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Towards the end of this paper we sketch an outline of how these proofs should go. These proofs
will in any case be reductions to our earlier theorems, and so even if they are correct they do not

make the remainder of the theorems we mention in this paper redundant.

All our results are consequences of “structure theorems,” that sufficiently general graphs contaip
minors or other sub-objects that are useful to us — or equivalently, that graphs that do not contaip
a useful minor have a certain restricted structure. Proving such a theorem is usually the most
difficult step in proving a special case of (A) or (B), and most of this paper is devoted to structure

theorems.

Incidentally, we have found that whenever we get a better structure theorem, it enables us to prove
both another case of (A) and another case of (B). But we know of no theoretical connection
between (A) and (B). Is it just coincidence that the proofs of their special cases are so closely
tied?

Rather than simply present a mass of results which we have accumulated over the past three years,
we have tried to indicate the order in which we found these theorems, and why we moved from
each topic to the next. We hope that this gives the reader a little more insight into the tangled

interrelationships that will emerge.

The paper is divided into three parts. The first three sections are introductory, and discuss the
background to (A) and (B). Sections 4, 5, and 6 contain structure theorems, while sections 7

and 8 concern the application of these theorems to (A) and (B).

2. WELL-QUASI-ORDERING

The Kuratowski-Wagner theorem, that K5 and K33 are the only graphs which are minor-
minimal non-planar, is probably the most basic and undoubtably the most well-known result about
graph minors. Nevertheless, the corresponding problem for higher surfaces is extremely difficult,
and remained completely open until 1980, when Archdeacon [1] and Glover, Huncke and
Wang [7] solved the case of the projective plane. They proved that there are 35 minor-minimal
“non-projective-planar” graphs.

It is possible to show that for higher genus the length of the corresponding list grows quite rapidly
is not

but

— Huneke claims that the list for the torus has over 800 members, for example — and it

clear even that it must be finite. This finiteness question was raised by Erdds in the 1930’s,

again remained completely open until recently. Archdeacon and Huneke [2] settled half the

problem in 1981 — they proved that the list for any non-orientable surface is finite. We have
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shown (in 1983) that it is finite for any surface, as we shall explain later.

The list of minor-minimal graphs which cannot be drawn in some given surface is an antichain,
that is, no member of it is isomorphic to a minor of another. In the early 1960's, Wagner pl'OPos"d
the conjecture that every antichain is finite. This evidently would settle Erdds’ question — indeed,
it would imply that for any property of graphs, the list of minor-minimal graphs without the

property is finite. Wagner’s conjecture has remained open until the present.

A quasi-order is a class with a reflexive transitive relation. For example, the relation “H is
isomorphic to a minor of G” defines a quasi-order on the class of all graphs. A quasi-order
(Q, <) is a well-quasi-order (wqo) if for every countable sequence g, g3, ... of members of O

there exist j > I 2 1 such that ¢; < ¢;. An equivalent requirement is that
(i) (@, <) has no infinite descending chain, and
(i) (@, <) has no infinite antichain.

An equivalent form of Wagner’s conjecture is thus that the “minor” quasi-order of the class of all
graphs is a wqo, for condition (i) is trivially satisfied in this case. (We recall that all graphs

considered here are finite.)

There are other wqo problems with graphs. The “subgraph™ quasi-order is not a wqo, as is easily
seen — a set of circuit graphs, one of each size, is an infinite antichain. (However, it is a wqo for
graphs with no k-vertex path, for any fixed integer k > 0, as follows easily from (4.4).) A more
plausible candidate for a wqo is “topological containment.” We say that G topologically contains
H if G has a subgraph which is isomorphic to a subdivision of H. (A subdivision of H is a graph
obtained from H by replacing its edges by internally vertex-disjoint paths.) It is not a wqo in
general, however — the set of graphs formed by taking a circuit graph of each size, and replacing
each edge by two parallel edges, is an infinite antichain. Vdzsonyi (see [11]) made two well-known

conjectures:
(i) that the class of all trees is a wqo under topological containment, and
(ii) that the class of all graphs with maximum valency <3 is a wqo under topological containment.

Kruskal [11] proved Vdzsonyi's first conjecture, but the second has remained open. It is, however,
a special case of Wagner’s conjecture, for if H has maximum valency <3 and G has a minor

isomorphic to H then G topologically contains H.
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A fourth interesting quasi-order of the class of all graphs is that from “immersion.” Let us say that
a pure immersion of a graph H is a graph obtained from H by replacing its edges by paths, where
these paths are mutually edge-disjoint but may have vertices in common. We say that H is
immersed in G if there is a subgraph of G which is isomorphic to a pure immersion of H. Nash-
Williams [14] conjectures that this provides a wqo of the class of all graphs. It can be shown that

this conjecture implies both of Vdzsonyi’s conjectures, but it seems not to be related to Wagner’s

conjecture.

