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Abstract

The graphs with no five-vertex induced path are still not understood. But in the triangle-free case,
we can do this and one better; we give an explicit construction for all triangle-free graphs with no six-
vertex induced path. Here are three examples: the 16-vertex Clebsch graph, the graph obtained from
an 8-cycle by making opposite vertices adjacent, and the graph obtained from a complete bipartite
graph by subdividing a perfect matching. We show that every connected triangle-free graph with
no six-vertex induced path is an induced subgraph of one of these three (modulo some twinning and
duplication).



1 Introduction

Graphs in this paper are without loops and multiple edges, and finite unless we say otherwise. If G
is a graph and X ⊆ V (G), G[X] denotes the subgraph induced on X; and we say that G contains H
if some induced subgraph of G is isomorphic to H. If G has no induced subgraph isomorphic to H,
we say G is H-free, and if C is a set of graphs, G is C-free if G is H-free for all H ∈ C. We denote the
k-vertex path graph by Pk. Our objective in this paper is to find a construction for all {P6,K3}-free
graphs.

Constructing all P5-free graphs remains open, although it has been heavily investigated, mostly
because P5 is one of the minimal graphs for which the Erdős-Hajnal conjecture [2, 3] is unsolved. It
is also not clear whether we know how to construct all K3-free graphs (it depends on what exactly
counts as a “construction”). But we can construct all {P5,K3}-free graphs, and indeed all {P6,K3}-
free graphs, and the answer is surprisingly pretty.

Figure 1: The Clebsch graph

The Clebsch graph, shown in figure 1, is the most interesting of the {P6,K3}-free graphs. Here
are three alternative definitions for it.

• Take the five-dimensional cube graph, and identify all pairs of opposite vertices.

• Take the elements of the field GF (16), and say two of them are adjacent if their difference is
a cube.

• Start with the Petersen graph; for each stable subset X of cardinality four (there are five such
subsets) add a new vertex adjacent to the vertices in X; and then add one more vertex adjacent
to the five new vertices. (This third definition is the least symmetric but in practise we found
it the most helpful).

1



For every edge uv of the Clebsch graph, the subgraph induced on the set of vertices nonadjacent
to u, v is a three-edge matching, and from this it follows that the graph is P6-free. We say G is
Clebschian if G is contained in the Clebsch graph.

There is another kind of {P6,K3}-free graph that we need to discuss, the following. Take a
complete bipartite graph Kn,n with bipartition {a1, . . . , an}, {b1, . . . , bn}, and subdivide each edge
aibi; that is, for 1 ≤ i ≤ n we delete the edge aibi, and add a new vertex ci adjacent to ai, bi. This
graph, H say, is {P6,K3}-free, and we say a graph G is climbable if it is isomorphic to an induced
subgraph of H for some n.

Figure 2: A climbable graph

Our aim is to prove something like “every {P6,K3}-free G is either climbable or Clebschian”,
but by itself this is not true. For instance, we have to assume G is connected, because otherwise the
disjoint union of two Clebsch graphs would be a counterexample. But just assuming connectivity is
not enough. For instance, if v is a vertex of a {P6,K3}-free graph, then we could add a new vertex
with the same neighbours as v, and the enlarged graph would still be {P6,K3}-free. Let us say two
vertices are twins if they are nonadjacent and have the same neighbour sets. Thus we need to assume
that G has no twins. There are two other “thickening” operations of this kind that we define later.

Our main result is the following (although some definitions have not yet been given):

1.1 Let G be a connected {P6,K3}-free graph without twins. Then either

• G is Clebschian, climbable, or a V8-expansion; or

• G admits a nontrivial simplicial homogeneous pair.

There has already been work on this and similar questions:

• In [7], Randerath, Schiermeyer and Tewes proved that every connected {P6,K3}-free graph
which is not 3-colourable, and in which no vertex dominates another, is an induced subgraph
of the Clebsch graph.

• Brandstädt, Klembt and Mahfud [1] proved that every {P6,K3}-free graph can be decomposed
in a certain way that implies that all such graphs have bounded clique-width.

• Lozin [6] gave a construction for all bipartite graphs not containing what he called a “skew
star”, obtained from P6 by adding one more vertex adjacent to its third vertex.
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• Lokshantov, Vatshelle and Villanger [5] found a polynomial-time algorithm to find a stable set
of maximum weight in a P5-free graph; and more recently Grzesik, Klimošová, Pilipczuk and
Pilipczuk [4] claim to have the same for P6-free graphs.

2 An overview of the proof

The proof of 1.1 divides into a number of cases, and here we give a high-level survey of how it
all works. We define some “thickening” operations, that when applied to {P6,K3}-free graphs,
will produce larger graphs that are still {P6,K3}-free. One of the thickening operations involves
substituting a bipartite P6-free graph for an edge, so we need to understand the bipartite P6-free
graphs, and it is convenient to postpone this until 5.3. Except for that, it suffices to understand the
{P6,K3}-free graphs that cannot be built from a smaller graph by means of one of the thickening
operations (let us temporarily call such graphs “unthickened”).

Figure 3: The graph V8

Let Q5 be the graph obtained from P6 by deleting one of its two middle vertices, that is, the
disjoint union of a P3 and a P2; and let V8 be the graph obtained from a cycle of length eight by
making opposite pairs of vertices adjacent. The proof of 1.1 is in two stages. First, we figure out the
connected unthickened triangle-free graphs that contain Q5 but not P6. One such graph is V8; and it
turns out every connected unthickened triangle-free graph that contain Q5 but not P6 is contained
in V8.

Then, second, we find a construction for all unthickened connected {Q5,K3}-free graphs. We
prove that every such graph is either Clebschian, or climbable, or bipartite. (We figure out directly
how to construct all bipartite Q5-free graphs in section 5.)

Our main approach is via the size of the largest induced matching in G, denoted by µ(G). If M
is an induced matching, let VM be the vertices incident with edges in M , and let NM be the set of
vertices not in VM but adjacent to a vertex in VM . There are three easy but very useful observations
(5.1 and 6.2): if G is {Q5,K3}-free and M is a matching in G, then

• every vertex in NM has exactly one neighbour in every edge of M ;

• if u, v in NM are adjacent, then they are joined to opposite ends of each edge of M ;
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• if u, v in NM are nonadjacent, they are joined to the same end of all edges of M except at most
two.

This tells us most when M is large and NM is not stable; for instance, if G is unthickened, it tells us
(shown in 9.1) that either |M | ≤ 4 or NM is stable. So two special cases need attention, when µ(G)
is small, and when NM is stable. We do the case when NM is stable first, because we need some of
those lemmas to handle the case µ(G) = 2.

When NM is stable, the proof breaks into three subcases corresponding to the ways to choose a
set of vertices of an n-cube pairwise with Hamming distance at most 2. There are three essentially
different ways to choose such a set (namely, choose vertices all with distance at most one from some
given vertex; choose the vertices of a square; or choose the even vertices of a 3-cube). The first
subcase more-or-less implies that G is climbable, the second implies G is Clebschian, and the third
implies that G contains the Petersen graph, which makes it easy to handle. This is all done in
section 7.

Now we turn to the cases when µ(G) is small. The case µ(G) ≤ 1 is easy, and it turns out that
the µ(G) = 2 case is the most difficult, and we devote section 8 to it. The bipartite complement
of a graph G with a given bipartition (A,B) is the graph H with the same bipartition (A,B), in
which for a ∈ A and b ∈ B, a, b are adjacent in exactly one of G,H. To analyze the graphs G with
µ(G) = 2, we need to look at another parameter, ν(G), the size of the largest antimatching in G
(this is a bipartite induced subgraph whose bipartite complement is a perfect matching); and handle
the cases µ(G) = 2, ν(G) > 2 and µ(G) = 2, ν(G) ≤ 2 separately (in 8.1, 8.2 respectively). From
now on we can assume µ(G) ≥ 3, and the proof gets easier.

If NM is not stable, and G is unthickened, then |M | ≤ 4, and since we have already handled the
cases when |M | ≤ 2, we just have to figure out what happens when 3 ≤ |M | ≤ 4. In both cases G
turns out to be Clebschian (shown in 9.2, 9.3). That will complete the proof of the main theorem.

One annoyance is that the thickening operations are designed to not introduce P6, but they might
introduce Q5. Thus the construction that we give for all unthickened {Q5,K3}-free graphs does not
directly give a construction for all {Q5,K3}-free graphs. This can easily be remedied, and we do so
in section 10.

3 Thickening

A k-path in G means an induced subgraph isomorphic to Pk. Two induced subgraphs H,J of G are
anticomplete to each other if V (H) ∩ V (J) = ∅, and there is no edge of G between V (H) and V (J).
They are complete to each other if V (H) ∩ V (J) = ∅ and every vertex in H is adjacent to every
vertex in J . We use the same terminology for subsets of V (G) instead of induced subgraphs, and for
single vertices instead of subsets. We also say H misses J if H is anticomplete to J .

As we mentioned, adding twins to a graph with no 6-path will not introduce a 6-path. Let us
say a subset X ⊆ V (G) is a homogeneous set if X is stable and every vertex of G not in X is either
complete or anticomplete to X. (The requirement that X is stable is not the standard definition,
but we add it here to make the concept useful for constructing triangle-free graphs.) If G has a
homogeneous set X of cardinality at least two, then G is obtained from a smaller graph by adding
twins; so let us say a homogeneous set X of G is nontrivial if |X| ≥ 2.

There is another, similar concept, “homogeneous pairs”. A pair (A,B) of disjoint stable subsets of
V (G) is a homogeneous pair if every vertex not in A∪B is either complete or anticomplete to A, and
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either complete or anticomplete to B. (Again, the requirement that A,B are stable is not standard.)
It is nontrivial if |A| + |B| ≥ 3 and there is an edge between A and B, and A ∪ B 6= V (G) (this
again is slightly nonstandard; the requirement of an edge between A,B is not usual, but convenient
for us).

Let (A,B) be a nontrivial homogeneous pair in G, let J = G[A∪B], and let us identify the vertices
of A into one vertex a, and identify those in B to one vertex b (and thus a, b will be adjacent). The
graph we produce, H say, is contained in G (because there is an edge of G between A and B), and
so is J , and from the hypotheses they both have fewer vertices than G. We can regard G as being
constructed from H by “substituting J for the edge ab”.

This operation, applied to two triangle-free graphs H,J , produces a triangle-free graph G, but
it might well introduce 6-paths; we need to restrict it further to make it safe. A homogeneous pair
(A,B) of G is simplicial if every vertex in V (G) \ (A ∪ B) with a neighbour in A is adjacent to
every vertex in V (G) \ (A ∪ B) with a neighbour in B. Then, with H,J as above, if both H,J are
{P6,K3}-free, then G is also {P6,K3}-free (proved below); and so nontrivial simplicial homogeneous
pairs can be used safely to construct larger {P6,K3}-free graphs from smaller ones. A special case
is when there are no vertices in V (G) \ (A ∪ B) with a neighbour in B; in this case we say the
homogeneous pair is pendant.

To regard this as a construction, we need to understand how to construct the building blocks,
and in particular, how to build all bipartite P6-free graphs. That issue is addressed in section 5.

Let us prove the claim above.

3.1 Let (A,B) be a simplicial homogeneous pair in a graph G, and let H be obtained from G by
identifying the vertices of A into one vertex a, and identifying those in B to one vertex b, where a, b
are adjacent. Let J = G[A ∪B]. If H,J are both {P6,K3}-free then so is G.

Proof. Since A,B are stable, and the edge ab is not in a triangle of H, it follows that G is K3-free.
Let C be the set of vertices in V (G)\(A∪B) that are complete to A and anticomplete to B, and define
D similarly with A,B exchanged. Suppose that there is a 6-path P in G. Define A′ = A ∩ V (P ),
and define B′, C ′, D′ similarly. Since there is no 6-path in H, it follows that |A′ ∪B′| ≥ 2; and since
no two vertices of P are twins in P , it follows that A′, B′ 6= ∅.

