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An easy example of a structure theorem is the following.
Z.J Let T be a rooted tree. Th h en I ere is a number k such that every rooted tree with no minor
isomorphic to G has A -type � k. 

Hence to prove that the class of all ed · • . root trees 1s wqo by minors, 1t suffices to show that for everyk the class of all rooted trees with A t � k · · 
- ype � IS wqo by minors - and this can easily be done byinduction on k, using a result of Higman that d. 

· · 7we 1scuss m section

3. DISJO[Nf PATHS

The problem DISJOINT CONNECTING PATHS (DCP) is, given a graph G and verticess,, ••• , sk, 11, ••• , tk of G, to decide if there are k mutuaJiy disjoint paths P1, ... , Pk of G where P1has ends s,, 11 (I � i � k). This is superficially similar to the maximum flow problem solved byMenger's theorem, that of, given a graph G and subsets S, T of V(G), deciding if there are kmutually disjoint paths between S and T. However, in DCP we are prescribing which vertex is tobe paired with which, and this makes the problem much more complicated.

Indeed DCP (with k part of the input) was one of Karp's original NP-complete problems [IOJ, and
Lynch [ 12] showed that it remains NP-complete if G is constrained to be planar. For fixed k

however it may be polynomially solvable. (An analogous situation is presented by the problem
"does G have a clique of size k ?" This is NP-complete, but for any fixed k it is polynomially
solvable. For k - JOO, for example, it is solvable in time I V(G) /' 00.)

• d h h While the maximum flowIt is important that we are concerned with undirecte grap s . ere. 

h the same for directed and for undirected graphs, DCP does not. Fortune,problem behaves muc · 
. d W II' [6] showed that for directed graphs, DCP is NP-complete even with k - 2 Hopcroft an Y IC 

( • I 2)). k fi the existence of directed paths between s1 and t, ' - , (for directed graphs, we as or 

bl • known to be polynomially solvable [23,24,25,261.• ed rapbs the pro em 1s For k - 2 and undirect g 
' d 'be ·t We are given a graph G and four distinct vertices• • I that we escn 1 • The algorithm is so s1mp e 

t s2 12 of G.
Si, 1' ' 

. (G G) f G with V(G2) ¢ V(G,),4) Test if there is a separation 1, 2 ° 
Step k (for k - 1, 2, 3, •

)/ k - I [(G G) is a separation of G if G,, G2 areI V(G n G2 - • " 2 
S 12 E V(G ,) and I 

) J If we find such a separation, weSI• I I' 2' 

d £ (G (l G - {ZJ 
. u G2 - G an 1 2 • 

subgraphs of G, with G1 
. edges joining all pairs of vertices in V(G, n G2), set

G' f: G by adding new 
k + l construct I rom I 

If we do not find any such separation we go to step •
G• and return to step k.

G - I• 

I 

/ 
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Step 5. We test if G can be drawn without crossings in the plane, with St, s2, It, t2 on the outside 

in that order. If so then the paths do not exist, and otherwise they do exist. 

We see that the. "obstruction" to the existence of the desired paths is a topological one; and it has 

long been our hope, and we now seem to have shown, that the same is true for the DCP problem 

with general k. We expand on this in section 8. There we shall see that the general (fixed k) 

OCP problem can be solved if and only if it can be solved for graphs which can "almost" be 

embedded in surfaces with genus bounded by a function of k. (" Almost" here is technical, and 

will be elaborated in section 6.) This is one motivation for our study of DCP for graphs which can 

be drawn in a fixed surface. Another is that for the DCP problem, graphs drawn on a surface arc 

naively easier to handle than general graphs, because paths cannot cross each other. 

We shall study DCP for graphs with some structure imposed. There are basically two kinds of 

structure involved, bounded genus (as we discussed above) and "tree structure." This last means 

that the graph is constructed from inherently simpler graphs by piecing them together in a tree 

structure, where each piece overlaps its neighbours in a subset of bounded size. This guarantees us 

a multiplicity of small cutsets, and "divide and conquer" methods usually serve to reduce a DCP 

problem on such a graph to DCP problems on the inherently simpler pieces. 

