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K. Wagner conjectured that if G1, GZ, .,. is any countable sequence of finite 
graphs, then there exist i, j with j> i> 1 such that Gi is isomorphic to a minor of 
G,. Kruskal proved this when G1, G2, . . . are all trees. We prove a strengthening of 
Kruskal’s result-Wagner’s conjecture is true for all sequences in which G1 is 
planar. We hope to show in a future paper that Wagner’s conjecture is true in 
general, and the results of this paper will be needed for that proof. 0 1990 Academic 

Press. Inc. 

1. INTRODUCTION 

By a “graph” we shall mean (except when we say otherwise) in this 
paper a finite, undirected graph which may have loops and multiple edges. 
A graph is a minor of another if the first can be obtained from a subgraph 
of the second by edge-contraction. 

There is an ever-growing collection of excluded minor theorems in graph 
theory. (By an “excluded minor theorem,” we mean a result asserting that 
a graph has a specified property if and only if it has no minor isomorphic 
to a member of a constructively characterized set of graphs.) Perhaps the 
most imposing of these to date is the result of Archdeacon [ 1 ] and Glover, 
Huneke, and Wang [2], that a graph may be embedded in the projective 
plane if and only if it has no minor isomorphic to one of 35 specified 
graphs. An-interesting aspect of all excluded minor theorems known is that 
not only is the set of excluded minors constructively characterized, but also 
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it is finite. One possible explanation for this is that no one tries to find 
excluded minor theorems for ugly properties, and that nice properties 
might be expected to produce nice sets of excluded minors. But there is 
another possible explanation, contained in the following conjecture of 
K. Wagner (unpublished), which we hope to prove in a future paper. 

(1.1) CONJECTURE. IfGl,GZ,... is any countable sequence of graphs then 
there exist j> i > 1 such that Gi is isomorphic to a minor of Gj. 

This is connected with excluded minor theorems as follows. Let P be any 
property of graphs which can in principle be characterized by excluded 
minors; that is, any graph isomorphic to a minor of a graph with property 
P also has property P. Let L’ be the class of all minor-minimal graphs not 
possessing property P, and let L c L’ contain exactly one representative of 
each isomorphism class of L’. Then we can assert “a graph has property P 
if and only if it has no minor isomorphic to a graph in L.” But no member 
of L is isomorphic to a minor of another, and so Wagner’s conjecture 
implies that L is finite. 

In this paper we prove a special case of Wagner’s conjecture, that the 
conjecture holds for a sequence G1 , G2, . . . when G, is planar. We also 
prove some variations and extensions, which will be important in future 
papers of this series. (At the time of writing, we believe that we have a 
proof of (1.1) itself, and indeed of a similar conjecture, due to 
Nash-Williams, the “immersion” conjecture, although the latter has not yet 
been carefully written out. These proofs in particular rely heavily on the 
results of the present paper.) 

A quasi-order Q is a pair (E(0), < ) where E(Q) is a class and < is a 
binary relation on E(Q) which is reflexive and transitive. (This would 
become a partial order if we made the third requirement of antisymmetry.) 
We shall study the quasi-orders on classes of graphs defined by the relation 
“is isomorphic to a minor of.” We treat this as a quasi-order rather than 
as a partial order, because it will be necessary to distinguish between 
isomorphism and equality. A quasi-order 52 is a well-quasi-order if for every 
countable sequence x1, x2, . . . of elements of E(Q), there exist i’ > i 2 1 such 
that xi < xi*. 

The reader may perhaps consider it more natural to study quasi-orders 
with no infinite antichain to approach the finiteness phenomenon for 
excluded minor theorems, rather than to study well-quasi-orders. However, 
it comes to the same thing; for if 52 has no infinite descending chain (which 
is obvious in our context) then it is a well-quasi-order if and only if it has 
no infinite antichain, as may easily be verified. We choose the sequence 
formulation because we find it easier to manipulate. 

Incidentally, there are some other natural quasi-orders of the class of all 
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graphs. The most obvious is the subgraph order; but that is not a well- 
quasi-order. (We mention in passing that it is a well-quasi-order when 
restricted to the class of all graphs with no path of length > k, for any fixed 
k. We omit the proof, which is easy.) A more plausible candidate for a 
well-quasi-order is “topological containment.” We say that G1 topologically 
contains G2 if some subgraph of G1 is isomorphic to a subdivision of G2. 
(A subdivision of a graph is a graph which may be constructed from the first 
by repeatedly replacing edges by pairs of edges in series.) Kruskal [S] 
proved the following. 

( 1.2) The class of all trees is well-quasi-ordered by topological contain- 
ment. 