Suppose that A′, B′ are anticomplete. Each vertex of A′ has a neighbour in P and hence in C ′;
and so |D′| ≤ 1 (since C ′ is complete to D′, because (A,B) is simplicial). Since each vertex of B′ has
a neighbour in P , it follows that |D′| = 1, and similarly |C ′| = 1. But then |A′| = |B′| = 1, and since
the vertices in C ′ ∪D′ have no more neighbours in P , it follows that |V (P )| = 4, a contradiction.

Consequently there exist adjacent vertices u ∈ A′ and v ∈ B′. Hence not both C ′, D′ are
nonempty (because C ′ is complete to D′), so we may assume that D′ = ∅. Since J is P6-free, C ′ 6= ∅;
and so v has only one neighbour in A. Hence v is an end of P , and indeed, so is every vertex in B′,
since each has a neighbour in A′. In particular |B′| ≤ 2. If A′ = {u} then B′ = {v}, contradicting
that H is P6-free; so there exists u′ 6= u ∈ A′. So |C ′| = 1, and the vertex in C ′, w say, has no
neighbours in P except u, u′. Consequently V (P ) ⊆ A′ ∪ B′ ∪ {w}. Since |B′| ≤ 2, it follows that
|A′| ≥ 3, contradicting that w has degree two in P . Thus there is no such P . This proves 3.1.

The second way we use homogeneous pairs is to construct a class of {P6,K3}-free graphs, as
follows. A bipartite graph J with bipartition (A,B) is an antisubmatching (relative to the given
bipartition) if every vertex in A has at most one nonneighbour in B, and vice versa. It is an
antimatching if every vertex in A has exactly one nonneighbour in B and vice versa. Let V8 be the
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graph with eight vertices a1, . . . , a8, in which distinct ai, aj are adjacent if j− i = 1, 4 or 7 modulo 8.
For i = 1, 2, let Ji be an antisubmatching relative to (Ai, Bi), with at least one edge; and let G be
obtained from V8 (with vertices a1, . . . , a8 as above) by substituting (A1, B1) for a1a5, substituting
(A2, B2) for a3a7, and possibly deleting some of a2, a4, a6, a8. We say G is a V8-expansion. Again, it
is easy to check that every V8-expansion is {P6,K3}-free.

Together, these two will suffice to account for the {P6,K3}-free graphs that contain Q5. We will
show the following (in the next section).

3.2 Let G be a connected {P6,K3}-free graph without twins that contains Q5. Then either

• G is a V8-expansion; or

• G admits a nontrivial simplicial homogeneous pair.

4 Graphs that contain Q5

We recall that Q5 is the disjoint union of a P3 and a P2, that is, the graph obtained from P6 by
deleting one of its two middle vertices. Certainly Q5-free graphs are P6-free, and it will turn out
that the converse is “nearly” true; and in particular the two classes described earlier (Clebschian
graphs and climbable graphs) are Q5-free. In this section we describe all triangle-free graphs that
are P6-free and not Q5-free. Some notation: we write p1-p2- · · · -pk to denote a path with vertices
p1, . . . , pk in order.

Let Q7 be the graph obtained from P7 by adding an edge between the second and fifth vertex.

4.1 Let G be a connected {P6,K3}-free graph without twins that contains Q5. Then G contains Q7.

Proof. Let R6 be obtained from P5 by adding a new vertex adjacent to the second vertex of P5;
and let S6 be obtained from P5 by adding a new vertex adjacent to the first and third vertices of P5.

(1) G contains one of R6, S6.

Since G contains Q5, there is a 3-path P and a 2-path Q in G that are anticomplete. Since G
is connected, there is a path R of G \V (P ∪Q) that misses neither of P,Q. By choosing R minimal,
it follows that G[V (Q) ∪ V (R)] is a path, and contains a 3-path S of G such that one of its ends, s
say, has a neighbour in P , and its other vertices do not. If s is adjacent to the middle vertex of P
then G contains R6; if s is adjacent to both ends of P then G contains S6, and if s is adjacent to
just one end of P , then G contains P6, which is impossible. This proves (1).

(2) If G contains R6 then G contains Q7.

Since G contains R6, there is a 4-path p1- · · · -p4, and two vertices a1, a2 both adjacent to p1 and not
to p2, p3, p4. Since a1, a2 are not twins, there is a vertex v adjacent to one of them and not the other,
say v is adjacent to a1 and not to a2. If v is adjacent to either of p3, p4, then the path a2-p1-a1-v can
be extended by v-p3-p4 or v-p4-p3, giving P6, a contradiction. Thus v is nonadjacent to both p3, p4.
If it is also nonadjacent to p2, then v-a1-p1-p2-p3-p4 is a 6-path, a contradiction. So v is adjacent to
p2, and so G contains Q7. This proves (2).
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(3) If G contains S6 then G contains Q7.

Since G contains S6, there is a 3-path p1-p2-p3, two more vertices a1, a2 adjacent to p1 and not
to p2, p3, and a vertex p0 adjacent to a1, a2 and not to p1, p2, p3. Since a1, a2 are not twins, we may
assume there is a vertex v adjacent to a1 and not to a2. Thus v is nonadjacent to p0, p1. If v is
adjacent to one of p2, p3, then the path a2-p0-a1-v can be extended to a 6-path via one of v-p2-p3 or
v-p3-p2, a contradiction; so v is nonadjacent to p2, p3, and G contains Q7. This proves (3).

From (1), (2) and (3), the result follows.

Now we can prove 3.2, which we restate:

4.2 Let G be a connected {P6,K3}-free graph without twins that contains Q5. Then either

• G is a V8-expansion; or

• G admits a nontrivial simplicial homogeneous pair.

Proof. By 4.1, G contains Q7, and so there is a pair of disjoint sets A1, A5 ⊆ V (G), both stable,
with |A1|, |A5| ≥ 2, such that G[A1 ∪ A5] is a connected bipartite graph and A1 is not complete to
A5; and a 3-path with vertices b6-b7-b3, such that b6 is complete to A5 (and consequently has no
neighbours in A1, since G is triangle-free), and b7, b3 have no neighbours in A1, A5. (The reason
for the subscript numbering will emerge later. Throughout we read subscripts modulo 8.) Choose
A1, A5 maximal with this property. Define A2, A4, A6, A8 by:

• let A2 be the set of all vertices of G that are complete to A1 ∪ {b3, b6};

• let A4 be the set complete to A5 ∪ {b3};

• let A6 be the set complete to A5 ∪ {b7} (thus, b6 ∈ A6); and

• let A8 be the set complete to A1 ∪ {b7}.

(1) Every vertex of G with a neighbour in A1 ∪A5 belongs to one of A1, A2, A4, A5, A6, A8.

Let v ∈ V (G) \ (A1 ∪ A5) with a neighbour in A1 ∪ A5. For i = 1, 5 let A′i be the set of neigh-
bours of v in Ai. Suppose first that A1 6= A′1 6= ∅. Since G[A1 ∪ A5] is connected, there is a vertex
a5 ∈ A5 with a neighbour a′1 ∈ A′1 and a neighbour a1 ∈ A1 \ A′1. Since the path a1-a5-a

′
1-v cannot

be extended to a 6-path, it follows that v is nonadjacent to b3, b7; and since v-a′1-a5-b6-b7-b3 is not
a 6-path, v is adjacent to b6. Consequently A′5 = ∅, and v can be added to A5, contradicting the
maximality of A5. This proves that either A′1 = A1 or A′1 = ∅.

Now suppose that A5 6= A′5 6= ∅, and consequently A′1 = ∅ and v is nonadjacent to b6. From the
maximality of A1, v is adjacent to one of b3, b7; but there exists a1 ∈ A1 with a neighbour a′5 ∈ A′5
and a neighbour a5 ∈ A5 \ A′5, and the path a5-a1-a

′
5-v can be extended to a 6-path via v-b3-b7 or

v-b7-b3, a contradiction. This proves that either A′5 = A5 or A′5 = ∅.
Suppose that A′1 6= ∅, and so A′1 = A1 and A′5 = ∅. If v is adjacent to b7 then v ∈ A8, so we

assume not. Now we must decide its adjacency to b6 and b3. If v is nonadjacent to both b6, b3,
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there is a 6-path v-a1-a5-b6-b7-b3 (where a1 ∈ A1 and a5 ∈ A5 are adjacent), a contradiction. If v
is adjacent to b6 and not to b3, then v can be added to A5, contrary to the maximality of A5. If
v is adjacent to b3 and not to b6, choose a1 ∈ A1 and a5 ∈ A5 nonadjacent; then there is a 6-path
a1-v-b3-b7-b6-a5, a contradiction. Thus v is adjacent to both b3, b6, and so v ∈ A2, as required.

Finally suppose that A′5 6= ∅, and so A′5 = A5 and A′1 = ∅, and v is nonadjacent to b6. From the
maximality of A1, v is adjacent to one of b3, b7, and hence belongs to one of A4, A6. This proves (1).

Choose A3, A7 ⊆ V (G) disjoint from A1, A2, A4, A5, A6, A8 and from each other, with b3 ∈ A3

and b7 ∈ A7, maximal such that

• A3 ∪A7 is anticomplete to A1 ∪A5;

• A7 is complete to b6; and

• the graph G[A3 ∪A7] is connected.

(2) For 1 ≤ i ≤ 8, Ai is stable, complete to Ai+1, and anticomplete to Ai+2, Ai+3.

There are many pairs to check, and first we check the sets and pairs not involving A3, A7. A1

is stable and complete to A2 by definition of A2, and anticomplete to A4 since every vertex in A1

has a neighbour in A5 which is complete to A4. A2 is stable and anticomplete to A4 since A2 ∪ A4

is complete to b3, and anticomplete to A5 since A2 is complete to b6. A4 is complete to A5 by
definition, and stable and anticomplete to A6 since A4 ∪A6 is complete to A5 6= ∅. A5 is stable and
complete to A6 by definition, and anticomplete to A8 since A8 is complete to A1 and every vertex in
A5 has a neighbour in A1. A6 is stable and anticomplete to A8 since A6 ∪A8 is complete to b7; and
A6 is anticomplete to A1 since every vertex in A1 has a neighbour in A5. A8 is complete to A1 by
definition, and so stable and anticomplete to A2. That does the sets and pairs not involving A3, A7.

Now A7 is anticomplete to A5, A1 by definition, and stable since A7 is complete to b6. Also A3

is anticomplete to A1, A5 by definition. Suppose that A3 is not stable, let u, v ∈ A3 be adjacent,
and choose a7 ∈ A7 adjacent to u (and hence not to v). Since u, v have neighbours in A7, they
are nonadjacent to b6. Choose a5 ∈ A5 and a1 ∈ A1 adjacent; then v-u-a7-b6-a5-a1 is a 6-path, a
contradiction. Thus A3 is stable.

Suppose that A6 is not complete to A7, and choose a6 ∈ A6 with a nonneighbour in A7. Since
a6 is adjacent to b7, and the graph G[A3 ∪ A7] is connected and A3 is stable, there exists a3 ∈ A3

adjacent to a neighbour a7 and a nonneighbour a′7 of a6 in A7. Choose a1 ∈ A1 and a5 ∈ A5, adja-
cent; then a1-a5-a6-a7-a3-a

′
7 is a 6-path, a contradiction. Thus A6 is complete to A7. Similarly, since

A8 is complete to b7, it follows that A8 is complete to A7; and similarly A3 is complete to A2, A4.
Since every vertex in A3 has a neighbour in A7, it follows that A3 is anticomplete to A6 ∪ A8, and
similarly A7 is anticomplete to A2 ∪A4. This proves (2).

(3) A2 is complete to A6, and A4 is complete to A8.