There is another algorithmic question of interest here. Given a fixed graph H, how does one test if 

a general graph has a minor isomorphic to H? It is easy to see that if DCP is polynomially 

solvable for fixed k, then so is this problem. In some sense it is strictly easier - for we have often 

found structures within which we could solve the above minor-testing problem, and yet could not 

(prima facie) solve DCP; and for many types of graphs H (for instances, planar graphs) we can 

test if a general graph has a minor isomorphic to H in polynomial time, while the polynomial 

solvability of DCP in general is still not quite decided. Thus it is perhaps surprising that our 

proposed solution to DCP in general is based mainly on results about this minor-testing problem. 

This is one motivation for our separate study of the minor-testing problem; it is not just a 

simplification of DCP but may be the key to the entire solution. 

Finally, a confession: although our algorithms are polynomially bounded, these are immensely 

high-order polynomials in most cases, and most of the algorithms are not practical. The 

algorithmic results we obtain are of interest mainly from the point of view of NP-completeness. 
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4. STRUCTURE THEOREMS

We shall return to these r 
. 
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mo ivating problems later. For the

structure theorems. The starting point fo th . 
moment we concentrate on

r e proJect was Mader's u f b 
Posa. Erdos and Posa [SJ proved the " II . 

se o a t eorem of Erdos and
,o owing. 

4.1 For any number k � O there is a b , num erk � 0 such that for every graph G, eilher

(i) G has k vertex-disjoint circuits, or

(ii) there exists X � V(G) with /X/ < k' h sue that G\X has no circuits.

[G\X denotes the graph obtained f G rom by deleting the vertices in X.1 Erdos and Posa also 

showed that the best possible k' is of O d r er k log k. However, these numerical results do not

concern us. Condition (ii) is t . no necessary and sufficient for (i) to be false, but the theorem is

sharp in another sense. 

Let us say a class of graphs Fis minor-closed if for all G E !F, every graph isomorphic to a 

minor of G is also in !F. Throughout the paper, F wil] denote an arbitrary minor-closed class of 

graphs, and we shall omit to say so henceforth. We can reformulate (4.I) as follows.

4.2 For any !F, the following are equivalent: 

(i) there exists k � 0 such that the graph consisting of k disjoint loops is nor in F

Gi) there exists k' � 0 such that for every G E fF. G\X has no circuits for some X � V(G)

with /X/ < k'. 

Mader [13] used this theorem to deduce that the class of all graphs without k vertex-disjoint 

circuits is well-quasi-ordered by topological containment; but we explain Mader's argument in 

section 7. We have found several other results which are sharp in the same way as (4.2), and we 

list some of them in this section. 

First, an obvious analogue of (4.2) is the trivial theorem that if G has no k + 1 matching, we can

meet all its edges with 2k vertices. In our standard form this becomes

4.3 For any !F, the following are equivalent.·

(i) there exists k ;►, Osuch that the graph consisting of k disjoint (non-loop) edges is not in F

(ii) there exists k' ;►, Osuch that for every G E f!F. G\X has no edges for some X � V(G) with

/XI < k'.

I 
I 
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We define B -type as follows. Graphs with � 1 vertex have B-typc 1, and inductively for I > l, G 

bas B-type � i if for some v E V(G), every component of G\{v} has B-type � i - l. It is rather 

easy to prove that a graph with no k-vertex path has B-type < k, and conversely that a graph with 

B-typc < k has no 2k •vertex path. In our standard form, this becomes

4.4 For.any fF. the following are equivalent: 

(i) there exists k � 0 such that Pk t 1;"

(ii) there exists k' � 0 such that every graph in 1;" has B -type < k '.

[Pk is the k-vertex path.) It is convenient to abbreviate this as "k-vertex path - B-type." 

Dirac [4] showed that every 2-connected graph with a long path also has a long circuit. Let us 

define the C-type of a graph to be the maximum of the B-types of its blocks. From Dirac's 

theorem we deduce 

4.5 k-vertex circuit - C -type. 

One would expect the "dual" problem Gn the sense of planar duality), the exclusion of large 

"bonds," to be of the same degree of difficulty. But in fact, it was rather more complicated. The 

appropriate structure CD-type) is the following. The complete graph K2 has D-typc 1. 

