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Abstract. Reed and Seymour [1998] asked whether every graph has a partition into
induced connected subgraphs such that each part is bipartite and the quotient graph is
chordal. If true, this would have significant ramifications for Hadwiger’s Conjecture. We
prove that the answer is ‘no’. In fact, we show that the answer is still ‘no’ for several
relaxations of the question.

1 Introduction

Hadwiger’s Conjecture says that every graph with no Kt+1-minor is t-colourable. This
conjecture is easy for t 6 3, is equivalent to the 4-colour theorem for t ∈ {4, 5}, and
is open for t > 6. The best known upper bound is O(t

√
log t), independently due to

Kostochka [12, 13] and Thomason [18, 19]. This conjecture is widely considered to be
one of the most important open problems in graph theory; see [17] for a survey. We
assume the reader is familiar with basic knowledge about graph minors and treewidth;
see [5].

Motivated by Hadwiger’s Conjecture, Reed and Seymour [15] introduced the following
definitions. A partition of a graph G is a set of induced connected subgraphs of G that
partition V (G). The quotient of a partition of G is the graph obtained by contracting
each part into a single vertex. A partition is chordal if the quotient is chordal (that is,
contains no induced cycle of length at least four). Chordal partitions are a useful tool
when studying graphs with no Kt+1 minor, in which case the quotient contains no Kt+1

subgraph, and is therefore t-colourable (since chordal graphs are perfect).

Reed and Seymour [15] asked whether every graph has a chordal partition such that
each part is bipartite. (This question is repeated in [11, 17].) If true, this would imply that
every graph with no Kt+1-minor is 2t-colourable, by taking the product of the t-colouring
of the quotient with the 2-colouring of each part. This would be a major breakthrough
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for Hadwiger’s Conjecture. The purpose of this note is to answer Reed and Seymour’s
question in the negative. In fact, we show the following stronger result.

Theorem 1. For every integer k there is a graph G, such that every chordal partition
of G contains Kk in some part. Moreover, for every integer t there is a graph G with
treewidth at most t − 1, and thus Kt+1-minor-free, such that every chordal partition of
G contains KΩ(t1/3) in some part.

Given the above motivation, it is natural to consider perfect partitions (where the quo-
tient is perfect). Here the quotient of a partition of a Kt+1-minor-free graph is still
t-colourable. We extend Theorem 1 as follows.

Theorem 2. For every integer k there is a graph G, such that every perfect partition
of G contains Kk in some part. Moreover, for every integer t there is a graph G with
treewidth at most t − 1, and thus Kt+1-minor-free, such that every perfect partition of
G contains KΩ(t1/3) in some part.

Theorems 1 and 2 say that it is hopeless to improve on the O(t
√

log t) bound for the
chromatic number of Kt-minor-free graphs using chordal or perfect partitions directly.
Indeed, the best possible upper bound on the chromatic number using the above approach
would be O(t4/3).

Chordal graphs contain no induced 4-cycle, and perfect graphs contain no induced 5-
cycle. These are the only properties of chordal and perfect graphs used in the proofs
of Theorems 1 and 2. Thus the following result is a qualitative generalisation of both
Theorems 1 and 2.

Theorem 3. For every integer k and graph H , there is a graph G, such that for every
partition of G, some part contains Kk or the quotient contains H as an induced subgraph.

Before presenting the proofs, we mention some applications of chordal decompositions
and related topics. Chordal partitions have proven to be a useful tool in the study of
the following topics for Kt+1-minor-free graphs: cops and robbers pursuit game [1, 2],
fractional colouring [11, 15], generalised colouring numbers [20], defective and clustered
colouring [21]. These papers show that every graph with no Kt+1 minor has a chordal
partition in which each part has desirable properties.