Choose a1 ∈ A1 and a5 ∈ A5, nonadjacent. If a2 ∈ A2 is nonadjacent to a6 ∈ A6, then a1-a2-b3-b7-a6-a5
is a 6-path, a contradiction. If a4 ∈ A4 is nonadjacent to a8 ∈ A8, a1-a8-b7-b3-a4-a5 is a 6-path, a
contradiction. This proves (3).
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Thus we have a certain symmetry between the sets A1, . . . , A8. It is not perfect, because
A2, A4, A8 might be empty (the other five sets are nonempty); and the bipartite graph between
the pair A1, A5 contains a P4, and between A2, A6 and A4, A8 it is complete. Thus for instance, if we
prove something about A8, we cannot deduce the same for A2 (using the symmetry that exchanges
Ai with A10−i for i = 2, 3, 4) until we have proved that A4 6= ∅. Let A0 be the set of vertices of G
not in any of the sets A1, . . . , A8.

(4) A0 is anticomplete to A1, A3, A5, A7.

Let v ∈ A0. It is anticomplete to A1 ∪ A5 by (1); and anticomplete to A7 since if not it could
be added to A3, contrary to the maximality of A3. If v has a neighbour a3 ∈ A3, choose a7 ∈ A7

adjacent to a3, and choose a1 ∈ A1 and a5 ∈ A5, adjacent. From the maximality of A7, v is nonad-
jacent to b6; and so v-a3-a7-b6-a5-a1 is a 6-path, a contradiction. This proves (4).

(5) We may assume that A8 6= ∅, and consequently the graph G[A1 ∪A5] is an antisubmatching.

If A2, A8 are both empty, then (A5, A1) is a nontrivial pendant homogeneous pair. If A4, A8 are
both empty, then (A1 ∪ A3, A5 ∪ A7) is a nontrivial simplicial homogeneous pair. Thus we may
assume that either A8 6= ∅ or both A2, A4 6= ∅.

Suppose that A8 = ∅; then A2, A4 6= ∅, and we may relabel the sets, exchanging Ai with A10−i for
i = 2, 3, 4. Thus we may assume that A8 6= ∅. Suppose that there exist a1, a

′
1 ∈ A1 and a5, a

′
5 ∈ A5

such that a1, a5 are adjacent, but the other three pairs are nonadjacent. Choose a6 ∈ A6 and a8 ∈ A8.
Then a′1-a8-a1-a5-a6-a

′
5 is a 6-path, a contradiction. Now suppose that some a′1 ∈ A1 is nonadjacent

to two vertices a5, a
′
5 ∈ A5. Since a5, a

′
5 are not twins, there is a vertex adjacent to exactly one of

them, and by (1) it belongs to A1; so we may assume there exists a1 ∈ A1 adjacent to a5 and not
to a′5, contrary to what we just proved. Similarly every vertex in A5 is nonadjacent to at most one
vertex in A1, and so G[A1 ∪A5] is an antisubmatching. This proves (5).

(6) For i = 1, 3, 5, 7, if Ai is not complete to Ai+4, and Ai+1, Ai+3 6= ∅, then every vertex in A0

is complete or anticomplete to Ai+1 ∪Ai+3, and consequently |Ai+1|, |Ai+3| = 1.

Suppose that ai+1 ∈ Ai+1 and ai+3 ∈ Ai+3, and v ∈ A0 is adjacent to ai+1 and not to ai+3.
Choose ai+4, a

′
i+4 ∈ Ai+4 and ai ∈ Ai such that ai is adjacent to ai+4 and not to a′i+4. (This is pos-

sible since Ai is not complete to Ai+4 and G[Ai ∪Ai+4] is connected.) Then v-ai+1-ai-ai+4-ai+3-a
′
i+4

is a 6-path, a contradiction. Similarly if v ∈ A0 has a neighbour in Ai+3 then it is complete to Ai+1.
Thus v is complete or anticomplete to Ai+1 ∪Ai+3. In particular, Ai+1 is a homogeneous set, and so
|Ai+1| = 1, and the same for Ai+3. This proves (6).

In particular, from (6) it follows that |A6| = |A8| = 1, and every vertex in A0 is complete or
anticomplete to A6 ∪ A8. Let A8 = {b8}. Let C7 be the set of vertices in A0 that are complete to
A6 ∪A8, let C3 be the set of vertices in A0 with a neighbour in A2 ∪A4, and let C0 = A0 \ (C3 ∪C7).
(It follows that C3 ∩C7 = ∅, since every vertex in A2 ∪A4 has a neighbour in A6 ∪A8.) Once again,
we mention that A6, A8 are nonempty, but A2, A4 may be empty.

(7) We may assume that A4 6= ∅, and consequently C0 = ∅, and |A3| = |A7| = 1.
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For suppose that A2, A4 = ∅, and so C3 = ∅. We claim that C0 is stable; for if not, there is a
3-path p1-p2-p3 where p3 ∈ C7 and p1, p2 ∈ C0, and this extends to a 6-path via p3-b6-a5-a1, choosing
a5 ∈ A5 and a1 ∈ A1 adjacent. Thus C0 is stable, and so (C7∪A7, C0∪A3) is a pendant homogeneous
pair; we may assume it is not nontrivial, and hence A0 = ∅, and |A3| = |A7| = 1. But then G is a
V8-expansion.

Thus we may assume that one of A2, A4 6= ∅, and from the symmetry (exchanging A8 with A6,
and exchanging Ai with A6−i for i = 1, 2) we may assume that A4 6= ∅. If there is a vertex in C0,
then since G is connected, there is an edge uv with u ∈ C0 and v ∈ C3 ∪ C7. But this extends to a
6-path, as follows. Choose w ∈ A2 ∪ A4 ∪ A6 ∪ A8 adjacent to v, with w = b6 if possible. It follows
that w 6= b8, by (6). If w = b6, choose a4 ∈ A4; then u-v-w-b7-b3-a4 is a 6-path. Similarly if w ∈ A4,
u-v-w-b3-b7-b6 is a 6-path; and if w ∈ A2, u-v-w-b3-b7-b8 is a 6-path. Thus C0 = ∅.

Now suppose that A3 is not complete to A7. Then by (6), |A4| = 1, and every vertex in A0 is
complete or anticomplete to A4∪A6, and therefore to A4∪A6∪A8. No vertex is complete to A4∪A8

since this set is not stable, and therefore every vertex in A0 is anticomplete to A4∪A6∪A8. Similarly
they are all anticomplete to A2, so A0 = ∅. Moreover |A2| ≤ 1 (because there are no twins), and
so G is a V8-expansion. We may therefore assume that A3 is complete to A7. Consequently A3 is a
homogeneous set, so |A3| = 1, and the same for A7. This proves (7).

(8) C3 is complete to C7, and |C7| ≤ 1.

Suppose that c3 ∈ C3 and c7 ∈ C7 are nonadjacent. If there exists a4 ∈ A4 adjacent to c3, then
c3-a4-b3-b7-b6-c7 is a 6-path; and similarly if there exists a2 ∈ A2 adjacent to c3 then c3-a2-b3-b7-b8-c7
is a 6-path, in both cases a contradiction. Thus C7 is complete to C3, so C7 is a homogeneous set,
and therefore |C7| ≤ 1. This proves (8).

If C3 is not complete to A4, then A2 = ∅ by (6); choose c3 ∈ C3 and a4 ∈ A4, nonadjacent. Since
we may assume that (A4, C3) is not a nontrivial pendant homogeneous pair, it follows that C7 6= ∅;
let C7 = {c7}. But then c3-c7-b6-b7-b3-a4 is a 6-path. Thus C3 is complete to A4. Hence |C3| ≤ 1,
and |A4| = 1, and similarly |A2| ≤ 1. But then the graph G[C3∪C7∪{b3, b7}] is an antisubmatching,
relative to the bipartition (C7 ∪ {b7}, A3 ∪ C3); and so G is a V8-expansion. This proves 4.2.

5 Bipartite Q5-free graphs

In view of 4.2 and 4.1, it suffices to understand {Q5,K3}-free graphs, and that is the content of the
remainder of the paper. In this section we handle the bipartite case, which is very different from
the non-bipartite case. In particular, Q5 is isomorphic to its own bipartite complement, and so we
should expect to prove something invariant under taking bipartite complements. (We recall that the
bipartite complement of a graph G with a given bipartition (A,B) is the graph H with the same
bipartition (A,B), in which for a ∈ A and b ∈ B, a, b are adjacent in exactly one of G,H.)

An induced matching in G is a set M of edges of G, pairwise vertex-disjoint, such that for all
distinct e, f ∈M , no end of e is adjacent in G to an end of f . We recall that VM denotes the set of
vertices incident with edges in M , and µ(G) denotes the cardinality of the largest induced matching
in G. We remark, and leave the reader to prove, that:
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5.1 If G is {Q5,K3}-free, and M is an induced matching in G, then every vertex in V (G) \ VM
with a neighbour in VM has a neighbour in each edge of M .

Let (A,B) be a bipartition of a graph G, and let A′ ⊆ A and B′ ⊆ B. We say the pair (A′, B′)
is matched if every vertex in A′ has exactly one neighbour in B′ and vice versa; and antimatched
if every vertex in A′ has exactly one nonneighbour in B′ and vice versa. If (A′, B′) is matched or
antimatched, it follows that |A′| = |B′|.

A half-graph is a bipartite graph with no induced two-edge matching; or equivalently, a graph
that admits a bipartition ({a1, . . . , am}, {b1, . . . , bn}) such that for all i, i′ with 1 ≤ i ≤ i′ ≤ m and
all j, j′ with 1 ≤ j ≤ j′ ≤ n, if ai, bj are adjacent then ai′ , bj′ are adjacent. (This equivalence is
well-known, but here is a proof that the first implies the second. Let (A,B) be a bipartition of a
bipartite graph with no induced two-edge matching, and choose a ∈ A with maximum degree; then
all its nonneighbours in B have degree zero. This proves that if A 6= ∅ then either some vertex in B
has degree zero, or some vertex in A is adjacent to all of B; and the claim follows by induction on
|V (G)|.) We need an extension of this.

We say a graph G is a half-graph expansion if there is a bipartition (A,B) of G, and partitions
(A1, . . . , An) of A and (B1, . . . , Bn) of B (where some of A1, . . . , An, B1, . . . , Bn may be empty), with
the following properties:

• for 1 ≤ i < j ≤ n, Ai is complete to Bj , and Aj is anticomplete to Bi;

• for 1 ≤ i ≤ n, either |Ai ∪Bi| = 1 or (Ai, Bi) is matched or antimatched.

It is easy to see that every half-graph expansion is Q5-free. We prove the converse:

5.2 Every Q5-free bipartite graph is a half-graph expansion.

Proof. Let G be Q5-free, and let (A,B) be a bipartition of G. Let us say a box is a maximal subset
C ⊆ V (G) such that either |C| = 1, or |C| ≥ 4 and (A ∩ C,B ∩ C) is matched or antimatched.

(1) Every two distinct boxes are disjoint.

Let C,C ′ be distinct boxes, and suppose that C ∩ C ′ 6= ∅. If |C| = 1 then C ⊆ C ′, and so
C = C ′ from the maximality of C, a contradiction. Consequently |C|, |C ′| ≥ 4, and we may assume
that |C| ≤ |C ′|. Since G is Q5-free, so is its bipartite complement, and since what we want to prove
is invariant under taking bipartite complements, we may assume (taking bipartite complements if
necessary) that (A∩C,B ∩C) is matched. Let A∩C = {a1, . . . , ak} and B ∩C = {b1, . . . , bk} where
ai, bj are adjacent if and only if i = j. It follows that k ≥ 2.

We may assume that C ′∩C ∩B 6= ∅; let bk ∈ C ′ say. Suppose that (C ′ \C)∩B is also nonempty,
and choose d ∈ (C ′ \ C) ∩B.

Suppose first that d is nonadjacent to ak. Since d /∈ C, 5.1 implies that d is anticomplete to
{a1, . . . , ak}. Since (A ∩ C ′, B ∩ C ′) is matched or antimatched, there exists c ∈ A ∩ C ′ adjacent to
d and not to bk. Consequently c /∈ {a1, . . . , ak}, and so again 5.1 implies that c is anticomplete to
{b1, . . . , bk}. But then ((A ∩ C) ∪ {c}, (B ∩ C) ∪ {d}) is matched, contradicting that C is a box.

