Graph Minors. IV. Tree-Width and Well-Quasi-Ordering

Neil Robertson
The Ohio State University, Department of Mathematics, 231 West 18th Ave., Columbus, Ohio 43210
AND
P. D. Seymour*
Bellcore, 445 South St., Morristown, New Jersey 07960

Received July 27, 1983; revised September 6, 1989

Abstract

K. Wagner conjectured that if G_{1}, G_{2}, \ldots is any countable sequence of finite graphs, then there exist i, j with $j>i \geqslant 1$ such that G_{i} is isomorphic to a minor of G_{j}. Kruskal proved this when G_{1}, G_{2}, \ldots are all trees. We prove a strengthening of Kruskal's result-Wagner's conjecture is true for all sequences in which G_{1} is planar. We hope to show in a future paper that Wagner's conjecture is true in general, and the results of this paper will be needed for that proof. © 1990 Academic Press, Inc.

1. Introduction

By a "graph" we shall mean (except when we say otherwise) in this paper a finite, undirected graph which may have loops and multiple edges. A graph is a minor of another if the first can be obtained from a subgraph of the second by edge-contraction.

There is an ever-growing collection of excluded minor theorems in graph theory. (By an "excluded minor theorem," we mean a result asserting that a graph has a specified property if and only if it has no minor isomorphic to a member of a constructively characterized set of graphs.) Perhaps the most imposing of these to date is the result of Archdeacon [1] and Glover, Huneke, and Wang [2], that a graph may be embedded in the projective plane if and only if it has no minor isomorphic to one of 35 specified graphs. An interesting aspect of all excluded minor theorems known is that not only is the set of excluded minors constructively characterized, but also

[^0]it is finite. One possible explanation for this is that no one tries to find excluded minor theorems for ugly properties, and that nice properties might be expected to produce nice sets of excluded minors. But there is another possible explanation, contained in the following conjecture of K. Wagner (unpublished), which we hope to prove in a future paper.
(1.1) Conjecture. If G_{1}, G_{2}, \ldots is any countable sequence of graphs then there exist $j>i \geqslant 1$ such that G_{i} is isomorphic to a minor of G_{j}.

This is connected with excluded minor theorems as follows. Let P be any property of graphs which can in principle be characterized by excluded minors; that is, any graph isomorphic to a minor of a graph with property P also has property P. Let L^{\prime} be the class of all minor-minimal graphs not possessing property P, and let $L \subseteq L^{\prime}$ contain exactly one representative of each isomorphism class of L^{\prime}. Then we can assert "a graph has property P if and only if it has no minor isomorphic to a graph in L." But no member of L is isomorphic to a minor of another, and so Wagner's conjecture implies that L is finite.
In this paper we prove a special case of Wagner's conjecture, that the conjecture holds for a sequence G_{1}, G_{2}, \ldots when G_{1} is planar. We also prove some variations and extensions, which will be important in future papers of this series. (At the time of writing, we believe that we have a proof of (1.1) itself, and indeed of a similar conjecture, due to Nash-Williams, the "immersion" conjecture, although the latter has not yet been carefully written out. These proofs in particular rely heavily on the results of the present paper.)
A quasi-order Ω is a pair $(E(\Omega), \leqslant)$ where $E(\Omega)$ is a class and \leqslant is a binary relation on $E(\Omega)$ which is reflexive and transitive. (This would become a partial order if we made the third requirement of antisymmetry.) We shall study the quasi-orders on classes of graphs defined by the relation "is isomorphic to a minor of." We treat this as a quasi-order rather than as a partial order, because it will be necessary to distinguish between isomorphism and equality. A quasi-order Ω is a well-quasi-order if for every countable sequence x_{1}, x_{2}, \ldots of elements of $E(\Omega)$, there exist $i^{\prime}>i \geqslant 1$ such that $x_{i} \leqslant x_{i}$.
The reader may perhaps consider it more natural to study quasi-orders with no infinite antichain to approach the finiteness phenomenon for excluded minor theorems, rather than to study well-quasi-orders. However, it comes to the same thing; for if Ω has no infinite descending chain (which is obvious in our context) then it is a well-quasi-order if and only if it has no infinite antichain, as may easily be verified. We choose the sequence formulation because we find it easier to manipulate.

Incidentally, there are some other natural quasi-orders of the class of all
graphs. The most obvious is the subgraph order; but that is not a well-quasi-order. (We mention in passing that it is a well-quasi-order when restricted to the class of all graphs with no path of length $\geqslant k$, for any fixed k. We omit the proof, which is easy.) A more plausible candidate for a well-quasi-order is "topological containment." We say that G_{1} topologically contains G_{2} if some subgraph of G_{1} is isomorphic to a subdivision of G_{2}. (A subdivision of a graph is a graph which may be constructed from the first by repeatedly replacing edges by pairs of edges in series.) Kruskal [5] proved the following.
(1.2) The class of all trees is well-quasi-ordered by topological containment.

Using this, Mader [6] showed that
(1.3) For any integer $k \geqslant 0$, the class of all graphs without k vertexdisjoint circuits is well-quasi-ordered by topological containment.

However, the class of all graphs is not well-quasi-ordered by topological containment, as the following counterexample (basically due to Jenkyns and Nash-Williams [4]) shows. For $j \geqslant 3$, let G_{j} be the graph with j vertices $v_{0}, v_{1}, \ldots, v_{j}=v_{0}$, and with two edges joining v_{i} and $v_{i+1}(0 \leqslant i \leqslant j-1)$. Then no G_{i} is topologically contained in any G_{j} for any $i, j \geqslant 3$ with $j>i$. For that reason Wagner's conjecture uses minors.
When \mathscr{C} is a class of graphs, we say that \mathscr{C} is well-quasi-ordered by minors if the quasi-order (\mathscr{C}, \leqslant) is a well-quasi-order, where $G \leqslant G^{\prime}$ means that G is isomorphic to a minor of G^{\prime}. One of the main results of this paper is
(1.4) For any planar graph H, the class of all graphs with no minor isomorphic to H is well-quasi-ordered by minors.

It is easy to see that (1.4) is equivalent to the result stated earlier in this section and in the abstract. We derive it as a corollary of some theorems about "tree-width," which is a graph invariant defined in Section 5. We prove that
(1.5) For any integer k the class of all graphs with tree-width $\leqslant k$ is well-quasi-ordered by minors.

This implies (1.4) because it is proved in [10] that the class of graphs involved in (1.4) has bounded tree-width.

Thus, one object of this paper is to prove (1.5). The basic idea of the proof is that we can regard graphs of bounded tree-width as "tree-shaped," and we can adapt Nash-Williams' proof [7] of Kruskal's theorem (1.2) about trees to apply to "tree-shaped graphs" instead.

The paper falls into two parts. In the first part (Sections 2-5) we prove a generalization of Kruskal's theorem (1.2); and apply it to prove that, for every containment relation defined on a class of rooted hypergraphs satisfying certain axioms, if it forms a well-quasi-order (in a sense) on the hypergraphs in the class of bounded size, then it forms a well-quasi-order on the hypergraphs in the class of bounded tree-width. (1.5) is a consequence of this where our hypergraphs are graphs. In the second part of the paper (Sections 6-9) we discuss a concrete (but rather complex) containment relation on a class of hypergraphs with additional structure, so-called patchworks. We verify that this relation does indeed satisfy our axioms for a containment relation, and so the results of the first part apply to it. These results, applied to patchworks, will be important in future papers.

2. A Lemma about Trefs

In this section we prove a lemma about rooted trees generalizing (1.2). Most of the trees we will need in this paper are "rooted" trees, and so for convenience we define an undirected tree to be a non-null connected finite undirected graph without circuits, and a tree T to be a directed graph, the undirected graph underlying which is an undirected tree, such that every vertex of T is the head of at most one edge. It follows that there is a unique vertex of each tree T (called the root and denoted by $o(T)$) which is the head of no edge of T, and every edge of T is directed away from the root.

We begin with a preliminary form of our lemma. If M is a (possibly infinite) graph, its vertex- and edge-sets are denoted by $V(M)$ and $E(M)$, respectively. If $v_{1}, v_{2} \in V(M)$ are adjacent in M we say they are M-adjacent. A subset $X \subseteq V(M)$ is M-stable if no two elements of X are M-adjacent, and $X \subseteq V(M)$ is M-rich if no infinite subset of X is M-stable.
(2.1) Let T_{1}, T_{2}, \ldots be a countable sequence of disjoint trees. Let M be an infinite graph with $V(M)=V\left(T_{1} \cup T_{2} \cup \cdots\right)$, such that for $i^{\prime}>i \geqslant 1$, if $u \in V\left(T_{i}\right)$ is M-adjacent to $w \in V\left(T_{i^{\prime}}\right)$ and $v \in V\left(T_{i^{\prime}}\right)-\left\{o\left(T_{i^{\prime}}\right)\right\}$ lies on the path of $T_{i^{\prime}}$ from $o\left(T_{i^{\prime}}\right)$ to w then u is M-adjacent to v. Let $\left\{o\left(T_{1}\right), o\left(T_{2}\right), \ldots\right\}$ be M-stable. Then there is an infinite M-stable set $X \subseteq V(M)$ such that $\left|X \cap V\left(T_{i}\right)\right| \leqslant 1$ for each $i \geqslant 1$ and such that the set of heads of all edges of $T_{1} \cup T_{2} \cup \cdots$ with tails in X is M-rich.

Proof. We proceed by a variation on Nash-Williams' [7] "minimal bad sequence" argument. Let us say a sequence z_{1}, z_{2}, \ldots of elements of $V(M)$ is increasing if $i^{\prime}>i$ for all $j^{\prime}>j \geqslant 1$ where $z_{j} \in V\left(T_{i}\right)$ and $z_{j^{\prime}} \in V\left(T_{i^{\prime}}\right)$. Let $V_{0}=V(M)-\left\{o\left(T_{1}\right), o\left(T_{2}\right), \ldots\right\}$. A section is a countable increasing
sequence z_{1}, z_{2}, \ldots of elements of V_{0} such that $\left\{z_{1}, z_{2}, \ldots\right\}$ is M-stable. We may assume that there is a section, for otherwise V_{0} is M-rich and the sequence $o\left(T_{1}\right), o\left(T_{2}\right)$,... satisfies the theorem.

For each $v \in V_{0}$, let T^{v} be the maximal subtree of T_{i} (where $v \in V\left(T_{i}\right)$) with root v. Inductively we shall define a countable sequence x_{1}, x_{2}, \ldots of elements of V_{0}, such that
(1) For each $i \geqslant 1$ there is a section with first iterms $x_{1}, x_{2}, \ldots, x_{i}$, and
(2) For each $i \geqslant 1$, there is no section with first iterms $x_{1}, \ldots, x_{i-1}, x$ where $x \in V\left(T^{x_{i}}\right)-\left\{x_{i}\right\}$.

For suppose that $k \geqslant 1$ and we have chosen x_{1}, \ldots, x_{k-1} to satisfy (1) and (2) for $1 \leqslant i \leqslant k-1$. Since there is a section with first $k-1$ terms x_{1}, \ldots, x_{k-1} we may choose x_{k} such that there is a section with first k terms x_{1}, \ldots, x_{k} and with $T^{x_{k}}$ minimal, in the sense that there is no section with first terms $x_{1}, \ldots, x_{k-1}, x$ for any $x \in V\left(T^{x_{k}}\right)-\left\{x_{k}\right\}$. But then (1) and (2) remain satisfied for $1 \leqslant i \leqslant k$. This completes our inductive definition of x_{1}, x_{2}, \ldots Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$. We shall show that X satisfies the theorem. We observe
(3) x_{1}, x_{2}, \ldots is a section.

This is immediate from (1).
(4) For $j^{\prime}>j \geqslant 1$, if z is the head of an edge of $T_{1} \cup T_{2} \cup \cdots$ with tail $x_{j^{\prime}}$, then x_{j} is not M-adjacent to z.

For let $x_{j^{\prime}} \in V\left(T_{i^{\prime}}\right)$. Then $x_{j^{\prime}} \neq o\left(T_{i}\right)$ by (3), and $x_{j^{\prime}}$ lies on the path of T_{i} from $o\left(T_{i}\right)$ to z. But x_{j} is not M-adjacent to $x_{j^{\prime}}$ by (3), and hence x_{j} is not M-adjacent to z, from a hypothesis of the theorem.
Let Y be the set of heads of all edges of $T_{1} \cup T_{2} \cup \cdots$ with tails in X.
(5) No sequence of elements of Y is a section.

For suppose that y_{1}, y_{2}, \ldots is a section of elements of Y. Since $y_{1} \in Y$ there is an edge of $T_{1} \cup T_{2} \cup \cdots$ with head y_{1} and tail x_{k} for some $k \geqslant 1$. Then $x_{1}, x_{2}, \ldots, x_{k-1}, y_{1}, y_{2}, \ldots$ is a section; for it is increasing, and $\left\{x_{1}, x_{2}, \ldots, x_{k-1}\right\}$ and $\left\{y_{1}, y_{2}, \ldots\right\}$ are both M-stable, and for $1 \leqslant j \leqslant k-1$ and $j^{\prime} \geqslant 1, x_{j}$ is not M-adjacent to $y_{j^{\prime}}$ by (4). But $y_{1} \in V\left(T^{x_{k}}\right)-\left\{x_{k}\right\}$, contrary to (2).
From (5) it follows that Y is M-rich, and so X satisfies the theorem, as required.

If G is a graph or directed graph, $G \backslash F$ denotes the result of deleting F from G, where F may be an edge or a set of edges. If T is a tree and
$F \subseteq E(T)$, we define the contraction of T onto F to be the tree S with $E(S)=F$ and $V(S)$ the set of roots of the components of $T \backslash F$, in which $v \in V(S)$ is the head (or tail, respectively) of $f \in F$ if the head (or tail, respectively) of f in T belongs to the component of $T \backslash F$ with root v.