These problems have extensions to infinite graphs, but we avoid that topic because we have nothing
to say about it. We also have no new results about immersion. It is possible that “structure

theorem” approach to Nash-Williams’ problem might be useful, but we have not explored this.

Our approach to Wagner’s conjecture is the following. Let £ be a “structure” of graphs, for
instance, being planar, or having genus < k, or being divisible into small pieces by small cutsets.
Let us identify Z with the class of graphs possessing this structure. Now suppose that we wish to
show that Z is well-quasi-ordered by minors, and suppose that we can prove a structure theorem

within Z of the following kind.

For every H € Z there is a structure T'(H) such that G € Z'(H) for every graph G € Z with no

minor isomorphic to H.

Then it suffices to prove that for each H € Z, 2'(H) is well-quasi-ordered by minors. For if @ is
an infinite antichain with € € X, choose H € €, and then é—{H] is an infinite antichain in

Z'(H).

Let us give an example. Suppose that we wish to prove that the class of all trees is well-quasi-
ordered by minors. It is convenient to work with rooted trees, trees with one vertex distinguished,
called the root. We say a rooted tree is a minor of another if it can be obtained from a subgraph
of the second by contraction, so that root is taken to root in the natural way. We define the A-
type of a rooted tree as follows. A path, rooted at its end, has A-type zero; and inductively, for
i 2 1 we say that T has A-type <i if there is a path P of T, with one end at the root of T, such
that all its “pendant” trees (rooted at their vertex of attachment on P) have A4-type <i — 1.

Equivalently, let us take a straight-line drawing of T in the plane, and count the maximum number
of turns in a path beginning at the root. This quantity, minimized over all drawings, is the A-type
of T.
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An easy example of a structure theorem is the followi
ng.

21 Let T be a rooted tree. Th
. en there is q numéb
er k such that ever
Y rooted tree with no minor

isomorphic to G has 4 “ype < k

Hence to prove that the class of
all rooted trees Is w i i
qo by minors, it suffjces to sh
k the class of all rooted i , it
€d trees with A-type <k is Wqo by minors — and thjs can easily be done by

inducti i :
i lon on k, using a result of Higman that we discuss in section 7.

3. DISJOINT PATHS

Th
¢ problem DISJOINT CONNECTING PATHS (DCP) is, given a graph G and vertices

» Ik of G, to decide if there are k mutually disjoint paths P, ..., Py of G where P,

Sty ooy Sky 2, ..
W problem solved by

has ends s;, &; (1 <i < k). This is superficially similar to the maximum flo
Menger’s theorem, that of, given a graph G and subsets S, T of V(G), deciding if there are k&
mutually disjoint paths between S and T. However, in DCP we are prescribing which vertex is to
be paired with which, and this makes the problem much more complicated.

Indeed DCP (with k part of the input) was one of Karp’s original NP-complete problems [10], and
Lynch [12] showed that it remains NP-complete if G is constrained to be planar. For fixed k
however it may be polynomially solvable. (An analogous situation is presented by the problem

“does G have a clique of size k?” This is NP-complete, but for any fixed k it is polynomially
solvable. For k = 100, for example, it is solvable in time |V (G)|'®.)

It is important that we are concerned with undirected graphs here. While the maximum flow
problem behaves much the same for directed and for undirected graphs, DCP does not. Fortune,
Hopcroft and Wyllie [6] showed that for directed graphs, DCP is NP-complete even with k =2

(for directed graphs, we ask for the existence of directed paths between s; and ¢ (i =1, 2)).

For k = 2 and undirected graphs, the problem is known to be polynomially solvable feg2s26h
or k =

The algorithm is so simple that we describe it. We are given a graph G and four distinct vertices
e algo

Sitp S 120f G-
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or kK = 1, £ 2, %/

k : - i
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hs o , Wi 1
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1, an )

by adding new edges joining all pairs of vertices in V(G, N G,), set

G'—G
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Step 5. We test if G can be drawn without crossings in the plane, with sy, s,, #, £, on the outside

in that order. If so then the paths do not exist, and otherwise they do exist.