This proves that d, ak are adjacent. By 5.1 d is complete to {a1, . . . , ak}. Since (A ∩ C ′, B ∩ C ′)
is matched or antimatched, there exists c ∈ A ∩ C ′ adjacent to bk and not to d. Consequently
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c /∈ {a1, . . . , ak}, and 5.1 implies that c is complete to {b1, . . . , bk}. If k ≥ 3, the 3-path a1-d-a2 misses
the edge cb3, a contradiction. So k = 2, and ({a1, a2, c}, {b1, b2, d}) is antimatched, contradicting
that C is a box.

We have shown that (C ′ \C)∩B = ∅; and since |C| ≤ |C ′|, it follows that C ∩B = C ′ ∩B. Since
C 6= C ′, some vertex v ∈ C ′ ∩A does not belong to C; but then by 5.1 v is complete or anticomplete
to C ∩B, contradicting that (A ∩C ′, B ∩C ′) is matched or antimatched and |B ∩C ′| = |C ′|/2 ≥ 2.
This proves (1).

(2) If C,C ′ are distinct boxes, then either

• C ∩A is complete to C ′ ∩B and C ∩B is anticomplete to C ′ ∩A, or

• C ∩A is anticomplete to C ′ ∩B and C ∩B is complete to C ′ ∩A.

By 5.1, applied to the bipartite complement of G if necessary (and trivially if |C ′| = 1), it follows
that every vertex in A∩C is complete or anticomplete to B∩C ′; and similarly every vertex in B∩C ′
is complete or anticomplete to A ∩ C. Consequently A ∩ C is complete or anticomplete to B ∩ C ′,
and similarly B ∩ C is complete or anticomplete to A ∩ C ′. Thus, by taking bipartite complements
if necessary, we may assume that A ∩ C is complete to B ∩ C ′, and |C|, |C ′| ≥ 4. Suppose that
B ∩ C is complete to A ∩ C ′. If both (A ∩ C,B ∩ C) and (A ∩ C ′, B ∩ C ′) are antimatched, then
(A∩ (C ∪C ′), B ∩ (C ∪C ′)) is antimatched, contradicting that C is a box. Thus, exchanging C,C ′ if
necessary, we may assume that (A∩C,B∩C) is not antimatched, and so |C| ≥ 6 and (A∩C,B∩C) is
matched. Choose a′ ∈ A∩C ′ and b′ ∈ B∩C ′, nonadjacent. Then there is a 3-path in G[(A∩C)∪{b′}]
that misses an edge of G[(B ∩ C) ∪ {a′}], a contradiction. This proves (2).

Let C be the set of all boxes. Let H be the digraph with vertex set C, in which for all distinct
C,C ′ ∈ C, C is adjacent from C ′ (that is, C ′C ∈ E(H)) if C ∩ A and C ′ ∩ B are complete to each
other, and C ∩B and C ′ ∩A are anticomplete to each other, and either

• C ∩A and C ′ ∩B are both nonempty, or

• C ∩B and C ′ ∩A are both nonempty.

From (2), if C,C ′ ∈ C are distinct, and C ∪ C ′ intersects both A,B, then either CC ′ ∈ E(H) or
C ′C ∈ E(H).

(3) H has no directed cycles.

Suppose it has, and take the shortest directed cycle D, with vertices C1-C2- · · · -Ck-C1 say, where
CiCi+1 ∈ E(D) for 1 ≤ i ≤ k (reading subscripts modulo k). It follows from the minimality of
k that for all distinct u, v ∈ V (D), if uv, vu /∈ E(D), then uv, vu /∈ E(H). Suppose first that
C1 ∩ A,C1 ∩ B 6= ∅. Then by (2), one of C1C3, C3C1 ∈ E(H), and so k = 3. Since C2C3 ∈ E(H),
either C2 ∩A and C3 ∩B are both nonempty, or C2 ∩B and C3 ∩A are both nonempty.

Suppose the first. Now C2∩A is complete to C3∩B, since C2C3 ∈ E(H); C1∩B is anticomplete
to C2 ∩A, since C1C2 ∈ E(H); and C1 ∩A is anticomplete to C3 ∩B, since C3C1 ∈ E(H). But then
an edge of G between C1 ∩ A and C1 ∩B misses an edge between C2 ∩ A and C3 ∩B, and so these
two edges make an induced matching in G whose vertex set is not included in a box, a contradiction.
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Now suppose that C2∩B and C3∩A are both nonempty. Then C2∩B is anticomplete to C3∩A,
since C2C3 ∈ E(H); C1 ∩ A is complete to C2 ∩ B, since C1C2 ∈ E(H); and C1 ∩ B is complete to
C3 ∩A, since C3C1 ∈ E(H). But then an edge of G between C1 ∩A and C2 ∩B misses a (carefully
chosen) edge between C3 ∩A and C1 ∩B, again a contradiction. This proves that each of C1, . . . , Ck

is a subset of one of A,B.
Consequently k is even, and we may assume that Ci ⊆ A for all odd i, and Ci ⊆ B for all even

i. Hence one of C1C4, C4C1 ∈ E(H), from (2), and so k = 4. Since C1C2 ∈ E(H), C1 is complete to
C2, and similarly C3 is complete to C4. Since C2C3 ∈ E(H), C2 is anticomplete to C3, and similarly
C4 is anticomplete to C1. But then an edge of G between C1, C2 misses an edge between C3, C4, a
contradiction. This proves (3).

From (3), we may number C as {C1, . . . , Cn} such that for all distinct i, j ∈ {1, . . . , n} with i < j,
Ci ∩ A is complete to Cj ∩ B, and Ci ∩ B is anticomplete to Cj ∩ A. Setting Ai = Ci ∩ A and
Bi = Ci ∩B for each i, we deduce that G is a half-graph expansion. This proves 5.2.

What about bipartite P6-free graphs? Let G be a bipartite graph. We say G is an antimatching
recursion if G has no twins, and either

• G is an antimatching; or

• G is disconnected, and each of its components is an antimatching recursion; or

• there is a vertex v such that the set of nonneighbours of v is stable, and the graph obtained by
deleting v is an antimatching recursion; or

• G admits a nontrivial simplicial homogeneous pair (A,B), such that if J denotes G[A∪B] and
H is the graph obtained from G by identifying the vertices in A and identifying the vertices in
B, then both H,J are antimatching recursions.

We have:

5.3 Let G be a bipartite graph without twins. Then G is P6-free if and only if G is an antimatching
recursion.

Proof. It is easy to check that all antimatching recursions are P6-free, and so we just need to prove
the converse. Let G be a P6-free bipartite graph without twins. We prove by induction on |V (G)|
that G is an antimatching recursion. We may assume that |V (G)| ≥ 3, and G is connected.

If there is a vertex v such that set of nonneighbours of v is stable, then the graph obtained by
deleting v has no twins and so is an antimatching recursion from the inductive hypothesis, and hence
so is G. We assume then that there is no such vertex v.

Suppose that G admits a nontrivial simplicial homogeneous pair (A,B), and choose (A,B) with
|A ∪ B| maximal. Let J denote G[A ∪ B] and let H be the graph obtained from G by identifying
the vertices in A into one vertex a say, and identifying the vertices in B into one vertex b. Let C,D
be respectively the sets of vertices in G that are not in A ∪B but are complete to A, and complete
to B, respectively. Then J has no twins, and so is an antimatching recursion from the inductive
hypothesis. If the same holds for H then the result follows, so we may assume that H has twins,
and consequently we may assume that there is some vertex d ∈ D, with neighbour set B ∪ C (so d
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and a are twins in H). From the maximality of A ∪ B, (A ∪ {d}, B) is not a nontrivial simplicial
homogeneous pair, and so V (G) = A∪B∪{d}; but then the set of nonneighbours of d in G is stable,
a contradiction.

Thus G has no nontrivial simplicial homogeneous pair. Let (A,B) be a bipartition. We have
shown that every vertex in A has a nonneighbour in B, and vice versa.

Suppose that G is a V8-expansion. With a2, a4, a6, a8 as in the definition of V8-expansion, it
follows since G is bipartite that either a2, a6 are both deleted, or a4, a8 are both deleted; and we
assume the first without loss of generality. Since G is connected, not both a4, a8 are deleted; so we
may assume that a4 ∈ A say. But then a4 is complete to B, a contradiction.

Thus G is not a V8-expansion, and so G is Q5-free, by 4.2. By 5.2, there are partitions (A1, . . . , An)
of A and (B1, . . . , Bn) of B (where some of A1, . . . , An, B1, . . . , Bn may be empty), such that:

• for 1 ≤ i < j ≤ n, Ai is complete to Bj , and Aj is anticomplete to Bi;

• for 1 ≤ i ≤ n, either |Ai ∪Bi| = 1 or (Ai, Bi) is matched or antimatched.

We may assume that Ai ∪Bi 6= ∅ for 1 ≤ i ≤ n.
If B1 = ∅ then A1 6= ∅, and every vertex in A1 is complete to B, a contradiction. Thus B1 6= ∅.

Since |V (G)| ≥ 2 and G is connected, it follows that A1 6= ∅. Every vertex in A1 has a nonneighbour
in B1, and every vertex in B1 has a neighbour in A1; and so |A1|, |B1| ≥ 2. If A1 ∪ B1 6= V (G),
then (A1, B1) is a nontrivial simplicial homogeneous pair, a contradiction; so A1 ∪B1 = V (G). Now
(A1, B1) is matched or antimatched, and not matched since G is connected. Consequently G is an
antimatching, and hence an antimatching recursion. This proves 5.3.

6 Using a maximum induced matching

The goal of the remainder of the paper is to prove the following:

6.1 Let G be connected and {Q5,K3}-free, with no twins. Then either:

• G is Clebschian, climbable, or bipartite; or

• G admits a nontrivial simplicial homogeneous pair.

Incidentally, in the remainder of the paper, there are a number of places where we claim that an
explicitly-given graph is Clebschian, and we leave the reader to verify this. Here is the method we
used, which we found quite practical. To verify that some triangle-free graph G (with a 5-cycle) is
Clebschian, it suffices to do the following:

• select any 5-cycle C of G; label its vertices v1, . . . , v5 in order (we read subscripts modulo 5);

• for each v ∈ V (G) \ V (C), if v has a unique neighbour vi ∈ V (C), label v = v′i;

• if some vertex of G has no neighbour in C, label it ∞;

• check that at most one vertex receives any label;

• check that if v′i, v
′
j both exist then they are adjacent if and only if j − i ∈ {2, 3} (modulo 5);
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• check that the unlabelled vertices are pairwise nonadjacent, and each is adjacent to the vertex
labelled ∞ if it exists;

• check that every unlabelled vertex is adjacent to two nonconsecutive vertices vi−1, vi+1 of C
and to v′i−2, v

′
i+2 if they exist, and not to v′i if that exists; and that no two unlabelled vertices

are adjacent to the same pair of vertices of C.

If all these checks succeed then G is Clebschian, and otherwise it is not. The point is, because of the
symmetry of the Clebsch graph, it is not necessary to repeat this for every 5-cycle; doing it for one
5-cycle is already enough.

Let us set up some notation before we go on. Let M = {a1b1, . . . , anbn} be an induced matching
in a graph G. We recall the key observation that, by 5.1, if G is {Q5,K3}-free, then every vertex
in V (G) \ VM with a neighbour in VM has a neighbour in each edge of M . If u, v ∈ NM , δM (u, v)
denotes the number of i ∈ {1, . . . , n} such that u is adjacent to one of ai, bi and v is adjacent to the
other. There is a second key observation:

6.2 Let G be {Q5,K3}-free, let M be an induced matching in G, and let u, v ∈ NM be distinct.

• If u, v are adjacent then δM (u, v) = |M |.