The main result of this section is the following generalization of (2.1) ((2.1) is the special case when $n=0)$. Let T be a tree, $n \geqslant 0$ be an integer, and $\phi: E(T) \rightarrow\{0, \ldots, n\}$ be a function. For $v, w \in V(T)$ we say that v precedes w (with respect to ϕ) if $v \neq o(T)$, there is a directed path P of T from v to w, and $\phi(e)=\phi(f)$ where e, f are the edges of T with heads v, w, respectively, and $\phi(g) \geqslant \phi(f)$ for every edge g of P.
(2.2) Let T_{1}, T_{2}, \ldots be a countable sequence of disjoint trees, let $n \geqslant 0$ be an integer, and for each $i \geqslant 1$ let $\phi_{i}: E\left(T_{i}\right) \rightarrow\{0,1, \ldots, n\}$ be some function. Let M be an infinite graph with $V(M)=V\left(T_{1} \cup T_{2} \cup \cdots\right)$ such that for $i^{\prime}>i \geqslant 1$, if $u \in V\left(T_{i}\right)$ is M-adjacent to $w \in V\left(T_{i^{\prime}}\right)$, and $v \in V\left(T_{i^{\prime}}\right)$ precedes w (with respect to $\phi_{i^{\prime}}$) then u is M-adjacent to v. Let $\left\{o\left(T_{1}\right), o\left(T_{2}\right), \ldots\right\}$ be M-stable. Then there is an infinite M-stable set $X \subseteq V(M)$ such that $\left|X \cap V\left(T_{i}\right)\right| \leqslant 1$ for each $i \geqslant 1$ and such that the set of heads of all edges of $T_{1} \cup T_{2} \cup \cdots$ with tails in X is M-rich.

Proof. We proceed by induction on n. If $n=0$ the result follows from (2.1), and so we may assume that $n>0$ and the result holds for $n-1$. For each $i \geqslant 1$, let $F_{i}=\left\{e \in E\left(T_{i}\right): \phi_{i}(e)=0\right\}$ and let S_{i} be the contraction of T_{i} onto F_{i}. Let N be the restriction of M to $V\left(S_{1}\right) \cup V\left(S_{2}\right) \cup \cdots$.
(1) For all $i^{\prime}>i \geqslant 1$, if $u \in V\left(S_{i}\right)$ is N-adjacent to $w \in V\left(S_{i^{\prime}}\right)$ and $v \neq o\left(S_{i^{\prime}}\right)$ lies on the path of $S_{i^{\prime}}$ from $o\left(S_{i^{\prime}}\right)$ to w then u is N-adjacent to v.

For let e, f be the edges of $T_{i^{\prime}}$ with heads v, w respectively. Since $v, w \in V\left(S_{i^{\prime}}\right)$ it follows that $e, f \in F_{i^{\prime}}$ and so $\phi_{i^{\prime}}(e)=\phi_{i^{\prime}}(f)=0$. Since $\phi_{i^{\prime}}(g) \geqslant 0$ for every $g \in E\left(T_{i^{\prime}}\right)$ it follows that v precedes w (with respect to $\phi_{i^{\prime}}$, and so u is M-adjacent (and hence N-adjacent) to v, as required.

Let $T=T_{1} \cup T_{2} \cup \cdots$. From (1) we may apply (2.1) to S_{1}, S_{2}, \ldots and N, and we deduce (defining increasing as in (2.1)) that
(2) There is a countable increasing sequence z_{1}, z_{2}, \ldots of vertices of M such that $\left\{z_{1}, z_{2}, \ldots\right\}$ is M-stable, and each z_{j} is the root of some component R_{j} of some $T_{i} \backslash F_{i}$, and the set A of all heads (in T) of all edges in $F_{1} \cup F_{2} \cup \cdots$ with tails $\left(\right.$ in T) in $R_{1} \cup R_{2} \cup \cdots$ is M-rich.

For each $j \geqslant 1$ let $\phi_{j}^{\prime}: E\left(R_{j}\right) \rightarrow\{0,1, \ldots, n-1\}$ be defined by $\phi_{j}^{\prime}(e)=\phi_{i}(e)-1 \quad\left(e \in E\left(R_{j}\right)\right)$, where $\quad z_{j} \in V\left(T_{i}\right)$. From our inductive hypothesis applied to R_{1}, R_{2}, \ldots and to the restriction of M to $V\left(R_{1} \cup R_{2} \cup \cdots\right)$, we deduce that
(3) There is an infinite M-stable set $X \subseteq V\left(R_{1} \cup R_{2} \cup \cdots\right)$ such that $\left|X \cap V\left(T_{i}\right)\right| \leqslant 1$ for each $i \geqslant 1$, and the set B of heads of all edges of $R_{1} \cup R_{2} \cup \cdots$ with tails in X is M-rich.

We claim that X satisfies the theorem. For let C be the set of heads of all edges of T with tails in X, and let $z \in C$. Then z is the head of some edge f of some T_{i} with tail in X. If $\phi_{i}(f)=0$ then $f \in F_{i}$ and so $z \in A$. If $\phi_{i}(f)>0$ then f is an edge of some R_{j}, since its tail is in some $V\left(R_{j}\right)$, and so $z \in B$. Thus $C \subseteq A \cup B$. But A is M-rich from (2), and B is M-rich from (3), and so C is M-rich. Thus X satisfies the theorem.

To illustrate the use of (2.2) we show that it (indeed, (2.1)) implies Kruskal's theorem (1.2). Let T_{1}, T_{2}, \ldots be a countable sequence of disjoint trees, and let M be the infinite graph with $V(M)=V\left(T_{1} \cup T_{2} \cup \cdots\right)$ in which for $i^{\prime}>i \geqslant 1, u \in V\left(T_{i}\right)$ is M-adjacent to $v \in V\left(T_{i^{\prime}}\right)$ if (with notation as in (2.1)) T^{v} topologically contains T^{u}. (We define topological containment for directed graphs in the natural way; however, we do not demand that root be mapped to root.) Now the conclusion of (2.1) cannot be satisfied, by Higman's "finite sequence" theorem ((8.3), later); and so its hypothesis that $\left\{o\left(T_{1}\right), o\left(T_{2}\right), \ldots\right\}$ is M-stable is false. This proves Kruskal's theorem.

One may derive similarly a theorem of Friedman [12] using (2.2) in place of (2.1). By adjusting the definition of M accordingly, one may also derive the versions of these theorems when the vertices are labelled from a well-quasi-order.

3. Hypergraphs and Tree-Decompositions

A hypergraph G consists of a finite set $V(G)$ of vertices, a finite set $E(G)$ of edges with $E(G) \cap V(G)=\varnothing$, and an incidence relation, a subset of $V(G) \times E(G)$. The vertices incident with an edge e are its ends, and the set of ends of e in G is denoted by $V(e)$ (or $V_{G}(e)$ in cases of ambiguity). If $G, \quad G^{\prime}$ are hypergraphs and $V\left(G^{\prime}\right) \subseteq V(G)$ and $E\left(G^{\prime}\right) \subseteq E(G)$, and $V_{G}(e)=V_{G^{\prime}}(e)$ for every $e \in E\left(G^{\prime}\right)$, then we call G^{\prime} a subhypergraph of G and write $G^{\prime} \subseteq G$. If $G_{1}, G_{2} \subseteq G$ we define $G_{1} \cap G_{2}, G_{1} \cup G_{2}$ in the natural way. A separation of G is a pair $\left(G_{1}, G_{2}\right)$ of subhypergraphs of G with $G_{1} \cup G_{2}=G$ and $E\left(G_{1} \cap G_{2}\right)=\varnothing$; its order is $\left|V\left(G_{1} \cap G_{2}\right)\right|$.

A march in a set V is a finite sequence of distinct elements of V. If π is the march v_{1}, \ldots, v_{k} we denote $\left\{v_{1}, \ldots, v_{k}\right\}$ by $\bar{\pi}$. A rooted hypergraph $G=\left(G^{-}, \pi(G)\right)$ consists of a hypergraph G^{-}and a march $\pi(G)$ in $V\left(G^{-}\right)$. We define $V(G)=V\left(G^{-}\right), E(G)=E\left(G^{-}\right)$. A separation of a rooted hypergraph G is a pair $\left(G_{1}, G_{2}\right)$ of rooted hypergraphs such that $\left(G_{1}^{-}, G_{2}^{-}\right)$is a separation of G^{-}, and $\pi\left(G_{2}\right)=\pi(G)$, and $\pi\left(G_{1}\right)=V\left(G_{1}^{-} \cap G_{2}^{-}\right)$. Its order is
$\left|V\left(G_{1}^{-} \cap G_{2}^{-}\right)\right|$. A tree-decomposition (T, τ) of a rooted hypergraph G consists of a tree T and a function τ which assigns to each $t \in V(T)$ a rooted hypergraph $\tau(t)$, such that
(i) for each $t \in V(T), \tau(t)^{-} \subseteq G^{-}$
(ii) $\bigcup_{t \in V(T)} \tau(t)^{-}=G^{-}$
(iii) for distinct $t_{1}, t_{2} \in V(T), E\left(\tau\left(t_{1}\right)^{-} \cap \tau\left(t_{2}\right)^{-}\right)=\varnothing$
(iv) for $t_{1}, t_{2}, t_{3} \in V(T)$, if t_{2} lies on the path of T between t_{1} and t_{3} then $\tau\left(t_{1}\right)^{-} \cap \tau\left(t_{3}\right)^{-} \subseteq \tau\left(t_{2}\right)^{-}$
(v) $\pi(\tau(o(T)))=\pi(G)$
(vi) for each edge $f \in E(T)$ with head t_{1} and tail t_{2}, $\bar{\pi}\left(\tau\left(t_{1}\right)\right)=V\left(\tau\left(t_{1}\right)^{-} \cap \tau\left(t_{2}\right)^{-}\right)$.

If T is a tree and $f \in E(T)$ we denote by T^{f}, T_{f} the two components of $T \backslash f$, where T^{f} has root the head of f and T_{f} has root $o(T)$. If $v \in V(T)$, we denote by T^{v} the maximal subtree of T with root v; thus if $f \in E(T)$ has head v then $T^{v}=T^{f}$. Let (T, τ) be a tree-decomposition of some rooted hypergraph. If T^{\prime} is a subtree of T we denote by $\tau \times T^{\prime}$ the rooted hypergraph G^{\prime} defined by

$$
\begin{aligned}
G^{\prime-} & =\bigcup_{t \in V\left(T^{\prime}\right)} \tau(t)^{-} \\
\pi\left(G^{\prime}\right) & =\pi\left(\tau\left(o\left(T^{\prime}\right)\right)\right) .
\end{aligned}
$$

(3.1) Let (T, τ) be a tree-decomposition of some rooted hypergraph G. Let $f \in E(T)$ with head t_{1} and tail t_{2}. Then $\left(\tau \times T^{f}, \tau \times T_{f}\right)$ is a separation of G.

This is almost identical with [9, Theorem (3.4)] or [8, Theorem (2.4)] and we omit the proof. The order of the separation in (3.1) is called the order of f in (T, τ).
(3.2) Let (T, τ) be a tree-decomposition of a rooted hypergraph G, and let $F \subseteq E(T)$. Let S be the contraction of T onto F, and for each $s \in V(S)$, let $\sigma(s)$ be $\tau \times T_{s}$ where T_{s} is the component of $T \backslash F$ with root s. Then (S, σ) is a tree-decomposition of G.

The proof is clear, and we omit it.
A star S is a tree such that $o(S)$ is the tail of every edge of S, and we define $U(S)=V(S)-\{o(S)\}$. A star-decomposition is a tree-decomposition (S, σ) where S is a star. If (S, σ) is a star-decomposition and $s \in U(S)$ we call $\sigma(s)$ a tip of (S, σ). Let (T, τ) be a tree-decomposition of G, and let $s \in V(T)$. Let S be the maximal star with root s which is a subtree of T.

Define $\sigma(s)=\tau(s)$, and for each $t \in U(S)$ let $\sigma(t)$ be $\tau \times T^{t}$. Then (S, σ) is a star-decomposition of $\tau \times T^{s}$, and we call it the branching of (T, τ) at s.

We wish eventually to apply (2.2) to deduce results about a certain containment relation defined on a class of rooted hypergraphs. This relation is very unwieldy, however, and it is convenient to postpone its introduction as long as possible. We shall therefore proceed with a general containment relation ("simulation") satisfying certain "axioms;" and we shall verify that our concrete relation does indeed satisfy these axioms later.

Axiom 1. \mathscr{R} is a class of rooted hypergraphs, and if $G \in \mathscr{R}$ and H is a rooted hypergraph with $H \subseteq G^{-}$then $H \in \mathscr{R}$.

Axiom 2. The relation " G is simulated in H " defines a quasi-order on \mathscr{R}.
We assume henceforth that Axioms 1 and 2 are satisfied.
A subclass of \mathscr{R} is well-simulated if it is well-quasi-ordered by simulation. The index of a star-decomposition (S, σ) is $\max (|\bar{\pi}(\sigma(s))|: s \in V(S))$, and the index of a class \mathscr{S} of star-decompositions is the maximum index of its members (or ∞ if there is no such maximum). A class \mathscr{S} of star-decompositions is good if
(a) $\sigma \times S \in \mathscr{R}$ for each $(S, \sigma) \in \mathscr{S}$
(b) \mathscr{S} has finite index, and
(c) for every countable sequence $\left(S_{i}, \sigma_{i}\right)(i=1,2, \ldots)$ of members of \mathscr{S} such that the set of all tips of all the $\left(S_{i}, \sigma_{i}\right)$'s is well-simulated, there exist $i^{\prime}>i \geqslant 1$ such that $\sigma_{i} \times S_{i}$ is simulated in $\sigma_{i^{\prime}} \times S_{i^{\prime}}$.