We see that the “obstruction” to the existence of the desired paths is a topological one; and it has
long been our hope, and we now seem to have shown, that the same is true for the DCP problem
with general k. We expand on this in section 8. There we shall see that the general (fixed k)
DCP problem can be solved if and only if it can be solved for graphs which can *“‘almost” be
embedded in surfaces with genus bounded by a function of k. (“Almost” here is technical, and
will be elaborated in section 6.) This is one motivation for our study of DCP for graphs which can
be drawn in a fixed surface. Another is that for the DCP problem, graphs drawn on a surface are

naively easier to handle than general graphs, because paths cannot cross each other.

We shall study DCP for graphs with some structure imposed. There are basically two kinds of
structure involved, bounded genus (as we discussed above) and “tree structure.” This last means
that the graph is constructed from inherently simpler graphs by piecing them together in a tree
structure, where each piece overlaps its neighbours in a subset of bounded size. This guarantees us
a multiplicity of small cutsets, and “divide and conquer” methods usually serve to reduce a DCP

problem on such a graph to DCP problems on the inherently simpler pieces.

There is another algorithmic question of interest here. Given a fixed graph H, how does one test if
a general graph has a minor isomorphic to H? It is easy to see that if DCP is polynomially
solvable for fixed k, then so is this problem. In some sense it is strictly easier — for we have often
found structures within which we could solve the above minor-testing problem, and yet could not
(prima facie) solve DCP; and for many types of graphs H (for instances, planar graphs) we can
test if a general graph has a minor isomorphic to H in polynomial time, while the polynomial
solvability of DCP in general is still not quite decided. Thus it is perhaps surprising that our
proposed solution to DCP in general is based mainly on results about this minor-testing problem.
This is one motivation for our separate study of the minor-testing problem; it is not just a

simplification of DCP but may be the key to the entire solution.

Finally, a confession: although our algorithms are polynomially bounded, these are immensely
high-order polynomials in most cases, and most of the algorithms are not practical. The

algorithmic results we obtain are of interest mainly from the point of view of NP-completeness.
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4. STRUCTURE THEOREMS

e shall return to Vi
\\Y these motivating problems later. For the moment we concentrate on

structure theorems. The starting point for i
p the project was Mader’s use of a theorem of Erdés and

pésa. Erdss and Pdsa (5] proved the following.

41 For any number k 2 0 there is a number k' 2 0 such that for every graph G, either
() G has k vertex-disjoint circuits, or

(ii) there exists X S V(G) with |X| < k' such that GXX, K. iio circulls:

[G\X denotes the graph obtained from G by deleting the vertices in X.] Erdés and Pdsa also
showed that the best possible k' is of order klogk. However, these numerical results do not

concern us. Condition (ii) is not necessary and sufficient for (i) to be false, but the theorem is

sharp in another sense.

Let us say a class of graphs & is minor-closed if for all G € &, every graph isomorphic to a
minor of G is also in &. Throughout the paper, & will denote an arbitrary minor-closed class of

graphs, and we shall omit to say so henceforth. We can reformulate (4.1) as follows.

4.2 For any &, the following are equivalent:

(i) there exists k = 0 such that the graph consisting of k disjoint loops is not in ¥

(i) there exists k' 2 0 such that for every G € & G\X has no circuits for some X S V(G)

with |[X| < k'

Mader [13] used this theorem to deduce that the class of all graphs without k vertex-disjoint
circuits is well-quasi-ordered by topological containment; but we explain Mader’s argument in

section 7. We have found several other results which are sharp in the same way as (4.2), and we

list some of them in this section.
obvious analogue of (4.2) is the trivial theorem that if G has no k + 1 matching, we can
n

First, a .
ts edges with 2k vertices. In our standard form this be

COMmes

meet all i

4 3 FOI afly .4, Ihefollowing are equiva/ent.'
() h Jd eXiSIS k > 0 SllCh thal the g’ aph CO”SiSll.ng ka d:.syomt (nOﬂ‘IOOP) edges iS not in .?
i there

> 0 such that for every G € F G\X has no edges for some X C V(G) with
2

3 ’
(i) there exists k

x| < k'
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We define B -type as follows. Graphs with <1 vertex have B-type 1, and inductively for i > 1, G
has B-type <i if for some v € V(G), every component of G\{v] has B-type <i — 1. It is rather

easy to prove that a graph with no k-vertex path has B-type <k, and conversely that a graph with

B-type <k has no 2¥-vertex path. In our standard form, this becomes

4.4 For any &, the following are equivalent:

(i) there exists k 2> 0 such that P, ¢ &

(ii) there exists k' 2 0 such that every graph in % has B-type <k'.