Using this, Mader [6] showed that 

(1.3) For any integer k 2 0, the class of all graphs without 
disjoint circuits is well-quasi-ordered by topological containment. 

k vertex- 

However, the class of all graphs is not well-quasi-ordered by topological 
containment, as the following counterexample (basically due to Jenkyns 
and Nash-Williams [4]) shows. For j 2 3, let G/ be the graph with j vertices 
V(), VI, e-e) Vi= VO, and with two edges joining vi and vi+ 1 (0 < i < j- 1). 
Then no Gi is topologically contained in any Gj for any i, j 2 3 with j > i. 
For that reason Wagner’s conjecture uses minors. 

When g is a class of graphs, we say that %? is well-quasi-ordered by 
minors if the quasi-order (V, < ) is a well-quasi-order, where G < G’ means 
that G is isomorphic to a minor of G’. One of the main results of this paper 
is 

(1.4) For any planar graph H, the class of all 
isomorphic to H is well-quasi-ordered by minors. 

graphs with no minor 

It is easy to see that (1.4) is equivalent to the result stated earlier in this 
section and in the abstract. We derive it as a corollary of some theorems 
about “tree-width,” which is a graph invariant defined in Section 5. We 
prove that 

(1.5) For any integer k the class of all graphs with tree-width <k is well- 
quasi-ordered by minors. 

This implies (1.4) because it is proved in [lo] that the class of graphs 
involved in (1.4) has bounded tree-width. 

Thus, one object of this paper is to prove (1.5). The basic idea of the 
proof is that we can regard graphs of bounded tree-width as “tree-shaped,” 
and we can adapt Nash-Williams’ proof [7] of Kruskal’s theorem (1.2) 
about trees to apply to “tree-shaped graphs” instead. 
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The paper falls into two parts. In the first part (Sections 2-5) we prove 
a generalization of Kruskal’s theorem (1.2); and apply it to prove that, for 
every containment relation defined on a class of rooted hypergraphs 
satisfying certain axioms, if it forms a well-quasi-order (in a sense) on the 
hypergraphs in the class of bounded size, then it forms a well-quasi-order 
on the hypergraphs in the class of bounded tree-width. (1.5) is a conse- 
quence of this where our hypergraphs are graphs. In the second part 
of the paper (Sections 6-9) we discuss a concrete (but rather complex) 
containment relation on a class of hypergraphs with additional structure, 
so-called patchworks. We verify that this relation does indeed satisfy our 
axioms for a containment relation, and so the results of the first part apply 
to it. These results, applied to patchworks, will be important in future 
papers. 

2. A LEMMA ABOUT TREES 

In this section we prove a lemma about rooted trees generalizing (1.2). 
Most of the trees we will need in this paper are “rooted” trees, and so for 
convenience we define an undirected tree to be a non-null connected finite 
undirected graph without circuits, and a tree T to be a directed graph, the 
undirected graph underlying which is an undirected tree, such that every 
vertex of T is the head of at most one edge. It follows that there is a unique 
vertex of each tree T (called the root and denoted by o(T)) which is the 
head of no edge of T, and every edge of T is directed away from the root. 

We begin with a preliminary form of our lemma. If M is a (possibly 
infinite) graph, its vertex- and edge-sets are denoted by V(M) and E(M), 
respectively. If ul, u2 E V(M) are adjacent in M we say they are M-adjacent. 
A subset XC V(M) is M-stable if no two elements of X are M-adjacent, 
and XG V(M) is M-rich if no infinite subset of X is M-stable. 

(2.1) Let T1, T2, . . . be a countable sequence of disjoint trees. Let M be 
an infinite graph with V(M) = V( T, v T2 v . . .), such that for i’ > i 2 1, if 
u E V(Ti) is M-adjacent to w E V( Ti,) and u E V( Ti,)- (o( Ti,)) lies on the 
path of Tit f rom o( Ti,) to w then u is M-adjacent to v. Let (o( T,), o(T2), ..,} 
be M-stable. Then there is an infinite M-stable set XE V(M) such that 
IXn V(T,)I < 1 f or each i > 1 and such that the set of heads of all edges of 
T, v T2 v . . . with tails in X is M-rich. 

ProoJ We proceed by a variation on Nash-Williams’ [7] “minimal 
bad sequence” argument. Let us say a sequence zl, z2, . . . of elements of 
V(M) is increasing if i’ > i for ail j’ > j > 1 where zj E V( Ti) and zjC E V( Tin). 
Let V,, = V(M) - (o( T,), o( T2), . ..}. A section is a countable increasing 
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sequence zl, z2, . . . of elements of VO such that {zl, z2, . ..} is M-stable. We 
may assume that there is a section, for otherwise VO is M-rich and the 
sequence O( T, ), O( T2), . . . satisfies the theorem. 