• If u, v are nonadjacent then δM (u, v) ≤ 2.

Proof. Each of u, v has a neighbour in every edge of M , by 5.1. If u, v are adjacent then they
have no common neighbour in VM since G is triangle-free, so the first statement is true. If u, v are
nonadjacent, let M = {a1b1, . . . , anbn}, and suppose that u is adjacent to a1, a2, a3 and v to b1, b2, b3.
Then a1-u-a2 misses vb3, a contradiction. This proves 6.2.

The case when µ(G) ≤ 1 is exceptional (and easy) so let us get that out of the way.

6.3 Let G be connected and K3-free, with no twins and with µ(G) ≤ 1. Then either G is a half-graph,
or G is a cycle of length five.

Proof. If G is bipartite, it is a half-graph and the theorem holds, so we assume not; and consequently
G has an induced 5-cycle C, with vertices v1-v2- · · · -v5-v1 in order. Let W = V (G) \V (C). Let P be
the set of vertices in W with a neighbour in V (C), and Q = W \ P . Let v ∈ P ; then v has at most
two neighbours in V (C), since G is triangle-free; and v does not have just one neighbour in V (C)
since µ(G) = 1. Consequently v has exactly two neighbours in V (C), and they are nonadjacent. For
1 ≤ i ≤ 5 let Pi be the set of vertices in P adjacent to vi−1 and vi+1 (reading subscripts modulo 5).
For 1 ≤ i ≤ 5, Pi is complete to Pi+1 (since µ(G) = 1), and Pi is anticomplete to Pi+2 (since G is
triangle-free). Moreover, no vertex in Q has a neighbour in P (since µ(G) = 1), and so Q = ∅ (since
G is connected). Since G has no twins, it follows that P = ∅. This proves 6.3.

Incidentally, this yields a result we mentioned before – how to construct all {P5,K3}-free graphs.

6.4 A graph is {P5,K3}-free if and only if each of its components is either a half-graph or obtained
from a cycle of length five by adding twins.

Proof. It is easy to see that a graph G is {P5,K3}-free if and only if each of its components G′ is
K3-free and satisfies µ(G′) ≤ 1; and by 6.3, this is true if and only if every component is either a
half-graph or obtained from a cycle of length five by adding twins.
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7 Matchings with stable neighbour sets

The goal of this section is to handle the case when there is a maximum induced matching M such
that NM is stable.

7.1 Let G be {Q5,K3}-free, and let M be a maximum induced matching in G. If NM is stable, then
M can be labelled {a1b1, . . . , anbn} such that either:

• every member of NM is adjacent to at least n− 1 of a1, . . . , an; or

• n ≥ 2, and NM is complete to {a3, . . . , an}, and each of the pairs (a1, a2), (a1, b2), (b1, a2),
(b1, b2) has a common neighbour in NM ; or

• n ≥ 3, and NM is complete to {a4, . . . , an}, and every member of NM is adjacent to an odd
number of a1, a2, a3; and each of the triples (a1, a2, a3), (a1, b2, b3), (b1, a2, b3), (b1, b2, a3) has a
common neighbour in NM .

Proof. By 6.2, δM (u, v) ≤ 2 for all u, v ∈ NM . If NM = ∅ the claim is trivial, so we assume
there exists w ∈ NM . Choose w ∈ NM such that maxv∈NM

δM (w, v) is as small as possible. Let
M = {a1b1, . . . , anbn}, labelled such that w is adjacent to ai for each i.

(1) We may assume that for each u ∈ NM there exists v ∈ NM with δM (u, v) = 2.

If maxv∈NM
δM (w, v) ≤ 1 then the first bullet holds, so we assume this maximum equals two. Hence,

from the choice of w, this proves (1).

Suppose that there exists u ∈ NM with δM (u,w) = 1. From (1), there exists v ∈ NM with
δM (u, v) = 2, and hence with δM (v, w) odd, and therefore with δM (v, w) = 1; and by (1) again, there
exists x ∈ NM with δM (w, x) = 2 and hence with δM (u, x) = δM (v, x) = 1. If y ∈ NM , then since
δM (y, z) ≤ 2 for each z ∈ {u, v, w, x}, it follows that δM (y, z) = 0 for some z ∈ {u, v, w, x} and the
second bullet holds.

So we may assume that δM (u,w) = 0 or 2, for each u ∈ NM . Let H be the graph with vertex set
{1, . . . , n}, in which distinct i, j are adjacent if there exists u ∈ NM adjacent to bi and to bj . Every
two edges of H have a common end in H. If some vertex i of H belongs to all edges of H, then the
first bullet holds (with ai, bi exchanged), so we may assume that H has a triangle, and hence H has
only three edges. But then the third bullet holds. This proves 7.1.

Let us say a leaf is a vertex of degree one; and an edge e such that neither end of e is a leaf is
internal. In the remainder of this section we handle separately the three cases of the output of 7.1.
The first case itself devolves into three subcases: when µ(G) ≤ 1 (which we have already handled),
when µ(G) ≥ 2 but at most one edge of M is internal, and when µ(G) ≥ 2 and at least two of its
edges are internal.

7.2 Let G be connected and {Q5,K3}-free, with µ(G) ≥ 2, and let M be a maximum induced
matching in G; moreover, if µ(G) = 2, assume that G has no twins and M is chosen such that, if
possible, both its edges are internal. If there is at most one edge in M that is internal, then either
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• G is Clebschian; or

• G admits a nontrivial pendant homogeneous pair.

Proof. Let M = {a1b1, . . . , anbn}, where n = µ(G) ≥ 2 and b2, . . . , bn are leaves of G. If either
n ≥ 3 or one of a1, b1 is a leaf then G admits a nontrivial pendant homogeneous pair. Consequently
we may assume that n = 2 and a1b1 is internal; and from the choice of M , there is no induced
matching M ′ in G of cardinality two such that both its edges are internal. Let A, B be the sets of
all vertices in NM adjacent to a1 and to b1 respectively. Thus A,B 6= ∅, and by 5.1 NM = A ∪ B
and A∩B = ∅, and a2 is complete to A∪B, and so A∪B is stable. Let R = V (G) \ (A∪B ∪ VM ).
Thus R is anticomplete to VM , and hence stable, from the maximality of M . Since G is connected,
every vertex in R has a neighbour in A ∪B.

Let D be the set of all vertices in R with neighbours in both A and B, and suppose that v ∈ D. If
v is not complete to one of A,B, say B, choose b ∈ B nonadjacent to v, and choose a ∈ A adjacent to
v; then the edges va, b1b form a 2-edge induced matching M ′ and no vertex in V (M ′) is a leaf of G, a
contradiction. So v is complete to A∪B; and so ({v, a2}, {b2}) is a nontrivial pendant homogeneous
pair. Hence we may assume that D = ∅.

Let A′ be the set of all vertices in R with neighbours in A and with none in B, and define B′

similarly. If both A′, B′ 6= ∅, there is a 3-path of G[A′ ∪A∪ {a1}] that is anticomplete to an edge of
G[B′ ∪B], a contradiction. Thus we may assume that B′ = ∅, and so |B| = 1, since G has no twins.
If A′ = ∅, then |A| = 1 since G has no twins, and so G is Clebschian. Thus we assume that A′ 6= ∅,
and so we may assume that |A| = |A′| = 1, since (A,A′) is a pendant homogeneous pair, and again
G is Clebschian. This proves 7.2.

7.3 Let G be {Q5,K3}-free, let M be a maximum induced matching in G, and suppose that at least
two edges of M are internal. Suppose that NM is stable, and M is labelled {aici : 1 ≤ i ≤ n} such
that every member of NM is adjacent to at least n− 1 of a1, . . . , an. Then G is climbable.

Proof. First we prove:

(1) For 1 ≤ i ≤ n, there is at most one vertex in NM nonadjacent to ai.

For suppose that u, v ∈ NM are both nonadjacent to a1 say. Since some edge of M different from
a1c1, say a2c2, is internal, there exists w ∈ NM adjacent to c2, and hence nonadjacent to c1, since w
is adjacent to at least n− 1 vertices in {a1, . . . , an}. For the same reason u, v are nonadjacent to c2.
But u-c1-v is a 3-path by 5.1, and it misses the edge wc2, a contradiction. This proves (1).

For each v ∈ NM , if there exists i ∈ {1, . . . , n} such that v is nonadjacent to ai, define bi = v.
(This is well-defined by (1).) Thus bi is defined if and only if ci is not a leaf of G. We may assume
that bi is defined for 1 ≤ i ≤ m and not defined for m+ 1 ≤ i ≤ n.

Let P be the set of vertices in NM that are complete to {a1, . . . , an}, that is, NM \ {b1, . . . , bm}.
Number P as bn+1, . . . , bt say. Let Q be the set of vertices in V (G)\(VM ∪NM ) that have a neighbour
in {b1, . . . , bm}, and R the remainder, that is, R = V (G) \ (VM ∪NM ∪Q).

(2) Q ∪R is stable, and Q is complete to {b1, . . . , bm}.
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Certainly Q ∪ R is stable, from the maximality of M . Suppose that v ∈ Q is nonadjacent to b1
say. Since v has a neighbour in {b1, . . . , bm}, we may assume that v is adjacent to b2. But then
v-b2-a1 is a 3-path that misses the edge a2b1, a contradiction. This proves (2).

(3) Every vertex in Q has at most one nonneighbour in P , and no two vertices in Q have the
same nonneighbour in P .

Suppose that v ∈ Q is nonadjacent to x, y ∈ P ; then x-a1-y is a 3-path missing the edge v-b1.
Now suppose that u, v ∈ Q are both nonadjacent to x ∈ P ; then u-b1-v is a 3-path missing the edge
xa1. This proves (3).

For each v ∈ Q, if v is nonadjacent to some (unique by (3)) bi ∈ P , define ai = v, and if v is
complete to P , choose some (distinct for all v ∈ Q) integer i > t, and define ai = v.

(4) Every vertex in R has at most one neighbour in P ; and no two vertices in R have the same
neighbour in P .

Suppose that v ∈ R is adjacent to x, y ∈ P , where x 6= y. Now x, y are nonadjacent to c1 since they
are adjacent to a1, and they are nonadjacent to b1 since NM is stable. Moreover, v is nonadjacent
to c1 since v /∈ NM , and v is nonadjacent to b1 since v /∈ Q. Hence x-v-y is a 3-path, and misses the
edge b1c1, a contradiction. Now suppose that u, v ∈ R are adjacent to x ∈ P . Then similarly u-x-v
is a 3-path missing the edge b1c1, a contradiction. This proves (4).

(5) For i > m, if v ∈ R is adjacent to bi then ai is not defined.

Suppose that ai, bi are defined and v ∈ R is adjacent to bi. Then v is nonadjacent to b1, b2, since
v /∈ Q, and so b1-ai-b2 is a 3-path missing the edge vbi. This proves (5).

For each v ∈ R with a (unique) neighbour in P , choose i such that this neighbour is bi, and define
ci = v. (This is well-defined, from (4).) For each v ∈ R with no neighbour in P choose an integer
i > n (distinct for all v ∈ R) such that bi is not defined, and define ci = v. Thus for each ci ∈ R, ai
is not defined, and for each j such that bj is defined, ci is adjacent to bj if and only if i = j. This
proves that G is climbable, and so proves 7.3.

For the second outcome of 7.1 we use:

7.4 Let G be {Q5,K3}-free with µ(G) ≥ 2, and with no twins if µ(G) = 2; and let M be a maximum
induced matching in G. Suppose that NM is stable, and M can be labelled {cidi : 1 ≤ i ≤ n} such that
NM is complete to {c3, . . . , cn}, and each of the pairs (c1, c2), (c1, d2), (d1, c2), (d1, d2) has a common
neighbour in NM . Then either G is Clebschian, or G admits a nontrivial pendant homogeneous pair.

