three sets A,B,C are stable and their union includes W , we may assume that

A ∩ W = {w1
1, w

2
1 , w

3
1}

B ∩ W = {w1
2, w

2
2 , w

3
2}

C ∩ W = {w1
3, w

2
3 , w

3
3}.

If there exists v ∈ A \ W , let N be the set of neighbours of v in W . Then N satisfies:

• N is stable (since v is in no triangle)

• N is disjoint from A ∩ W (since A is stable)

• N meets every triangle (since G is prismatic), and

• N has nonempty intersection with both B and C (by 14.2, since (G,A,B,C) is prime).

But there is no such subset in L(K3,3), and so v does not exist. Hence A ⊆ W , and similarly
B,C ⊆ W , and so W = V (G) and (G,A,B,C) ∈ Q1 as required.

Next suppose that G|W is isomorphic to L(K3,3 \ e). Thus |W | = 8, and W can be numbered as

W = {wi
j : 1 ≤ i, j,≤ 3 and (i, j) 6= (3, 3)}

where distinct wi
j, w

i′

j′ are adjacent if and only if i 6= i′ and j 6= j′. From the symmetry we may
assume that

A ∩ W = {w1
1, w

2
1, w

3
1}

B ∩ W = {w1
2, w

2
2, w

3
2}

C ∩ W = {w1
3, w

2
3}.

As before, it follows that A,B ⊆ W , but the argument does not quite work for C. Suppose that
there exists v ∈ C \ W , and let N be its set of neighbours in W . Then again, N is stable, meets
all triangles, is disjoint from C and meets both A and B, but there is one such subset, namely
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{w3
1, w

3
2}. Thus every vertex not in W belongs to C and its neighbour set in W is {w3

1, w
3
2}. But

then (G,A,B,C) ∈ Q2. To see this let n = 3, and let

X1 = ∅

X̂2 = X2 = {w3
1}

M3 = X3 = {w1
2, w

2
2}

X̂4 = {w1
3, w

2
3}

X4 = {w1
3, w

2
3} ∪ (V (G) \ W )

M5 = X5 = {w1
1, w

2
1}

X̂6 = X6 = {w3
2}

X7 = ∅,

with all the sets Li, Ri empty.
Next, suppose that there is a vertex c that belongs to every triangle of G. We may assume that

c ∈ C. Let the triangles containing c be {ai, bi, c} for 1 ≤ i ≤ k. Let v ∈ V (G) \ W . If v is adjacent
to c, then it is anticomplete to both A ∩ W and B ∩ W (since v is in no triangle), contrary to 14.2;
so c has no other neighbours. By 14.2, v has a neighbour in A ∩ W and a neighbour in B ∩ W ,
and therefore v ∈ C. For 1 ≤ i ≤ k, v is adjacent to exactly one of ai, bi; and so by setting n = 1,
X1 = A, X̂2 = {c}, X2 = C, X3 = B, we see that (G,A,B,C) ∈ Q2.

Next, suppose that there exist adjacent a, b ∈ V (G) so that every triangle contains one of a, b.
We may assume that a ∈ A and b ∈ B, and that not every triangle contains a, so at least one
contains b and not a, and similarly at least one contains a and not b. Every vertex in W is in a
triangle containing a or b, and so is adjacent to a or b (or both). Let