Let (T, τ) be a tree-decomposition with $\tau \times T \in \mathscr{R}$. A subset $F \subseteq E(T)$ is linked in (T, τ) if for every directed path P of T with first edge $f_{2} \in F$ and last edge $f_{1} \in F$ such that f_{1}, f_{2} have the same order and no element of $E(P) \cap F$ has smaller order, $\tau \times T^{f_{1}}$ is simulated in $\tau \times T^{f_{2}}$. We say that (T, τ) is linked if $E(T)$ is linked in (T, τ).
(3.3) Let \mathscr{S} be good, and let $\left(T_{i}, \tau_{i}\right)(i=1,2, \ldots)$ be a countable sequence of linked tree-decompositions, each branching of which is in \mathscr{S}. Then there exist $i^{\prime}>i \geqslant 1$ such that $\tau_{i} \times T_{i}$ is simulated in $\tau_{i^{\prime}} \times T_{i^{\prime}}$.

Proof. Let n be the index of \mathscr{S}. We may assume that T_{1}, T_{2}, \ldots are mutually disjoint. Let M be the infinite graph with $V(M)=$ $V\left(T_{1} \cup T_{2} \cup \cdots\right)$ such that for $i^{\prime}>i \geqslant 1, u \in V\left(T_{i}\right)$ is M-adjacent to $v \in V\left(T_{i^{\prime}}\right)$ if $\tau_{i} \times T_{i}^{u}$ is simulated in $\tau_{i^{\prime}} \times T_{i^{\prime}}^{v}$. For each $i \geqslant 1$, and each $f \in E\left(T_{i}\right)$, let $\phi_{i}(f)$ be the order of f in $\left(T_{i}, \tau_{i}\right)$. Then $0 \leqslant \phi_{i}(f) \leqslant n$ since each branching belongs to \mathscr{S}. Define "precedes" as before (2.2).
(1) If $i^{\prime}>i \geqslant 1$ and $u \in V\left(T_{i}\right)$ is M-adjacent to $w \in V\left(T_{i^{\prime}}\right)$, and $v \in V\left(T_{i^{\prime}}\right)$ precedes w, then u is M-adjacent to v.

For $\tau_{i} \times T_{i}^{u}$ is simulated in $\tau_{i^{\prime}} \times T_{i^{\prime}}^{w}$ since $i^{\prime}>i$ and u, w are M-adjacent. Since v precedes w it follows that $v \neq o\left(T_{i^{\prime}}\right)$; let e, f be the edges of $T_{i^{\prime}}$, with heads v, w, respectively. Since v precedes w it follows that e and f have the same order and no edge of the path of $T_{i^{\prime}}$ between them has smaller order. Since $\left(T_{i^{\prime}}, \tau_{i^{\prime}}\right)$ is linked, we deduce that $\tau_{i^{\prime}} \times T_{i^{\prime}}^{w}$ is simulated in $\tau_{i^{\prime}} \times T_{i^{\prime}}^{v}$. By Axiom 2 it follows that $\tau_{i} \times T_{i}^{u}$ is simulated in $\tau_{i^{\prime}} \times T_{i^{\prime}}^{v}$, and so u is M-adjacent to v, as required.
(2) There is no infinite subset $X \subseteq V(M)$ such that $\left|X \cap V\left(T_{i}\right)\right| \leqslant 1$ for each $i \geqslant 1$, and X is M-stable, and the set of heads of all edges of $T_{1} \cup T_{2} \cup \cdots$ with tails in X is M-rich.

For suppose that such a set X exists; let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ where for all $j^{\prime}>j \geqslant 1$, if $x_{j} \in V\left(T_{i}\right)$ and $x_{j^{\prime}} \in V\left(T_{i^{\prime}}\right)$, then $i^{\prime}>i$. For each $j \geqslant 1$, let $\left(S_{j}, \sigma_{j}\right)$ be the branching of $\left(T_{i}, \tau_{i}\right)$ at x_{j}, where $x_{j} \in V\left(T_{i}\right)$; then $\sigma_{j} \times S_{j}=\tau_{i} \times T_{i}^{x_{j}}$. Since X is M-stable, $\sigma_{j} \times S_{j}$ is not simulated in $\sigma_{j^{\prime}} \times S_{j^{\prime}}$ for $j^{\prime}>j \geqslant 1$. Let \mathscr{L} be the set of all tips of all the $\left(S_{j}, \sigma_{j}\right)$'s. Since \mathscr{S} is good, \mathscr{L} is not wellsimulated, and so there is a countable sequence L_{1}, L_{2}, \ldots of members of \mathscr{L} such that for $j^{\prime}>j \geqslant 1, L_{j}$ is not simulated in $L_{j^{\prime}}$. For each $j \geqslant 1$ there exists $i \geqslant 1$ and a vertex $v_{j} \in V\left(T_{i}\right)$ such that $L_{j}=\tau_{i} \times T_{i}^{v_{j}}$; and v_{j} is the head of an edge of T_{i} with tail in X. Now v_{1}, v_{2}, \ldots are all distinct, since if $v_{j}=v_{j^{\prime}}$ for some $j^{\prime}>j$ then $L_{j}=L_{j^{\prime}}$ and hence L_{j} is simulated in $L_{j^{\prime}}$ by Axiom 2. Hence $\left\{v_{1}, v_{2}, \ldots\right\}$ is infinite and M-stable, contrary to our assumption that the set of heads of all edges of $T_{1} \cup T_{2} \cup \cdots$ with tails in X is M-rich. This proves (2).

From (1), (2) and (2.2), $\left\{o\left(T_{1}\right), o\left(T_{2}\right), \ldots\right\}$ is not M-stable, and the theorem follows.

4. Rotundity

Now we introduce a third axiom.
Axiom 3. Let $G \in \mathscr{R}$ and let $\left(G_{1}, G_{2}\right)$ be a separation of G of order $|\bar{\pi}(G)|$. Suppose that there is no separation $\left(H_{1}, H_{2}\right)$ of G with $G_{1}^{-} \subseteq H_{1}^{-}$of order less than $|\bar{\pi}(G)|$. Then there is a march π_{1} with $\bar{\pi}_{1}=\bar{\pi}\left(G_{1}\right)$ such that $\left(G_{1}^{-}, \pi_{1}\right)$ is simulated in G.

Let (T, τ) be a tree-decomposition. A subset $F \subseteq E(T)$ is rotund in (T, τ) if for every directed path P of T with first edge $f_{2} \in F$ and last edge $f_{1} \in F$ such that f_{1}, f_{2} have the same order, k say, and no element of $F \cap E(P)$ has smaller order, there is no separation $\left(H_{1}, H_{2}\right)$ of $(\tau \times T)^{-}$with
$\left(\tau \times T^{f_{1}}\right)^{-} \subseteq H_{1}$ and $\left(\tau \times T_{f_{2}}\right)^{-} \subseteq H_{2}$ of order smaller than k. We say that (T, τ) is rotund if $E(T)$ is rotund in (T, τ).
(4.1) Let (T, τ) be a tree-decomposition with $\tau \times T \in \mathscr{R}$, and let $F \subseteq E(T)$ be rotund in (T, τ). Then there is a tree-decomposition $\left(T, \tau^{\prime}\right)$ of $\tau \times T$, such that $\tau(t)^{-}=\tau^{\prime}(t)^{-}$for each $t \in V(T)$, and such that F is linked in $\left(T, \tau^{\prime}\right)$.

Proof. For each $f \in F$ we shall choose a march π_{f} with $\bar{\pi}_{f}=\bar{\pi}\left(\tau \times T^{f}\right)$ in such a way that
(1) For every directed path P in T with first edge $e \in F$ and last edge $f \in F$ such that e and f have the same order and no edge of P has smaller order, $\left(\left(\tau \times T^{f}\right)^{-}, \tau_{f}\right)$ is simulated in $\left(\left(\tau \times T^{e}\right)^{-}, \pi_{e}\right)$.

We do so inductively, working out from the root. At a step of the induction, there is a subtree S of T with $o(S)=o(T)$ such that π_{f} is defined for each $f \in F \cap E(S)$, and not defined for $f \in F-E(S)$; and (1) is satisfied for paths in S. If $F \subseteq E(S)$ the inductive definition is complete, and so we may assume that $F \nsubseteq E(S)$; and hence we may choose $f \in F-E(S)$ such that every other edge in F of the path of T from $o(T)$ to f lies in $E(S)$. Let Q be the maximal directed path of T with last edge f such that every edge of Q has order $\geqslant k$, where f has order k. If no edge of Q in F has order k except f we set $\pi_{f}=\pi\left(\tau \times T^{f}\right)$ and the inductive step is complete. We assume then that $p \geqslant 2$, where $f_{1}, f_{2}, \ldots, f_{p}$ are the edges of $E(Q) \cap F$ of order k, listed in the order in which they appear in Q (whence $f_{p}=f$).
(2) There is a march π_{f} with $\bar{\pi}_{f}=\bar{\pi}\left(\tau \times T^{f}\right)$ such that $\left(\left(\tau \times T^{f}\right)^{-}, \pi_{f}\right)$ is simulated in $\left(\left(\tau \times T^{f_{p-1}}\right)^{-}, \pi_{f_{p-1}}\right)$.

For suppose that $\left(H_{1}, H_{2}\right)$ is a separation of $\tau \times T^{f_{p-1}}$ of order $<k$ with $\left(\tau \times T^{f}\right)^{-} \subseteq H_{1}^{-}$. Then $\left(K_{1}, K_{2}\right)=\left(H_{1}^{-}, H_{2}^{-} \cup\left(\tau \times T_{f_{p-1}}\right)^{-}\right)$is a separation of $(\tau \times T)^{-}$of order $<k$, contrary to the rotundity of F in (T, τ), for f_{p-1} and $f_{p}=f$ both have order k and no edge of the path between them has order $<k$, and yet $\left(\tau \times T^{f}\right)^{-} \subseteq K_{1}$ and $\left(\tau \times T_{f_{p-1}}\right)^{-} \subseteq K_{2}$. Hence there is no such separation $\left(H_{1}, H_{2}\right)$, and (2) follows from Axiom 3 applied to the separation $\left(\tau \times T^{f},\left(\left(\tau \times\left(T^{f_{p-1}}\right)_{f}\right)^{-}, \pi_{f_{p-1}}\right)\right)$ of $\left(\left(\tau \times T^{f_{p-1}}\right)^{-}, \pi_{f_{p-1}}\right)$.

Let $S^{\prime}=S \cup Q$; we must verify that (1) remains true for every directed path P of S^{\prime}; that is, that for $1 \leqslant i \leqslant p-1,\left(\left(\tau \times T^{f}\right)^{-}, \pi_{f}\right)$ is simulated in $\left(\left(\tau \times T^{f_{i}}\right)^{-}, \pi_{f_{i}}\right)$. But from (1), $\left(\left(\tau \times T^{f}\right)^{-}, \pi_{f}\right)$ is simulated in $\left(\left(\tau \times T^{f_{p-1}}\right)^{-}, \pi_{f_{p-1}}\right)$, and that in turn is simulated in $\left(\left(\tau \times T^{f_{i}}\right)^{-}, \pi_{f_{i}}\right)$ because (1) is satisfied for all directed paths P of S. By Axiom 2, the desired result follows. This completes our inductive definition. We define $\tau^{\prime}(t)=$ $\tau(t)$ if t is not the head of an edge in F, and $\tau^{\prime}(t)=\left(\tau(t)^{-}, \pi_{f}\right)$ if t is the head of $f \in F$; then τ^{\prime} satisfies the theorem.

Let us say that a class \mathscr{S} of star-decompositions is symmetric if for every $(S, \sigma) \in \mathscr{S}$, and every star-decomposition $\left(S, \sigma^{\prime}\right)$ with $\sigma^{\prime}(s)^{-}=\sigma(s)^{-}$and $\bar{\pi}\left(\sigma^{\prime}(s)\right)=\bar{\pi}(\sigma(s))$ for each $s \in V(S)$, we have $\left(S, \sigma^{\prime}\right) \in \mathscr{S}$.
(4.2) Let \mathscr{S} be good and symmetric, and let $\left(T_{i}, \tau_{i}\right)(i=1,2, \ldots)$ be a countable sequence of rotund tree-decompositions, each branching of which is in \mathscr{S}. Then there exist $i^{\prime}>i \geqslant 1$ such that $\tau_{i} \times T_{i}$ is simulated in $\tau_{i^{\prime}} \times T_{i^{\prime}}$.

Proof. Since \mathscr{S} is good, and contains the branching of $\left(T_{i}, \tau_{i}\right)$ at $o\left(T_{i}\right)$, it follows that each $\tau_{i} \times T_{i} \in \mathscr{R}$. From (4.1) for each $i \geqslant 1$ we may choose a linked tree-decomposition $\left(T_{i}, \tau_{i}^{\prime}\right)$ of $\tau_{i} \times T_{i}$ such that $\tau_{i}^{\prime}(t)^{-}=\tau_{i}(t)^{-}$for each $t \in V\left(T_{i}\right)$. Then $\bar{\pi}\left(\tau_{i}^{\prime}(t)\right)=\bar{\pi}\left(\tau_{i}(t)\right)$ for all $t \in V\left(T_{i}\right)$, by conditions (v) and (vi) in the definition of a tree-decomposition. From the symmetry of \mathscr{S}, every branching of every $\left(T_{i}, \tau_{i}^{\prime}\right)$ is in \mathscr{S}. Since \mathscr{S} is good, by (3.3) there exist $i^{\prime}>i \geqslant 1$ such that $\tau_{i}^{\prime} \times T_{i}=\tau_{i} \times T_{i}$ is simulated in $\tau_{i^{\prime}}^{\prime} \times T_{i^{\prime}}=\tau_{i^{\prime}} \times T_{i^{\prime}}$, as required.