[Py is the k-vertex path.] It is convenient to abbreviate this as “k-vertex path ~ B-type.”

Dirac [4] showed that every 2-connected graph with a long path also has a long circuit. Let us

define the C-type of a graph to be the maximum of the B-types of its blocks. From Dirac’s

theorem we deduce
4.5 k-vertex circuit — C-type.

One would expect the ‘“‘dual” problem (in the sense of planar duality), the exclusion of large
“bonds,” to be of the same degree of difficulty. But in fact, it was rather more complicated. The
appropriate structure (D-type) is the following. The complete graph K, has D-type 1.
Inductively, for i > 2, we say a 2-connected graph has D-type <i if it can be constructed by
arranging in a circle a number of 2-connected graphs, each with D-type <i — 1, and identifying a
vertex of each with a vertex of the next. For a general graph, we say its D-type is the maximum

of the D-types of its blocks. Then
4.6 C; — D-type.
[Cy is the loopless graph with 2 vertices and k edges.]

The next simplest type of graph we could think of to exclude was the k-edge star K 1k- That is

rather easy. We define

(i) if G is connected and has two adjacent vertices with valency 2, the E-type of G is the E-type

of the graph obtained by contracting the edge joining these two vertices
(ii) if G is connected and has no such pair of vertices its E-type is [V (G)|

(iii) the E-type of a general graph is the maximum E-type of its components.
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Then we have
41 Kl.k — E-type.

Theorems (4.3), (4.4) and (4.7) allow us to deduce that if H is a matching, path or star then no

infinite antichain contains 4 and there is a polynomial algorithm to test for 4 as a minor. It was

natural to ask for a unification. This is provided by the concept of “path-width”. Suppose that G

can be constructed from a sequence G, .., G, of vertex-disjoint graphs, by identifying some

vertices of G; with some of G4y (1 < i < n): and that each G, has at most k + 1 vertices. Then

we say that G has path-width < k. The following was the first difficult theorem that we
found [15].

4.8 Binary tree of depth k ~ path-width.

Now every forest is isomorphic to a minor of a sufficiently large binary tree; and so we deduce

4.9 For any &, the following are equivalent:

(i) some forest is not in F

(ii) there exists k' > 0 such that every member of & has path-width <k'.

From this we could deduce, as hoped, that for any forest A, no infinite antichain contains A, and

there is a polynomial algorithm to test for A/ as a minor.

At this stage we switched from studying these theorems for their own sake to studying them for the
sake of their applications. The object now became to find the most general type of graph H the
exclusion of which would force some usable structure. We hit on a conjecture for the structure
corresponding to the exclusion of a general planar graph. It remained open for some eighteen

months, but was eventually proved in [19].

We need the notion of “tree-width.” For path-width the “pieces” G, ..., G, are arranged in a
sequence. Let us arrange them instead in a tree. Thus we have a tree T, and associated with each
t € V(T) we have a graph G,. Now suppose that G can be constructed by identifying (for each
edge {r,¢'} of T) some vertices of G, with some of G,. Suppose also that each G, has at most

k + 1 vertices. Then we say that G has tree-width <k. We proved

4.10 k x k grid «— tree-width.

[The k x k grid is a square induced subgraph of the infinite square lattice, with k2 vertices.]

Every planar graph is isomorphic to a minor of a sufficiently large grid, and we deduce
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4.11 For any %, the following are equivalent:
(i) some planar graph is not in F
(ii) there exists k' 2 0 such that every member of & has tree-width < k'.

This had the desired two applications — for any planar graph H, no infinite antichain contains H,
and there is a polynomial algorithm to test for / as a minor. It also had several others, one of
which provides a dramatic generalization of the Erdds-Posa theorem (4.1), as follows. For any
graph H, a minimal subgraph of G with a minor isomorphic to H is called an H -expansion in G.

Thus if H is a loop, the H-expansions in G are the circuits of G.

4.12 [19] Let H be a planar graph. For any number k > O there is a number k' 2> 0 such that
Jor every graph G, either

() G has k vertex-disjoint H -expansions, or
(ii) there exists X G V(G) with |X| < k' such that G\X has no H -expansions.

This is best possible in that for any non-planar graph H, if we take k = 2 then no k' satisfies the

theorem.