Several papers [8, 14, 22] have shown that graphs with treewidth k have chordal parti-
tions in which the quotient is a tree, and each part induces a subgraph with treewidth
k − 1, amongst other properties. Such decompositions have been used for queue and
track layouts [8] and non-repetitive graph colouring [14]. Tree partitions in which each
part is not necessarily connected have also been widely studied [3, 4, 6, 7, 9, 10, 16, 23].
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Here the goal is to have few vertices in each part of the partition. The referee of [6]
proved that every graph with treewidth k and maximum degree ∆ has a tree partition
with O(k∆) vertices in each part.

2 Chordal Partitions: Proof of Theorem 1

All our proofs depend on the following lemma.

Lemma 4. Let X be a subgraph of a graph G, such that the neighbourhood of each
component of G−X is a clique (in X). Then every partition P of G, when restricted to
X , is a partition of X and the quotient of P restricted to X equals the subgraph of the
quotient of P induced by those parts that intersect X .

Proof. Since the neighbourhood of each component of G − X is a clique, for each
connected subgraph G′ of G, the subgraph G′[V (X)] is connected. In particular, P
restricted to X is a partition of X (with connected parts). Moreover, if adjacent parts
P and Q of P both intersect X , then P and Q contain adjacent vertices in X (again
since the neighbourhood of each component of G−X is a clique). Thus the quotient of
P restricted to X equals the subgraph of the quotient of P induced by those parts that
intersect X .

The next lemma with r = 1 implies Theorem 1.

Lemma 5. For all integers k > 1 and r > 1, there is a graph G(k, r) with treewidth at
most t(k, r)− 1, and thus Kt(k,r)+1-minor-free, where

t(k, r) := 1
6
k(k + 1)(2k + 1) + (r − 1)k + 1,

such that for every chordal partition P of G, either:
(1) G contains a Kkr subgraph intersecting each of r distinct parts of P in k vertices, or
(2) some part of P contains Kk+1.

Proof. Note that t(k, r) is the upper bound on the size of the bags in the tree decom-
position of G(k, r) that we construct. We proceed by induction on (k, r). For the base
case, the graph with one vertex satisfies (1) for k = r = 1 and has a tree decomposition
with one bag of size 1 6 t(1, 1).

First we prove that the (k, 1) and (k, r) cases imply the (k, r+1) case. Let A := G(k, 1)

and B := G(k, r). Let G be obtained as follows. Start with a copy of A. Then for each
k-clique C in A, add a disjoint copy BC of B to G, where C is complete to BC . We
claim that G satisfies the claimed properties of G(k, r + 1).
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By assumption, A has a tree decomposition with bags of size at most t(k, 1), and for
each k-clique C in A, there is a tree decomposition of BC with bags of size at most
t(k, r). Add an edge (in the tree) between a bag containing C in the tree decomposition
of A and any bag of BC , and add C to every bag of the tree decomposition of BC . We
obtain a tree decomposition of G with bags of size at most max{t(k, 1), t(k, r) + k} =

t(k, r) + k = t(k, r + 1), as desired.

Consider a partition P of G. By Lemma 4, P restricted to A is a partition of A, and the
quotient of P restricted to A equals the subgraph of the quotient of P induced by those
parts that intersect A. Since the quotient of P is chordal, the quotient of P restricted to
A is chordal. By induction, since A = G(k, 1), the quotient of P restricted to A satisfies
(1) with r = 1 or (2). If outcome (2) holds, then some part of P contains Kk+1, and
outcome (2) holds for G. Now assume that P restricted to A satisfies outcome (1) with
r = 1; that is, some k-clique C of A is contained in some part P of P .

If some vertex of BC is in P , then P contains Kk+1, and outcome (2) holds for G. Now
assume that no vertex of BC is in P . Since each part of P is connected, the parts of P
that intersect BC do not intersect G − V (BC). Thus, P restricted to BC is a partition
of BC , and the quotient of P restricted to BC equals the subgraph of the quotient of P
induced by those parts that intersect BC , and is therefore chordal. Since B = G(k, r),
the quotient of P restricted to BC satisfies (1) or (2). If outcome (2) holds, then the same
outcome holds for G. Now assume that outcome (1) holds for BC . Thus BC contains
a Kkr subgraph intersecting each of r distinct parts of P in k vertices. None of these
parts are P . Since C is complete to BC , G contains a Kk(r+1) subgraph intersecting
each of r + 1 distinct parts of P in k vertices, and outcome (1) holds for G. Hence G

satisfies the claimed properties of G(k, r + 1).