Inductively, for i � 2, we say a 2-connected graph has D-type � i if it can be constructed by 

arranging in a circle a number of 2-connected graphs, each with D-type � i - 1, and identifying a 

vertex of each with a vertex of the next. For a general graph, we say its D-type is the maximum 

of the D-types of its blocks. Then 

4.6 c; - D -type. 

[ c; is the loopless graph with 2 vertices and k edges.] 

The next simplest type of graph we could think of to exclude was the k-edge star K t ,k• That is

rather easy. We define 

(i) if G is connected and has two adjacent vertices with valency 2, the £-type of G is the £-type

of the graph obtained by contracting the edge joining these two vertices

(ii) if G is connected and bas no such pair of vertices its £-type is I V(G) I

(iii) the £-type of a general graph is the maximum E -type of its components.
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fben we have

4,1 K i,k - E -type.

Theorems (4.3), (4.4) and (4.7) allow us to deduce that if H is a matching, path or star then no

infinite antichain contains H and there is a polynomial algorithm to test for H as a minor. It wu

natural to ask for a unification. This is provided by the concept of "path-width". Suppose that G
n be constructed from a sequence G G f d' • • ca 1o ... , " o vertex- ISJomt graphs, by identifying some

vertices of G, witb some of G1+1 (I � i < n); and that each G, has at most k + 1 vertices. Then
we say that G has path-width � k

• The following was the first difficult theorem that we

found [ 151. 

4.8 Binary tree of depth k - path-width. 

Now every forest is isomorphic to a minor of a sufficiently large binary tree; and so we deduce 

4.9 For any !F. the following are equivalent: 

(i) some forest is not in 1F

(ii) there exists k' � 0 such that every member of 1F has path-width < k '.

From this we could deduce, as hoped, that for any forest H, no infinite antichain contains H, and 

there is a polynomial algorithm to test for H as a minor. 

At this stage we switched from studying these theorems for their own sake to studying them for the 

sake of their applications. The object now became to find the most general type of graph H the 

exclusion of which would force some usable structure. We hit on a conjecture for the structure 

corresponding to the exclusion of a general planar graph. It remained open for some eighteen 

months, but was eventually proved in [ I 9 ]. 

We need the notion of "tree-width." For path-width the "pieces" G i , ... , Gn are arranged in a 

sequence. Let us arrange them instead in a tree. Thus we have a tree T, and associated with each 

t E V(T) we have a graph G,. Now suppose that G can be constructed by identifying (for each 

edge {t, t '} of T) some vertices of G, with some of G,•. Suppose also that each G, has at most 

k + 1 vertices. Then we say that G has tree-width ::s;; k. We proved 

4.10 k x k grid - tree-width. 

[The k x k grid is a square induced subgraph of the infinite square lattice, with k2 vertices.] 

Every planar graph is isomorphic to a minor of a sufficiently large grid, and we deduce 

' 
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4.11 For any '1 the following are equivalent: 

(i) some planar graph is not in fF

(ii) there exists k' � 0 such that every member of !F has tree-width < k '.

162 

This bad the desired two applications - for any planar graph H, no infinite antichain contains H,

and there is a polynomial algorithm to test for H as a minor. It also had several others, one of 

which provides a dramatic generalization of the Erdos-Posa theorem (4.1), as follows. For any 

graph H, a minimal subgraph of G with a minor isomorphic to H is called an H -expansion in G. 

Thus if H is a loop, the H -expansions in G are the circuits of G.

4.12 [19) Let H be a planar graph. For any number k � 0 there is a number k' � 0 such that 

for every graph G, either 

(i) G has k vertex-disjoint H -expansions, or

(ii) there exists X � V(G) with IXI < k' such that G\X has no H -expansions.

This is best possible in that for any non-planar graph H, if we take k - 2 then no k' satisfies the 

theorem. 

