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Abstract

A graph is claw-free if no vertex has three pairwise nonadjacent neighbours.
At first sight, there seem to be a great variety of types of claw-free graphs.
For instance, there are line graphs, the graph of the icosahedron, complements
of triangle-free graphs, and the Schläfli graph (an amazingly highly-symmetric
graph with 27 vertices), and more; for instance, if we arrange vertices in a
circle, choose some intervals from the circle, and make the vertices in each
interval adjacent to each other, the graph we produce is claw-free. There are
several other such examples, which we regard as “basic” claw-free graphs.

Nevertheless, it is possible to prove a complete structure theorem for claw-
free graphs. We have shown that every connected claw-free graph can be ob-
tained from one of the basic claw-free graphs by simple expansion operations.
In this paper we explain the precise statement of the theorem, sketch the proof,
and give a few applications.

1 Introduction

A graph is claw-free if no vertex has three pairwise nonadjacent neighbours.
(Graphs in this paper are finite and simple.) Line graphs are claw-free, and it has
long been recognized that claw-free graphs are an interesting generalization of line
graphs, sharing some of the same properties. For instance, Minty [16] showed in
1980 that there is a polynomial-time algorithm to find a stable set of maximum
weight in a claw-free graph, generalizing the algorithm of Edmonds [9, 10] to find a
maximum weight matching in a graph.

How do we construct claw-free graphs? Chvátal and Sbihi [8] and Maffray and
Reed [15] studied the structure of claw-free perfect graphs, and indeed, it was working
on an extension of their results that led us to the present project. But how can we
construct the “most general” claw-free graph? This question had not been studied,
as far as we know, and yet it turns out to be a very good question. There are several
basic types of claw-free graphs, and we were able to show that every connected
claw-free graph can be obtained starting from a graph of one of these basic types by
means of “expansion” operations (or, in some restricted cases, piecing some of these
basic graphs together).

The main goal of this paper is to explain this construction. We are preparing a
series of about seven papers containing the results sketched here, but the titles (and
the order) of these papers given in the references are provisional, and are currently
being revised. In addition, some of the results quoted here are still in the form of
notes and have not yet been written down formally, much less been refereed; and
while we have tried hard to make sure that the theorems quoted here are true,
until they are written down properly we cannot be completely sure. The reader is
warned to check with the full published version of these results before relying on
them completely.

Before we start to explain the structure theorem, let us introduce “antiprismatic”
graphs. We say a graph G is prismatic if for every triangle T of G, every vertex of G
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not in T has a unique neighbour in T (a triangle means a 3-vertex clique). Prismatic
graphs have a complex structure, but it turns out that they can be completely
described (see sections 6, 7). We say G is antiprismatic if its complement graph G
is prismatic. Clearly antiprismatic graphs are claw-free, and they seem to form a
subclass of claw-free graphs that is very different from the others. (At least, all our
standard methods for analyzing claw-free graphs failed completely when we reached
the stage of trying to analyze antiprismatic graphs, and we had to come up with
totally new approaches.) Understanding antiprismatic graphs was probably the most
difficult part of the project.

The Schläfli graph (a very interesting and highly symmetric graph, described
later) is antiprismatic, and it and its induced subgraphs (and some other graphs
derived from it by expanding vertices) form a class of antiprismatic graphs, one of
(about) eight classes that we need. We showed that every antiprismatic graph either
belongs to one of four of these classes, or could be constructed from a sequence of
members of the other four classes by repeated hex-joins.

The most important result in this paper is of course the general structure theorem
for claw-free graphs. This is explained in detail in sections 3–7, but let us give some
idea of it now. We can confine ourselves to connected claw-free graphs G, and it is
convenient also to assume that G admits no “homogeneous pair of cliques”, which we
explain in the next section. Then we find that the type of structure that G possesses
depends heavily on α(G), the size of the largest stable set of G. When α(G) ≥ 4, it
turns out that G is either a kind of generalized line graph, or a circular interval graph.
When α(G) = 3, there are several additional possibilities; for instance, that either
G is a subgraph of the icosahedron, or G is expressible as a “hex-join” (explained
later), or G is antiprismatic.

Unfortunately the result is rather complicated, and as a warmup we first discuss
what are called “quasi-line graphs”. A graph G is a quasi-line graph if for every
vertex v, the set of neighbours of v can be expressed as the union of two cliques. (A
clique in G is a set of pairwise adjacent vertices of G.) Note that we do not require
that two neighbours of v are adjacent if and only if they both belong to one of the
cliques; there may be edges between neighbours of v that do not belong to the same
clique. Quasi-line graphs are clearly claw-free; they form a proper subset of the
set of all claw-free graphs, and a proper superset of the set of all line graphs, and
make an interesting half-way stage. We found a structure theorem for all quasi-line
graphs, and for that question the answer is much prettier than for general claw-free
graphs.

One reason for interest in quasi-line graphs is a problem of Ben Rebea [1]. Since
Edmonds’ matching algorithm generalizes to claw-free graphs, one might hope that
also Edmonds’ matching polytope theorem [9] extends to claw-free graphs, and sev-
eral people [12, 13, 14, 17] have worked on this, although it remains open. We are
asking for the list of linear inequalities defining the convex hull of the stable sets of
G, where we regard a stable set of a (0, 1)-vector in <V (G). For general claw-free
graphs G there is not even a conjecture, but Ben Rebea suggested the same problem
for quasi-line graphs, and for that class there is a conjectured answer [17]. We have
been able to find the desired list of inequalities for all connected quasi-line graphs
that are not of one particular type, graphs we call “fuzzy circular interval graphs”;
and in a still more recent paper, Eisenbrand, Oriolo, Stauffer and Ventura [11]
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solved the case that we left open. This is explained in section 2.

For a graph G, let χ(G), ω(G) denote the chromatic number of G and the max-
imum size of a clique of G. Another result that we might hope to extend from line
graphs to general claw-free graphs is Vizing’s theorem [18], which implies that if G
is a line graph (of a simple graph), then χ(G) ≤ ω(G) + 1. For general claw-free
graphs (or even for line graphs of non-simple graphs) this is false, although Shan-
non’s theorem implies that χ(G) < 3

2ω(G) + 1 for line graphs. Note also that for a
n-vertex graph G with α(G) ≤ 2, even the linear bound is false; χ(G) ≥ n/2, and
yet ω(G) may be o(n). Nevertheless, for connected claw-free graphs with α(G) ≥ 3,
the structure is much more controlled, and we were able to show that for any such
graph, χ(G) ≤ 2ω(G) (and this is asymptotically best possible). We discuss colour-
ing claw-free graphs in section 8.