5. A Lemma of Thomas

It is convenient to make use of a result of R. Thomas [13]. (We should perhaps comment on who did what in this area, because of a certain amount of circularity of reference. Theorem (1.5) was first proved in the original draft of this paper in 1982. Thomas, having heard of our result but not having seen the proof, worked out his own proof, and indeed extended (1.5) to infinite graphs and to better-quasi-ordering. He proved a lemma which we had not been able to prove in our early work and for which we had been forced to construct a clumsy substitute. Thomas' lemma is clearly better than our substitute, and we see no reason to stick to our original method.)

The width of a tree-decomposition (T, τ) of a rooted hypergraph G is

$$
\max (|V(\tau(t))|-1: t \in V(T))
$$

and the tree-width of G is the minimum $w \geqslant 0$ such that G has a treedecomposition of width $\leqslant w$. Thomas [13] proved (where 0 denotes the null sequence) that
(5.1) Let G be a graph. If $(G, 0)$ has a tree-decomposition of width $\leqslant w$, then it has a tree-decomposition (T, τ) of width $\leqslant w$ such that for all distinct $t_{1}, t_{2} \in V(T)$ and all $k \geqslant 0$ either there are k mutually vertex-disjoint paths of G from $V\left(\tau\left(t_{1}\right)\right)$ to $V\left(\tau\left(t_{2}\right)\right)$, or some edge of the path of T between t_{1} and t, has order $<k$.

Indeed, Thomas found a decomposition with even stronger properties, which will not concern us. We should perhaps stress that there is no assumption in (5.1) that t_{1}, t_{2} and $o(T)$ lie on a directed path (in contrast with our definition of rotundity) and so which vertex of the underlying undirected tree of T is chosen as the root is irrelevant to (5.1), as are the arbitrary choices of the $\pi(\tau(t))$'s. Indeed, (5.1) is most naturally stated in terms of a different kind of tree-decomposition, where T is undirected and the $\tau(t)$'s are (unrooted) hypergraphs.

We apply (5.1) to deduce
(5.2) Let G be a rooted hypergraph of tree-width $\leqslant w$. Then there is a rotund tree-decomposition of G of width $\leqslant w$.

Proof. Let K be the simple graph with $V(K)=V(G)$, in which distinct v_{1}, v_{2} are adjacent if either some edge of G is incident with them both, or v_{1}, v_{2} are both terms of $\pi(G)$.
(1) $(K, 0)$ has tree-width $\leqslant w$.

For let (T, τ) be a tree-decomposition of G of width $\leqslant w$. Since for each edge of K there exists $t \in V(T)$ such that both ends of the edge are in $V(\tau(t))$, we may choose edge-disjoint rooted subgraphs $\tau^{\prime}(t)(t \in V(T))$ of K such that $V\left(\tau^{\prime}(t)\right)=V(\tau(t))$ for each $t \in V(T)$, and such that $\left(T, \tau^{\prime}\right)$ is a tree-decomposition of ($K, 0$). Then (1) follows.

From (1) and (5.1), we deduce
(2) There is a tree-decomposition (T, τ) of $(K, 0)$ of width $\leqslant w$, such that for all distinct $t_{1}, t_{2} \in V(T)$ and all $k \geqslant 0$, either there are k mutually vertex-disjoint paths of K between $V\left(\tau\left(t_{1}\right)\right)$ and $V\left(\tau\left(t_{2}\right)\right)$, or some edge of the path of T between t_{1} and t_{2} has order $<k$.
(3) For every complete subgraph X of K there exists $t \in V(T)$ such that $V(X) \subseteq V(\tau(t))$.

For if $x \in V(X)$ the set $\{t \in V(T): x \in V(\tau(t))\}$ is the vertex set of a subtree T_{x} of T, and any two of these subtrees $T_{x}, T_{x^{\prime}}$ have a common vertex (since x, x^{\prime} are adjacent in G). By an elementary property of subtrees of a tree, it follows that all the T_{x} 's have a common vertex, as required.

From (3) and the fact that (2) does not depend on which vertex of T is the root, we may choose (T, τ) (redefining the $\pi(\tau(t))$'s suitably) so that
(4) $\bar{\pi}(G) \subseteq V(\tau(o(T)))$.

Again, from (3) and (4) we deduce that
(5) There is a tree-decomposition $\left(T, \tau^{\prime}\right)$ of G such that for each $t \in V(T), V\left(\tau^{\prime}(t)\right)=V(\tau(t))$.

We claim that (T, τ^{\prime}) is rotund. For let P be a directed path of T with first edge f_{2} and last edge f_{1}, such that f_{1}, f_{2} have the same order k and every other edge of P has order $\geqslant k$ in $\left(T, \tau^{\prime}\right)$. Let the first and last vertices of P be t_{2}, t_{1}. By (2), there are k mutually vertex-disjoint paths Q_{1}, \ldots, Q_{k} of K between $V\left(\tau\left(t_{1}\right)\right)$ and $V\left(\tau\left(t_{2}\right)\right)$. Let $\left(H_{1}, H_{2}\right)$ be a separation of G^{-} with $\left(\tau^{\prime} \times T^{f_{1}}\right)^{-} \subseteq H_{1}$ and $\left(\tau^{\prime} \times T_{f_{2}}\right)^{-} \subseteq H_{2}$. Each Q_{i} has one end in $V\left(H_{1}\right)$ and the other end in $V\left(H_{2}\right)$, and for each $e \in E\left(Q_{i}\right)$ either both ends of e in K are ends in G of some $e^{\prime} \in E(G)$ or both ends of e in K are in $\tilde{\pi}(G)$; and in either case both ends of e in K lie in some $V\left(\tau^{\prime}(t)\right)$ and hence either both lie in $V\left(H_{1}\right)$ or both lie in $V\left(H_{2}\right)$. Hence each $V\left(Q_{i}\right)$ meets $V\left(H_{1} \cap H_{2}\right)$, and so $\left|V\left(H_{1} \cap H_{2}\right)\right| \geqslant k$. Thus (H_{1}, H_{2}) has order $\geqslant k$; and hence $\left(T, \tau^{\prime}\right)$ is rotund, as required.

We introduce a fourth axiom. For each $n \geqslant 0$, let \mathscr{S}_{n} denote the class of all star-decompositions (S, σ) with $\sigma \times S \in \mathscr{R}$ and with $|V(\sigma(o(S)))| \leqslant n$.

Axiom 4. For each $n \geqslant 0, \mathscr{S}_{n}$ is good.
From (5.2) we deduce
(5.3) Let $G_{i}(i=1,2, \ldots)$ be a countable sequence of elements of \mathscr{R}, each of tree-width $\leqslant n$. Then there exist $i^{\prime}>i \geqslant 1$ such that G_{i} is simulated in $G_{i^{\prime}}$.

Proof. From (5.2), for each $i \geqslant 1$ there is a rotund tree-decomposition of G_{i} of width $\leqslant n$, and hence with all its branchings in \mathscr{S}_{n+1}. Since \mathscr{S}_{n+1} is good and symmetric, the result follows from (4.2).

Proof of (1.5) (Sketch). Let $G_{i}(i=1,2, \ldots)$ be a countable sequence of graphs, each of tree-width $\leqslant n$. Let \mathscr{R} be the class of all rooted graphs G such that G^{-}is a subgraph of some G_{i}. For $H_{1}, H_{2} \in \mathscr{R}$ we say that H_{1} is simulated in H_{2} if $\left|\bar{\pi}\left(H_{1}\right)\right|=\left|\bar{\pi}\left(H_{2}\right)\right|$ and there exists $H \in \mathscr{R}$ with $H^{-} \subseteq H_{2}^{-}$ and $\pi(H)=\pi\left(H_{2}\right)$, such that a rooted graph isomorphic to H_{1} can be obtained from H by edge-contraction. We verify Axioms 1-4, and (1.5) follows from (5.3).

We have omitted verifying Axioms 1-4, because it is easy and we shall later carry out the verification for a more general "concrete" definition of simulation.

6. Patchworks

Now we come to the second part of the paper. We introduce a concrete containment relation on a class of rooted hypergraphs, and verify that it satisfies the axioms.

If V is a finite set we denote by K_{V} the complete graph on V, that is, the simple graph with vertex set V and edge set the set of all subsets of V of cardinality 2 , with the natural incidence relation. A grouping in V is a subgraph of K_{V} every component of which is complete. A pairing in V is a grouping in V every component of which has at most two vertices. If K is a pairing in V, we say that K pairs X, Y if $X, Y \subseteq V$ are disjoint and
(i) every 2-vertex component of K has one vertex in X and the other in Y, and
(ii) every vertex of $X \cup Y$ belongs to some 2-vertex component of K.

A patch in V is a collection Δ of groupings in V, each with the same vertex set $V(\Delta) \subseteq V$. A patch Δ is free if it contains every grouping in V with vertex set $V(\Delta)$; and it is robust if for every choice of $X, Y \subseteq V(\Delta)$ with $|X|=|Y|$ and $X \cap Y=\varnothing$, there is a pairing in Δ which pairs X, Y.

Let Ω be a quasi-order. An Ω-patchwork is a quadruple (G, μ, Δ, ϕ), where
(i) G is a rooted hypergraph
(ii) μ is a function with domain $\operatorname{dom}(\mu) \subseteq E(G)$; and for each $e \in \operatorname{dom}(\mu), \mu(e)$ is a march with $\bar{\mu}(e)=V(e)$.
(iii) Δ is a function with domain $E(G)$, and for each $e \in E(G), \Delta(e)$ is a patch with $V(\Delta(e))=V(e)$; and for each $e \in E(G)-\operatorname{dom}(\mu), \Delta(e)$ is free
(iv) ϕ is a function from $E(G)$ into $E(\Omega)$.

The Ω-patchwork is robust if each $\Delta(e)(e \in E(G))$ is robust. (This is automatic if $e \notin \operatorname{dom}(\mu)$, since free patches are robust.)

If V is a finite set, N_{V} denotes the graph with vertex set V and no edges. A realization of an Ω-patchwork (G, μ, Δ, ϕ) is a subgraph of $K_{V(G)}$ expressible in the form

$$
N_{V(G)} \cup \bigcup\left(\delta_{e}: e \in E(G)\right)
$$

where $\delta_{e} \in \Delta(e)$ for each $e \in E(G)$. The significance of robustness is that for robust Ω-patchworks we can prove a form of Menger's theorem, as follows.
(6.1) Let $P=(G, \mu, \Delta, \phi)$ be a robust Ω-patchwork, let $X_{1}, X_{2} \subseteq V(G)$, and let $k \geqslant 0$ be an integer. The following are equivalent:
(i) every separation $\left(G_{1}, G_{2}\right)$ of G^{-}with $X_{i} \subseteq V\left(G_{i}\right)(i=1,2)$ has order $\geqslant k$
(ii) there is a realization of P such that k of its components have nonempty intersection with both X_{1} and X_{2}
(iii) there is a realization of P such that k of its components are paths from X_{1} to X_{2} with no vertex except their first in X_{1}, and no vertex except their last in X_{2}, and the remainder of the components of this realization are isolated vertices.

Proof. Let K be the simple graph with $V(K)=V(G)$ in which distinct $a, b \in V(G)$ are adjacent if and only if some edge of G is incident with both a and b. By Menger's theorem, (i) is equivalent to statement (i)', that there are k paths of K from X_{1} to X_{2}, mutually vertex-disjoint. We must prove the equivalence of (i)', (ii), and (iii).

Obviously (iii) implies (ii), and (ii) implies (i)'; it remains to show that (i)' implies (iii). Suppose then that P_{1}, \ldots, P_{k} are mutually vertex-disjoint paths of K from X_{1} to X_{2}, and let us choose them with $\sum\left|E\left(P_{i}\right)\right|$ minimum. Then for $1 \leqslant i \leqslant k$, no vertex of P_{i} except its first is in X_{1}, and no vertex except its last is in X_{2}. Moreover, for each $e \in E(G)$, at most two vertices of P_{i} are incident with e in G, since any two such vertices are adjacent in K; and if there are two such vertices then they are consecutive in P_{i}.

For $1 \leqslant i \leqslant k$ and each $f \in E\left(P_{i}\right)$, let the ends of f be f^{+}, f^{-}where f^{-} is before f^{+}in P_{i}. Choose $e(f) \in E(G)$ such that f^{+}, f^{-}are both incident with $e(f)$ in G. For each $e \in E(G)$, let $A_{e}=\{f: e=e(f)\}$ and $B_{e}=\left\{f^{+}: e=e(f)\right\}$. Then $A_{e} \cap B_{e}=\varnothing$ and $\left|A_{e}\right|=\left|B_{e}\right|$. Since $\Delta(e)$ is robust there is a pairing $\delta_{e} \in \Delta(e)$ which pairs A_{e}, B_{e}. The graph

$$
N_{V(G)} \cup \bigcup\left(\delta_{e}: e \in E(G)\right)
$$

is a realization of P satisfying (iii), as is easily seen (for example by rerouting the paths patch by patch). This completes the proof.