Proof. Define a1 = c1, a3 = c2, a5 = d1, a7 = d2 and let Ai = {ai} for i = 1, 3, 5, 7; and for
i = 2, 4, 6, 8, let Ai be the set of vertices in NM complete to {ai−1, ai+1} (reading subscripts modulo
8 throughout). Thus NM = A2∪A4∪A6∪A8, and A2 is anticomplete to A6, and A4 is anticomplete
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to A8 (since by hypothesis, NM is stable). Also A2, A4, A6, A8 are all nonempty, by hypothesis.
Any 3-path in G[A2 ∪ {a1}] misses an edge of G[A6 ∪ {a7}], so |A2| = 1, and similarly |Ai| = 1 for
i = 2, 4, 6, 8; let Ai = {ai} for i = 2, 4, 6, 8. Let R = V (G) \ (A1 ∪ · · · ∪ A8); thus ci, di ∈ R for
3 ≤ i ≤ n. If v ∈ R is adjacent to a2, then since v-a2-a3 does not miss a5a6, it follows that v is
adjacent to a6; and similarly for the other vertices in NM . Define R0, . . . , R3 as follows.

• R0 is the set of vertices in R with no neighbour among a2, a4, a6, a8

• R1 is the set adjacent to a2, a6 and not to a4, a8;

• R2 is the set adjacent to a4, a8 and not to a2, a6; and

• R3 is the set adjacent to all of a2, a4, a6, a8.

It follows that R = R0 ∪ · · · ∪ R3, and c3, . . . , cn ∈ R3, and d3, . . . , dn ∈ R0. Now R0 ∪ R1 is stable,
since it misses a3-a4-a5, and similarly R0 ∪R2 is stable. There are no edges between R3 and R1 ∪R2

since G is triangle-free; and so R1 ∪ R2 misses R0 ∪ R3, and hence does not have any neighbour in
VM . Since M is a maximum induced matching it follows that R1 ∪ R2 is stable. So the only edges
in G[R] are edges between R0 and R3. Now |R1| ≤ 1 since any 3-path in G[R1 ∪ {a2}] misses a4a5;
and similarly |R2| ≤ 1. Not both R1, R2 are nonempty, since otherwise a 3-path in G[R1 ∪ {a2, a6}]
would miss an edge of G[R2 ∪ {a4}]; so we may assume that R2 = ∅. If R0 6= ∅, then since every
vertex in R0 has a neighbour in R3 (because G is connected), it follows that (R3, R0) is a pendant
homogeneous pair, so we may assume that |R3|, |R0| = 1, and therefore G is Clebschian. Thus we
may assume that R0 = ∅. Hence µ(G) = n = 2, and so by hypothesis G has no twins; and again it
follows that |R3| ≤ 1 and G is Clebschian. This proves 7.4.

For the third outcome of 7.1 we use:

7.5 Let G be connected and {Q5,K3}-free, containing the Petersen graph. Then either G is Cleb-
schian, or G admits a nontrivial pendant homogeneous pair.

Proof. Let us label the vertices of the Petersen subgraph H say, as follows: there is an induced
5-cycle C with vertices v1-v2- · · · -v5-v1 in order; for 1 ≤ i ≤ 5 there is a vertex v′i adjacent to vi and
to no other vertex in C; and for all distinct i, j ∈ {1, . . . , 5}, v′i, v′j are adjacent if and only if j− i = 2
or 3 modulo 5. (We read subscripts modulo 5 throughout.) Let R = V (G) \ V (H). Let R0 be the
set of vertices in R with no neighbour in V (H), and for 1 ≤ i ≤ 5, let Ri be the set of vertices in R
whose neighbour set in V (H) is {vi−1, vi+1, v

′
i−2, v

′
i+2}. (The five quadruples of V (H) just listed are

the stable subsets of H of cardinality four, and so this list is invariant under the symmetries of the
Petersen graph.)

(1) R = R0 ∪R1 ∪ · · · ∪R5.

For let v ∈ R, and let NM be the set of its neighbours in V (H). We may assume that NM 6= ∅,
and so from the symmetry we may assume that v1 ∈ NM . Consequently v2, v5, v

′
1 /∈ NM . The path

v-v1-v
′
1 hits v3v4, so from the symmetry we may assume that v3 ∈ NM . Hence v4, v

′
3 /∈ NM . Since

v-v1-v2 hits v4-v
′
4, it follows that v′4 ∈ NM , and so v′2 /∈ NM . Since v-v3-v4 hits v′2v

′
5, it follows that

v′5 ∈ NM ; and so NM = {v1, v3, v′4, v′5}, and hence v ∈ R2. This proves (1).
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Since every two vertices in R1 ∪ · · · ∪R5 have a common neighbour, it follows that R1 ∪ · · · ∪R5

is stable. Thus if R0 = ∅, G is Clebschian, so we assume that R0 6= ∅. Also, R0 is stable, since R0

misses v1-v2-v3.

(2) We may assume that R0 is complete to R1 ∪ · · · ∪R5.

Let v ∈ R0. Since R0 is stable and G is connected, v has a neighbour in R1 ∪ · · · ∪ R5, say
r1 ∈ R1. We claim that v is complete to R2 ∪ · · · ∪R5. To see this, let r2 ∈ R2 (from the symmetry
of the Petersen graph, it is enough to show that a vertex with a neighbour in R1 is complete to R2).
Since v-r1-v

′
3 hits r2v1, it follows that v, r2 are adjacent. So v is complete to R2 ∪ · · · ∪ R5. If one

of R2, . . . , R5 is nonempty, the same argument shows that v is complete to R1 as required; so we
assume that R2, . . . , R5 = ∅. Now any 3-path in G[R0 ∪ R1] misses v1v

′
1, so every vertex in R0 has

at most one neighbour in R1 and vice versa; and since (R1, R0) is a pendant homogeneous pair, we
may assume that |R0| = |R1| = 1, and so R1 is complete to R0. This proves (2).

Any 3-path in G[R0 ∪R1] misses v1v
′
1, and since R0 is complete to R1 and R0 6= ∅ it follows that

|R1| ≤ 1, and similarly |Ri| ≤ 1 for 1 ≤ i ≤ 5. We may assume that |R1| = 1, since R0 6= ∅, and so
by the same argument |R0| = 1. Hence G is Clebschian. This proves 7.5.

We deduce:

7.6 Let G be connected and {Q5,K3}-free, with µ(G) ≥ 2 and with no twins if µ(G) ≤ 2, and let
M be a maximum induced matching in G. Suppose that NM is stable. Then either:

• G is Clebschian or climbable; or

• G admits a nontrivial pendant homogeneous pair.

Proof. By 7.1, M can be labelled {aibi : 1 ≤ i ≤ n} such that one of the following holds.

• Every member of NM is adjacent to at least n − 1 of a1, . . . , an. In this case, if at most one
of the edges aibi is internal, then the theorem holds by 7.2, and if at least two edges of M are
internal, it holds by 7.3.

• NM is complete to {a3, . . . , an}, and each of the pairs (a1, a2), (a1, b2), (b1, a2), (b1, b2) has a
common neighbour in NM . In this case the theorem holds by 7.4.

• n ≥ 3, NM is complete to {a4, . . . , an}, and every member of NM is adjacent to an odd number
of a1, a2, a3; and each of the triples (a1, a2, a3), (a1, b2, b3), (b1, a2, b3), (b1, b2, a3) has a common
neighbour in NM . In this case, the six vertices a1, b1, a2, b2, a3, b3, together with four common
neighbours in NM of the four triples listed above, induce a subgraph of G isomorphic to the
Petersen graph; and so the theorem holds by 7.5.

This proves 7.6.
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8 Maximum matching of cardinality two

We already handled the case when µ(G) ≤ 1, in 6.3; now we are ready to handle µ(G) = 2, and this
section is devoted to it. We recall that an antimatching is a bipartite graph, the bipartite complement
of a perfect matching. We recall that ν(G) denotes the largest cardinality of an antimatching in G
(more precisely, ν(G) means the largest k such that there is an antimatching with bipartition (A,B)
where |A| = |B| = k). When µ(G) = 2, the maximum induced matching induces a subgraph that
is an antimatching, and it might be possible to extend this to a larger antimatching; and we find it
advantageous to work with the largest antimatching.

8.1 Let G be a connected {Q5,K3}-free graph with no twins and with µ(G) = 2 and ν(G) ≥ 3. Then
either

• G is Clebschian, climbable, or bipartite; or

• G admits a nontrivial simplicial homogeneous pair.

Proof. Let (A,B) = ({a1, . . . , an}, {b1, . . . , bn}) be the bipartition of the largest antimatching in G,
where ai, bi are nonadjacent for 1 ≤ i ≤ n. Thus n = ν(G) ≥ 3. For 1 ≤ i ≤ n let Ci be the set
of all vertices in V (G) \ (A ∪ B) adjacent to both ai and bi and nonadjacent to every other vertex
in A ∪ B; let C = C1 ∪ · · · ∪ Cn; let P be the set of vertices in V (G) \ (A ∪ B) complete to A and
anticomplete to B, and let Q be the set complete to B and anticomplete to A.

(1) Every vertex in V (G) \ (A ∪ B) with a neighbour in A ∪ B belongs to one of P,Q,C. More-
over, P is complete to Q, and P ∪Q is anticomplete to C.

Let v ∈ V (G) \ (A ∪ B) be adjacent to a1 say. If v is complete to A then it is anticomplete to
B and v ∈ P ; so we may assume that v is nonadjacent to a2. Since the 3-path v-a1-b2 does not
miss the edge a2b1, it follows that v is adjacent to b1; and so v has no more neighbours in A ∪ B
and v ∈ C1. This proves the first assertion. Now P is complete to Q by the maximality of the
antimatching. Finally, P ∪Q is anticomplete to C since G is triangle-free. This proves (1).

(2) For all distinct i, j ∈ {1, . . . , n}, every vertex in Ci has at most one nonneighbour in Cj.

For otherwise there is a 3-path in G[Cj ∪ {aj}] that misses an edge of G[Ci ∪ {ai}].

(3) We may assume that A ∪B ∪ P ∪Q ∪ C = V (G).

Let R = V (G) \ (A ∪ B ∪ P ∪ Q ∪ C), and suppose that there exists r ∈ R. Let rs be an edge
incident with r. By (1), s /∈ A ∪B. If s /∈ P ∪Q, we may assume that s /∈ C1 ∪ C2 since n ≥ 3, and
then {rs, a1b2, a2b1} is an induced matching, a contradiction. Thus s ∈ P ∪Q. Since G is triangle-
free, it follows that for every vertex in R, either all its neighbours belong to P or they all belong to
Q; let R1 be the set of vertices in R such that all their neighbours belong to P , and R2 = R \ R1.
With r, s as before, we may assume from the symmetry that r ∈ R1 and s ∈ P . Suppose that at least
two of C1, . . . , Cn are nonempty, say C1, C2, and choose ci ∈ Ci (i = 1, 2). If c1, c2 are nonadjacent,
then {rs, b1c1, b2c2} is an induced matching, a contradiction. If c1, c2 are adjacent, the 3-path r-s-a3
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misses c1c2, a contradiction. Thus at most one of C1, . . . , Cn is nonempty. We may assume that G
is not bipartite, and so we may assume that C1 6= ∅, and C2, . . . , Cn = ∅. Since (P,R1) is a pendant
homogeneous pair, we may assume that R1 = {r} and P = {s}. Also either R2 = ∅ (and hence
|Q| = 1 since G has no twins) or (Q,R2) is also a pendant homogeneous pair (and so we may assume
that |R2| = |Q| = 1). Since any 3-path in G[C1 ∪ {b1}] would miss the edge of G[P ∪R1], it follows
that |C1| = 1; but then G is climbable. This proves (3).

(4) For 1 ≤ i ≤ n, each vertex in Ci has at most one nonneighbour in C \ Ci.