2 Quasi-line graphs

Construct a graph G as follows. Take a circle C, and let V (G) be a finite set
of points of C. Take a set of intervals from C (an interval means a proper subset
of C homeomorphic to [0, 1]); and say that u, v ∈ V (G) are adjacent in G if {u, v}
is a subset of one of the intervals. We call such a graph a circular interval graph.
All such graphs are claw-free, and indeed they are quasi-line graphs, as is easily
seen. (These are a subclass of class of circular arc graphs; they are sometimes called
“proper” circular arc graphs.) Linear interval graphs are defined in the same way,
taking C to be a line instead of a circle. Every linear interval graph is also a circular
interval graph.

There is another way to construct quasi-line graphs, that we explain next. A
vertex v ∈ V (G) is simplicial if the set of neighbours of v is a clique. A strip (G, a, b)
consists of a claw-free graph G together with two designated simplicial vertices a, b
called the ends of the strip. For instance, if G is a linear interval graph, with vertices
v1, . . . , vn in order and with n > 1, then v1, vn are simplicial, and so (G, v1, vn) is a
strip, called a linear interval strip.

Suppose that (G, a, b) and (G′, a′, b′) are two strips. We compose them as follows.
Let A,B be the set of vertices of G \ {a, b} adjacent in G to a, b respectively, and
define A′, B′ similarly. Take the disjoint union of G \ {a, b} and G′ \ {a′, b′}; and let
H be the graph obtained from this by adding all possible edges between A and A ′

and between B and B ′. Then H is claw-free.

This method of composing two strips is symmetrical between (G, a, b) and (G′, a′, b′),
but we do not use it in a symmetrical way. We use it as follows. Start with a graph
G0 with an even number of vertices and which is the disjoint union of complete
graphs, and pair the vertices of G0. Let the pairs be (a1, b1), . . . , (an, bn), say. For
i = 1, . . . , n, let (G′

i, a
′

i, b
′

i) be a strip. For i = 1, . . . , n, let Gi be the graph obtained
by composing (Gi−1, ai, bi) and (G′

i, a
′

i, b
′

i); then the resulting graph Gn is called a
composition of the strips (G′

i, a
′

i, b
′

i) (1 ≤ i ≤ n). For instance, if for each of the
strips (G′

i, a
′

i, b
′

i) , G′

i is a 3-vertex path with ends a′

i, b
′

i, then the effect of composing
with (G′

i, a
′

i, b
′

i) is the identification of ai, bi; and so the graphs that are compositions
of such 3-vertex path strips are precisely line graphs.

It is easy to check that every graph that is the composition of linear interval
strips is a quasi-line graph, so this gives us a second construction for quasi-line
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graphs (and this includes line graphs, since the 3-vertex strip mentioned above is a
linear interval strip). This is not quite the whole story for quasi-line graphs yet; we
need one more concept.

A homogeneous pair of cliques in G is a pair (A,B) such that:

• A,B are cliques in G and A ∩ B = ∅,

• no vertex of G \ (A∪B) has both a neighbour and a non-neighbour in A, and
the same for B, and

• either |A| ≥ 2 or |B| ≥ 2.

Now we can state one version of our structure theorem for quasi-line graphs, the
following.

2.1 For every quasi-line graph G, if G is connected and there is no homogeneous
pair of cliques in G, then either G is a circular interval graph, or G is a composition
of linear interval strips.

One might object that this is not quite a structure theorem for all quasi-line
graphs. The hypothesis that G is connected is unobjectionable, because if we un-
derstand the possibilities for the connected components of a quasi-line graph, then
we understand the possibilities for the entire graph; but the same is not true for the
“homogeneous pair” hypothesis. Suppose that we wish to understand the structure
of a connected quasi-line graph that does admit a homogeneous pair of cliques. We
could delete all except one vertex from both of the cliques, and iterate (if there is
still a homogeneous pair of cliques, do it again), until 2.1 can be applied; and then
add back in all the homogeneous pairs we deleted. But it is not so easy to see how to
describe the global structure that results. Below we give a more explicit description.

First, we need to extend the concept of a circular interval graph. We say that a
graph G is a fuzzy circular interval graph if:

• there is a map φ from V (G) to a circle C (not necessarily injective), and

• there is a set of intervals from C, none including another, and such that no
point of C is an end of more than one of the intervals, so that

• for u, v in G, if u, v are adjacent then {u, v} is a subset of one of the intervals,
and if u, v are nonadjacent then u, v are both ends of any interval including
both of them (and in particular, if φ(u) = φ(v) then u, v are adjacent).

(If also we required φ to be injective, this would be equivalent to the definition
of a circular interval graph.) If x, y are ends of an interval and one of the sets
φ−1(x), φ−1(y) has at least two members, then the pair (φ−1(x), φ−1(y)) is a homo-
geneous pair of cliques; and these turn out to be the only kinds of homogeneous
pairs of cliques that we need. (Fuzzy linear interval strips are defined analogously,
with the proviso that if a, b are the ends of the strip then φ(a), φ(b) are different
from φ(v) for all other vertices v of G.) The following is a more explicit version of
the structure theorem for quasi-line graphs.
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2.2 For every quasi-line graph G, if G is connected, then either G is a fuzzy circular
interval graph, or G is a composition of fuzzy linear interval strips.

The current proof of 2.2 is indirect. First we apply the general structure theorem
for claw-free graphs, described later; this tells us that our quasi-line graph belongs
to one of several basic classes, or is an expansion of such a graph. Then we examine
each of these classes separately, to figure out which quasi-line graphs it contains. The
most difficult class is the one where we get least information, the class of graphs G
with α(G) ≤ 2; these graphs are always claw-free, but are not necessarily quasi-line
graphs, and perhaps half or more of the entire proof is spent on this case. We omit
further details, which will appear in a separate paper [6].