Ab = {v ∈ (A ∩ W ) \ {a} : v is adjacent to b}

Ba = {v ∈ (B ∩ W ) \ {b} : v is adjacent to a}

Cb = {v ∈ C ∩ W : v is adjacent to b and not to a}

Ca = {v ∈ C ∩ W : v is adjacent to a and not to b}

C0 = {v ∈ C ∩ W : v is adjacent to both a and b.}

Thus these five sets are pairwise disjoint and have union W \ {a, b}. Every triangle that contains
a and not b is a subset of {a} ∪ Ba ∪ Ca, and every triangle containing b and not a is a subset
of {b} ∪ Ab ∪ Cb. Moreover Ab is matched with Cb, and Ba is matched with Ca. Since by 12.3 G
is triangle-connected, it follows that some (necessarily unique) triangle contains both a, b, and so
|C0| = 1, say C0 = {c}. If u ∈ Ca, then u is anticomplete to {b} ∪Cb, and since u has a neighbour in
every triangle that contains b and not a, it follows that u is Ab-complete. Hence Ca is complete to
Ab, and similarly Cb is complete to Ba. Let v ∈ V (G) \ W , and let N be the set of neighbours of v
in W . If v is adjacent to c, then from the symmetry we may assume that v ∈ A, and since N meets
every triangle that contains b and not a, and N ∩ (Ab ∪{a}) = ∅, it follows that Cb ⊆ N . Since Ba is
complete to Cb and Cb 6= ∅, and v is in no triangle, it follows that v is anticomplete to Ba; but then
v is anticomplete to both A ∩ W and B ∩ W , contrary to 14.2. Thus every neighbour of c belongs
to W . Now suppose that v ∈ V (G) \ W is adjacent to a. Since a is complete to B ∩ W , it follows
that v has no neighbours in B ∩W , and so by 14.2, v has neighbours in both A∩W and in C ∩W .
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Consequently v ∈ B. Let B0 be the set of all such v, that is, all v ∈ B \ W that are adjacent to a.
Similarly let A0 be the set of all v ∈ A \ W that are adjacent to b. Then V (G) \ W = A0 ∪ B0. Let
n = 2, and let

R1 = X1 = Ba

X̂2 = {a}

X2 = {a} ∪ A0

L3 = Ca

M3 = {c}

R3 = Cb

X3 = C

X̂4 = {b}

X4 = {b} ∪ B0

L5 = X5 = Ab.

This sequence shows that (G,A,B,C) ∈ Q2.
Finally, suppose that there exist nonadjacent a0, b0 ∈ V (G) so that every triangle contains one

of a0, b0. By what we already proved, we may assume that there is no clique of cardinality at most
two meeting all triangles, and G|W is not isomorphic to L(K3,3 \ e). There is at least one triangle
containing a0 with nonempty intersection with a triangle containing b0, since G is triangle-connected.
Since no clique with cardinality at most two meets every triangle, it follows that a0 is in at least two
triangles, and so is b0. Define X̂4 to be the set of all vertices v such that some triangle contains v, a0,
and some triangle contains v, b0. Now there are four kinds of triangles in G; those containing a0 and
a vertex of X̂4; those containing b0 and a vertex of X̂4; those containing a0 disjoint from X̂4; and
those containing b0 disjoint from X̂4. We call them left inner, right inner, left outer and right outer
respectively. Let X̂2 = {a0}, X̂6 = {b0}. Let X1 = R1 be the set of vertices in left outer triangles
that are adjacent to b0, and let L3 be the vertices different from a0 that are in left outer triangles and
are not adjacent to b0 Similarly, let X7 = L7 be the set of neighbours of a0 in right outer triangles,
and R5 the set of nonneighbours of a0 in right outer triangles (different from b0). Let M3 be the set
of all vertices in left inner triangles and not in X̂4∪{a0}, and let M5 be those in right inner triangles
and not in X̂4 ∪ {b0}. Let X3 = L3 ∪ M3, and X5 = M5 ∪ R5. The sets

R1, X̂2, L3,M3, X̂4,M5, R5, X̂6, L7

are pairwise disjoint, and have union the core W . It follows that the sequence

X1, X̂2, X3, X̂4, X5, X̂6, X7

is a core path of triangles decomposition of G|W (note that since a0 is in at least two triangles, it
follows that if R1 = ∅ then |X̂4| > 1, and the same holds for b0). By 13.1, we may assume that
X̂2, X5 ⊆ A, and X3, X̂6 ⊆ B, and X1, X̂4, X7 ⊆ C.

Let us examine the vertices not in the core. Define X2, X4, X6 as follows:

• let X2 be the union of X̂2 and the set of all vertices in A that are nonadjacent to b0 and
complete to X̂4 ∪ L7;
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• let X4 be the union of X̂4 and the set of all vertices v ∈ C \W that are adjacent to both a0, b0

and have no other neighbours in W ;

• let X6 be the union of X̂6 and the set of all vertices in B that are nonadjacent to a0 and
complete to X̂4 ∪ R1.

We claim that every vertex not in the core belongs to one of X2, X4, X6. For let v ∈ V (G) \ W .
If v is adjacent to both a0, b0, then it has no other neighbours in the core and v ∈ C, and so v ∈ X4.
Next, suppose that v is adjacent to b0 and not to a0. Then v is anticomplete to R1,M4, R5,M5, L7

(since these are all complete to b0), and therefore every neighbour of v in W belongs to B, contrary
to 14.2. Similarly every vertex not in W ∪ X4 is nonadjacent to both a0, b0. Let v be such a vertex.
If v ∈ A, then v has no neighbours in M5∪{b0}, and so v is complete to X̂4; and v has no neighbours
in R5, and so is complete to L7, and consequently v ∈ X2. Similarly if v ∈ B then v ∈ X6. We
therefore suppose that v ∈ C. Hence v is anticomplete to X̂4, and therefore complete to M3 ∪ M5.
We deduce that M3 is anticomplete to M5, and so |X̂4| = 1. Also, since M5 is complete to L3 and v
is complete to L3, we deduce that L3 = ∅, contradicting that a0 is in at least two triangles. Thus, no
such v exists. This proves our claim that every vertex not in the core belongs to one of X2, X4, X6.