Let i = 1 say, and suppose that c1 ∈ C1 has at least two nonneighbours in C \ C1. By (2) we
may assume that c1 is nonadjacent to c2 ∈ C2 and c3 ∈ C3. Since {a1c1, a2c2, a3c3} is not an induced
matching, it follows that c2, c3 are adjacent. But then a1-c1-b1 misses c2c3. This proves (4).

(5) We may assume that at most two of C1, . . . , Cn are nonempty.

Suppose C1, C2, C3 are nonempty. If n ≥ 4, then by (4) there is an edge joining two of C1, C2, C3, say
c1c2 where ci ∈ Ci for i = 1, 2; but then {c1c2, a3b4, a4b3} is an induced matching, a contradiction.
Thus n = 3. Also |P | ≤ 1, since otherwise for some i ∈ {1, 2, 3} a 3-path in G[P ∪ {ai}] would miss
an edge of G[C1 ∪ C2 ∪ C3]. Similarly |Q| ≤ 1.

Suppose that c1 ∈ C1 has at least two neighbours in C2, say c2, c
′
2. If c1 is adjacent to c3 ∈ C3,

then c3 has two nonneighbours in C2, namely c2, c
′
2, contrary to (2). So c1 is anticomplete to C3.

Hence by (4) some vertex (indeed, every vertex) of C3 is adjacent to c2, c
′
2, and so by the same

argument c2, c
′
2 are complete to C1. In particular, there are no edges between C1 and C3, so C1, C3

are complete to C2 by (4), and |C1| = |C3| = 1 by (2). If p ∈ P , let c3 ∈ C3; then the 3-path c2-c3-c
′
2

misses pa1, a contradiction. So P,Q = ∅, and c2, c
′
2 are twins, a contradiction.

We may assume therefore that for all distinct i, j ∈ {1, 2, 3}, every vertex in Ci has at most one
neighbour and at most one nonneighbour in Cj . Let c2 ∈ C2 be adjacent to c1 ∈ C1 and c3 ∈ C3.
Then no other vertex c′2 ∈ C2 is adjacent to either of c1, c3, and therefore {c1, c′2, c3} is stable,
contrary to (4), for each such vertex c′2; and hence C2 = {c2}. Since c2 has at most one neighbour
and at most one nonneighbour in C1, it follows that |C1| ≤ 2, and similarly |C3| ≤ 2; and not both
|C1|, |C3| = 2, since for every c′1 ∈ C1 and c′3 ∈ C3, c2 is adjacent to one of them. So we may assume
that |C3| = 1, and C3 = {c3}. Also either C1 = {c1}, or C1 = {c1, c′1}, for some c′1 adjacent to c3.
Now P is complete to Q by (1), and so one of P,Q is empty, since the 3-path c1-c2-c3 misses every
edge between P,Q. Since |P |, |Q| ≤ 1, it follows that G is Clebschian. This proves (5).

From (5), we may assume that C3, . . . , Cn = ∅.

(6) We may assume that there is no edge between C1, C2.

Suppose that c1 ∈ C1 is adjacent to c2 ∈ C2. Not both P,Q are nonempty; because P is com-
plete to Q, by (1), and if p ∈ P is adjacent to q ∈ Q then q-p-a3 misses c1c2. So we may assume
that Q = ∅. If |P | ≥ 2, a 3-path in G[P ∪ {a3}] misses c1c2; so |P | ≤ 1. Suppose that there exists
p ∈ P . Then pa3 misses any 3-path in G[C1 ∪ C2]; so every vertex in C1 has at most one neighbour
in C2, and vice versa. By (2), |C1|, |C2| ≤ 2. Moreover, not both |C1|, |C2| = 2, since if so there
would be an induced matching consisting of two edges between C1, C2 and the edge pa3. But then
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G is Clebschian. We may therefore assume that P = Q = ∅. But then G is climbable, by 7.3 applied
to the induced matching {a1b3, a3b1}. This proves (6).

Since G has no twins, (4), (5) and (6) imply that |Ci| ≤ 1 for i = 1, 2, and |P |, |Q| ≤ 1. But then
G is climbable. This proves 8.1.

8.2 Let G be a connected {Q5,K3}-free graph with no twins and with µ(G) = ν(G) = 2. Then
either

• G is Clebschian; or

• G admits a nontrivial simplicial homogeneous pair.

Proof. Let M = {a1a5, a3a7} be a maximum induced matching in G, chosen such that no vertices
in VM are leaves if possible; and for i = 2, 4, 6, 8 let Ai be the set of all vertices that are complete
to {ai−1, ai+1}. (Throughout we read subscript modulo 8.) Thus NM = A2 ∪A4 ∪A6 ∪A8. For i =
1, 3, 5, 7 let Ai = {ai}. If there exist a2 ∈ A2 and a6 ∈ A6, nonadjacent, then G[{a1, a2, a3, a5, a6, a7}]
is an antimatching, contradicting that ν(G) = 2; so A2 is complete to A6, and similarly A4 to A8.
So for all distinct i, j with 1 ≤ i, j ≤ 8, if j − i = 1, 4 or 7 then Ai is complete to Aj and otherwise
Ai is anticomplete to Aj . If some vertex of VM is a leaf then the theorem holds by 7.2, so we may
assume that both edges of M are internal. Hence either A2, A6 are both nonempty, or A4, A8 are
both nonempty, and we assume the first without loss of generality.

Let R be the set of vertices of G not in A1, . . . , A8. Since R is stable (because M is a maximum
induced matching), it follows that every vertex in R has a neighbour in A2 ∪A4 ∪A6 ∪A8.

Suppose first that A4, A8 are both nonempty. Since any 3-path in G[A2 ∪ A6] would miss an
edge of G[A4 ∪ A8], it follows that |A2| = |A6| = 1, and similarly |A4| = |A8| = 1. Let Ai = {ai}
for i = 2, 4, 6, 8. If v ∈ R is adjacent to a2 say, then since the 3-path v-a2-a6 does not miss a4a8, it
follows that v is adjacent to one of a4, a8; so every vertex in R belongs to one of the four disjoint sets
R1, R3, R5, R7, where Ri is the set of vertices in R adjacent to ai−1 and ai+1 for i = 1, 3, 5, 7. Now R1

is anticomplete to R5, since R is stable, and so if they are both nonempty, a 3-path of G[R1∪{a2, a1}]
misses an edge of G[R5∪{a4}]. Hence one of R1, R5 = ∅, and similarly one of R3, R7 = ∅, so we may
assume that R5, R7 = ∅. If |R1| > 1 then a 3-path of G[R1 ∪ {a2}] misses a4a5, so |R1|, |R3| ≤ 1.
But then G is Clebschian.

We may therefore assume that A8 = ∅. If A4 = ∅ then ({a1, a3}, {a5, a7}) is a nontrivial simplicial
homogeneous pair, so we may assume that A4 6= ∅. Define:

• R1 is the set of vertices in R with a neighbour in A2 and no neighbour in A4;

• R3 is the set complete to A2 with a neighbour in A4;

• R5 is the set complete to A6 with a neighbour in A4; and

• R7 is the set with a neighbour in A6 and no neighbour in A4.

(1) Every vertex in R belongs to one of R1, R3, R5, R7.

If v ∈ R has no neighbour in A4 then v ∈ R1 ∪ R7 since v has a neighbour in A2 ∪ A4 ∪ A6 ∪ A8.
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Thus we may assume v is adjacent to a4 ∈ A4. Since every 3-path in G[A2 ∪ A6 ∪ {a7}] hits va4, v
is complete to one of A2, A6 and so v ∈ R3 ∪R5. This proves (1).

If R1 = ∅ then |A2| = 1, since G has no twins; and if R1 6= ∅ then we may assume that
|A2| = |R1| = 1, since otherwise (A2, R1) is a nontrivial pendant homogeneous pair. Thus in either
case we may assume that |A2| = 1, and |R1| ≤ 1; and similarly |A6| = 1 and |R7| ≤ 1. Let A2 = {a2}
and A6 = {a6}.

If R3 = R5 = ∅, then |A4| = 1 since G has no twins, and so G is Clebschian. Thus we may assume
that R3 6= ∅. Hence there is a 3-path in G[R3∪A4∪{a3}], and so there is no edge in G[A6∪R7], and
hence R7 = ∅. If |R3| > 1, there is either a 3-path or an induced 2-edge matching in G[R3 ∪A4], and
in either case it misses a6a7, a contradiction. So |R3| = 1; let R3 = {r3}. By the same argument,
r3 has only one neighbour in A4, say a4. Every 3-path in G[(A4 \ {a4}) ∪ {a5}] misses the edges of
G[A2 ∪ {r3}]; so |A4 \ {a4}| ≤ 1.

Suppose that R5 6= ∅. Then by the same argument, R1 = ∅, and |R5| = 1, and the vertex r5 ∈ R5

has a unique neighbour in A4. Since no 3-path in G[A4∪{r5}∪A6] misses r3a4, it follows that a4, r5
are adjacent. But then G is Clebschian.

We may assume therefore that R5 = ∅. Suppose that R1 6= ∅, and so |R1| = 1; let R1 = {r1}.
Any 3-path in G[A4 ∪ {a5}] misses r1a2, so A4 = {a4}. But then G is Clebschian.

Thus we may assume that R1 = ∅. In summary, R1 = R5 = R7 = ∅ and R3 = {r3}, and A4

contains only one neighbour of r3, and at most one of its non-neighbours. But then G is Clebschian.
This proves 8.2.

Combining 8.1 and 8.2, we obtain:

8.3 Let G be a connected {Q5,K3}-free graph with µ(G) = 2 and with no twins. Then either

• G is Clebschian, climbable, or bipartite; or

• G admits a nontrivial simplicial homogeneous pair.

9 Edges in the neighbourhood of a matching

In this section we handle the final case, when µ(G) ≥ 3 and NM is not stable. We divide it into three
subcases, when µ(G) ≥ 5, when µ(G) = 4, and when µ(G) = 3, in increasing order of difficulty.

9.1 Let G be connected and {Q5,K3}-free, with µ(G) ≥ 5, and let M be a maximum induced
matching in G. Suppose that NM is not stable. Then G admits a nontrivial simplicial homogeneous
pair.

Proof. Let M = {aibi : 1 ≤ i ≤ n}, and let u, v ∈ NM be adjacent. By 6.2 we may assume that u is
complete to {a1, . . . , an} and v to {b1, . . . , bn}. Let N1, N2 be the sets of vertices in V (G) \ VM that
are complete to {a1, . . . , an} and complete to {b1, . . . , bn} respectively. Thus u ∈ N1 and v ∈ N2.
We claim that NM = N1 ∪N2; for let w ∈ NM . If say w is adjacent to a1 and to b2, then it shares a
neighbour with each of u, v and so is nonadjacent to them both. There are at most two values of i
such that w is adjacent to bi, by 6.2 applied to w, u, and also only two such that w is adjacent to ai,
by 6.2 applied to w, v. But this is impossible since n ≥ 5. Consequently NM = N1 ∪N2. For each
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u′ ∈ N1 and v′ ∈ N2, the 3-path a1-u
′-a2 meets the edge b3v

′, and so u′, v′ are adjacent; so N1 is
complete to N2. Hence ({a1, . . . , an}, {b1, . . . , bn}) is a nontrivial simplicial homogeneous pair, and
the theorem holds. This proves 9.1.

9.2 Let G be connected and {Q5,K3}-free, with no twins and with µ(G) = 4, and let M be a
maximum induced matching in G. Suppose that NM is not stable. Then either G is Clebschian or
G admits a nontrivial simplicial homogeneous pair.

Proof. Let M = {aibi : 1 ≤ i ≤ 4}. By hypothesis, there exist adjacent p1, p2 ∈ NM ; and by 6.2,
δM (p1, p2) = 4. If each v ∈ NM satisfies δM (p1, v) = 0 or δM (p2, v) = 0 then G admits a nontrivial
simplicial homogeneous pair, so we may assume there exists p3 ∈ NM with δM (p1, p3), δM (p2, p3) ≥ 1.
By 6.2, p3 is nonadjacent to p1, p2, so δM (p1, p3), δM (p2, p3) ≤ 2; and since δM satisfies the triangle
inequality, it follows that δM (p1, q), δM (p2, q) = 2, for each q ∈ NM with δM (p1, q), δM (p2, q) 6= 0.