Let us turn to the application to Ben Rebea’s question, mentioned in the intro-
duction. Let G be a graph, and for X ⊆ V (G), let X ∈ <V (G) be the vector where
for v ∈ V (G), Xv = 1 if v ∈ X and Xv = 0 if v /∈ X. The stable set polytope of G is
the convex hull of all the vectors X such that X ⊆ V (G) is stable. Every point p of
the stable set polytope satisfies the following inequalities:

• pv ≥ 0 for all v ∈ V (G)

•
∑

v∈K pv ≤ 1 for every clique K of G

• for every odd list K1, . . . ,K2n+1 of cliques of G, if Y denotes the set of all
vertices in at least two of K1, . . . ,K2n+1, then

∑
v∈Y pv ≤ n .

(To see this, note that since all the inequalities are linear, it suffices to check that
they holds when p = X for a stable set X.) Let us call these Edmonds’ inequalities.
When G is a line graph, Edmonds’ matching polytope theorem [9] asserts that a
point p ∈ <V (G) belongs to the stable set polytope if and only if it satisfies Edmonds’
inequalities. For general claw-free graphs this is not true, but the problem seems
more tractable for quasi-line graphs, and in [17] there is a conjecture presenting
an alternative list of inequalities that may be necessary and sufficient when G is a
quasi-line graph. We were able to show the following:

2.3 Let G be a connected quasi-line graph, that is not a fuzzy circular interval
graph. Then a point p ∈ <V (G) belongs to the stable set polytope if and only if it
satisfies Edmonds’ inequalities.

To prove this, we observe first that 2.2 implies that G is a composition of fuzzy
linear interval strips. Each of the strips can be adequately simulated by an appro-
priate 5-vertex strip; if we make the corresponding composition of these simplified
strips, we obtain a line graph, for which Edmonds’ theorem gives the stable set
polytope; and now we replace the simplified strips by the original strips, one by one,
and check the effect on the stable set polytope at each step. We omit further details.

More recently, Eisenbrand, Oriolo, Stauffer and Ventura [11] have solved the
same question for the case that was still open, for fuzzy circular interval graphs, and
hence completed the answer to Ben Rebea’s question.
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3 Claw-free graphs with α(G) ≥ 4

Let us begin on the structure theorem for general claw-free graphs. In this section
we consider the case of claw-free graphs G with α(G) ≥ 4. One way to make such a
graph is to take the disjoint union of two claw-free graphs G1, G2 neither of which is
complete, and we cannot hope yet to explain the structure of graphs constructed this
way in any finer detail, because at this stage we know nothing about G1, G2 (since
they might not satisfy α(G1), α(G2) ≥ 4). Thus we had better confine ourselves to
connected graphs.

Another way one might try to confound the attempt to describe all connected
claw-free graphs G with α(G) ≥ 4 is the following. For i = 1, 2, let ai be a simplicial
vertex of a connected claw-free graph Gi; and construct G as follows. G is obtained
from the disjoint union of G1 \a1 and G2 \a2 by making every neighbour of a1 in G1

adjacent to every neighbour of a2 in G2. (This is a version of the strip combinations
of the previous section, except now we are just using one simplicial vertex instead of
two.) The graph G we produce is claw-free and connected (except in trivial cases),
and may well satisfy α(G) ≥ 4, even if α(G1) ≤ 3 or α(G2) ≤ 3 (or both). So to
describe all connected claw-free graphs with α(G) ≥ 4, we will also need to describe
all connected claw-free graphs G1 with α(G1) ≤ 3 that have a simplicial vertex.
Curiously, this can be done; almost all the types of connected claw-free graphs G1

with α(G1) ≤ 3 cannot have simplicial vertices, and we can explicitly describe those
that do. Nevertheless, to simplify the presentation here, we prefer to avoid this step.

Instead, we assume that our graph G cannot be constructed from graphs G1, G2

in the way just described. More precisely, let us say that G admits a 1-join if V (G)
can be partitioned into four sets A1, B1, A2, B2, where A1 ∪ A2 is a clique, B1, B2

are nonempty, and there are no edges between A1 ∪ B1 and A2 ∪ B2 except those
between A1, A2. Except in trivial cases, the claw-free graphs that are expressible as
compositions in the way described earlier in this section are precisely the claw-free
graphs that admit 1-joins. So henceforth in this section we assume that G does not
admit a 1-join. (Note that this implies that G is connected.)

For such graphs we can describe the structure completely; there is a result anal-
ogous to 2.2, except that we need two new kinds of strips, the following:

• Let G be the graph with vertex set {v1, . . . , v13} and with adjacency as follows.
v1- · · · -v6 is a hole in G of length 6. Next, v7 is adjacent to v1, v2; v8 is adjacent
to v4, v5; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent to v3, v4, v5, v6, v9; v11

is adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent to v2, v3, v5, v6, v9, v10; and
v13 is adjacent to v1, v2, v4, v5, v7, v8. Let X ⊆ {v11, v12, v13}; then the strip
(G \ X, v7, v8) is called an XX-strip.

• Let n ≥ 0. Let A = {a0, a1, . . . , an}, B = {b0, b1, . . . , bn} and C = {c1, . . . , cn}
be three cliques, pairwise disjoint. Let G be the graph with vertex set A∪B∪C
and with adjacency as follows. For 0 ≤ i, j ≤ n, let ai, bj be adjacent if and
only if i = j > 0, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci be adjacent to aj, bj

if and only if i 6= j 6= 0. Let X ⊆ A ∪ B ∪ C with a0, b0 /∈ X; then the strip
(G \ X, a0, b0) is called an antihat strip.

One version of the structure theorem in this case is the following:
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3.1 For every claw-free graph G with α(G) ≥ 4, if G does not admit a 1-join and
there is no homogeneous pair of cliques in G, then either G is a circular interval
graph, or G is a composition of linear interval strips, XX-strips, and antihat strips.

The foregoing is the analogue of 2.1. There is also an analogue of 2.2, using
“fuzzy” XX-strips and antihat strips, but we omit the details. The proof of 3.1 is
long, about 100 pages or so, and most of it appears in [5]. We sketch some of the
proof later in the paper.

4 The case α(G) = 3

What about an analogue of 3.1 for claw-free graphs G with α(G) = 3? There
are several extra complications now. First, we have to remember the icosahedron
and its induced subgraphs; they are claw-free, and not all accounted for yet. (And
there are more graphs of this type to be listed.) Second, and much worse, there
are the antiprismatic graphs (they require a couple of sections of their own – see
sections 6, 7). Third, there is another composition operation that shows up now (and
the only explanation we see for some of these graphs is that they are compositions
of smaller graphs in the same class, so the structure theorem seems to need to use
the new composition).