5. CLIQUE-SUMS

Before we continue this saga, we need to define "clique-sums." Let (G 1 , G2) be a

separation of G, and let H1 be the graph obtained from G1 by adding new edges joining every pair 

of vertices in V(G 1 n Gi) (i - l, 2). We say that G is the clique-sum of H 1 and H 2, and if 

I V(G 1 n Gi) I � k we also say that it is the ( � k) - sum of HI and H 2. If G can be constructed 

by repeatedly taking (� k)-sums starting from graphs isomorphic to members of some class f-€ of 

graphs, we write G E (({/')k. We set 

It can be shown, for instance, that 

(i) if f,€ - {K i , K :J, then ( ((/') is the class of all forests

(ii) if {,€ is the class of all graphs with at most three vertices then ( fB) is the class of "series

parallel" graphs

-- .
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(iiO if fl is the class of all graphs with at most k + I vertices then (� is the class or aJJ graphs
. b tree-width � k • 

wit 

Clique-sums seem to be intimately connected with excluded minors. The classes (<I) or (0 and (ii)
abOVC are the classes of graphs with no minor isomorphic to a loop or to K,, respectively. (Sec (JJ.)
There are more difficult theorems of the same type:

(iv) (8) if � is the class of all planar graphs together with K5, then (<c� ls the class of all graphs
with no K 3,3 minor

(v) [271 if <€ is the class of all planar graphs together with the "four-rung Mobius ladder", then
(fl� is the class of all graphs with no K5 minor.

These show that (4.l 0) is not the most general theorem in which clique-sums are significant.
Motivated by Gv) and (v) and our desire to find structure theorems for the exclusion of the most
general graphs possible, we derived from (4.10) the following, which in a way generalizes (iv) and
(v) above.

S.l For any f;° the following are equivalent:

(i) some graph with crossing number � I is not in �

(ii) there exists k' � 0 such that if �1 denotes the class of all planar graphs and rc2 denotes the

class of all graphs with tree-width at most k', then

6. MINORS AND SURFACES

(S. 1) is a fairly easy extension of (4.10), and our program of producing ever more general

1 • bed at this point for some time. Even obtaining a form of (5.1) forstructure theorems anguis 
• • ber � 2 seemed too difficult to be worth the effort.graphs with crossing num � 

• 
(4 Io) we had proved a special case of it where §' is restricted to be aHowever before proving • ' 
d for that the proof was easy [ 1 7]. We decided therefore to look for class of planar graphs, an 

h mbers of � were constrained to lie on some fixed surface � (bnefly, 
similar results where t e me 

. . ") A econd motivation for considering what might seem an unnatural special
"!F embeds in � • 5 

. . . . .. , Id uestion about the finiteness of the hst of m1mmal graphs which cannot becase was Erdos o q 
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drawn in a fixed surface. It is easy to see that all members of such a list have bounded genus; and 

so Erdos' question would be answered affirmatively if it could be shown that there is no infinite 

antichain all members of which can be drawn in a fixed surface. This last we hoped would follow 

from a structure theorem of the kind we were considering, as indeed it did. 

The structure theorem we found is, surprisingly, simpler for higher surfaces than the corresponding 

theorem is for the sphere. Let G be a graph with a drawing r in a surface I. We define the 

representativeness of r to be the minimum, over all non-null-homotopic non-self-intersecting closed 

paths P in I, of the number of points of P used by r. Our theorem is the following. 

6.1 Let I be a connected surface different from the sphere. Then for any fF which embeds in ?, 

the following are equivalent: 

(i) some graph which can be drawn in I is not in fF

(ii) there exists k' ;;;i: 0 such that every drawing in i of every member of fF has representativeness

<k'. 

Although this has quite a simple form, we needed some elaborate machinery for its proof [211. 

With the aid of this machinery we returned to the general problem, and recently were able to prove 

what we regard as the "ultimate" structure theorem. To state it we need some further definitions. 

Let � be a surface with boundary (that is, it has some finite number of holes punched in it). Let 

us draw a graph G in �. allowing vertices to be drawn on the boundary of�- For each vertex v of 

G drawn on the boundary of�. let us take a new graph Gv with V(G) n V(Gv) - {v}, where the 

Gv 's for different vertices v are vertex-disjoint. Now for all consecutive pairs of vertices v, v' on 

the boundary of �. let us identify some vertices of Gv with some of Gv ·• Let G' be the graph 

produced from combining G and the Gv 's in this way. If each Gv has at most k + 1 vertices, we 

say that G' is (�, k) - drawable. Secondly, if G\X is (i,k)-drawable, where X � V(G) and 

IXI � w, we say that G is a, k, w )-drawable . Our "ultimate" structure theorem is the following. 

Half of its proof is in [23), while the other half is being written. 