It remains to prove the (k, 1) case for k > 2. By induction, we may assume the (k−1, r)

case for all r. As illustrated in Figure 1, let G be obtained as follows. Start with a
copy of A := G(k− 1, k + 1). Then for each set C = {C1, . . . , Ck+1} of pairwise-disjoint
(k − 1)-cliques in A, whose union induces K(k−1)(k+1), add a disjoint Kk+1 subgraph
BC , whose i-th vertex is adjacent to every vertex in Ci. We claim that G satisfies the
claimed properties of G(k, 1).

By assumption, A has a tree decomposition with bags of size at most t(k − 1, k + 1).
For each set C = {C1, . . . , Ck+1} of pairwise-disjoint (k − 1)-cliques in A, whose union
induces K(k−1)(k+1), add a bag containing V (BC) ∪ C1 ∪ · · · ∪ Ck+1 adjacent (in the
tree) to a bag of the tree decomposition of A containing C1 ∪ · · · ∪ Ck+1. We obtain
a tree decomposition of G with bags of size at most max{t(k − 1, k + 1), (k + 1)k} =

t(k − 1, k + 1) = t(k, 1), as desired.

Consider a partition P of G. By Lemma 4, P restricted to A is a partition of A and
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Kk−1 Kk−1 Kk−1 Kk−1 Kk−1

Ci ⊆ Pi Cj ⊆ Pj

x ∈ Q y ∈ R

A = G(k − 1, k + 1)

C

BC = Kk+1

Figure 1: Construction of G(k, 1) in Lemma 5.

the quotient of P restricted to A equals the subgraph of the quotient of P induced by
those parts that intersect A, and is therefore chordal. Recall that A = G(k−1, k+1). If
outcome (2) holds for P restricted to A, then some part of P contains Kk, and outcome
(1) holds for G (with r = 1). Now assume that outcome (1) holds for P restricted to
A. Thus A contains a K(k−1)(k+1) subgraph intersecting each of k + 1 distinct parts
P1, . . . , Pk+1 of P in k − 1 vertices. Let Ci be the corresponding (k − 1)-clique in Pi.
Let C := {C1, . . . , Ck+1}.

If for some i ∈ [k + 1], the neighbour of Ci in BC is in Pi, then Pi contains Kk+1 and
outcome (1) holds for G. Now assume that for each i ∈ [k + 1], the neighbour of Ci

in BC is not in Pi. If some vertex x in BC is in some Pi, then since Pi is connected,
G contains a path between Ci and x avoiding the neighbourhood of Ci in BC . Every
such path intersects C1 ∪ · · · ∪ Ci−1 ∪ Ci+1 ∪ · · · ∪ Ck+1, but none of these vertices are
in Pi. Thus, no vertex in BC is in P1 ∪ · · · ∪ Pk+1. If BC is contained in one part, then
G contains Kk+1 in one part, and outcome (2) holds. Now assume that BC contains
vertices x and y in distinct parts Q and R of P . Then x is adjacent to Ci and y is
adjacent to Cj , for some distinct i, j ∈ [1, k+ 1]. Observe that (Q,R,Cj, Ci) is a 4-cycle
in the quotient of P . Moreover, there is no QCj edge in the quotient of P because
C1 ∪ · · · ∪ Cj−1 ∪ Cj+1 ∪ · · · ∪ Ck+1 ∪ {y} separates x ∈ Q from Cj ⊆ Pj , and none
of these vertices are in Q ∪ Pj . Similarly, there is no RCi edge in the quotient of P .
Hence (Q,R,Cj, Ci) is an induced 4-cycle in the quotient of P , which contradicts the
assumption that P is a chordal partition. Therefore G satisfies the claimed properties
of G(k, 1).
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3 Perfect Partitions: Proof of Theorem 2

The following lemma with r = 1 implies Theorem 2. The proof is very similar to Lemma 5
except that we force C5 in the quotient instead of C4.