The composition is as follows. For i = 1, 2, let Gi be claw-free and non-null,
and let Ai, Bi, Ci be disjoint cliques of Gi with union V (Gi). Let G be the graph
obtained from the disjoint union of G1, G2 by making every vertex of G1 adjacent
to every vertex of G2 except that there are no edges between A1 and A2, between
B1 and B2, and between C1 and C2. It is easy to see that G is claw-free. We say
that G is a hex-join of G1, G2. Note that if G admits a hex-join, then the sets
A1 ∪B2, B1 ∪ C2 and C1 ∪ A2 are three cliques with union V (G), and consequently
no graph G with α(G) > 3 is expressible as a hex-join.

If V (G) is not the union of three cliques (that is, if χ(G) ≥ 4) then G is not
expressible as a hex-join; and as for graphs G with χ(G) ≤ 3, while they might admit
hex-joins, the building blocks from which they are made are severely restricted. Thus
there is an advantage to handling the two cases χ(G) ≥ 4 and χ(G) ≤ 3 separately.

For the first case, we have the following.

4.1 For every claw-free graph G with α(G) ≤ 3 and χ(G) ≥ 4, if there is no
homogeneous pair of cliques in G, then either G is a circular interval graph, or G
belongs to the class S6 (defined in the next section), or G is the graph of an XX-strip,
or G is a composition of linear interval strips and antihat strips, or G is an induced
subgraph of the icosahedron, or G is antiprismatic.

We can tighten up the case when G is a composition of linear interval strips
and antihat strips, but we omit those details for simplicity. There is also a “fuzzy”
version of this, without the hypothesis that there is no homogeneous pair of cliques
in G, but it is quite complicated and again we omit it.

If H is a graph, its line graph is denoted by L(H). For the second case, we have:

4.2 For every claw-free graph G with χ(G) ≤ 3, if there is no homogeneous pair of
cliques in G and G admits no hex-join, then either G is a circular interval graph, or
a subgraph of L(K3,n) for some n, or the graph of an antihat strip, or antiprismatic.
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There is more work to be done on this yet; this is still a decomposition theorem,
and we need to convert it to a structure theorem. We think that every claw-free
graph G with χ(G) ≤ 3 can be built by a series of hex-joins, starting from graphs
which are “fuzzy” versions of the graphs of 4.2; but these details are not yet worked
out.

5 The decomposition theorem

To sketch the proofs of 3.1, 4.1 and 4.2, we need another definition. Suppose that
V0, V1, V2 are disjoint subsets with union V (G), and for i = 1, 2 there are subsets
Ai, Bi of Vi satisfying the following:

• for i = 1, 2, Ai, Bi are cliques, Ai ∩Bi = ∅ and Ai, Bi and Vi \ (Ai ∪Bi) are all
nonempty

• A1 is complete to A2, and B1 is complete to B2, and there are no other edges
between V1 and V2, and

• V0 is a clique; and for i = 1, 2, V0 is complete to Ai ∪ Bi and anticomplete to
Vi \ (Ai ∪ Bi).

In this case we say that G admits a generalized 2-join. Define classes S0, . . . ,S6 as
follows.

• S0 is the class of all line graphs.

• S1 is the class of all induced subgraphs of the icosahedron.

• S2 is the class of all graphs of XX-strips.

• S3 is the class of all circular interval graphs.

• S4 is the class of all induced subgraphs of the graph G defined as follows. Let
H be the graph with seven vertices h0, . . . , h6, in which h1, . . . , h6 are pairwise
adjacent and h0 is adjacent to h1. Then G is obtained from L(H) by adding
one new vertex, adjacent precisely to the members of V (L(H)) = E(H) that
are not incident with h1 in H.

• S5 is the class of graphs of antihat strips.

• S6 is the class of all induced subgraphs of the graph G defined as follows.
Let n ≥ 0, and let V (G) be the disjoint union of sets A,B,C,D, where A =
{a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn} and D = {d1, d2, d3, d4, d5}.
The edges of G are as follows.

– A,B,C are cliques

– ai, bi are adjacent for 1 ≤ i ≤ n, and ci is adjacent to aj , bj for 1 ≤ i, j ≤ n
with i 6= j

– d1 is completely adjacent to A ∪ B ∪ C; d2 is completely adjacent to
A ∪ B ∪ {d1}; d3 is completely adjacent to A ∪ {d2}; d4 is completely
adjacent to B ∪ {d2, d3}; and d5 is adjacent to d3, d4.
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The results 3.1, 4.1 and 4.2 are all consequences of the following decomposition
theorem.

5.1 Let G be claw-free and connected. Then either

• G ∈ S0 ∪ · · · ∪ S6, or

• G admits either a homogeneous pair of cliques, a 1-join, a generalized 2-join,
or a hex-join, or

• G is antiprismatic.

This is the main theorem of [5]. The proof is very lengthy, about 100 pages.
The idea of the proof is, first we choose an appropriate graph H, and assume that
H is an induced subgraph of G; we analyze how the remainder of G can attach to
H, and infer that either G admits one of the decompositions or falls into one of
the classes. Then henceforth we can assume that G does not contain H, and we
repeat for some other choice of H. But making the right sequence of choices for H
is crucial, and took a great deal of experiment. The first choice should be that H
is the icosahedron; then it is easy to prove that either G = H or G admits one of
the decompositions. The same works when H is the icosahedron with one vertex
deleted. For technical reasons, it is then best to handle the case when H is the graph
of an XX-strip (without the vertices called v11, v12, v13). Now comes the first major
step, that H is a line graph of a cyclically 3-connected graph, as large as possible;
then as long as H is not too small, it is straightforward to analyze the structure of
the remainder of G relative to H, and we can prove what we want. In particular,
this works for “prisms” (two disjoint triangles joined by three disjoint paths) that
are not too small, so henceforth we can assume that G contains no such prisms.
Next we take H to be the largest induced cycle (“hole”) in G, and assume it has
length at least seven; since G contains no substantial prisms, G now tends to be a
circular interval graph (unless it contains some other configurations that we have to
handle), so we can assume all holes have length at most 6. And so on (and it gets
worse from here) – we continue through a long series of such steps, assuming that G
contains a certain subgraph H but does not contain any subgraph that we already
handled. We omit further details.

Using 5.1 to deduce 3.1, 4.1 and 4.2 are rather delicate inductions, and again we
omit the details.