5. CLIQUE-SUMS

Before we continue this saga, we need to define “clique-sums.” Let (G,, G,) be a
separation of G, and let H; be the graph obtained from G; by adding new edges joining every pair
of vertices in V(G, N G,) (i =1,2). We say that G is the clique-sum of H, and H,, and if
[V(G, N G| < k we also say that it is the (< k) - sum of H, and H,. If G can be constructed
by repeatedly taking (< k)-sums starting from graphs isomorphic to members of some class € of
graphs, we write G € (€),. We set

(fg)- U <(g)k .

k20

It can be shown, for instance, that
() if € = (K, K4}, then (%) is the class of all forests

(i) if € is the class of all graphs with at most three vertices then (‘6) is the class of “series-

parallel” graphs
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Gii) if @ is the class of all graphs with at mogt k 4 | vertices then () is the class of all graphs
yith tree-width <.

Clique-sums seem (0 be intimately connected with excluged minors. The classes (€) of (i) and (i)

above are the classes of graphs with no minor isomorphic 1o a loop or to K4, respectively. (See [3].)

There are more difficult theorems of the same type:

(iv) [81if € is the class of all planar graphs together with K, then (), is the class of all graphs

with no K3,3 minor

(v) [271if € is the class of all planar graphs together with the “four-rung Mabius ladder”. then
(€)y is the class of all graphs with no K5 minor.

These show that (4.10) is not the most general theorem in which clique-sums are significant.
Motivated by (iv) and (v) and our desire to find structure theorems for the exclusion of the most
general graphs possible, we derived from (4.10) the following, which in a way generalizes (iv) and

(v) above.
5.1 For any & the following are equivalent:
(i) some graph with crossing number <1 is not in &

(ii) there exists k' 2 0 such that if €, denotes the class of all planar graphs and €, denotes the

class of all graphs with tree-width at most k', then

FC(€ v €.

6. MINORS AND SURFACES

(5.1) is a fairly easy extension of (4.10), and our program of producing ever more general
structure theorems languished at this point for some time. Even obtaining a form of (5.1) for

graphs with crossing number < 2 seemed too difficult to be worth the effort.

However, before proving (4.10) we had proved a special case of it where F is restricted to be a
class of planar graphs, and for that the proof was easy [17]. We decided therefore to look for

similar results where the membe
A second motivation for considering what might seem an unnatural special

rs of & were constrained to lie on some fixed surface T (briefly,

“ % embeds in Z").
was Erdés’ old question about the finiteness of the list of minimal graphs which cannot be
case
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drawn in a fixed surface. It is easy to see that all members of such a list have bounded genus; and
so Erd0s’ question would be answered affirmatively if it could be shown that there is no infinite
antichain all members of which can be drawn in a fixed surface. This last we hoped would follow

from a structure theorem of the kind we were considering, as indeed it did.

The structure theorem we found is, surprisingly, simpler for higher surfaces than the corresponding
theorem is for the sphere. Let G be a graph with a drawing I' in a surface Z. We define the
representativeness of I' to be the minimum, over all non-null-homotopic non-self-intersecting closed

paths P in =, of the number of points of P used by I Our theorem is the following.

6.1 Let T be a connected surface different from the sphere. Then for any & which embeds in Z,

the following are equivalent:
(i) some graph which can be drawn in Z is not in &

(i) there exists k' 2 0 such that every drawing in T of every member of & has representativeness

<k'

Although this has quite a simple form, we needed some elaborate machinery for its proof [21].
With the aid of this machinery we returned to the general problem, and recently were able to prove

what we regard as the “ultimate” structure theorem. To state it we need some further definitions.

Let T be a surface with boundary (that is, it has some finite number of holes punched in it). Let
us draw a graph G in Z, allowing vertices to be drawn on the boundary of =. For each vertex v of
G drawn on the boundary of Z, let us take a new graph G, with V(G) N V(G,) = {v}, where the
G,’s for different vertices v are vertex-disjoint. Now for all consecutive pairs of vertices v, v' on
the boundary of Z, let us identify some vertices of G, with some of G,. Let G' be the graph
produced from combining G and the G,’s in this way. If each G, has at most k + 1 vertices, we
say that G' is (Z, k) - drawable. Secondly, if G\X is (Z,k)-drawable, where X C V(G) and
|X| < w, we say that G is (Z,k,w)-drawable. Our “ultimate” structure theorem is the following.

Half of its proof is in [23], while the other half is being written.
6.2 For any %, the following are equivalent:

(i) some graph is not in F

(ii) there exists =, k, w such that ¥ < (‘6) where € is the class of (Z, k, w) -drawable graphs.

As we mentioned in the introduction, we believe that this settles both problems (A) and (B) stated

there; but the details of these applications of (6.2) still have to be checked.