6.2 For any fF, the following are equivalent: 

(i) some graph is not in fF

(ij) there exists �. k, w such that fF <;;. ( CC), where CC is the class of (i, k, w) -drawable graphs. 

As we mentioned in the introduction, we believe that this settles both problems (A) and (B) stated 

there; but the details of these applications of (6.2) still have to be checked. 
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7. APPLICATIONS TO WELL-QUASI-ORDERING

We turn now to the derivation from our structure theo f 1 1 ed rems o resu ts re at to Wagner's
conjecture. 

Let (Q, �) be a wqo, and let CT, CT 1 be finite sequences of members of Q. We say (1 � (1
1 if (1

1 has 8

subsequence CT" of the same length .�� CT, such that CT11 dominates (1 "componentwise." It is a
fundamental theorem of Higman [ 91 that this defines a wqo on the set of finite sequences over Q.

Let us see how this can be used to show that the class of graphs with path-width � w is wqo by 

minors. Now if G has path-width � w then it is C011Jtructed from a sequence G1 , ... , G,, of graphs 

of bounded size, by overlapping each with the next. A first attempt at a proof might then be to 

encode G as this finite sequence CT(G) say, recording on each member of the sequence how it is to 

overlap its neighbours. Certainly the encodings CT(G) lie in a wqo set, because of Higman's 

theorem and the fact the graphs of bounded size are wqo by the "subgraph" quasi-order, even 

when their vertices are labelled. The difficulty lies in the fact that it is possible that u(G) � c,(G') 

even if G is not isomorphic to a minor of G '; for if CT(G) and <T(G ') have different lengths, and 

CT(G 1) has a redundant internal entry, we have no satisfactory way of "contracting out" the

corresponding part of G 1• 

However, suppose instead that each G1 has two subsets A, and B;, both of cardinality k, and there 

are k mutually disjoint paths of G between A1 and B1; and that G is constructed from G 1, ... , G,, 

by identifying A, with B;+i (l � i < n). We say that such a graph G is k-uniform over any 

class of graphs containing G., ... , G,, . Now suppose G, G' are both k-uniform over some class, and 

we encode them as before as CT(G), CT(G 1). Now it is true that CT(G) � CT(G') implies that G is 

isomorphic to a minor of G', for we can remove any unwanted section of G' by contracting the 

edges of the k paths which run through it. (We need a little care to ensure that the permutation 

induced by these paths is consistent with the way we record on each G1 the sets A1 and B1 in the 

encoding process, but that is easy.) 

Now it is not really necessary for the above argument that the G; 's be of bounded size; it is enough

that we know a suitable well-quasi-ordering result for the triples (G,, A;, B1). Let us combine this

with a theorem that every graph of path-width � w is 0-uniform over the class of I-uniform graphs

over the class of 2-uniform graphs over ... over the class of w-uniform graphs over the class of

h with at most w + l vertices. Then, by applying our result w + 1 times, we deduce that the
grap s 

class of graphs with path-width � w is wqo by minors.
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We deduce that no infinite antichain contains a forest; for if it did, then its other members would

constitute an infinite anticbain with all members of bounded path-width, by (4.9), contrary to what

we have just proved.

As for tree-width, basically the same approach works. We may think of Higman's theorem as a

result about paths with vertices labelled from some wqo. Kruskal l 11] proved the generalization lo

trees with vertices labelled from a wqo. We hope then to encode a graph of bounded tree-width as

a labelled tree, where the labels arc better-connected graphs with tree-width no larger, and to apply

Kruskal's theorem repeatedly. There is a serious difficulty, however. With path-width, only two

subsets of G, (A, and B1) needed to be encoded. With tree-width this number is unbounded, and

the analogous encoding procedure does not work. To overcome this, we needed to work with

hypergrapbs, labelling edges of the hypcrgraph rather than subsets of vertices of the graphs. It is

complicated technically, and we do not discuss it further here. This is the theory of "patchworks" 

ofll8]. 

We deduce from this and (4.11) that no infinite antichain contains a planar graph. 