6 Prismatic graphs – the non-orientable case

The results 3.1, 4.1 and 4.2 reduce the problem to that of understanding an-
tiprismatic graphs. These graphs are very dense, and it seems advantageous now to
work in terms of the complement graph; so we want to understand prismatic graphs.
We recall that G is prismatic if for every triangle T of G, every vertex of G not in
T has a unique neighbour in T .

If T1, T2 are two disjoint triangles of a prismatic graphs G, then the edges between
T1 and T2 provide a bijection from T1 to T2. We say G is orientable if there is a cyclic
orientation of each triangle such that for every pair of disjoint triangles, the matching
between them preserves the orientation, and non-orientable otherwise. It is helpful
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to divide the problem into two subproblems, the orientable and non-orientable cases.
In this section we discuss the non-orientable case.

Before we go on, we need some more definitions. Let us say the core of G is
the subgraph induced on the union of all triangles in G. If the core is 3-colourable
then G is orientable, as is easily seen. Let G be a prismatic graph; here are some
constructions that lead to more prismatic graphs. First, let T be a triangle of G,
say T = {a1, b1, c}. We say T is a leaf triangle at c if a1, b1 both only belong to one
triangle (namely, T ). If this is so, let H be the graph obtained from G by adding
new vertices a2, . . . , ak, b2, . . . , bk, where for 2 ≤ i ≤ k, ai has the same neighbours
as a1 in G \ {a1, b1, c}, and similarly bi has the same neighbours as b1, and ai, bi are
adjacent. Then H is prismatic, and we say it is obtained from G by multiplying a
leaf triangle.

Second, let C be the core of G, and let V (G) \ V (C) = {a1, . . . , an}. For 1 ≤
i ≤ n, let Ni be the set of neighbours of ai in C. (Thus each Ni is stable.) For
1 ≤ i ≤ n, let Ai be a set of new vertices, and let H be the graph obtained from C
by adding A1 ∪ · · · ∪ An, with adjacency as follows.

• For 1 ≤ i ≤ n, Ai is stable.

• For 1 ≤ i ≤ n, every vertex in Ai has the same neighbours in C as ai.

• For 1 ≤ i < j ≤ n, if Ni ∩Nj 6= ∅ then then there are no edges between Ai, Aj .

• For 1 ≤ i < j < k ≤ n, if (Ni, Nj , Nk) is a partition of V (C) into three stable
sets, then there is no triangle in Ai ∪ Aj ∪ Ak.

• Otherwise, adjacency within A1 ∪ · · · ∪ An are arbitrary.

(This is not quite as wild as it might appear. For instance, if i, j, k are as in the
fourth condition above, then the only restriction on the adjacency between Ai, Aj , Ak

is that Ai ∪Aj ∪Ak includes no triangle; none of these pairs of vertices are affected
by any of the other conditions, so in a sense the restrictions are “separable”. Note
also that if C is not 3-colourable, and in particular if G is not orientable, then the
fourth condition is vacuously satisfied.) Such a graph H is always prismatic, and we
say it is obtained from G by expanding around the core.

If we hope to obtain a structure theorem for all prismatic graphs, the above two
constructions will have to be accounted for in it.

Now let us begin on the non-orientable case. Here are two useful prismatic
graphs, that we call P1 and P2.

• P1 has nine vertices a1, a2, a3, b1, b2, b3, c1, c2, c3, and edges as follows. {c1, c2, c3}
is a triangle; for 1 ≤ i, j ≤ 3, ai is adjacent to bj; and for 1 ≤ i ≤ 3, ci is
adjacent to ai, bi.

• P2 has ten vertices x, y, a1, . . . , a8, and adjacency as follows. For 1 ≤ i ≤ 8,
ai is adjacent to ai−1, ai+1 and ai+4 (reading subscripts modulo 8); x, y are
adjacent; x is adjacent to a1, a3, a5, a7, and y is adjacent to a2, a4, a6, a8.

It is not difficult to show the following.
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6.1 Let G be prismatic. Then G is non-orientable if and only if some induced
subgraph of G is isomorphic to P1 or to P2.

To prove this, assign an arbitrary cyclic orientation to each triangle. Make
a graph H whose vertices are the triangles of G, and whose edges correspond to
disjoint pairs of triangles. Each edge of H acquires a sign, depending whether the
corresponding matching between the triangles preserves or reverses the cyclic orders
of the triangles. If every cycle of H has an even number of orientation-reversing
edges, then G is orientable. If not, we examine the shortest cycle of H with an odd
number of orientation-reversing edges; it is easy to show that it has length 3 or 4,
and the corresponding three or four triangles of G induce either P1 or P2.

Let us see some classes of prismatic graphs.

• The Schläfli graph has 27 vertices, and can be described as follows. Let N
be the set of all triples (i, j, k) where 1 ≤ i, j, k ≤ 3. The vertex set of G is
{ai,j,k : (i, j, k) ∈ N}. For distinct (i, j, k), (i′ , j′, k′) ∈ N , let ai,j,k and ai′,j′,k′

be adjacent if and only if either

– k = k′ and either i = i′ or j = j′, or

– k = k′ + 1 (mod 3) and i 6= j ′, or

– k = k′ + 2 (mod 3) and i′ 6= j.

This graph is much more symmetrical than is apparent from this description
— see [2], for instance. (Our thanks to Adrian Bondy, who identified this mys-
terious graph for us.) The Schläfli graph is antiprismatic, and so all induced
subgraphs of its complement are prismatic; we call them 1-prismatic.

• Let k ≥ 0, and let G have vertex set the disjoint union of five sets A =
{a1, . . . , ak}, B = {b1, . . . , bk}, C = {c1, . . . , ck}, D = {d1, . . . , dk}, and
{p, q, r, s, t}, with adjacency as follows.

– {p, q, t} and {r, s, t} are triangles, and A,B,C,D are stable

– p is completely adjacent to A ∪ B; q is completely adjacent to C ∪ D; r
is completely adjacent to A ∪ D; s is completely adjacent to B ∪ C

– for 1 ≤ i ≤ k, aibi, bici, cidi, diai are edges, and for 1 ≤ i, j ≤ k with
i 6= j, aicj and bidj are edges.

We say a graph is 2-prismatic if it is an induced subgraph of G for some choice
of k.