Lemma 6. For all integers k > 1 and r > 1, there is a graph G(k, r) with treewidth at
most t(k, r)− 1, and thus Kt(k,r)+1-minor-free, where

t(k, r) := 1
3
k(k + 1)(2k + 1) + (r − 1)k,

such that for every perfect partition P of G, either:
(1) G contains a Kkr subgraph intersecting each of r distinct parts of P in k vertices, or
(2) some part of P contains Kk+1.

Proof. Note that t(k, r) is the upper bound on the size of the bags in the tree decom-
position of G(k, r) that we construct. We proceed by induction on (k, r). For the base
case, the graph with one vertex satisfies (1) for k = r = 1 and has a tree decomposition
with one bag of size 1 6 t(1, 1).

First we prove that the (k, 1) and (k, r) cases imply the (k, r+1) case. Let A := G(k, 1)

and B := G(k, r). Let G be obtained as follows. Start with a copy of A. Then for each
k-clique C in A, add a disjoint copy BC of B to G, where C is complete to BC . We
claim that G satisfies the claimed properties of G(k, r + 1).

By assumption, A has a tree decomposition with bags of size at most t(k, 1), and for
each k-clique C in A, there is a tree decomposition of BC with bags of size at most
t(k, r). Add an edge (in the tree) between a bag containing C in the tree decomposition
of A and any bag of BC , and add C to every bag of the tree decomposition of BC . We
obtain a tree decomposition of G with bags of size at most max{t(k, 1), t(k, r) + k} =

t(k, r) + k = t(k, r + 1), as desired.

Consider a partition P of G. By Lemma 4, P restricted to A is a partition of A, and the
quotient of P restricted to A equals the subgraph of the quotient of P induced by those
parts that intersect A. Since the quotient of P is perfect, the quotient of P restricted to
A is perfect. By induction, since A = G(k, 1), the quotient of P restricted to A satisfies
(1) with r = 1 or (2). If outcome (2) holds, then some part of P contains Kk+1, and
outcome (2) holds for G. Now assume that P restricted to A satisfies outcome (1) with
r = 1; that is, some k-clique C of A is contained in some part P of P .

If some vertex of BC is in P , then P contains Kk+1, and outcome (2) holds for G. Now
assume that no vertex of BC is in P . Since each part of P is connected, the parts of P
that intersect BC do not intersect G − V (BC). Thus, P restricted to BC is a partition
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Kk−1 Kk−1 Kk−1 Kk−1 Kk−1 Kk−1 Kk−1 Kk−1 Kk−1

Ci ⊆ Pi Cj ⊆ Pj

x ∈ Q y ∈ R

A = G(k − 1, k + 1)

C

Kk+1 Kk+1BC
v ∈ P

Figure 2: Construction of G(k, 1) in Lemma 6.

of BC , and the quotient of P restricted to BC equals the subgraph of the quotient of P
induced by those parts that intersect BC , and is therefore perfect. Since B = G(k, r),
the quotient of P restricted to BC satisfies (1) or (2). If outcome (2) holds, then the same
outcome holds for G. Now assume that outcome (1) holds for BC . Thus BC contains
a Kkr subgraph intersecting each of r distinct parts of P in k vertices. None of these
parts are P . Since C is complete to BC , G contains a Kk(r+1) subgraph intersecting
each of r + 1 distinct parts of P in k vertices, and outcome (1) holds for G. Hence G

satisfies the claimed properties of G(k, r + 1).