The second technique we want to mention is that used by Mader [ 131 to deduce from the Erdos

P6sa theorem that the class of graphs without k vertex-disjoint circuits is wqo by topological 

containment. Let G be a graph without k disjoint circuits. We define an encoding of G as 

follows. Choose k' as in (4.1), and choose X s; V(G) with IXI < k' such that G\X has no 

circuits. Take an arbitrary numbering x 1, ... , x, of the elements of X, and for each 

v E V(G) - X, define n (v) - (n 1, ... , n,), where n1 is the number of edges between x1 and v. The 

set of all such finite sequences, ordered by Higman's order, is a wqo. Let G+ be G\X with all 

vertices v labelled with n (v), and let u(G) be (G+, G-) where G- is the restriction of G to X. It 

is easy to sec that if G, G' arc two such graphs, and u(G) � u(G ') with the natural ordering, then 

G is topologically contained in G'. Moreover, the natural ordering of all such pairs (G+, G-) is a 

wqo by Kruskal's theorem; and Madcr's theorem follows. 

More generally let CC be a class of graphs which forms a well-quasi-order under "labelled" 

topological containment, when its members arc vertex-labelled from any wqo (such as the class of 

all forests, by Kruskal's theorem). For any integer k ', the class of all graphs G such that 

G\X E C€ for some X S:: V(G) with IXI < k' is wqo by topological containment. (The proof is 

the same.) An analogous result holds for minor containment. 

A third technique worth mentioning is our method of proving that the class of all graphs which can 

be drawn on a fixed surface is wqo by minors {221. That runs as follows. Suppose the result is 
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false, and choose a surface I as simple as 'bl . 
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poss1 e whrch embeds an infinite antichain JJI 

,; is not the sphere, because no infinite ant' h . 
say. Now 

G E d - (HJ h . . 

re am contains even one planar graph. Choose H E JJI.
Then no as a mmor isomorphic to H d b ( ) ' an so Y 6.J there exists k' ;,, o 
that every member of s;I - {HJ has a draw· . 

� . 
' such 

mg m � wr th representativeness < k '.

Now there are only finitely many d'tt 
. 

' erent non-self-intersecting closed paths in X up to
homeomorphism; and so we may choose p 

. 
one, say, such that there is an infinite antichain d of

graphs which all have drawings in i using O I k' . 
0 

. 
n Y pomts of P, and these points are used only to 

represent vertices of the graphs (not edges) Let X' b h • e t e surface obtained from X by cutting

along P, and for each G E d let G' be th h · o, e grap obtained from G by "splitting" the vertices of 

G drawn on P in the natural way W th b • · · • e us o tam an mfimte set of graphs drawn in X'. If this 

were an infinite antichain, we would have a contradiction to our choice of X. Unfortunately it need 

not be. The difficulty lies in keeping track of the special vertices which have been split. But there

is only a bounded number of these. Let us go back and begin again, now working with graphs

drawn in X with a bounded number of distinguished vertices, drawn in bd (X). Again, choose X as 

simple as possible embedding an infinite antichain of such objects. The argument given before 

again (essentially) applies, and we do now obtain a contradiction to the choice of X. 

We have explained three techniques here. It is encouraging that these would seem to be exactly 

those techniques needed to exploit (6.2). (The fourth feature of (6.2), the "rings" of little graphs 

attached onto the boundary of the surfaces, is easily handled - we delete each such little graph, 

and label the vertex where it was attached to the surface with a description of the deleted graph.) 

� 8. APPUCATIONS TO DISJOINT PATH PROBLEMS

i 

Central to this is the idea of "splitting" a vertex. Let us take an instance of DCP - G is

a graph, and s1, ... , rk are vertices of G. (We say that k is the index of the instance.) Suppose

v E V(G), and the edges of G incident with v have a natural partition into (say) two sets Ei, £2•

Let G' be the graph obtained by "splitting" v into two vertices vi, v2, where the edges now incident

. h those in E, (i - l, 2). It is easy to see that the original DCP problem can be solved if
wit v1 are 

Ive 2k + 2 DCP problems in G' each with index k + l.
we can so 

As a reduction method this is of course terrible. Not only is one problem replaced by 2k + 2, but

also the index increases, and even the size of the graph increases. However, it can sometimes be

useful. Suppose for example that G has a small cutset, dividing V(G) into two roughly equal

. and the vertices s 1, ... , '* are also roughly evenly distributed between these two sides. If we

p1CCCS, 

split aU the vertices of the cutset in the natural way, the graph becomes disconnected, and we can

tJ 
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small, we can exploit that _ we split all th c vertices in the off ending non II h path (choosing such a path which
•nu • omotoJ)lc closed

. 
meets the drawing only fn vertices of G) and reduce to a of problems on a simpler surface. But what d . 

number 
o we do if some of the s, 's and t, 's are too closetogether? 