• Let G have vertex set the disjoint union of {a0, b0, d1, d2, d3} and {ai, bi, ci} (i =
1, . . . , k), where k ≥ 3. Let the edges of G be as follows:

– a0 is adjacent to a1, . . . , ak and to c1, . . . , ck; b0 is adjacent to b1, . . . , bk

and to c1, . . . , ck

– for 1 ≤ i ≤ k, ci is adjacent to ai, bi

– 1 ≤ i, j ≤ k with i 6= j, ai is adjacent to bj

– for i = 1, 2, 3, di is adjacent to ci and to c4, . . . , ck
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– for i, j ∈ {1, 2, 3} with i 6= j, di is adjacent to aj , bj .

Any graph that is an induced subgraph of such a graph G is said to be 3-
prismatic.

• Let G have vertex set the disjoint union of {x, y, z}, {a1, . . . , am, b1, . . . , bm}
and {c1, . . . , cn, d1, . . . , dn}, where m,n ≥ 2. Let the edges of G be as follows:

– x, y, z are pairwise adjacent

– x is adjacent to a1, . . . , am, b1, . . . , bm, and y is adjacent to c1, . . . , cn,
d1, . . . , dn

– ai, bi are adjacent for 1 ≤ i ≤ m, and cj , dj are adjacent for 1 ≤ j ≤ n

– for 1 ≤ i ≤ m and 1 ≤ j ≤ n, the subgraph induced on {ai, bi, cj , dj} is a
cycle of length 4.

Any graph that is an induced subgraph of G is said to be 4-prismatic.

We proved the following.

6.2 Let G be prismatic, containing P1 as an induced subgraph. Then G can be ob-
tained from a 1-, 2-, or 3-prismatic graph by multiplying leaf triangles and expanding
around the core.

6.3 Let G be prismatic, containing P2 as an induced subgraph, and not containing
P1. Then G can be obtained from a 1- or 4-prismatic graph by multiplying leaf
triangles and expanding around the core.

These results are the main theorems of [4]. In view of 6.1, this solves our problem
for the non-orientable case.

7 Prismatic graphs – the orientable case

In the orientable case, the graph may be 3-colourable, and if so then G might
admit a hex-join. (Remember we are working in the complement now.) To postpone
the problems with hex-joins, let us first assume that the core of G is not 3-colourable.
We say that G is a cycle of triangles graph if for some n ≥ 5 with n = 2 modulo 3,
there are pairwise disjoint stable subsets X1, . . . , X2n+1 of V (G) with union V (G),
such that, reading subscripts modulo 2n:

• for 1 ≤ i ≤ n, there is a nonempty subset X̂2i ⊆ X2i, and at least one of
X̂2i, X̂2i+2 has cardinality 1;

• for i ∈ {1, . . . , 2n} and all k with 2 ≤ k ≤ 2n − 2, let j ∈ {1, . . . , 2n} with
j = i + k modulo 2n:

(1) if k = 2 modulo 3 and there exist u ∈ Xi and v ∈ Xj , nonadjacent, then
i, j are even, and if k 6= 2, 2n − 2 then u /∈ X̂i and v /∈ X̂j;

(2) if k 6= 2 modulo 3 then Xi is anticomplete to Xj ;
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(Note that k = 2 modulo 3 if and only if 2n − k = 2 modulo 3, so these
statements are symmetric between i and j.)

• for 1 ≤ i ≤ n+1, X2i−1 is the union of three pairwise disjoint sets L2i−1,M2i−1, R2i−1;

• for 1 ≤ i ≤ n, X2i is anticomplete to L2i−1 ∪ R2i+1; X2i \ X̂2i is anticomplete
to M2i−1 ∪M2i+1; and every vertex in X2i \ X̂2i is adjacent to exactly one end
of every edge between R2i−1 and L2i+1;

• for 1 ≤ i ≤ n, if |X̂2i| > 1 then

(1) R2i−1 = L2i+1 = ∅;

(2) if u ∈ X2i−1 and v ∈ X2i+1, then u, v are nonadjacent if and only if they
have the same neighbour in X̂2i;

• for 1 ≤ i ≤ n, if |X̂2i| = 1, then

(1) R2i−1, L2i+1 are matched, and every edge between M2i−1 ∪ R2i−1 and
L2i+1 ∪ M2i+1 is between R2i−1 and L2i+1;

(2) the vertex in X̂2i is complete to R2i−1 ∪ M2i−1 ∪ L2i+1 ∪ M2i+1;

(3) if u ∈ X2i−1 and v ∈ X2i+1 are nonadjacent then u ∈ M2i−1 ∪ R2i−1 and
v ∈ L2i+1 ∪ M2i+1x.

(4) M2i−1, X̂2i−2 are matched and M2i+1, X̂2i+2 are matched.

We proved in [3] that:

7.1 Every cycle of triangles graph is prismatic and orientable, and its core is not
3-colourable. Conversely, if G is an orientable prismatic graph, and its core is not
3-colourable, then G is a cycle of triangles graph (with one exceptional case when G
has exactly five triangles).

Here is a sketch of the proof. The first statement is routine checking. For the
second, suppose that G is orientable prismatic, and its core is not 3-colourable.
Choose an orientation of each triangle as in the definition of “orientable”. Every
prismatic graph containing L(K3,3) as an induced subgraph either has 3-colourable
core or is not orientable; so G does not contain L(K3,3). Since also G does not
contain P1 (since it is orientable), it follows that for every triangle T of G, some
vertex wT ∈ T is in no other triangle. Let the other two vertices of T be uT , vT ,
where the orientation of T is the cyclic permutation uT 7→ vT 7→ wT 7→ uT . Let H
be the digraph formed by the directed edges (uT , vT ) as T ranges over all triangles of
G. Then as a graph, H has no triangles, and one can show that in every 4-edge path
of H, the middle vertex is the head of exactly one of the two middle edges. It follows
that the structure of H is very restricted. Moreover, H is connected (as a graph, not
as a digraph), for otherwise the hypergraph formed by the triangles of G would not
be connected and G would therefore have 3-colourable core, a contradiction; and H
must have a directed cycle (for otherwise again the core of G would be 3-colourable);
and then the theorem follows easily.