7. Patchwork Containment

We wish now to introduce our containment relation on patchworks. Before we do so we attempt to motivate it by giving in the same spirit a definition of when a graph is isomorphic to a minor of another; our patchwork relation is not much different. If a graph G is isomorphic to a minor of a graph G^{\prime}, then each edge e of G is represented by an edge $\eta(e)$ of G^{\prime}, and each vertex v of G is "formed" by identifying under contraction a nonempty subset $\eta(v)$ of the vertex set of G^{\prime}. Moreover, there is a connected subgraph of G^{\prime} with vertex set $\eta(v)$ all edges of which are to be contracted in producing this minor. Thus, in summary:
(i) η is a function with domain $V(G) \cup E(G)$; for each $v \in V(G), \eta(v)$ is a non-empty subset of $V\left(G^{\prime}\right)$ and for each $e \in E(G), \eta(e) \in E\left(G^{\prime}\right)$
(ii) $\eta\left(v_{1}\right) \cap \eta\left(v_{2}\right)=\varnothing$ for distinct $v_{1}, v_{2} \in V(G)$, and $\eta\left(e_{1}\right) \neq \eta\left(e_{2}\right)$ for distinct $e_{1}, e_{2} \in E(G)$
(iii) for each $v \in V(G)$ and $e \in E(G), e$ is incident with v in G if and only if $\eta(v)$ contains an end of $\eta(e)$ in G^{\prime}, and e is a loop of G with end v if and only if $\eta(v)$ contains every end of $\eta(e)$ in G^{\prime}
(iv) for each $v \in V(G)$ there is a connected subgraph of $G^{\prime} \backslash \eta(E(G))$ with vertex set $\eta(v)$.
(If $\eta: A \rightarrow B$ is a function and $X \subseteq A$ we denote $\{\eta(x): x \in X\}$ by $\eta(X)$.) If our graphs were directed, and we wanted our minor relation to preserve edge-directions, we would replace (iii) by
(iii) for each $v \in V(G)$ and $e \in E(G), v$ is the head (respectively, tail) of e in G if and only if $\eta(v)$ contains the head (respectively, tail) of $\eta(e)$ in G^{\prime}.

If in addition we wanted no non-loop edge of G^{\prime} to correspond to a loop of G we would add
(v) for each $e \in E(G), e$ and $\eta(e)$ have the same number of ends.

If G, G^{\prime} were rooted graphs and we wanted our relation to take roots to roots, we would demand
(vi) $\pi(G)$ and $\pi\left(G^{\prime}\right)$ have the same length k say, and for $1 \leqslant i \leqslant k$, $\eta(v)$ contains the i th term of $\pi\left(G^{\prime}\right)$ where v is the i th term of $\pi(G)$.

Thus, we can regard (i), (ii), (iii)', (iv), (v), (vi) as natural. As we said, our Ω-patchwork relation is not much different. There are three principal differences:
(i) Our edges are labelled from Ω, and we demand that the relation respect this ordering.
(ii) Edges in Ω-patchworks may have more than two ends. For graphs, if an edge is to be removed (when producing a minor) it is either deleted or contracted. For patchworks, an edge e may be removed in a greater variety of ways; in effect, we choose a member δ of $\Delta(e)$ and contract each component of δ to a single vertex. (Thus, a graph may be "mimicked" by a patchwork by defining $\Delta(e)=\left\{K_{V(e)}, N_{V(e)}\right\}$ for each edge e of the graph.)
(iii) An edge may also "shrink"-become incident with only some of the vertices with which it was previously incident. However, this is only permitted for edges not in $\operatorname{dom}(\mu)$.. (We remark that the "shrinking" feature is not needed for Wagner's conjecture, but seems to be required for Nash-Williams' conjecture. Our approach to the latter is to show that the class of all Ω-patchworks with a bounded number of roots and in which all
patches are free is well-quasi-ordered by our containment relation, provided that Ω is a well-quasi-order; and in particular, it is important that we do not require the size of edges to be bounded. It is clear, therefore, that if our relation is to yield a well-quasi-order, it must permit edges to change size.)

The definition is as follows. If π, π^{\prime} are marches of the same length, we denote by $\pi \rightarrow \pi^{\prime}$ the bijection from $\bar{\pi}$ onto $\bar{\pi}^{\prime}$ mapping π to π^{\prime}. Let $P=(G, \mu, \Delta, \phi), P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ be Ω-patchworks. An expansion of P in P^{\prime} is a function η with domain $V(G) \cup E(G)$ such that
(i) for each $v \in V(G), \eta(v)$ is a non-empty subset of $V\left(G^{\prime}\right)$, and for each $e \in E(G), \eta(e) \in E\left(G^{\prime}\right)$
(ii) for distinct $v_{1}, v_{2} \in V(G), \eta\left(v_{1}\right) \cap \eta\left(v_{2}\right)=\varnothing$
(iii) for distinct $e_{1}, e_{2} \in E(G), \eta\left(e_{1}\right) \neq \eta\left(e_{2}\right)$
(iv) for each $e \in E(G), e \in \operatorname{dom}(\mu)$ if and only if $\eta(e) \in \operatorname{dom}\left(\mu^{\prime}\right)$
(v) for each $e \in E(G)-\operatorname{dom}(\mu)$, if v is an end of e in G then $\eta(v)$ contains an end of $\eta(e)$ in G^{\prime}
(vi) for each $e \in \operatorname{dom}(\mu), \mu(e)$ and $\mu^{\prime}(\eta(e))$ have the same length, k, say, and for $1 \leqslant i \leqslant k, \eta(v)$ contains the i th term of $\mu^{\prime}(\eta(e))$ where v is the i th term of $\mu(e)$
(vii) $\pi(G)$ and $\pi\left(G^{\prime}\right)$ have the same length, k, say, and for $1 \leqslant i \leqslant k$, $\eta(v)$ contains the i th term of $\pi\left(G^{\prime}\right)$ where v is the i th term of $\pi(G)$
(viii) for each $e \in \operatorname{dom}(\mu), \mu(e) \rightarrow \mu^{\prime}(\eta(e))$ maps $\Delta(e)$ to $\Delta^{\prime}(\eta(e))$
(ix) for each $e \in E(G), \phi(e) \leqslant \phi^{\prime}(\eta(e))$.

If G is a hypergraph and $F \subseteq E(G), G \backslash F$ denotes the subhypergraph with the same vertex set and edge set $E(G)-F$. If G is a rooted hypergraph, $G \backslash F$ denotes $\left(G^{-} \backslash F, \pi(G)\right)$. If $P=(G, \mu, \Delta, \phi)$ is an Ω-patchwork and $F \subseteq E(G), P \backslash F$ denotes the Ω-patchwork ($G \backslash F, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}$) where $\mu^{\prime}, \Delta^{\prime}, \phi^{\prime}$ are the restrictions of μ, Δ, ϕ to $\operatorname{dom}(\mu) \cap E(G \backslash F), E(G \backslash F), E(G \backslash F)$, respectively. Let η be an expansion of $P=(G, \mu, \Delta, \phi)$ in $P^{\prime}=$ $\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$. A realization H of $P^{\prime} \backslash \eta(E(G))$ is said to realize η if for every $v \in V(G), \eta(v)$ is the vertex set of some component of H; and if there is such a realization, η is said to be realizable. Let us say that P is simulated in P^{\prime} if there is a realizable expansion of P in P^{\prime}. This is our containment relation.
(7.1) Let η be a expansion of $P=(G, \mu, \Delta, \phi)$ in $P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$, and let η^{\prime} be an expansion of P^{\prime} in $P^{\prime \prime}=\left(G^{\prime \prime}, \mu^{\prime \prime}, \Delta^{\prime \prime}, \phi^{\prime \prime}\right)$. Let $\eta^{\prime \prime}$ be defined by

$$
\begin{array}{ll}
\eta^{\prime \prime}(v)=\bigcup\left(\eta^{\prime}\left(v^{\prime}\right): v^{\prime} \in \eta(v)\right) & (v \in V(G)) \\
\eta^{\prime \prime}(e)=\eta^{\prime}(\eta(e)) & (e \in E(G)) .
\end{array}
$$

Then $\eta^{\prime \prime}$ is an expansion of P in $P^{\prime \prime}$, and if η and η^{\prime} are realizable then so is $\eta^{\prime \prime}$. In particular, the simulation relation provides a quasi-order of the class of all Ω-patchworks.

Proof. To verify that $\eta^{\prime \prime}$ is an expansion of P in $P^{\prime \prime}$ we check conditions (i), ..., (ix). Conditions (i), (iii), (iv), and (ix) are clear.
(1) For distinct $v_{1}, v_{2} \in V(G), \eta^{\prime \prime}\left(v_{1}\right) \cap \eta^{\prime \prime}\left(v_{2}\right)=\varnothing$:

For

$$
\begin{aligned}
\eta^{\prime \prime}\left(v_{1}\right) \cap \eta^{\prime \prime}\left(v_{2}\right) & =\bigcup\left(\eta^{\prime}\left(v_{1}^{\prime}\right): v_{1}^{\prime} \in \eta\left(v_{1}\right)\right) \cap \bigcup\left(\eta^{\prime}\left(v_{2}^{\prime}\right): v_{2}^{\prime} \in \eta\left(v_{2}\right)\right) \\
& =\bigcup\left(\eta^{\prime}\left(v_{1}^{\prime}\right) \cap \eta^{\prime}\left(v_{2}^{\prime}\right): v_{1}^{\prime} \in \eta\left(v_{1}\right) \text { and } v_{2}^{\prime} \in \eta\left(v_{2}\right)\right) \\
& =\varnothing
\end{aligned}
$$

since $v_{1}^{\prime} \neq v_{2}^{\prime}$ for $v_{1}^{\prime} \in \eta\left(v_{1}\right)$ and $v_{2}^{\prime} \in \eta\left(v_{2}\right)$, and hence $\eta^{\prime}\left(v_{1}^{\prime}\right) \cap \eta^{\prime}\left(v_{2}^{\prime}\right)=\varnothing$.
(2) For each $e \in E(G)-\operatorname{dom}(\mu)$, if v is an end of e in G then $\eta^{\prime \prime}(v)$ contains an end of $\eta^{\prime \prime}(e)$ in $G^{\prime \prime}$.

For $\eta(v)$ contains an end v^{\prime} of $\eta(e)$, and $\eta(e) \in E\left(G^{\prime}\right)-\operatorname{dom}\left(\mu^{\prime}\right)$, and so $\eta^{\prime}\left(v^{\prime}\right) \subseteq \eta^{\prime \prime}(v)$ contains an end of $\eta^{\prime}(\eta(e))=\eta^{\prime \prime}(e)$.
(3) For each $e \in \operatorname{dom}(\mu), \mu(e)$ and $\mu^{\prime \prime}\left(\eta^{\prime \prime}(e)\right)$ have the same length, k, say, and for $1 \leqslant i \leqslant k, \eta^{\prime \prime}(v)$ contains the i th term of $\mu^{\prime \prime}\left(\eta^{\prime \prime}(e)\right)$ where v is the i th term of $\mu(e)$.

For $\mu(e)$ and $\mu^{\prime}(\eta(e))$ have the same length, k, say, and $\eta(e) \in \operatorname{dom}\left(\mu^{\prime}\right)$, and so $\mu^{\prime \prime}\left(\eta^{\prime}(\eta(e))\right)$ also has length k. For $1 \leqslant i \leqslant k$, let $v, v^{\prime}, v^{\prime \prime}$ be the i th terms of $\mu(e), \mu^{\prime}(\eta(e))$, and $\mu^{\prime \prime}\left(\eta^{\prime \prime}(e)\right)$; then $v^{\prime} \in \eta(v)$ and $v^{\prime \prime} \in \eta^{\prime}\left(v^{\prime}\right)$, and so $v^{\prime \prime} \in \eta^{\prime \prime}(v)$.
(4) $\pi(G)$ and $\pi\left(G^{\prime \prime}\right)$ have the same length, k, say, and for $1 \leqslant i \leqslant k$ $\eta^{\prime \prime}(v)$ contains the i th term of $\pi\left(G^{\prime \prime}\right)$ where v is the i th term of $\pi(G)$.

The proof is similar to (3).
(5) For each $e \in \operatorname{dom}(\mu), \mu(e) \rightarrow \mu^{\prime \prime}\left(\eta^{\prime \prime}(e)\right)$ maps $\Delta(e)$ to $\Delta^{\prime \prime}\left(\eta^{\prime \prime}(e)\right)$.

For $\mu(e) \rightarrow \mu^{\prime \prime}\left(\eta^{\prime \prime}(e)\right)$ is the composition of $\mu(e) \rightarrow \mu^{\prime}(\eta(e))$ and $\mu^{\prime}(\eta(e)) \rightarrow \mu^{\prime \prime}\left(\eta^{\prime \prime}(e)\right)$.

From (1), ..., (5) we deduce that $\eta^{\prime \prime}$ is an expansion of P in $P^{\prime \prime}$. Now suppose that η, η^{\prime} are realized by H, H^{\prime}, respectively. For each $e \in E\left(G^{\prime}\right)-\eta(E(G))$ choose $\delta_{e} \in \Delta^{\prime}(e)$ such that

$$
H=N_{V\left(G^{\prime}\right)} \cup \bigcup\left(\delta_{e}: e \in E\left(G^{\prime}\right)-\eta(E(G))\right)
$$

and for each $e \in E\left(G^{\prime \prime}\right)-\eta^{\prime}\left(E\left(G^{\prime}\right)\right)$ choose $\delta_{e}^{\prime} \in \Delta^{\prime \prime}(e)$ such that

$$
H^{\prime}=N_{V\left(G^{\prime \prime}\right)} \cup \bigcup\left(\delta_{e}^{\prime}: e \in E\left(G^{\prime \prime}\right)-\eta^{\prime}\left(E\left(G^{\prime}\right)\right)\right)
$$

For each $e \in E\left(G^{\prime \prime}\right)-\eta^{\prime \prime}(E(G))$ we define $\delta_{e}^{\prime \prime}$ as follows. If $e \notin \eta^{\prime}\left(E\left(G^{\prime}\right)\right)$ we define $\delta_{e}^{\prime \prime}=\delta_{e}^{\prime}$. If $e=n^{\prime}(f)$ where $f \in E\left(G^{\prime}\right)$ we define $\delta_{e}^{\prime \prime}$ to be the subgraph of $K_{V\left(G^{\prime \prime}\right)}$ with vertex set $V_{G^{\prime \prime}}(e)$, in which distinct ends a, b of e are adjacent if and only if $a \in \eta^{\prime}(p)$ and $b \in \eta^{\prime}(q)$ for some p, q in the same component of δ_{f}.
(6) For each $e \in E\left(G^{\prime \prime}\right)-\eta^{\prime \prime}(E(G)), \delta_{e}^{\prime \prime} \in \Delta^{\prime \prime}(e)$.