Our problem is solved by using the follow·n b 1 8 etter structure theorem.

8.1 [21 l Let 1: be a connected sur/ac I h b d 
� 

e w t  oun ary, not the sphere with one, two, or three hole,.For any k � 0 there exists N so large that th fi II i . . e o ow ng is true. let G be a graph with adrawmg ,n 1:, and let s1, ••• , t1c be the vertices of G which are drawn in bd(l:). Suppose that
(i) in 1: (not necessarily in G) there are k disjoint paths linking s, and t, (1 � I � k)

(ii) for every non-nu/1-homotopic no if · n-se -intersecting closed path P which simply surrounds one
hole in 1: the number of points o" p d b h d · · •

'J use :Y t e rowing 1s at least as large as the numbtr of
points of the boundary of the corresponding hole used by the drawing

(iii) for every non-nu/1-homotopic non-self-intersecting closed path P of any other kind, the
number of points of P used by the drawing is at /east N.
Then the required paths exist.

This can easily be used in an algorithm. If (i) fails then certainly the paths do not exist in G. If 

some P fails to satisfy (ii) or Gii) we cut along it, splitting the vertices of G on it; and we find that 

we have reduced to a number of problems either on the same surface with smaller index, or on to a 

simpler surface. If 1: is a sphere with three boles a slight variation of (8. I) can be used. If I is a 

disc or cylinder we need a ditf erent technique, but it exists - it is even practical [201. 

We have also found (8.1) to be very useful theoretically. It is this, for instance, that is the 

machinery behind the proof of (6.1) and (6.2). 

Lastly, let us sketch a way in which (6.2) may yield a polynomial algorithm for DCP in general. 

We are given a graph G, and vertices s i , ... , tk of G (which we may assume distinct). Put 

Z - (s i , ... , tk}. 

Step/. Test if there is a separation (Gi , G2) of G with Z !:; V(G 1), IV(G 1 n G2)I < 2k and 

I V(Gz) I large. If there is one, we list all those pairings of V(G I n G2) which correspond to 

disjoint collections of paths in G2, each path beginning and ending in V(G 1 n G2). We can do 

this because each candidate pairing corresponds to a DCP problem of index � k - I which we can 

therefore solve, by induction on k. Having constructed this list, we find a small graph with the 
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sam� list, and substitute it for G2• <The preparation of these small sraphs la preprocculns.) Weoontinuc the.,e substitutions until no such separation rcmaf ns.

St�p 2. Let l: be an oonnectcd orientable surface of sen us k, and let H be a graph which has
drawins in l; with high representativity. Now we can follow the proof of (6.2) with a polynomia:
algorithm, and hence oonstruct either

(i) a minor H' of G isomorphic to H, or

(ii) a presentation of G as a member of(�). where � is the class of (1=', k', w')-drawable graphs,

and l:', k ', w' are independent of G.

Step 3. If (i) above occurred, then the required paths exist. For there are 2k disjoint paths of G 

linking Z to V(H'), in such a way that their ends in V(H') do not "block each other in" - this 

can be deduced from the absence of separations eliminated in step 1. But since the genus of i; is so 

high, the ends of these paths can be joined in any required pairing by disjoint paths of H' - this 

foJiows from (8.1). Hence as claimed, the required paths exist. We assume then that (ii) occurs. 

Step 4. We use "divide and conquer" methods to reduce to a number of DCP problems on 

(1;', k', w')-drawable graphs. For each such problem, we can eliminate the � w' special vertices, 

and reduce to a number of DCP problems on (.2;', k ')-drawable graphs. 

There remains the question of bow to solve DCP problems on (,2;', k')-drawable graphs. If k' - 0 

this is what we previously discussed. If k' ¢ 0, it seems that we need a variation on (8.1), which 

we think we have found, but it is too complex to describe here. 
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