Now we turn to the case when the core is 3-colourable. Let us say that G is
triangle-connected if the hypergraph of triangles of G is connected.
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7.2 Let G be prismatic with 3-colourable core, and not triangle-connected. Then
there is a partition (C1, . . . , Ck) of V (G), and a 3-colouring (X,Y,Z) of V (G), with
the following properties:

• for 1 ≤ i ≤ k, C ∩ Ci is nonempty (where C is the core of G), and every
triangle of G is a subset of one of C1, . . . , Ck

• for 1 ≤ i ≤ k, the hypergraph of all triangles included in Ci is connected

• for 1 ≤ i < j ≤ k, if u ∈ Ci and v ∈ Cj are adjacent, then either u ∈ X and
v ∈ Y , or u ∈ Y and v ∈ Z, or u ∈ Z and v ∈ X

• for 1 ≤ i < j ≤ k, if u ∈ Ci and v ∈ Cj are nonadjacent, and either u ∈ X
and v ∈ Y , or u ∈ Y and v ∈ Z, or u ∈ Z and v ∈ X, then neither of u, v
belongs to C.

This tells us that we may add edges between non-core vertices without changing
the core, so that for all i with 1 ≤ i < k, the partition C1 ∪ · · · ∪Ci, Ci+1 ∪ · · · ∪ Ck

corresponds to a hex-join of G. Consequently, if we understand triangle-connected
prismatic graphs with 3-colourable core, then we may construct all others by taking
a sequence of them hooked together as in 7.2.

Let us say a prismatic graph is large if for every subset S ⊆ V (G) with |S| ≤ 2,
there is a triangle disjoint from S. The prismatic graphs that are not large are
easy to describe explicitly, but we omit the details. From now on we shall only be
concerned with large prismatic graphs.

7.3 Let G be prismatic, large and triangle-connected, with 3-colourable core, such
that its core is not uniquely 3-colourable. Then the core is an induced subgraph of
L(K3,3).

The proof is easy, but we omit it. Since in this case we understand the core com-
pletely, it is straightforward to enumerate the possible adjacencies of the non-core
vertices, and we omit the details.

There remains the case when the core is uniquely 3-colourable. Let us say that
G is a path of triangles graph if it satisfies the same axioms as a cycle of triangles
graph, except we make a linear sequence rather than a circular sequence. More
precisely, we say that G is a path of triangles graph if for some integer n ≥ 1 there
are pairwise disjoint stable subsets X1, . . . , X2n+1 of V (G) with union V (G), such
that:

• for 1 ≤ i ≤ n, there is a nonempty subset X̂2i ⊆ X2i; |X̂2| = |X̂2n| = 1, and
for 0 < i < n, at least one of X̂2i, X̂2i+2 has cardinality 1;

• for 1 ≤ i < j ≤ 2n + 1

(1) if j − i = 2 modulo 3 and there exist u ∈ Xi and v ∈ Xj , nonadjacent,
then i, j are even, and if j > i + 2 then u /∈ X̂i and v /∈ X̂j;

(2) if j − i 6= 2 modulo 3 then Xi is anticomplete to Xj;

• for 1 ≤ i ≤ n+1, X2i−1 is the union of three pairwise disjoint sets L2i−1,M2i−1, R2i−1,
where L1 = M1 = M2n+1 = R2n+1 = ∅;
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• if R1 = ∅ then n ≥ 2 and |X̂4| > 1, and if L2n+1 = ∅ then n ≥ 2 and
|X̂2n−2| > 1;

• for 1 ≤ i ≤ n, X2i is anticomplete to L2i−1 ∪ R2i+1; X2i \ X̂2i is anticomplete
to M2i−1 ∪M2i+1; and every vertex in X2i \ X̂2i is adjacent to exactly one end
of every edge between R2i−1 and L2i+1;

• for 1 < i < n, if |X̂2i| > 1 then

(1) R2i−1 = L2i+1 = ∅;

(2) if u ∈ X2i−1 and v ∈ X2i+1, then u, v are nonadjacent if and only if they
have the same neighbour in X̂2i;

• for 1 ≤ i ≤ n, if |X̂2i| = 1, then

(1) R2i−1, L2i+1 are matched, and every edge between M2i−1 ∪ R2i−1 and
L2i+1 ∪ M2i+1 is between R2i−1 and L2i+1;

(2) the vertex in X̂2i is complete to R2i−1 ∪ M2i−1 ∪ L2i+1 ∪ M2i+1;

(3) if u ∈ X2i−1 and v ∈ X2i+1 are nonadjacent then u ∈ M2i−1 ∪ R2i−1 and
v ∈ L2i+1 ∪ M2i+1

(4) if i > 1 then M2i−1, X̂2i−2 are matched, and if i < n then M2i+1, X̂2i+2

are matched.

If G is a 3-colourable graph with no triangles, we say that G is a whirl. We
proved in [3] that:

7.4 Every large path of triangles graph is prismatic and triangle-connected, with
a uniquely 3-colourable core. Conversely, let G be large, prismatic and triangle-
connected, with a non-null, uniquely 3-colourable core. Then G is 3-colourable; and
either G is a path of triangles graph, or there is a partition (X,Y ) of V (G) so that
all triangles are subsets of X, and G|X is a path of triangles graph, and G|Y is a
whirl, and we can add edges between non-core vertices in X and Y without changing
the core, so that the partition (X,Y ) corresponds to a hex-join of the complement.

This completes the statement of our structure theorem for claw-free graphs.

8 Colouring claw-free graphs

In this section we discuss some aspects of the proof of the following (proved in
[7]).

8.1 Let G be claw-free and connected, with α(G) ≥ 3. Then χ(G) ≤ 2ω(G).

Note that the theorem is asymptotically best possible, for if G is as in the
definition of “2-prismatic graph” in section 6, then H is obtained from G by deleting
the vertices q, r, s, t, then H is claw-free and connected, α(H) ≥ 3, ω(H) = k + 1,
and χ(H) = 2k. Before we discuss the proof of 8.1, we remark that there is an easy
proof of the following weakening (∆(G) denotes the maximum degree of vertices of
G):
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8.2 Let G be claw-free and connected, with α(G) ≥ 3. Then ∆(G) ≤ 4(ω(G) − 1),
and consequently χ(G) ≤ 4(ω(G) − 1).