Robertson & Seymour : Graph minors — g survey 165

4. APPLICATIONS TO WELL-QUASI-ORDERING

We turn now to the derivation
from our structure theorems of results related to Wagner’s

conjcctul'C.

Let (Q, <) be a wqo, and let g, ¢’ be finite sequences of members of Q. We say ¢ € ¢'if o’ has a
"
subsequence ¢ of the same length i< ¢, such that o" dominates ¢ ‘“‘componentwise.” It is a

fundamental theorem of Higman [9] that this defines a wqo on the set of finite sequences over Q.

Let us see how this can be used to show that the class of graphs with path-width <w is wqo by
minors. Now if G has path-width < w then it is constructed from a sequence Gy, ..., G, of graphs
of bounded size, by overlapping each with the next. A first attempt at a proof might then be to
encode G as this finite sequence o(G) say, recording on each member of the sequence how it is to
overlap its neighbours. Certainly the encodings o(G) lie in a wqo set, because of Higman’s
theorem and the fact the graphs of bounded size are wqo by the “subgraph” quasi-order, even
when their vertices are labelled. The difficulty lies in the fact that it is possible that ¢(G) < ¢(G")
even if G is not isomorphic to a minor of G'; for if ¢(G) and ¢(G") have different lengths, and
0(G') has a redundant internal entry, we have no satisfactory way of ‘“contracting out” the

corresponding part of G'.

However, suppose instead that each G; has two subsets 4; and B;, both of cardinality k, and there
are k mutually disjoint paths of G between A4; and B;; and that G is constructed from Gy, ..., G,
by identifying 4; with By, (1 <i < n). We say that such a graph G is k-uniform over any
class of graphs containing G\, ..., G,. Now suppose G, G' are both k-uniform over some class, and
we encode them as before as d(G), o(G'). Now it is true that ¢(G) < ¢(G') implies that G is
isomorphic to a minor of G', for we can remove any unwanted section of G' by contracting the
edges of the k paths which run through it. (We need a little care to ensure that the permutation

induced by these paths is consistent with the way we record on each G; the sets 4; and B; in the

encoding process, but that is easy.)

Now it is not really necessary for the above argument that the G;’s be of bounded size; it is enough

that we know a suitable well-quasi-ordering result for the triples (G;, A4;, B;). Let us combine this

with a theorem that every graph of path-width <w is O-uniform over the class of 1-uniform graphs

er the class of 2-uniform graphs over ... over the class of w-uniform graphs over the class of
oV

graphs with at most w + 1 vertices. Then, by applying our result w + 1 times, we deduce that the

class of graphs with path-width <w is wqo by minors.
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We deduce that no infinite antichain contains a forest; for if it did, then its other members would
constitute an infinite antichain with all members of bounded path-width, by (4.9), contrary to what

we have just proved.

As for tree-width, basically the same approach works. We may think of Higman’s theorem as a
result about paths with vertices labelled from some wqo. Kruskal [11] proved the generalization to
trees with vertices labelled from a wqo. We hope then to encode a graph of bounded tree-width as
a labelled tree, where the labels are better-connected graphs with tree-width no larger, and to apply
Kruskal’s theorem repeatedly. There is a serious difficulty, however. With path-width, only two
subsets of G; (4; and B;) needed to be encoded. With tree-width this number is unbounded, and
the analogous encoding procedure does not work. To overcome this, we needed to work with
hypergraphs, labelling edges of the hypergraph rather than subsets of vertices of the graphs. It is

complicated technically, and we do not discuss it further here. This is the theory of “patchworks”
of [18].

We deduce from this and (4.11) that no infinite antichain contains a planar graph.

The second technique we want to mention is that used by Mader [13] to deduce from the Erdés-

Pdsa theorem that the class of graphs without k vertex-disjoint circuits is wqo by topological

containment. Let G be a graph without k disjoint circuits. We define an encoding of G as

follows. Choose k' as in (4.1), and choose X € V(G) with |X| < k' such that G\X has no

circuits. Take an arbitrary numbering x,, .., x, of the elements of X, and for each

v € V(G) — X, define n(v) = (n,,..., n,), where n; is the number of edges between x; and v. The
set of all such finite sequences, ordered by Higman’s order, is a wqo. Let G* be G\X with all
vertices v labelled with n(v), and let o(G) be (G*, G™) where G~ is the restriction of G to X. [t
is easy to see that if G, G' are two such graphs, and ¢(G) < ¢(G') with the natural ordering, then

G is topologically contained in G'. Moreover, the natural ordering of all such pairs (G*, G7) is a

wqo by Kruskal’s theorem; and Mader’s theorem follows.