Since X2, X6 are complete to X̂4, they are anticomplete to each other. It follows that

X1, X2, X3, X4, X5, X6, X7

is a path of triangles decomposition of G. But A = X2 ∪ X5, B = X3 ∪ X6, and C = X1 ∪ X4 ∪ X7,
and so (G,A,B,C) ∈ Q2. This completes the proof of 14.3.

Now we can complete the proof of the characterization for 3-coloured prismatic graphs.

Proof of 14.1. Let (G,A,B,C) be a prime 3-coloured prismatic graph. Let W be the core of G. If
W = ∅ then (G,A,B,C) ∈ Q0 as required, so we assume that W is nonnull. By 12.3, G is triangle-
connected. By 14.3, we may assume that G|W is 3-substantial and not isomorphic to L(K3,3). By
3.1, G|W is a core path of triangles graph. Hence by 13.1 if G|W is not isomorphic to L(K3,3)\e, and
by inspection if G|W is isomorphic to L(K3,3) \ e, it follows that (G|W,A ∩W,B ∩W,C ∩W ) ∈ Q2.
Every vertex not in the core has neighbours in exactly two of A∩W,B∩W,C∩W , by 14.2. By 9.2, G
is a path of triangles graph. Hence there is a 3-colouring (A′, B′, C ′) of G with (G,A′, B′, C ′) ∈ Q2,
and by 13.1, we may assume that A∩W ⊆ A′, B ∩W ⊆ B′ and C ∩W ⊆ C ′. Since every vertex not
in the core has neighbours in exactly two of A ∩ W,B ∩ W,C ∩ W , it follows that A′ = A,B′ = B
and C ′ = C, and so (G,A,B,C) ∈ Q2. This proves 14.1, and therefore proves 11.1.

As we observed earlier, this also completes the proof of 11.1.

15 Four-colouring

For an application in a future paper, it is convenient now to prove a lemma. This will avoid having
to redefine “path of triangles graph” and all the rest in that paper. We wish to prove the following.

15.1 Let G be an orientable prismatic graph with nonnull core.

• If G is a mantled L(K3,3), then there are twelve stable sets of G so that every vertex is in three
of them.
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• If not, then G is 4-colourable.

Proof. Suppose first that G is a mantled L(K3,3). Then V (G) is the union of seven sets W =
{ai

j : 1 ≤ i, j ≤ 3}, V 1, V 2, V 3, V1, V2, V3, with adjacency as in the definition of a mantled L(K3,3).
Reading the subscripts and superscripts modulo 3, we see that the nine sets

V i ∪ Vj ∪ {ai+1
k : k ∈ {1, 2, 3} \ {j}} (1 ≤ i, j ≤ 3)

are all stable, and so are the three sets {ai
1, a

i
2, a

i
3} (1 ≤ i ≤ 3); and every vertex is in exactly three

of these twelve sets. This proves the first claim.
Now we assume that G is not a mantled L(K3,3), and let W be its core.

(1) If there is a stable set X ⊆ V (G) such that G \ X has a triangle and the hypergraph of tri-
angles of G \ X is not connected, then G is 4-colourable.

For since G \ X is prismatic and orientable, 12.4 implies that G \ X is 3-colourable, and there-
fore G is 4-colourable, as required. This proves (1).

(2) If G is 3-substantial then G is 4-colourable.

For suppose that G is 3-substantial. We may assume that G is not 3-colourable, and so by 11.2,
G is either a cycle of triangles graph, or a ring of five graph. In either case G|W is a core cycle of
triangles graph. Let X1, . . . , X2n be a core cycle of triangles decomposition of G|W . Thus n ≥ 5.
Let X = X1 ∪ X5. Then X is stable, and every triangle of G \ X either meets X2 ∪ X4 or meets
X6∪· · ·∪X2n; there is a triangle of each type, and no triangle of the first kind intersects any triangle
of the second kind. Hence the hypergraph of triangles of G\X is disconnected, and the claim follows
from (1). This proves (2).

(3) If some vertex belongs to every triangle of G then G is 4-colourable.