Proof. The second statement follows from the first by Brook’s theorem. For the
first we proceed by induction on |V (G)|. Let v be a vertex of maximum degree ∆(G).
Since α(G) ≥ 3 and G is claw-free, there is a vertex different from and nonadjacent
to v; and consequently we may choose u nonadjacent to v so that G\u is connected.
If α(G\u) ≥ 3, then from the inductive hypothesis, ∆(G\u) ≤ 4(ω(G\u)−1); and
since ∆(G) = ∆(G \ u) (because u, v are nonadjacent) and ω(G \ u) ≤ ω(G), the
desired result would hold. We may assume then that α(G\u) = 2. Let N,M be the
sets of neighbours and nonneighbours of u respectively (thus N ∪M = V (G) \ {u}).
Since G is connected, there exists n ∈ N . If x, y ∈ M are nonadjacent, then at least
one of x, y is adjacent to n, since α(G\u) = 2; and not both are adjacent to n, since
otherwise n would have three nonadjacent neighbours, which is impossible since G
is claw-free. Thus n is adjacent to exactly one of x, y. It follows that the set of
neighbours of n in M is a clique, and so is the set of nonneighbours of n in M , and
therefore M is the union of two cliques. Since α(G) ≥ 3, there exist m1,m2 ∈ M ,
nonadjacent. Now let Ni be the set of all neighbours of mi in N (i = 1, 2). We
have already seen that every vertex of N is adjacent to exactly one of m1,m2, and
so N1 ∪ N2 = N and N1 ∩ N2 = ∅. If x, y ∈ N1 are nonadjacent, then {x, y, n2}
is stable, contrary to α(G \ u) = 2. Hence N1 ∪ {u} is a clique, and similarly so is
N2 ∪ {u}. Thus V (G) is the union of four cliques, and u is in two of them, and so
4ω(G) ≥ |V (G)| + 1 ≥ ∆(G) + 4, as required. This proves 8.2.

However, improving the factor of 4 in 8.2 to 2 seems to be very difficult. The only
proof we have of 8.1 is an application of the structure theorem for claw-free graphs;
and not only is this theorem difficult itself, but also the application is difficult. Here
are some of the ideas. There are two easy tricks that we used many times, the
following. First, if there is a vertex whose set of neighbours is the union of two
cliques, then its degree is at most 2ω(G)−2, and we can delete it and use induction.
And quite often there is such a vertex. For instance, if G is expressed as a generalized
2-join, then using the notation of the definition of “generalized 2-join”, any vertex
in A1 has neighbour set the union of two cliques, as is easy to see. Or if G is a
circular interval graph, then the neighbour set of every vertex is the union of two
cliques. But there does not always exist such a vertex; for instance, in the Schläfli
graph there is no such vertex. Every vertex has degree 16, and yet ω(G) = 6.

The second trick is, that we win if ω(G) ≥ |V (G)|/4. For if |V (G)| is even and
there is a perfect matching in G, then χ(G) ≤ |V (G)|/2 ≤ 2ω(G); while if |V (G)|
is odd then ω(G) ≥ (|V (G)| + 1)/4, so if there is a near-perfect matching in G then
χ(G) ≤ (|V (G)| + 1)/2 ≤ 2ω(G) as required. So we can assume that G contains no
perfect or near-perfect matching, and therefore Tutte’s maximum matching theorem
can be applied, and again it follows easily (but using the hypothesis that G is
connected and claw-free and α(G) ≥ 3; we omit the details) that χ(G) ≤ 2ω(G). So
we may assume that V (G) is not the union of four cliques.

These two tricks get us a long way, and suffice to handle non-antiprismatic
graphs, but for antiprismatic graphs the proof gets much more complicated and
we omit the details.

We mention that an analogous statement holds in the complement, the following.
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8.3 Let G be connected and claw-free, with α(G) ≥ 3. Then χ(G) ≤ 2ω(G).

This is also proved in [7]. Again, it is asymptotically best possible; for if G =
L(Kn), then χ(G) ≥ n − 2, and ω(G) ≤ n/2. Its proof is not an application of the
structure theorem for claw-free graphs, however; we found a direct proof. Roughly,
the argument is as follows. Choose a tree T of G so that every vertex of G has a
neighbour in T , with |V (T )| ≤ 2α(G) and such that some three vertices of T are
pairwise nonadjacent in G. (It is easy to see that this exists.) For every ordered
pair (u, v) of adjacent vertices of T , let Nu,v be the set of all vertices of G \ (X ∪Y )
that are adjacent to u and not v. For each (u, v), Nu,v ∪ {u} is a clique, and every
vertex of G belongs to one of these cliques; and so χ(G) ≤ 2|E(T )| ≤ 4ω(G). In
fact we can cover all the vertices of G without using all ordered pairs (u, v), and
by carefully choosing the right subset of pairs (plus possibly one extra pair, not an
edge of the tree) we show that χ(G) ≤ 2ω(G).

9 Complexity issues

We have been finding an “explicit construction” for all claw-free graphs, but
it is not quite clear what is meant by this. We has better mean more than just a
polynomial-time recognition algorithm, for there is an obvious recognition algorithm
for claw-free graphs, with running time O(n4) when the input has n vertices. So
what then do we mean by an “explicit construction”? For instance, here is another
attempt at an“explicit construction” – given a claw-free graph G that we have
already constructed, choose a subset X ⊆ V (G) such that adding a vertex with
neighbour set X will not introduce a claw; and add a vertex with neighbour set X.
We fervently hope that this doesn’t count as solving the problem, or else we have
been wasting our time; and yet why doesn’t it? For one can easily test in polynomial
time whether such a set X has the property we require; on what grounds do we
exclude this “construction”?

It is our feeling that we should not be permitted to “guess” the set X; if we
want to use this set X to construct a larger graph, we should inductively have a
construction for (G,X), not just for G. With that in mind, let us go back through
what we proved, and check that we pass this test. We don’t, quite; for instance, we
allow outselves the operation of making a hex-join. Making a hex-join requires two
smaller graphs G1, G2 that we already have constructed, and for each of them we
need a partition of its vertex set into three cliques. Unfortunately we are currently
“guessing” these cliques; if we want to use hex-joins, we should really be constructing
quadruples (G,A,B,C) where A,B,C are disjoint cliques with union V (G), and not
just constructing G. Happily, this can be done. Such a partition (A,B,C) is just a
3-colouring of G, and as we have seen, in most cases G does not admit a 3-colouring;
when it does, in most cases the 3-colouring is unique; and when it is not unique, we
can describe the graph explicitly and list all the 3-colourings. So that problem can
be overcome.

There is a similar problem with homogeneous pairs, and that one we found more
difficult. We believe it is solved, but we are still checking.
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