(1) Every vertex of G belongs to VM ∪NM .

Let R = V (G) \ (VM ∪ NM ), and suppose that r ∈ R. Thus R is stable, from the maximality
of M , and so r in R has a neighbour in NM . Let Q be the set of q ∈ NM such that r is adjacent to
q. Not both p1, p2 ∈ Q since p1 is adjacent to p2; and from the existence of p1, p2, p3, it follows that
there exist nonadjacent q, q′ ∈ NM , with q ∈ Q and q′ /∈ Q, and with δM (q, q′) = 2. We may assume
that q is adjacent to a1, a2 and q′ is adjacent to b1, b2. But then the 3-path b1-q

′-b2 misses the edge
qr, a contradiction. This proves (1).

From 6.2 and (1), the neighbour set of each v ∈ NM is determined by the set of neighbours of v
in VM , and since G has no twins, there do not exist distinct u, v ∈ NM with δM (u, v) = 0. But then
G is Clebschian. This proves 9.2.

9.3 Let G be connected and {Q5,K3}-free, with no twins and with µ(G) = 3, and let M be a
maximum induced matching in G. Suppose that NM is not stable. Then either G is Clebschian, or
G admits a nontrivial simplicial homogeneous pair.

Proof. Let M = {a1b1, a2b2, a3b3}. By hypothesis, there exist p1, p2 ∈ NM with δM (p1, p2) = 3. For
i = 1, 2, let Pi be the set of v ∈ NM such that δM (pi, v) = 0. If each v ∈ NM satisfies δM (p1, v) = 0
or δM (p2, v) = 0 then G admits a nontrivial simplicial homogeneous pair, so we may assume there
exists p3 ∈ NM with δM (p1, p3), δM (p2, p3) ≥ 1. Let N1 be the set of v ∈ NM adjacent to an odd
number of a1, a2, a3, and N2 = NM \N1. We may assume that pi ∈ Ni for i = 1, 2.

Let R = V (G) \ (VM ∪NM ). Thus R is stable, from the maximality of M , and every vertex in R
has a neighbour in NM . For i = 1, 2, every two vertices in Ni have a common neighbour in VM and
so Ni is stable.

(1) If r ∈ R, and q1, q2 ∈ NM with δM (q1, q2) = 2, and r is adjacent to q1, then r is adjacent
to q2.

We may assume that q1 is adjacent to a1, a2, a3, and q2 is adjacent to b1, b2, a3. Since the 3-path
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r-q1-a1 meets the edge q2b2, it follows that r is adjacent to q2. This proves (1).

(2) For i = 1, 2, if r ∈ R has a neighbour in Ni, then r has a neighbour in Pi.

Let r be adjacent to v ∈ N1 say. If δM (v, p1) = 0 the claim is true, and if δM (v, p1) = 2 the
claim follows from (1). This proves (2).

For i = 1, 2 let Ri be the set of vertices in R with a neighbour in Ni.

(3) Not both R1, R2 are nonempty.

If r ∈ R1 ∩ R2, then by (2) r has neighbours in both P1, P2, which is impossible since they are
complete to each other by 6.2. So R1 ∩ R2 = ∅. Suppose that there exist r1 ∈ R1 and r2 ∈ R2. We
may assume that δM (p3, p1) = 1; and p1 is adjacent to a1, a2, a3 and p3 to a1, a2, b3. By (2), r2 has
a neighbour in P2, and hence is adjacent to p3 by (1). Choose v1 ∈ P1 adjacent to r1. Then r2-p3-b3
misses r1v1, a contradiction. This proves (3).

(4) We may assume that for i = 1, 2, Ri is complete to Ni.

Let i = 1 say, and let r1 ∈ R1. By (2), r1 has a neighbour in P1, and hence r1 is adjacent to
q for every q ∈ Ni with δM (p1, q) = 2, by (1). Thus if there exists q ∈ Ni with δM (p1, q) = 2, then
by (1) again, r1 is complete to P1 and hence to N1; so we may assume that N1 = P1. Thus (R1, P1)
is a pendant homogeneous pair, and we may assume that |R1| = |N1| = 1, and once again the claim
holds. This proves (4).

(5) For i = 1, 2, |Ri| ≤ 1.

Suppose that |R1| ≥ 2 say. From the existence of p3, there exist q1 ∈ N1 and q2 ∈ N2 with
δM (q1, q2) = 1. Let q1 be adjacent to a1, a2, a3, and q2 to a1, a2, b3 say. By (3) and (4), R1 is com-
plete to q1 and anticomplete to q2. Then a 3-path in G[R1 ∪ {q1}] misses the edge q2b3. This proves
(5).

If R = ∅, G is Clebschian. So we may assume that |R1| = {r1} say, by (5), and hence R2 = ∅,
by (3). From 6.2 and (4), the neighbour set of each v ∈ NM is determined by the set of neighbours
of v in VM , and since G has no twins, there do not exist distinct u, v ∈ NM with δM (u, v) = 0.
Consequently G is Clebschian. This proves 9.3.

In summary, from 9.1, 9.2 and 9.3, we have shown that:

9.4 Let G be connected and {Q5,K3}-free, with no twins and with µ(G) ≥ 3, and let M be a
maximum induced matching in G. If NM is not stable, then either G is Clebschian or G admits a
nontrivial simplicial homogeneous pair.

Combining with 6.3, 8.3, and 7.6, we obtain 6.1, which we restate:

9.5 Let G be connected and {Q5,K3}-free, with no twins. Then either:
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• G is Clebschian, climbable, or bipartite; or

• G admits a nontrivial simplicial homogeneous pair.

And finally we obtain our main result 1.1, which we restate:

9.6 Let G be connected and {P6,K3}-free, with no twins. Then either

• G is Clebschian, climbable, or a V8-expansion; or

• G admits a nontrivial simplicial homogeneous pair.

Proof. From 9.5 and 4.2, it suffices to check that G satisfies the theorem when G is bipartite; and
hence, from 5.2, we may assume that G is a half-graph expansion. Let G be a connected half-graph
expansion without twins. If |V (G)| ≤ 4 then G is climbable, so we assume that |V (G)| ≥ 5. Let
(A,B) be a bipartition of G, and let A1, . . . , An, B1, . . . , Bn be as in the definition of half-graph
expansion, where Ai ∪ Bi 6= ∅ for 1 ≤ i ≤ n. Since A1 ∪ B1 6= ∅ and G is connected, it follows that
A1 6= ∅.

Suppose that n = 1. Since |A1 ∪ B1| = |V (G)| ≥ 5, it follows that (A1, B1) is matched or
antimatched; and it is not matched since G is connected. Thus if n = 1 then G is an antimatching
and so climbable, and therefore we may assume that n ≥ 2.

If B1 = ∅ then |A1| = 1 since G has no twins; and if B1 6= ∅ then (A1, B1) is a simplicial
homogeneous pair (since n > 1), so we may assume that |A1| = 1 and |B1| ≤ 1. Thus in either case
we have |A1| = 1 and |B1| ≤ 1, and consequently |V (G) \ (A1 ∪ B1)| ≥ 3. Since G has no twins,
it follows that A2 ∪ · · · ∪ An 6= ∅, and so (A2 ∪ · · · ∪ An, B2 ∪ · · · ∪ Bn) is a nontrivial simplicial
homogeneous pair. This proves 9.6.

10 A structure theorem for {Q5, K3}-free graphs

Finally, let us see how to convert 6.1 to a construction for all {Q5,K3}-free graphs. There are two
problems with 6.1:

• adding twins without restriction might introduce Q5;

• if G admits a simplicial homogeneous pair (A,B), and the corresponding graphs H,J (defined
as usual) are {Q5,K3}-free, that does not guarantee that G is {Q5,K3}-free.

But both can easily be remedied. Let v be a vertex of G such that no edge incident with v belongs
to an induced matching with cardinality two. Such a vertex v is called a twinnable vertex of G. If G
is {Q5,K3}-free, then adding twins to a twinnable vertex v results in a larger {Q5,K3}-free graph.

Let H be an antisubmatching, with bipartition (A,B), and let a ∈ A and b ∈ B be nonadjacent.
Add a new vertex c adjacent to a, b, forming a graph G; then c is a twinnable vertex of G. Any
graph obtained from G by adding twins of c is called an extended antisubmatching. (This is the only
time when we need to add twins to a climbable graph, so we gave such graphs a name.)

Let (A,B) be a nontrivial simplicial homogeneous pair of G, and correspondingly let G is obtained
from H by substituting J = G[A ∪ B] for some edge ab of H. Let us say that (A,B) is submatched
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if every vertex in A has at most one neighbour in B and vice versa. This makes it safe again; if H,J
are {Q5,K3}-free, and (A,B) is a nontrivial submatched simplicial homogeneous pair of G, then G
is {Q5,K3}-free. Then we have a construction for all connected {Q5,K3}-free graphs, as follows:

10.1 Let G be connected and {Q5,K3}-free. Then either:

• G may be obtained from a Clebschian graph by adding twins of some of its twinnable vertices;
or

• G is climbable, or an extended antisubmatching; or

• G is a half-graph expansion; or

• G admits a nontrivial submatched simplicial homogeneous pair.

Proof. Let G be connected and {Q5,K3}-free. If G is bipartite, then G is a half-graph expansion
by 5.2, and the theorem holds. Thus we may assume that G is not bipartite.

Suppose that G admits a nontrivial simplicial homogeneous pair (A,B). If (A,B) is submatched
then the theorem holds, so we assume not; and so we may assume that some vertex a ∈ A has two
neighbours b1, b2 ∈ B. Let C be the set of vertices in V (G) \ (A ∪ B) that are complete to A and
anticomplete to B, and define D similarly with A,B exchanged. Let R = V (G) \ (A ∪ B ∪ C ∪D).
Since (A,B) is simplicial, C is complete to D; and since G is Q5-free, the 3-path b1-a-b2 meets every
edge, and so R is stable. Since no vertex in R has a neighbour in C and another in D, it follows that
G is bipartite, a contradiction. Thus we may assume that G does not admit a nontrivial simplicial
homogeneous pair.

Now G can be obtained from a graph G′ by adding twins, where G′ has no twins, and G′ is
also connected and {Q5,K3}-free. It follows that G′ has no nontrivial simplicial homogeneous pair.
From 9.5 G′ is Clebschian, climbable, or bipartite. Since G is not bipartite, neither is G′. If G′ is
Clebschian, then, since adding twins of a non-twinnable vertex will introduce Q5, it follows that G
may be obtained from a Clebschian graph by adding twins of some of its twinnable vertices, and the
theorem holds. If G′ is climbable and not Clebschian then (since G′ is not bipartite) it is easy to
check that either G is climbable or G is an extended antisubmatching (we omit the details, which
are straightforward). This proves 10.1.

One could, if necessary, be more exact about safely adding twins to a Clebschian graph; one could
list exactly the subgraphs of the Clebsch graph that have twinnable vertices, and list those vertices.
(There are not many.)
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[4] A. Grzesik, T. Klimošová, Ma. Pilipczuk and Mi. Pilipczuk, “Polynomial-time algorithm for
maximum weight independent set on P6-free graphs”, arXiv:1707.05491.

[5] D. Lokshantov, M. Vatshelle and Y. Villanger, “Independent set in P5-free graphs in polynomial
time”, SODA 2014, Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete
algorithms, 570–581.

[6] V.V. Lozin, “Bipartite graphs without a skew star”, Discrete Math., 257 (2002), 83–100.

[7] B. Randerath, I. Schiermeyer and M. Tewes, “Three-colourability and forbidden subgraphs. II:
polynomial algorithms”, Discrete Math., 251 (2002), 137–153.

29