For if $e \notin \eta^{\prime}\left(E\left(G^{\prime}\right)\right.$), this is clear since $\delta_{e}^{\prime \prime}=\delta_{e}^{\prime}$. Let $e=\eta^{\prime}(f)$. We claim that $\delta_{e}^{\prime \prime}$ is a grouping. For suppose that $a, b, c \in V_{G^{\prime \prime}}(e)$ are distinct and a, b are adjacent in $\delta_{e}^{\prime \prime}$ and so are b, c. Choose p, q in the same component of δ_{f} with $a \in \eta^{\prime}(p)$ and $b \in \eta^{\prime}(q)$; and choose r, s in the same component of δ_{f} with $a \in \eta^{\prime}(r)$ and $b \in \eta^{\prime}(s)$. Then $p=r$ since $\eta^{\prime}(p) \cap \eta^{\prime}(r) \neq \varnothing$, and so q and s are in the same component of δ_{f}. Hence a is adjacent to c in $\delta_{e}^{\prime \prime}$. This proves that $\delta_{e}^{\prime \prime}$ is a grouping. If $e \notin \operatorname{dom}\left(\mu^{\prime \prime}\right)$ then $\delta_{e}^{\prime \prime} \in \Delta^{\prime \prime}(e)$ since $\Delta^{\prime \prime}(e)$ is free, and we may therefore assume that $e \in \operatorname{dom}\left(\mu^{\prime \prime}\right)$. But then $\delta_{e}^{\prime \prime}$ is the image under $\mu^{\prime}(f) \rightarrow \mu^{\prime \prime}\left(\eta^{\prime}(f)\right)$ of δ_{f}, and therefore belongs to $\Delta^{\prime \prime}(e)$ since $\delta_{f} \in \Delta^{\prime}(f)$ and $\mu^{\prime}(f) \rightarrow \mu^{\prime \prime}\left(\eta^{\prime}(f)\right)$ maps $\Delta^{\prime}(f)$ to $\Delta^{\prime \prime}(e)$. This verifies (6).

Let $H^{\prime \prime}$ be

$$
N_{V\left(G^{\prime \prime}\right)} \cup \bigcup\left(\delta_{e}^{\prime \prime}: e \in E\left(G^{\prime \prime}\right)-\eta^{\prime \prime}(E(G))\right)
$$

Then $H^{\prime \prime}$ is a realization of $G^{\prime \prime} \backslash \eta^{\prime \prime}(E(G))$, and we shall show that it realizes $\eta^{\prime \prime}$. Let $v \in V(G)$. We must show that $\eta^{\prime \prime}(v)$ is the vertex of some component of $H^{\prime \prime}$.
(7) No edge of $H^{\prime \prime}$ joins a vertex of $\eta^{\prime \prime}(v)$ to a vertex of $V\left(G^{\prime \prime}\right)-\eta^{\prime \prime}(v)$.

For suppose that some edge of $H^{\prime \prime}$ has ends $a \in \eta^{\prime \prime}(v)$ and $b \in V\left(G^{\prime \prime}\right)$. We shall show that $b \in \eta^{\prime \prime}(v)$. Choose $v^{\prime} \in \eta(v)$ with $a \in \eta^{\prime}\left(v^{\prime}\right)$, and choose $e \in E\left(G^{\prime \prime}\right)-\eta^{\prime \prime}(E(G))$ with a, b adjacent in $\delta_{e}^{\prime \prime}$. If $e \notin \eta^{\prime}\left(E\left(G^{\prime}\right)\right)$ then a, b are adjacent in $\delta_{e}^{\prime} \subseteq H^{\prime}$ and since H^{\prime} realizes η^{\prime} and $a \in \eta^{\prime}\left(v^{\prime}\right)$ we deduce that $b \in \eta^{\prime}\left(v^{\prime}\right) \subseteq \eta^{\prime \prime}(v)$ as required. If $e \in \eta^{\prime}\left(E\left(G^{\prime}\right)\right)$ and $e=\eta^{\prime}(f)$ where $f \in E\left(G^{\prime}\right)$, then there exist p, q in the same component of δ_{f} such that $a \in \eta^{\prime}(p)$ and $b \in \eta^{\prime}(q)$. Since $a \in \eta^{\prime}\left(v^{\prime}\right) \cap \eta^{\prime}(p)$ we deduce that $p=v^{\prime}$, and so v^{\prime}, q are in the same component of δ_{f} and hence of H. Since H realizes η and $v^{\prime} \in \eta(v)$ we deduce that $q \in \eta(v)$ and hence $b \in \eta^{\prime}(q) \subseteq \eta^{\prime \prime}(v)$ as required.
(8) If $p, q \in V(H)$ are adjacent in H then there exist $a \in \eta^{\prime}(p)$ and $b \in \eta^{\prime}(q)$ adjacent in $H^{\prime \prime}$.

For choose $f \in E\left(G^{\prime}\right)$ with p, q adjacent in δ_{f}. Let $e=\eta^{\prime}(f)$ and choose ends a, b of e such that $a \in \eta^{\prime}(p), b \in \eta^{\prime}(q)$. Then a, b are adjacent in $\delta_{e}^{\prime \prime}$ and hence in $H^{\prime \prime}$ as required.
(9) If $a, b \in \eta^{\prime \prime}(v)$ then a, b belong to the same component of $H^{\prime \prime}$.

For choose $p, q \in \eta(v)$ with $a \in \eta^{\prime}(p), b \in \eta^{\prime}(q)$. Since H realizes η there is a path of H joining p and q with t edges, say. By applying (8) to each edge of this path, we deduce that there is a sequence $a=a_{0}, b_{1}, a_{1}, b_{2}, \ldots$, $a_{t-1}, b_{t}, a_{t}, b_{t+1}=b$ of vertices of $H^{\prime \prime}$ such that for $1 \leqslant i \leqslant t, a_{i}$ and b_{i} are adjacent in $H^{\prime \prime}$ and for $0 \leqslant i \leqslant t, a_{i}$ and b_{i+1} both belong to $\eta^{\prime}(r)$ for some vertex r of our path. Since H^{\prime} realizes η^{\prime} we deduce that for $0 \leqslant i \leqslant t, a_{i}$ and b_{i+1} belong to the same component of H^{\prime}, and hence of $H^{\prime \prime}$ since $H^{\prime} \subseteq H^{\prime \prime}$. We deduce that a and b belong to the same component of $H^{\prime \prime}$ as required.

From (7) and (9) we deduce that $H^{\prime \prime}$ realizes $\eta^{\prime \prime}$, and hence $\eta^{\prime \prime}$ is realizable. This completes the proof of the second statement of the theorem; and the third follows, for the simulation relation has been shown to be transitive, and it is reflexive, because the "identity" expansion of an Ω-patchwork $P=(G, \mu, \Delta, \phi)$ in itself is realized by the realization $N_{V(G)}$ of $P \backslash E(G)$.

8. Stars with Small Hearts

The results of the previous two sections will be used to show that our containment relation satisfies Axioms 1, 2, and 3. In this section we prove a result will be used for Axiom 4. We begin with the following lemma.

Let $P=(G, \mu, \Delta, \phi)$ be an Ω-patchwork. If G^{\prime} is a rooted hypergraph with $G^{\prime-} \subseteq G^{-}$, and $\mu^{\prime}, \Delta^{\prime}, \phi^{\prime}$ are the restrictions of μ, Δ, ϕ to $\operatorname{dom}(\mu) \cap E\left(G^{\prime}\right), E\left(G^{\prime}\right), E\left(G^{\prime}\right)$, respectively, then $\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ is an Ω-patchwork which we denote by $P \mid G^{\prime}$.
(8.1) Let $P=(G, \mu, \Delta, \phi), P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ be Ω-patchworks, and let $\left(G_{1}, G_{2}\right),\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ be separations of G, G^{\prime} respectively. Let η_{1} be a realizable expansion of $P \mid G_{1}$ in $P^{\prime} \mid G_{1}^{\prime}$ (whence $\left|\bar{\pi}\left(G_{1}\right)\right|=\left|\bar{\pi}\left(G_{1}^{\prime}\right)\right|=k$, say) and let η_{2} be a realizable expansion of $P \mid G_{2}$ in $P^{\prime} \mid G_{2}^{\prime}$ such that for $1 \leqslant i \leqslant k, \eta_{2}(v)$ contains the i th term of $\pi\left(G_{1}^{\prime}\right)$, where v is the i th term of $\pi\left(G_{1}\right)$. Define η by

$$
\begin{aligned}
\eta(v) & =\eta_{1}(v) & & \left(v \in V\left(G_{1}\right)-V\left(G_{2}\right)\right) \\
& =\eta_{2}(v) & & \left(v \in V\left(G_{2}\right)-V\left(G_{1}\right)\right) \\
& =\eta_{1}(v) \cup \eta_{2}(v) & & \left(v \in V\left(G_{1}\right) \cap V\left(G_{2}\right)\right) \\
\eta(e) & =\eta_{1}(e) & & \left(e \in E\left(G_{1}\right)\right) \\
& =\eta_{2}(e) & & \left(e \in E\left(G_{2}\right)\right) .
\end{aligned}
$$

Then η is a realizable expansion of P in P^{\prime}.

Proof. For $1 \leqslant i \leqslant k$, let v_{i}, v_{i}^{\prime} be the i th terms of $\pi\left(G_{1}\right), \pi\left(G_{1}^{\prime}\right)$, respectively.
(1) For $1 \leqslant i \leqslant k$ and all $v \in V(G)$, if $v_{i}^{\prime} \in \eta(v)$ then $v=v_{i}$.

For either $v \in V\left(G_{1}\right)$ and $v_{i}^{\prime} \in \eta_{1}(v)$, or $v \in V\left(G_{2}\right)$ and $v_{i}^{\prime} \in \eta_{2}(v)$. But $v_{i}^{\prime} \in \eta_{1}\left(v_{i}\right)$ and $v_{i}^{\prime} \in \eta_{2}\left(v_{i}\right)$ (the first since η_{1} is an expansion of P_{1} in P_{1}^{\prime}, and the second by hypothesis) and so either $v \in V\left(G_{1}\right)$ and $\eta_{1}\left(v_{i}\right) \cap \eta_{1}(v) \neq \varnothing$, or $v \in V\left(G_{2}\right)$ and $\eta_{2}\left(v_{i}\right) \cap \eta_{2}(v) \neq \varnothing$. In either case $v=v_{i}$ as required.
(2) For distinct $u_{1}, u_{2} \in V(G), \eta\left(u_{1}\right) \cap \eta\left(u_{2}\right)=\varnothing$.

For suppose that $v^{\prime} \in \eta\left(u_{1}\right) \cap \eta\left(u_{2}\right)$. If $v^{\prime} \in V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)$ then $v^{\prime}=v_{i}^{\prime}$ for some i, and by (1) $u_{1}=v_{i}$ and $u_{2}=v_{i}$, a contradiction. If $v^{\prime} \in V\left(G_{1}^{\prime}\right)-V\left(G_{2}^{\prime}\right)$ then $u_{1}, u_{2} \in V\left(G_{1}\right)$ and $v^{\prime} \in \eta_{1}\left(u_{1}\right) \cap \eta_{1}\left(u_{2}\right)$, whence $u_{1}=u_{2}$, a contradiction, and similarly we obtain a contradiction if $v^{\prime} \in V\left(G_{2}^{\prime}\right)-V\left(G_{1}^{\prime}\right)$.

From (2) it follows that η is an expansion of P in P^{\prime}; for conditions (i), ..., (ix) are all clearly satisfied except (ii), and the truth of (ii) follows from (2).

Now let H_{i} be a realization of $\left(P^{\prime} \mid G_{i}^{\prime}\right) \backslash \eta_{i}\left(E\left(G_{i}\right)\right)$ which realizes η_{i} ($i=1,2$). Let $H=H_{1} \cup H_{2}$; then H is a realization of $P^{\prime} \backslash \eta(E(G))$ and we shall show that it realizes η. Let $v \in V(G)$; we must show that $\eta(v)$ is the vertex set of a component of H. If $v \in V\left(G_{1}\right)-V\left(G_{2}\right)$, then $\eta(v)=\eta_{1}(v)$, and hence is the vertex set of a component of H_{1}; and since $\eta(v) \cap V\left(G_{2}^{\prime}\right)=\varnothing$ (by (1)) it follows that this component is also a component of H, as required. The claim follows similarly if $v \in V\left(G_{2}\right)-V\left(G_{1}\right)$. If $v \in V\left(G_{1} \cap G_{2}\right)$, let $v=v_{i}$ where $1 \leqslant i \leqslant k$. Then $\eta_{1}(v)$ is the vertex set of a component of H_{1}, and contains no vertex of H_{2} except v_{i}^{\prime} by (1); and similarly, $\eta_{2}(v)$ is the vertex set of a component of H_{2} containing no vertex of H_{1} except v_{i}^{\prime}. Hence $\eta(v)=\eta_{1}(v) \cup \eta_{2}(v)$ is the vertex set of a component of H as required.