It remains to prove the (k, 1) case for k > 2. By induction, we may assume the (k−1, r)

case for all r. As illustrated in Figure 2, let G be obtained as follows. Start with a
copy of A := G(k− 1, 2k+ 1). Let B be the graph consisting of two copies of Kk+1 with
one vertex in common. Note that |V (B)| = 2k + 1. For each set C = {C1, . . . , C2k+1} of
pairwise-disjoint (k − 1)-cliques in A, whose union induces K(k−1)(2k+1), add a disjoint
subgraph BC isomorphic to B, whose i-th vertex is adjacent to every vertex in Ci. We
claim that G satisfies the claimed properties of G(k, 1).

By assumption, A has a tree decomposition with bags of size at most t(k − 1, 2k + 1).
For each set C = {C1, . . . , C2k+1} of pairwise-disjoint (k− 1)-cliques in A, whose union
induces K(k−1)(2k+1), add a bag containing V (BC) ∪ C1 ∪ · · · ∪ C2k+1 adjacent (in the
tree) to a bag of the tree decomposition of A containing C1 ∪ · · · ∪ C2k+1. We obtain a
tree decomposition of G with bags of size at most max{t(k − 1, 2k + 1), (2k + 1)k} =

t(k − 1, 2k + 1) = t(k, 1), as desired.

Consider a partition P of G. By Lemma 4, P restricted to A is a partition of A and the
quotient of P restricted to A equals the subgraph of the quotient of P induced by those
parts that intersect A, and is therefore chordal. Recall that A = G(k − 1, 2k + 1). If
outcome (2) holds for P restricted to A, then some part of P contains Kk, and outcome
(1) holds for G (with r = 1). Now assume that outcome (1) holds for P restricted to
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A. Thus A contains a K(k−1)(2k+1) subgraph intersecting each of 2k + 1 distinct parts
P1, . . . , P2k+1 of P in k − 1 vertices. Let Ci be the corresponding (k − 1)-clique in Pi.
Let C := {C1, . . . , C2k+1}.

If for some i ∈ [2k + 1], the neighbour of Ci in BC is in Pi, then Pi contains K2k+1 and
outcome (1) holds for G. Now assume that for each i ∈ [2k + 1], the neighbour of Ci

in BC is not in Pi. If some vertex x in BC is in some Pi, then since Pi is connected, G
contains a path between Ci and x avoiding the neighbourhood of Ci in BC . Every such
path intersects C1 ∪ · · · ∪Ci−1 ∪Ci+1 ∪ · · · ∪C2k+1, but none of these vertices are in Pi.
Thus, no vertex in BC is in P1 ∪ · · · ∪ P2k+1.

By construction, BC consists of two (k+1)-cliques B1 and B2, intersecting in one vertex
v. Say v is in part P of P . If B1 is contained in P , then G contains Kk+1 in one
part, and outcome (2) holds. Now assume that B1 contains a vertex x in some part Q
distinct from P . Similarly, assume that B2 contains a vertex y in some part R distinct
from P . Now, Q 6= R, since C1 ∪ · · · ∪ C2k+1 ∪ {v} separates x and y, and none of
these vertices are in Q ∪ R. By construction, x is adjacent to Ci and y is adjacent
to Cj , for some distinct i, j ∈ [1, 2k + 1]. Observe that (Q,P,R, Pj, Pi) is a 5-cycle
in the quotient of P . Moreover, there is no QPj edge in the quotient of P because
C1 ∪ · · · ∪ Cj−1 ∪ Cj+1 ∪ · · · ∪ Ck+1 ∪ {y} separates x ∈ Q from Cj ⊆ Pj , and none of
these vertices are in Q∪Pj . Similarly, there is no RPi edge in the quotient of P . There
is no PPj edge in the quotient of P because C1 ∪ · · · ∪ Cj−1 ∪ Cj+1 ∪ · · · ∪ Ck+1 ∪ {y}
separates v ∈ P from Cj ⊆ Pj , and none of these vertices are in P ∪Pj . Similarly, there
is no PPi edge in the quotient of P . Hence (Q,P,R, Pj, Pi) is an induced 4-cycle in the
quotient of P , which contradicts the assumption that P is a perfect partition. Therefore
G satisfies the claimed properties of G(k, 1).