More generally let € be a class of graphs which forms a well-quasi-order under ‘“labelled”
topological containment, when its members are vertex-labelled from any wqo (such as the class of
all forests, by Kruskal's theorem). For any integer k', the class of all graphs G such that
G\X € € for some X S V(G) with |X| < k' is wqo by topological containment. (The proof is

the same.) An analogous result holds for minor containment.

A third technique worth mentioning is our method of proving that the class of all graphs which can

be drawn on a fixed surface is wqo by minors [22]. That runs as follows. Suppose the result is
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false, and choose 2 surface 2 as simple as possible which embeds an infinite antichain of say. Now
3 is not the sphere, because no infinite antichain contains even one planar graph. Choose i € .o,
Then no G € o/ — (H) has a minor isomorphic to H, and so by (6.1), there exists &’ > 0 such

that every member of &/ — (H) has a drawing in 2 with representativeness < k'.

Now there are only finitely many different non-self-intersecting closed paths in Z up to
homeomorphism; and so we may choose one, P say, such that there is an infinite antichain o of
graphs which all have drawings in = using only k' points of P, and these points are used only to
represent vertices of the graphs (not edges). Let Z' be the surface obtained from I by cutting
along P, and for each G € o, let G' be the graph obtained from G by “splitting” the vertices of
G drawn on P in the natural way. We thus obtain an infinite set of graphs drawn in Z'. If this
were an infinite antichain, we would have a contradiction to our choice of . Unfortunately it need
not be. The difficulty lies in keeping track of the special vertices which have been split. But there
is only a bounded number of these. Let us go back and begin again, now working with graphs

drawn in = with a bounded number of distinguished vertices, drawn in 4d (Z). Again, choose 2 as

simple as possible embedding an infinite antichain of such objects. The argument given before

again (essentially) applies, and we do now obtain a contradiction to the choice of Z.

We have explained three techniques here. It is encouraging that these would seem to be exactly

those techniques needed to exploit (6.2). (The fourth feature of (6.2), the “rings” of little graphs

attached onto the boundary of the surfaces, is easily handled — we delete each such little graph,

and label the vertex where it was attached to the surface with a description of the deleted graph.)

8. APPLICATIONS TO DISJOINT PATH PROBLEMS

of “splitting” a vertex. Let us take an instance of DCP — G is

Central to this is the idea
es of G. (We say that k is the index of the instance.) Suppose

.., ty are vertic

a graph, and s, - o
G incident with v have a natural partition into (say) two sets Ey, E,.

v € V(G), and the edges of
Let G' be the graph obtained b
i=1,2).
problems in G' each with index k& + 1.

y “splitting” v into two vertices v, va, where the edges now incident
i iginal DCP problem can be solved if
. in E( It is easy to see that the origina

with v, are those 1n £y

we can solve 2k +2 DCP

od this is of course terrible. Not only is one problem replaced by 2k + 2, but

and even the size of the graph increases. However, it can sometimes be

has a small cutset, dividing ¥(G) into two roughly equal

As a reduction meth

also the index increases,

Suppose for example that G

ful. ‘ -
v ., t; are also roughly evenly distributed between these two sides. If we

pieces, and th
split all the vert

e vertices sp, -
ices of the cutset in the natural way, the graph becomes disconnected, and we can
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solve the derived DCP problems by working with the components separately. The DCP problems
on each component are much simpler than the original on G; and if only this reduction process

could be applied to the components as well, we would have a polynomial algorithm.

Let us see how to use this idea to solve DCP with bounded index k for graphs with bounded tree-
width <w [16]. Fix ¢ with k, 3w < ¢. Now for any subset X S V(G), there is a cutset of
cardinality <w, dividing X into two parts, neither of which is bigger than twice the other; and we
can find such a cutset in polynomial time. (Simply try all subsets of ¥ (G) with cardinality <w)
Let us choose such a cutset for X = V(G), and another for X = (sy, ..., #}; and split in the
natural way all vertices in both cutsets. We find that our original problem is reduced to a number
(bounded by some function of ¢) of DCP problems on graphs which still have tree-width <w,
which have at most about two-thirds of the original number of vertices; and it can be checked that

they all have index still at most ¢. (This was the reason for the choice of ¢ > 3w,k.) This then

yields a polynomial algorithm.

We can use the same algorithm on graphs not known to have tree-width <w if we permit three
possible outcomes:

(i) the paths exist
(ii) the paths do not exist

(iii) G has tree-width > w.