Let $P=(G, \mu, \Delta, \phi)$ be an Ω-patchwork. We say that $e \in E(G)$ is removable if $N_{V(e)} \in \Lambda(e)$; and P is removable if each $e \in E(G)$ is removable. Evidently robust patchworks are removable.
(8.2) Let $P=(G, \mu, \Delta, \phi), P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ be Ω-patchworks where P^{\prime} is removable. Let $(S, \sigma),\left(S^{\prime}, \sigma^{\prime}\right)$ be star-decompositions of G, G^{\prime}, respectively. Let γ be a bijection from $V(\sigma(o(S)))$ to $V\left(\sigma^{\prime}\left(o\left(S^{\prime}\right)\right)\right)$ mapping $\pi(G)$ to $\pi\left(G^{\prime}\right)$. Let α be an injection from $E(\sigma(o(S)))$ into $E\left(\sigma^{\prime}\left(o\left(S^{\prime}\right)\right)\right)$, such that for each $e \in E(\sigma(o(S)))$
(i) $\alpha(e) \in \operatorname{dom}\left(\mu^{\prime}\right)$ if and only if $e \in \operatorname{dom}(\mu)$
(ii) if $e \in \operatorname{dom}(\mu)$ then γ maps $\mu(e)$ to $\mu^{\prime}(\alpha(e))$
(iii) if $e \notin \operatorname{dom}(\mu)$ then γ maps $V_{G}(e)$ to $V_{G^{\prime}}(\alpha(e))$
(iv) $\phi(e) \leqslant \phi^{\prime}(\alpha(e))$.

Let β be a bijection from $U(S)$ to $U\left(S^{\prime}\right)$, such that for each $s \in U(S)$,
(v) $\quad \gamma$ maps $\pi(\sigma(s))$ to $\pi\left(\sigma^{\prime}(\beta(s))\right)$
(vi) $P \mid \sigma(s)$ is simulated in $P^{\prime} \mid \sigma^{\prime}(\beta(s))$.

Then P is simulated in P^{\prime}.
Proof. Let $V(S)=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$ where $s_{0}=o(S)$, and let $V\left(S^{\prime}\right)=$ $\left(s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$ where $\beta\left(s_{i}\right)=s_{i}^{\prime}(1 \leqslant i \leqslant n)$. For each $i \geqslant 1$, let η_{i} be a realizable expansion of $P \mid \sigma\left(s_{i}\right)$ in $P^{\prime} \mid \sigma^{\prime}\left(s_{i}^{\prime}\right)$. Let η_{0} be the expansion of $P \mid \sigma\left(s_{0}\right)$ in $P^{\prime} \mid \sigma^{\prime}\left(s_{0}^{\prime}\right)$ defined by

$$
\begin{array}{ll}
\eta_{0}(v)=\{\gamma(v)\} & \left(v \in V\left(\sigma\left(s_{0}\right)\right)\right) \\
\eta_{0}(e)=\alpha(e) & \left(e \in E\left(\sigma\left(s_{0}\right)\right)\right) .
\end{array}
$$

Now since P^{\prime} is removable, N_{X} is a realization of $\left(P^{\prime} \mid \sigma^{\prime}\left(s_{0}^{\prime}\right)\right) \backslash \eta_{0}\left(E\left(\sigma\left(s_{0}\right)\right)\right)$, where $X=V\left(\sigma^{\prime}\left(s_{0}^{\prime}\right)\right)$; and it realizes η_{0}. Thus η_{0} is realizable.

For $i \geqslant 0$, let S_{i} be the subtree of S with vertex set $\left\{s_{0}, s_{1}, \ldots, s_{i}\right\}$ and let $G_{i}=\sigma \times S_{i}$; and define $S_{i}^{\prime}, G_{i}^{\prime}$ similarly. For each $j \geqslant 0$, let ζ_{j} be defined by

$$
\begin{aligned}
& \zeta_{j}(e)=\eta_{i}(e) \quad \text { if } \quad 0 \leqslant i \leqslant j \text { and } e \in E\left(\sigma\left(s_{i}\right)\right) \\
& \zeta_{j}(v)=\bigcup\left(\eta_{i}(v): 0 \leqslant i \leqslant j, v \in V\left(\sigma\left(s_{i}\right)\right) .\right.
\end{aligned}
$$

We claim that ζ_{j} is a realizable expansion of $P \mid G_{j}$ in $P^{\prime} \mid G_{j}^{\prime}$, for $0 \leqslant j \leqslant n$. This is true if $j=0$; we assume that it holds for some j with $0 \leqslant j<n$, and we shall prove that it holds for $j+1$. Now for $1 \leqslant i \leqslant\left|\bar{\pi}\left(\sigma\left(s_{j+1}\right)\right)\right|$, let v, v^{\prime} be the i th terms of $\pi\left(\sigma\left(s_{j+1}\right)\right), \pi\left(\sigma^{\prime}\left(s_{j+1}^{\prime}\right)\right)$, respectively. By condition (v) above, $\gamma(v)=v^{\prime}$, and so $\eta_{0}(v)=\left\{v^{\prime}\right\}$. Since $\eta_{0}(v) \subseteq \zeta_{j}(v)$, it follows that $v^{\prime} \in \zeta_{j}(v)$. Hence we may apply (8.1) to the separations $\left(\sigma\left(s_{j+1}\right), G_{j}\right)$ and $\left(\sigma\left(s_{j+1}^{\prime}\right), G_{j}^{\prime}\right)$ of $G_{j+1}, G_{j+1}^{\prime}$ (replacing P, P^{\prime} by $P\left|G_{j+1}, P^{\prime}\right| G_{j+1}^{\prime}$, and replacing η_{1}, η_{2} by η_{j+1}, ζ_{j}); and we deduce that ζ_{j+1} is a realizable expansion of $P \mid G_{j+1}$ in $P^{\prime} \mid G_{j+1}^{\prime}$. This proves our claim, by induction on j. In particular, $P \mid G_{n}=P$ is simulated in $P^{\prime} \mid G_{n}^{\prime}=P^{\prime}$, as required.

We shall need the following theorem of Higman [3].
(8.3) Let Ω be a well-quasi -order, and let $X_{i}(i=1,2, \ldots)$ be a countable sequence of finite subsets of $E(\Omega)$. Then there exists an infinite subset $I \subseteq\{1,2, \ldots\}$ with the property that for all $i, i^{\prime} \in I$ with $i<i^{\prime}$ there is a injection $\alpha: X_{i} \rightarrow X_{i^{\prime}}$ such that $x \leqslant \alpha(x)$ for all $x \in X_{i}$.
(8.4) Let $n \geqslant 0$, let Ω be a well-quasi-order, and let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)$ $(i=1,2, \ldots)$ be a countable sequence of removable Ω-patchworks. For each $i \geqslant 1$ let $\left(S_{i}, \sigma_{i}\right)$ be a star-decomposition of G_{i} with $\left|V\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right)\right| \leqslant n$.

Suppose that $\left\{P_{i} \mid \sigma_{i}(s): i \geqslant 1, s \in U\left(S_{i}\right)\right\}$ is well-quasi-ordered by simulation. Then there exist $i^{\prime}>i \geqslant 1$ such that P_{i} is simulated in $P_{i^{\prime}}$.

Proof. Since there are only $n+1$ possibilities for each $\left|V\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right)\right|$ we may choose an infinite subset $I_{1} \subseteq\{1,2, \ldots\}$ and $m \geqslant 0$ such that
(1) For all $i \in I_{1},\left|V\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right)\right|=m$.

Similarly, we may choose an infinite $I_{2} \subseteq I_{1}$ and $k \geqslant 0$ such that
(2) For all $i \in I_{2},\left|\bar{\pi}\left(G_{i}\right)\right|=k$.

By replacing each P_{i} by an "isomorphic" Ω-patchwork, we may therefore assume, to simplify notation, that for some set V_{0} and march π_{0} in V_{0},
(3) $V\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right)=V_{0}$ and $\pi\left(G_{i}\right)=\pi_{0}$ for all $i \in I_{2}$.

Let ρ be a march in V_{0}. Since Ω is well-quasi-ordered and there are only finitely many different patches with a given vertex set, we may choose by (8.3) an infinite $I_{3} \subseteq I_{2}$ such that
(4) For all i, $i^{\prime} \in I_{3}$ with $i^{\prime}>i$ there is an injection α from $\left\{e \in \operatorname{dom}\left(\mu_{i}\right) \cap E\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right): \mu_{i}(e)=\rho\right\}$ into $\left\{e^{\prime} \in \operatorname{dom}\left(\mu_{i^{\prime}}\right) \cap E\left(\sigma_{i^{\prime}}\left(o\left(S_{i^{\prime}}\right)\right)\right)\right.$: $\left.\mu_{i^{\prime}}\left(e^{\prime}\right)=\rho\right\}$, such that for each $e, \phi_{i}(e) \leqslant \phi_{i^{\prime}}(\alpha(e))$ and $\Delta_{i}(e)=\Delta_{i^{\prime}}(\alpha(e))$.

Since V_{0} is finite, we may assume (by repeating this procedure for all ρ) that (4) holds for all ρ. We may similarly choose an infinite subset $I_{4} \subseteq I_{3}$ such that for all subsets Y of V_{0},
(5) For all $i, i^{\prime} \in I_{4}$ with $i^{\prime}>i$ there is an injection α from $\left\{e \in E\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right)-\operatorname{dom}\left(\mu_{i}\right): V_{G_{i}}(e)=Y\right\}$ into $\left\{e^{\prime} \in E\left(\sigma_{i^{\prime}}\left(o\left(S_{i^{\prime}}\right)\right)\right)-\operatorname{dom}\left(\mu_{i^{\prime}}\right):\right.$ $\left.V_{G_{i}}\left(e^{\prime}\right)=Y\right\}$, such that $\phi_{i}(e) \leqslant \phi_{i^{\prime}}(\alpha(e))$ for each e.
By piecing together the injections of (4) and (5), we deduce
(6) For all $i, i^{\prime} \in I_{4}$ with $i^{\prime}>i$ there is an injection $\alpha: E\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right) \rightarrow$ $E\left(\sigma_{i^{\prime}}\left(o\left(S_{i^{\prime}}\right)\right)\right)$ such that for each $e \in E\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right)$
(i) $\alpha(e) \in \operatorname{dom}\left(\mu_{i^{\prime}}\right)$ if and only if $e \in \operatorname{dom}\left(\mu_{i}\right)$
(ii) if $e \in \operatorname{dom}\left(\mu_{i}\right)$ then $\mu_{i}(e)=\mu_{i^{\prime}}(\alpha(e))$ and $\Delta_{i}(e)=\Delta_{i^{\prime}}(\alpha(e))$
(iii) if $e \notin \operatorname{dom}\left(\mu_{i}\right)$ then $V_{G_{i}}(e)=V_{G_{i}}(\alpha(e))$
(iv) $\quad \phi_{i}(e) \leqslant \phi_{i^{\prime}}(\alpha(e))$.

Let ρ be a march in V_{0}. Since $\left\{P_{i} \mid \sigma_{i}(s): i \geqslant 1, s \in U\left(S_{i}\right)\right\}$ is well-quasiordered by simulation we may choose by (8.3) an infinite $I_{5} \subseteq I_{4}$ such that
(7) For all $i, i^{\prime} \in I_{5}$ with $i^{\prime}>i$ there is an injection β from $\left\{s \in U\left(S_{i}\right)\right.$: $\left.\pi\left(\sigma_{i}(s)\right)=\rho\right\}$ into $\left\{s^{\prime} \in U\left(S_{i^{\prime}}\right): \pi\left(\sigma_{i^{\prime}}\left(s^{\prime}\right)\right)=\rho\right\}$, such that $P_{i} \mid \sigma_{i}(s)$ is simulated in $P_{i^{\prime}} \mid \sigma_{i^{\prime}}(\beta(s))$ for each s.

By repeating this for each ρ and piecing together the resulting injections β, we deduce that there is an infinite $I_{6} \subseteq I_{4}$ such that
(8) For all $i, i^{\prime} \in I_{6}$ with $i^{\prime}>i$ there is an injection $\beta: U\left(S_{i}\right) \rightarrow U\left(S_{i^{\prime}}\right)$ such that for each $s \in U\left(S_{i}\right)$,
(i) $\pi\left(\sigma_{i}(s)\right)=\pi\left(\sigma_{i^{\prime}}(\beta(s))\right)$
(ii) there is a realizable expansion of $P_{i} \mid \sigma_{i}(s)$ in $P_{i^{\prime}} \mid \sigma_{i^{\prime}}(\beta(s))$.

Choose $i, i^{\prime} \in I_{6}$ with $i^{\prime}>i$. We claim that P_{i} is simulated in $P_{i^{\prime}}$. For let α, β be as in (6), (8). Let η_{0} be defined by

$$
\begin{array}{ll}
\eta_{0}(v)=\{v\} & \left(v \in V_{0}\right) \\
\eta_{0}(e)=\alpha(e) & \left(e \in E\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right)\right)
\end{array}
$$

Then η_{0} is an expansion of $P_{i} \mid \sigma_{i}\left(o\left(S_{i}\right)\right)$ in $P_{i^{\prime}} \mid \sigma_{i^{\prime}}\left(o\left(S_{i^{\prime}}\right)\right)$. Moreover, $N_{V_{0}}$ is a realization of

$$
\left(P_{i^{\prime}} \mid \sigma_{i^{\prime}}\left(o\left(S_{i^{\prime}}\right)\right)\right) \backslash \eta_{0}\left(E\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right)\right)
$$

since $P_{i^{\prime}}$ is removable, and $N_{V_{0}}$ realizes η_{0}.
By applying (8.2) to $P_{i}, P_{i^{\prime}} \mid\left(\sigma_{i^{\prime}} \times T\right)$ we deduce that P_{i} is simulated in $P_{i^{\prime}} \mid\left(\sigma_{i^{\prime}} \times T\right)$, where T is the subtree of $S_{i^{\prime}}$ with

$$
V(T)=\left\{o\left(S_{i^{\prime}}\right)\right\} \cup \beta\left(U\left(S_{i}\right)\right) .
$$

But $P_{i^{\prime}} \mid\left(\sigma_{i^{\prime}} \times T\right)$ is simulated in $P_{i^{\prime}}$ since $P_{i^{\prime}}$ is removable, and hence P_{i} is simulated in $P_{i^{\prime}}$ by (7.1). This completes the proof.