4 General Partitions: Proof of Theorem 3

To prove Theorem 3 we show the following stronger result, in which G only depends on
the number of vertices of H and we can force many copies of Kk.

Lemma 7. For all integers k, t, r > 1, there is a graph G(k, t, r), such that for every
partition P of G(k, t, r) either:
(1) G contains a Kkr subgraph intersecting each of r distinct parts of P in k vertices,
(2) the quotient of P contains every t-vertex graph as an induced subgraph, or
(3) some part of P contains Kk+1.

Proof. We proceed by induction on (k + t, r). The t = 1 case is trivial.
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First we prove that the (k, t, 1) and (k, t, r) cases imply the (k, t, r + 1) case. Let
A := G(k, t, 1) and B := G(k, t, r). Let G be obtained as follows. Start with a copy
of A. Then for each k-clique C in A, add a disjoint copy BC of B to G, where C is
complete to BC . We claim that G satisfies the claimed properties of G(k, t, r + 1).

Consider a partition P of G. By Lemma 4, P restricted to A is a partition of A, and the
quotient of P restricted to A equals the subgraph of the quotient of P induced by those
parts that intersect A. Since A = G(k, t, 1), the quotient of P restricted to A satisfies
(1) with r = 1, (2) or (3). If outcome (3) holds, then some part of P contains Kk+1, and
outcome (3) holds for G. If P restricted to A satisfies outcome (2), then outcome (2) is
satisfied for G. We may now assume that P restricted to A satisfies outcome (1) with
r = 1; that is, some k-clique C of A is contained in some part P of P .

If some vertex of BC is in P , then P contains Kk+1, and outcome (3) holds for G. Now
assume that no vertex of BC is in P . Since each part of P is connected, the parts of P
that intersect BC do not intersect G − V (BC). Thus, P restricted to BC is a partition
of BC , and the quotient of P restricted to BC equals the subgraph of the quotient of
P induced by those parts that intersect BC . Since B = G(k, t, r), the quotient of P
restricted to BC satisfies (1), (2) or (3). If outcome (2) or (3) holds, then the same
outcome holds for G. Now assume that outcome (1) holds for BC . Thus BC contains
a Kkr subgraph intersecting each of r distinct parts of P in k vertices. None of these
parts are P . Since C is complete to BC , G contains a Kk(r+1) subgraph intersecting
each of r + 1 distinct parts of P in k vertices, and outcome (1) holds for G. Hence G

satisfies the claimed properties of G(k, t, r + 1).

It remains to prove the (k, t, 1) case. By induction, we may assume the (k, t − 1, 1)

case and the (k − 1, t, r) case for all r. Let B := G(k, t − 1, 1) and n := |V (B)|. Let
B1, . . . , B2n be the distinct subsets of V (B). Let A := G(k−1, t, 2n). Let G be obtained
as follows. Start with a copy of A. Then for each set C = {C1, . . . , C2n} of pairwise-
disjoint (k− 1)-cliques in A, whose union induces K(k−1)2n , add a disjoint copy BC of B
to G, where Ci is complete to Bi

C for all i ∈ [2n]. We claim that G satisfies the claimed
properties of G(k, t, 1).

Consider a partition P of G. By Lemma 4, P restricted to A is a partition of A, and the
quotient of P restricted to A equals the subgraph of the quotient of P induced by those
parts that intersect A. Recall that A = G(k − 1, t, 2n). If P restricted to A satisfies
outcome (2), then the quotient of P restricted to A contains every t-vertex graph as
an induced subgraph, and outcome (2) is satisfied for G. If outcome (3) holds for P
restricted to A, then some part of P contains Kk, and outcome (1) holds for G (with
r = 1). Now assume that outcome (1) holds for P restricted to A. Thus A contains a
K(k−1)2n subgraph intersecting each of 2n distinct parts P1, . . . , P2n of P in k−1 vertices.
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Let Ci be the corresponding (k − 1)-clique in Pi. Let C := {C1, . . . , C2n}.