For suppose that c belongs to every triangle. Choose a triangle T = {a, b, c}, and let A,B,C
be the sets of vertices in V (G) \ T adjacent to a, b, c respectively. Thus A,B,C, T are pairwise
disjoint and have union V (G). Since every triangle contains c, it follows that A,B are both stable.
The subgraph induced on C ∪ {a, b} is a matching and so is 2-colourable; let X,Y be disjoint stable
sets with union C∪{a, b}. Then X,Y,A,B∪{c} are four stable sets with union V (G). This proves (3).

(4) If there exist two adjacent vertices a, b so that every triangle contains one of a, b, then G is
4-colourable.

For by (3) we may assume that some triangle contains a and not b, and some triangle contains
b and not a. Let X be the set of all (at most one) vertices that are adjacent to both a, b. Then X
is stable, and the hypergraph of triangles of G \ X is not connected, and the claim follows from (2).
This proves (4).

(5) If there exist nonadjacent a0, b0 so that every triangle contains one of a0, b0, then G is 4-colourable.
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For by (4), we may assume that there is no clique of cardinality at most two meeting all trian-
gles. Define

X1 = R1, X̂2, L3,M3, X3, X̂4,M5, R5, X̂6, X7 = L7

as in the proof of 14.3. As in that proof, it follows that the sequence

X1, X̂2, X3, X̂4, X5, X̂6, X7

is a core path of triangles decomposition of G|W . If R1 6= ∅, then the hypergraph of triangles of
G \M3 is not connected, and the result follows from (2). We assume that R1 = ∅, and consequently
L3 = ∅. Similarly we may assume that R5 = L7 = ∅. If |X̂4| = 1, then X̂4 ∪ X2 meets all triangles
and is a clique of cardinality 2, a contradiction, so |X̂4| ≥ 2. For each x ∈ X̂4, let rx ∈ M3 be the
vertex such that {a0, x, rx} is a triangle, and define sx ∈ M5 similarly. Let v ∈ V (G) \W , and let N
be the set of neighbours of v in W . We say:

• v ∈ C if N = {a0, b0}

• v ∈ A if N = {a0} ∪ M5

• v ∈ B if N = {b0} ∪ M3

• c ∈ D0 if N = X̂4

• c ∈ Dx for x ∈ X̂4 if N = (X̂4 \ {x}) ∪ {rx, sx}.

It follows that the sets A,B,C,D0 and Dx (x ∈ X̂4) are pairwise disjoint. We claim that they have
union V (G)\W . For let v ∈ V (G)\W , and define N as before. If a0, b0 ∈ N then since every vertex
of W is adjacent to one of a0, b0 and N is stable, it follows that v ∈ C. We assume then that b0 /∈ N .
If a0 ∈ N , then N is disjoint from X3 ∪ X̂4, and so M5 ⊆ N , and therefore v ∈ A. We assume
therefore that a0 /∈ A. If X̂4 ⊆ N then v ∈ D0, so we assume that x /∈ N for some x ∈ X̂4. Since N
meets the triangle {a0, x, rx}, it follows that rx ∈ N , and similarly sx ∈ N . Since rx is adjacent so
sy for all y ∈ X̂4 \ {x}, it follows that x is the unique member of X̂4 that is not in N , and so v ∈ Dx.
This proves our claim that the sets A,B,C,D0 and Dx (x ∈ X̂4) have union V (G) \ W .

The four sets X2 ∪ M5 ∪ B, X6 ∪ M3 ∪ A, X̂4 ∪ C, and D0 ∪
⋃

(Dx : x ∈ X̂4) have union
V (G), and the first three are stable; so we assume the fourth is not stable. Hence there exist
d1, d2 ∈ D0 ∪

⋃
(Dx : x ∈ X̂4), adjacent. Since d1, d2 are not in triangles, they have no common

neighbour; and so |X̂4| = 2, X̂4 = {x1, x2} say, and di ∈ Dxi
for i = 1, 2. But then the sets

{a0, sx2
} ∪ Dx1

, {b0, rx1
} ∪ D0 ∪ Dx2

, {x1, rx2
} ∪ A, {x2, sx1

} ∪ B ∪ C

are stable and have union V (G), and so G is 4-colourable. This proves (5).

From (2)–(5) we deduce that G is 4-colourable. This proves 15.1.
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16 Changeable edges

Let G be a prismatic graph and let e ∈ E(G). We say that uv is changeable if G \ e is also prismatic.
For another application in a future paper, it is helpful to study here which edges are changeable, if
G is orientable. Let T be a triangle of a prismatic graph H, say T = {a, b, c}. We say T is a leaf
triangle at c if a, b both only belong to one triangle of H (namely, T ). We observe first that:

16.1 Let G be a prismatic graph, and let e ∈ E(G), with ends u, v. Then e is changeable if and
only if either u, v are both not in the core of G, or there is a leaf triangle {u, v, w} at some vertex w.