9. Verifying the Axioms

Let Ω be a well-quasi-order, and let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)(i=1,2, \ldots)$ be a countable sequence of robust Ω-patchworks, where for $i^{\prime}>i \geqslant 1, G_{i}$ and $G_{i^{\prime}}$ are disjoint. Let \mathscr{R} be the set of all rooted hypergraphs G such that $G^{-} \subseteq G_{i}^{-}$for some i. For each $G \in \mathscr{R}$ we define $P(G)$ to be $P_{i} \mid G$ where $G^{-} \subseteq G_{i}^{-}$. (This is well-defined since such a value of i is unique unless G is null.) Let us say that $G \in \mathscr{R}$ is simulated in $G^{\prime} \in \mathscr{R}$ if $P(G)$ is simulated in $P\left(G^{\prime}\right)$. We verify Axioms 1-4.

Axiom 1. This is clear from the definition of \mathscr{R}.
Axiom 2. This is immediate from (7.1).
Axiom 3. Let $G \in \mathscr{R}$, and let $\left(G_{1}, G_{2}\right)$ be a separation of G of order $k=|\bar{\pi}(G)|$, such that there is no separation $\left(H_{1}, H_{2}\right)$ of G of order $<k$ with $G_{1}^{-} \subseteq \dot{H}_{1}^{-}$. Then every separation $\left(J_{1}, J_{2}\right)$ of G_{2}^{-}with $V\left(G_{1}^{-} \cap G_{2}^{-}\right) \subseteq V\left(J_{1}\right)$
and $\bar{\pi}\left(G_{2}\right) \subseteq V\left(J_{2}\right)$ has order $\geqslant k$. From (6.1) and the robustness of $P\left(G_{2}\right)$ there is a realization H of $P\left(G_{2}\right), k$ components of which contain a vertex of $\bar{\pi}\left(G_{2}\right)$ and a vertex of $V\left(G_{1}^{-} \cap G_{2}^{-}\right)$. Since

$$
\left|V\left(G_{1}^{-} \cap G_{2}^{-}\right)\right|=\left|\pi\left(G_{2}\right)\right|=k
$$

there is a march π_{1} with $\bar{\pi}_{1}=V\left(G_{1}^{-} \cap G_{2}^{-}\right)$such that for $1 \leqslant i \leqslant k$ some component D_{i} say of H contains the i th vertex of $\pi\left(G_{2}\right)$ and the i th vertex of π_{1}. Let π_{1} be $v_{1}, v_{2}, \ldots, v_{k}$. Define η by

$$
\begin{aligned}
\eta(v) & =\{v\} & & \left(v \in V\left(G_{1}\right)-V\left(G_{2}\right)\right) \\
\eta\left(v_{i}\right) & =V\left(D_{i}\right) & & (1 \leqslant i \leqslant k) \\
r_{i}(e) & =e & & \left(e \in E\left(G_{1}\right)\right)
\end{aligned}
$$

Then η is an expansion of $\left(G_{1}^{-}, \pi_{1}\right)$ in G, and it is realized by $H \cup N_{V\left(G_{1}\right)}$ which is a realization of $G \backslash \eta\left(E\left(G_{1}\right)\right)$. Thus η is realizable, and so (G_{1}^{-}, π_{1}) is simulated in G as required.

Axiom 4. Let $n \geqslant 0$; we must show that \mathscr{S}_{n} is good. Certainly $\sigma \times S \in \mathscr{R}$ for each $(S, \sigma) \in \mathscr{S}_{n}$, and \mathscr{S}_{n} has index $\leqslant n$, by definition of \mathscr{S}_{n}. Let $\left(S_{i}, \sigma_{i}\right)(i=1,2, \ldots)$ be a countable sequence of members of \mathscr{S}_{n} such that the set of all tips of all the $\left(S_{i}, \sigma_{i}\right)$'s is well-simulated. Let $G_{i}=\sigma_{i} \times S_{i}(i \geqslant 1)$. It remains to show that there exist $i^{\prime}>i \geqslant 1$ such that G_{i} is simulated in $G_{i^{\prime}}$, that is, $P\left(G_{i}\right)$ is simulated in $P\left(G_{i^{\prime}}\right)$. Since P_{1}, P_{2}, \ldots are all robust, it follows that $P(G)$ is robust for all $G \in \mathscr{R}$, and in particular each $P\left(G_{i}\right)$ is removable. Now for each $i \geqslant 1,\left(S_{i}, \sigma_{i}\right)$ is a star-decomposition of G_{i} with $\left|V\left(\sigma_{i}\left(o\left(S_{i}\right)\right)\right)\right| \leqslant n$; and $\left\{P\left(G_{i}\right) \mid \sigma_{i}(s): i \geqslant 1, s \in U\left(S_{i}\right)\right\}$ is well-quasi-ordered by simulation, since the set of all tips of all the (S_{i}, σ_{i})'s is well-simulated. From (8.4), it follows that there exist $i^{\prime}>i \geqslant 1$ such that $P\left(G_{i}\right)$ is simulated in $P\left(G_{i^{\prime}}\right)$. This verifies Axiom 4.

Consequently, we have
(9.1) Let $n \geqslant 0$, let Ω be a well-quasi-order, and let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)$ $(i=1,2, \ldots)$ be a countable sequence of robust Ω-patchworks, where each G_{i} has tree-width $\leqslant n$. Then there exist $i^{\prime}>i \geqslant 1$ such that there is a realizable expansion of P_{i} in $P_{i^{\prime}}$.

Proof. We may assume that G_{1}, G_{2}, \ldots are mutually disjoint, and hence we may define \mathscr{R}, etc. as at the start of this section; and the claim follows from (5.3).

As we mentioned earlier, (1.5) is a consequence of (9.1). Let Ω be the well-quasi-order with $E(\Omega)=\{1\}$. If G is a graph, let $P(G)$ be the Ω-patchwork ($(G, 0), \mu, \Delta, \phi)$, where
(i) 0 is the null sequence
(ii) $\operatorname{dom}(\mu)=E(G)$
(iii) for each $e \in E(G), \mu(e)$ is a march with $\bar{\mu}(e)=V(e)$, and $\Delta(e)=\left\{N_{V(e)}, K_{V(e)}\right\}$. (If $|V(e)|=1$ then $N_{V(e)}=K_{V(e)}$.)
(iv) $\phi(e)=1$ for each $e \in E(G)$.

If $P(G)$ is simulated in $P\left(G^{\prime}\right)$ then G is isomorphic to a minor of G^{\prime}, and hence (9.1) implies (1.5).

A second application of (9.1) will be important in a future paper [11], and it is convenient to deal with that application here rather than to redefine all the apparatus of patchworks in that paper. A surface is a compact 2 -manifold without boundary. A painting in a surface Σ is a pair (U, N), where $U \subseteq \Sigma$ is closed and $N \subseteq U$ is finite, such that
(i) $U-N$ has only finitely many arc-wise connected components, called cells
(ii) for each cell e, its closure \bar{e} is homeomorphic to a closed disc, and $\bar{e} \cap N=\bar{e}-e$ is a finite subset of $b d(\bar{e})$.
From (9.1) we deduce
(9.2) Let Σ be a surface, let $n \geqslant 0$, and let Ω be a well-quasi-order. For $i \geqslant 1$ let $\left(U_{i}, N_{i}, \pi_{i}, \mu_{i}, \phi_{i}\right)$ be such that
(i) $\left(U_{i}, N_{i}\right)$ is a painting in Σ with set of cells E_{i}, say, and π_{i} is a march in N_{i}
(ii) for each $e \in E_{i}, \mu_{i}(e)$ is a march with $\bar{\mu}_{i}(e)=\bar{e}-e$, and $\phi_{i}(e) \in E(\Omega)$
(iii) the rooted hypergraph G_{i} with $V\left(G_{i}\right)=N_{i}, E\left(G_{i}\right)=E_{i}$, with the natural incidence relation and $\pi\left(G_{i}\right)=\pi_{i}$, has tree-width $\leqslant n$.
Then there exist $i^{\prime}>i \geqslant 1$ and a drawing E of a forest in Σ with vertex set $N_{i^{\prime}}$, and a function σ with domain $N_{i} \cup E_{i}$, such that
(a) every edge of Ξ is a subset of a cell of $\left(U_{i^{\prime}}, N_{i^{\prime}}\right)$
(b) for each $v \in N_{i}, \sigma(v)$ is a component of Ξ, and for each $e \in E_{i}$, $\sigma(e) \in E_{i^{\prime}}$
(c) for distinct $e_{1}, e_{2} \in E_{i}, \sigma\left(e_{1}\right) \neq \sigma\left(e_{2}\right)$, and for $v_{1}, v_{2} \in N_{i}, \sigma\left(v_{1}\right)$ and $\sigma\left(v_{2}\right)$ are disjoint
(d) for each $v \in N_{i}$ and $e \in E_{i}$, no edge of $\sigma(v)$ intersects $\sigma(e)$
(e) for each $e \in E_{i},|\bar{e}-e|=|\overline{\sigma(e)}-\sigma(e)|=k$, say, and for $1 \leqslant j \leqslant k$ the j th term of $\mu_{i}(\sigma(e))$ is a vertex of $\sigma(v)$ where v is the j th term of $\mu_{i}(e)$
(f) π_{i} and π_{i}, have the same length k, say, and for $1 \leqslant j \leqslant k$ the j th term of $\pi_{i^{\prime}}$ is a vertex of $\sigma(v)$ where v is the j th term of π_{i}
(g) for each $e \in E_{i}, \phi_{i}(e) \leqslant \phi_{i}(\sigma(e))$.

Proof. For each $i \geqslant 1$, let G_{i} be as in (iii) above, and for each $e \in E_{i}$ let $\Delta_{i}(e)$ be the set of all pairings in $\bar{\mu}_{i}(e)$ no two edges of which cross (where $\{a, c\}$ crosses $\{b, d\}$ if $a, b, c, d \in \bar{e}-e$ are all distinct and occur in that order, or the reverse, in the natural cyclic order of $\bar{e}-e$). Then $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)$ is an Ω-patchwork, and it is robust. By (9.1) there exist $i^{\prime}>i \geqslant 1$ and a realizable expansion η of P_{i} in $P_{i^{\prime}}$. Let H be a realization of $P_{i^{\prime}} \backslash \eta\left(E\left(G_{i}\right)\right)$ realizing η, and let F be a spanning forest of H. From our choice of the $\Delta_{i}(e)$'s and the fact that H is a realization of $P_{i^{\prime}} \backslash \eta\left(E\left(G_{i}\right)\right)$, there is a drawing Ξ of F in Σ such that each vertex of F is represented by itself (we recall that $V(F)=V(H)=N_{i^{\prime}} \subseteq \Sigma$) and each edge is drawn within some cell $e^{\prime} \in E_{i}^{\prime}-\eta\left(E_{i}\right)$. Define $\sigma(e)-\eta(e)\left(e \in E_{i}\right)$ and for each $v \in N_{i}$, let $\sigma(v)$ be the component of Ξ with vertex set $\eta(v)$. Then $(a), \ldots,(g)$ are satisfied, as required.

References

1. D. Archdeacon, "A Kuratowski Theorem for the Projective Plane," Thesis, Ohio State University, 1980.
2. H. Glover, P. Huneke, and C. S. Wang, 103 graphs that are irreducible for the projective plane, J. Combin. Theory Ser. B 27 (1979), 332-370.
3. G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. 2 (1952), 326-336.
4. T. A. Jenkyns and C. St. J. A. Nash-Williams, Counterexamples in the theory of well-quasi-ordered sets, in "Proof Techniques in Graph Theory," Proceedings of the Second Ann Arbor Graph Theory Conference, February, 1968, pp. 87-91, Academic Press, New York/London 1969.
5. J. Kruskal, Well-quasi-ordering, the tree theorem, and Vázsonyi's conjecture, Trans. Amer. Math. Soc. 95 (1960), 210-225.
6. W. Mader, Wohlquasiordnete Klassen endlicher Graphen, J. Combin. Theory Ser. B 12 (1972), 105-122.
7. C. St. J. A. Nash-Williams, "On well-quasi-ordering finite trees," Proc. Camb. Phil. Soc. 59 (1963), 833-835.
8. N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7 (1986), 309-322.
9. N. Robertson and P. D. Seymour, Graph minors. III, Planar tree-width, J. Combin. Theory Ser. B 36 (1984), 49-64.
10. N. Robertson and P. D. Seymour, Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B 41 (1986), 92-114.
11. N. Robertson and P. D. Seymour, Graph minors. VIII. A Kuratowski theorem for general surfaces, J. Combin. Theory Ser. B 48 (1990), 255-288.
12. S. G. Simpson, Non-provability of certain combinatorial properties of finite trees, in "Harvey Friedman's Research of the Foundations of Mathematic" (L. Harrington, M. Morley, A. Schredov, S. Simpson, Eds.), pp. 87-117, North-Holland, Amsterdam, 1985.
13. R. Thomas, A Menger-like property of tree-width. The finite case, J. Combin. Theory Ser. B, to appear.

[^0]: *Research partially supported by NSF grant number MCS 8103440