For we simply search for the small cutsets, as before; and if we do not find them, we conclude that
(iii) holds.

This permits us, for a fixed planar graph H, to test in polynomial time if an input graph G has a
minor isomorphic to H. For we choose w so that, by (4.11), every graph with tree-width > w has
a minor isomorphic to H. Then we can use the algorithm above to solve DCP and hence to test for

H as a minor; for if it ever outputs (iii) we can stop, since H is present.

Now secondly, let us discuss DCP when G is restricted to embed in some connected surface Z.
Our approach is once again to use a structure theorem, that for sufficiently general graphs the
paths exist; and if our input graph is not “sufficiently general” we exploit its failure, to reduce to a
number of simpler problems. We can prove for example that if Z is not the sphere, and a drawing
of G has sufficiently high representativeness and the vertices s,, ..., #; are sufficiently far apart,
then the required paths exist. But this structure theorem is not good enough, because we cannot

exploit every case in which its hypotheses fail to hold. Certainly if the representativeness is too



Robertson & Seymour : Graph minors ~ 4 survey
169

8 only in vertices of G) and reduce to a number

of problems on a simpler
P pler surface. But what do we do if some of the 5,'s and 4,'s are too ¢
' close

together?
Our problem is solved by using the following better structure theorem

o .

drawing in 2, and let s,, ..., t, be the vertices of G which are drawn in bd (%) Suppose that
() in 2 (not hecessarily in G) there are k disjoint paths lin king s, and 1, (1 < 1 < k)

(i) for ev -null- ; .
Jfor every non-null-homotopic non-self-intersecting closed path P which simply surrounds one

hole i 3

ole in 2. the number of points of P used by the drawing is at least as large as the number of

points of the boundary of the corresponding hole used by the drawing

(i) for every non-null-homotopic non-self-intersecting closed path P of any other kind, the
number of points of P used by the drawing is at least N.

Then the required paths exist.

This can easily be used in an algorithm. If (i) fails then certainly the paths do not exist in G. If
some P fails to satisfy (ii) or (iii) we cut along it, splitting the vertices of G on it; and we find that
we have reduced to a number of problems either on the same surface with smaller index, or on to a
simpler surface. If Z is a sphere with three holes a slight variation of (8.1) can be used. If Zis a

disc or cylinder we need a different technique, but it exists — it is even practical [20].

We have also found (8.1) to be very useful theoretically. It is this, for instance, that is the

machinery behind the proof of (6.1) and (6.2).

Lastly, let us sketch a way in which (6.2) may yield a polynomial algorithm for DCP in general.

We are given a graph G, and vertices s, ..., & of G (which we may assume distinct). Put

Z = [S], oea Ik}.

Step 1. Test if there is a separation (G,, G;) of G with Z € V(G)), |V(G, N Gy)| < 2k and
|V (G2)| large. If there is one, we list all those pairings of V(G, N G3) which correspond to
disjoint collections of paths in G,, each path beginning and ending in ¥(G, N G,). We can do
this because each candidate pairing corresponds to a DCP problem of index < k — 1 which we can

therefore solve, by induction on k. Having constructed this list, we find a small graph with the
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same list, and substitute it for G;. (The preparation of these small graphs is preprocessing.) w
) We

continue these substitutions until no such separation remains.

Step 2. Let 2 be an connected orientable surface of genus k, and let K be a graph which s
. L a
drawing in 2 with high representativity. Now we can follow the proof of (6.2) with a polynomig|

algorithm, and hence construct either

(i) a minor H' of G isomorphic to H, or
(ii) a presentation of G as a member of (‘6), where € is the class of (', k', w')-drawable graphs,
and Z', k', w' are independent of G.

Step 3. If (i) above occurred, then the required paths exist. For there are 2k disjoint paths of G
linking Z to V(H'), in such a way that their ends in V(H') do not “block each other in”” — this
can be deduced from the absence of separations eliminated in step 1. But since the genus of Z is so
high, the ends of these paths can be joined in any required pairing by disjoint paths of H' — this

follows from (8.1). Hence as claimed, the required paths exist. We assume then that (ii) occurs.
Step 4. We use “divide and conquer” methods to reduce to a number of DCP problems on
(', k', w')-drawable graphs. For each such problem, we can eliminate the < w' special vertices,
and reduce to a number of DCP problems on (Z', k')-drawable graphs.

There remains the question of how to solve DCP problems on (Z', k')-drawable graphs. If k' = (
this is what we previously discussed. If k' # 0, it seems that we need a variation on (8.1), which

we think we have found, but it is too complex to describe here.
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