Proof. If there is a triangle of G that contains u and not v, then G \ e is not prismatic, and u
is in the core, and there is no leaf triangle {u, v, w} for any vertex w, and so the claim holds. We
may assume then that u, v belong to the same triangles. If neither of them is in the core, then e
is changeable and the claim holds; so we may assume that there is a triangle {u, v, w} for some w.
Since G is prismatic, w is unique, and {u, v, w} is a leaf triangle at w; but then e is changeable and
the claim holds. This proves 16.1.

Now let us examine which triangles are leaf triangles, if G is orientable.

16.2 Let G be prismatic and orientable, and let T = {u, v, w} be a triangle of G. Then T is a leaf
triangle at w if and only if either:

• G admits a worn chain decomposition, and T is a leaf triangle at w in some term of the chain,
or

• there exists S ⊆ V (G) with |S| ≤ 2 such that every triangle meets S, and w ∈ S, and u, v
belong to no triangle that meets S \ {w}, or

• G admits a path of triangles decomposition X1, . . . , X2n+1 or cycle of triangles decomposition
X1, . . . , X2n, and for some i, w ∈ X̂2i and u ∈ R2i−1 and v ∈ L2i+1 (or vice versa), with the
usual notation.

Proof. The “if” part is clear. Suppose then that T is a leaf triangle at w. If G admits a worn chain
decomposition, then {u, v, w} is a leaf triangle in one of the terms of the chain; so we may assume
that G admits no such decomposition. Since G has a leaf triangle, it follows from 11.1 that either
G is a path of triangles graph or it is not 3-colourable. We may assume that G has at least two
triangles.

Suppose then that G is a path of triangles graph. Let X1, . . . , X2n+1 be a path of triangles
decomposition of G, and let L2i+1,M2i+1, R2i+1 (1 ≤ i ≤ n) be as usual. Then for 1 ≤ i ≤ n,
every edge between u ∈ R2i−1 and v ∈ L2i+1 is changeable, since {u, v, w} is a leaf triangle where
X̂2i = {w}. We claim that there are no other leaf triangles; for suppose that T = {u, v, w} is a
leaf triangle at w. As in statement (1) of the proof of 4.2, either there exists i with 1 ≤ i < n
such that X2i,M2i+1, X2i+2 each contain a vertex of T , or there exists i with 1 ≤ i ≤ n such
that R2i−1, X2i, L2i+1 each contain a vertex of T . In the second case T is of the kind we already
described, so we assume the first holds. From the symmetry we may assume that u ∈ X̂2i. Suppose
that |X̂2i+2| > 1. By (P1), |X̂2i| = 1, and by (P6), M2i+1, X̂2i+2 are matched; but then u belongs
to more than one triangle, a contradiction. Thus |X̂2i+2| = 1. Suppose that i > 1. Then the same
argument shows that |X̂2i−2| = 1, and by (P6), X̂2i is matched with both M2i+1 and M2i−1, and
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again u is in more than one triangle. Hence i = 1, and so |X̂4| = 1. By (P4), R1 6= ∅. But R1 is
matched with L3, and so again u is in more than one triangle. This proves our claim.

We may therefore assume that G is not 3-colourable. Then G is triangle-connected by 12.4, and it
has more than one triangle. Hence every triangle contains a vertex that belongs to another triangle,
and so is a leaf triangle at at most one vertex. By 11.2, G is either not 3-substantial, or a cycle of
triangles graph, or a ring of five graph, or a mantled L(K3,3). Suppose it is not 3-substantial, and
let S ⊆ V (G) with |S| ≤ 2 such that every triangle contains a vertex of S. Choose S minimal with
this property. If |S| = 1, S = {s} say, then every triangle is a leaf triangle at s, so we assume that
S = {s1, s2}. Then the leaf triangles are those triangles that contain exactly one member of S, say
s1, and intersect no triangle that contains s2. (It is easy to list these explicitly if we first formulate
an explicit construction for G, which as we mentioned before is left to the reader.) Now suppose
that G is a cycle of triangles graph. Then as for the path of triangles case, it follows easily that the
changeable edges in leaf triangles are the edges between R2i−1 and L2i+1 for some i. Finally, if G is
either a ring of five graph or a mantled L(K3,3), then G has no leaf triangles. This proves 16.2.
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