If for some i ∈ [2n], some neighbour of Ci in BC is in Pi, then Pi contains Kk and outcome
(1) holds for G. Now assume that for each i ∈ [2n], no neighbour of Ci in BC is in Pi.
If some vertex x in BC is in some Pi, then since Pi is connected, G contains a path
between Ci and x avoiding the neighbourhood of Ci in BC . Every such path intersects
C1 ∪ · · · ∪ Ci−1 ∪ Ci+1 ∪ · · · ∪ C2n , but none of these vertices are in Pi. Thus, no vertex
in BC is in P1 ∪ · · · ∪ P2n . Hence, no part of P contains vertices in both BC and in the
remainder of G. Therefore, P restricted to BC is a partition of BC , and the quotient of
P restricted to BC equals the subgraph of the quotient of P induced by those parts that
intersect BC . Since B = G(k, t − 1, 1), the quotient of P restricted to BC satisfies (1),
(2) or (3). If outcome (1) or (3) holds for P restricted to BC , then the same outcome holds
for G. Now assume that outcome (2) holds for P restricted to BC ,

We now show that outcome (2) holds for G. Let H be a t-vertex graph. Let v be a
vertex of H . Say NH(v) = {w1, . . . , wd}. Since outcome (2) holds for P restricted to
BC , the quotient of P restricted to BC contains H − v as an induced subgraph. Let
Q1, . . . , Qd be the parts corresponding to w1, . . . , wd. Then Bi

C = V (Q1 ∪ · · · ∪ Qd) for
some i ∈ [2n]. Observe that in the quotient of P , the vertex corresponding to Pi is
adjacent to Q1, . . . , Qd and to no other vertices corresponding to parts contained in BC .
Thus, including Pi, the quotient of P contains H as an induced subgraph, and outcome
(2) holds for P . Hence G satisfies the claimed properties of G(k, t, 1).

References

[1] Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar.
Cops, robbers, and threatening skeletons: Padded decomposition for minor-free
graphs. In Proc. 46th Annual ACM Symposium on Theory of Computing (STOC
’14), pp. 79–88. ACM, 2014. doi: 10.1145/2591796.2591849.

[2] Thomas Andreae. On a pursuit game played on graphs for which a minor is excluded.
J. Comb. Theory, Ser. B, 41(1):37–47, 1986. doi: 10.1016/0095-8956(86)90026-2.

[3] Hans L. Bodlaender. A note on domino treewidth. Discrete Math. Theor. Comput.
Sci., 3(4):141–150, 1999. https://dmtcs.episciences.org/256.

[4] Hans L. Bodlaender and Joost Engelfriet. Domino treewidth. J. Algorithms,
24(1):94–123, 1997. doi: 10.1006/jagm.1996.0854.

[5] Reinhard Diestel. Graph theory, vol. 173 of Graduate Texts in Mathematics.
Springer, 4th edn., 2010. http://diestel-graph-theory.com/. MR: 2744811.

10

http://dx.doi.org/10.1145/2591796.2591849
http://dx.doi.org/10.1016/0095-8956(86)90026-2
https://dmtcs.episciences.org/256
http://dx.doi.org/10.1006/jagm.1996.0854
http://diestel-graph-theory.com/
http://www.ams.org/mathscinet-getitem?mr=MR2744811


[6] Guoli Ding and Bogdan Oporowski. Some results on tree decomposition of graphs.
J. Graph Theory, 20(4):481–499, 1995. doi: 10.1002/jgt.3190200412.

[7] Guoli Ding and Bogdan Oporowski. On tree-partitions of graphs. Discrete Math.,
149(1–3):45–58, 1996. doi: 10.1016/0012-365X(94)00337-I.
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