For each v E VO, let T” be the maximal subtree of Ti (where v E V( Ti)) 
with root v. Inductively we shall define a countable sequence xl, x2, . . . of 
elements of VO, such that 

(1) For each i 2 1 there is a section with first i terms x 1, x2, . . . . xi, and 

(2) For each i> 1, there is no section with first i terms x1, . . . . xi- 1, x 
where x E V( T”I) - {xi}. 

For suppose that k 2 1 and we have chosen x1, . . . . xk- 1 to satisfy (1) and 
(2) for 1 < i < k - 1. Since there is a section with first k - 1 terms 
Xl, ..‘, Xk - 1 we may choose xk such that there is a section with first k terms 
Xl, ***, xk and with TXk minimal, in the sense that there is no section with 
first terms x1, . . . . xk- 1, x for any x E V(Txk) - {xk}. But then (1) and (2) 
remain satisfied for 1 < i < k. This completes our inductive definition of 
x1, x2, . . . . Let X= {x1, x2, . . . }. We shall show that X satisfies the theorem. 
We observe 

(3) x1, x2, . . . is a section. 

This is immediate from (1). 

(4) For j’>j>l, ifz is the head of an edge of T,vT,v ... with 
tail Xj’, then xj is not M-adjacent to Z. 

For let xjt E V( Tit)* Then Xj, # O( Ti) by (3), and xi, lies on the path of Ti 
from O(Ti) to z. But Xj is not M-adjacent to xj~ by (3), and hence xj is not 
M-adjacent to z, from a hypothesis of.the theorem. 

Let Y be the set of heads of all edges of T, u T2 u . . . with tails in X. 

(5) No sequence of elements of Y is a section. 

For suppose that yl, y,, . . . is a section of elements of Y. Since y1 E Y 
there is an edge of T, u T2 u . . . with head y1 and tail xk for some k 3 1. 
Then xl, x2, . . . . x~-~, yl, y2, . . . is a section; for it is increasing, and 

1 Xl 7 x2, *es, Xk-11 and h Y29 4 are both M-stable, and for 1 <j < k - 1 
and j’> 1, Xj is not M-adjacent to vj, by (4). But y1 E V(Txk) - (xk), 
contrary to (2). 

From (5) it follows that Y is M-rich, and so X satisfies the theorem, as 
required. 1 

If G is a graph or directed graph, G\F denotes the result of deleting F 
from G, where I; may be an edge or a set of edges. If T is a tree and 



232 ROBERTSON AND SEYMOUR 

F c E(T), we define the contraction of T onto F to be the tree S with 
E(S) = F and V(S) the set of roots of the components of T\F, in which 
v E V(S) is the head (or tail, respectively) of f~ F if, the head (or tail, 
respectively) off in T belongs to the component of T\F with root u. 

The main result of this section is the following generalization of (2.1) 
(( 2.1) is the special case when n = 0). Let T be a tree, n 3 0 be an integer, 
and 4 : E(T) -+ (0, . . . . n> be a function. For U, w  E V(T) we say that 2) 
precedes w (with respect to 4) if u # o(T), there is a directed path P of T 
from u to w, and 4(e) = 4(f) w  h ere e, f are the edges of T with heads U, 
w, respectively, and (5(g) > 4(f) for every edge g of P. 

(2.2) Let T1, T2, . . . be a countable sequence of disjoint trees, let n 2 0 be 
an integer, and for each i 2 1 let pi: E( Ti) -+ (0, 1, . . . . n> be some function. 
Let A4 be an infinite graph with V(M) = V( T, v T2 v . . a) such that for 
i’ > i > 1, zf u E V( Ti) is M-adjacent to w E V( Ti,), and v E V( Til) precedes w 

(with respect to nil) then u is M-adjacent to v. Let { o( T,), o( T2), . ..) be 
M-stable. Then there is an infinite M-stable set XG V(M) such that 
(Xn V(Ti)l < 1 f or each i 2 1 and such that the set of heads of all edges of 
T1 u T2 u . . . with tails in X is M-rich. 

Proof We proceed by induction on n. If n = 0 the result follows from 
(2.1), and so we may assume that n > 0 and the result holds for n - 1. For 
each i 2 1, let Fi = (e E E( Ti): 4i(e) CO> and let Si be the contraction of Ti 
onto Fi. Let N be the restriction of A4 to V(S,) u V(S,) u . . . . 

(1) For all i’>ial, tf UE V(Si) is N-adjacent to WE V(Si,) and 
v # o(Si,) lies on the path of Sil from o(Si~) to w then u is N-adjacent to V. 

For let e, f be the edges of Tif with heads U, w  respectively. Since 
U, w E V(Si~) it follows that e, f E Fir and SO 4il(e) = $it(f) = 0. Since 
~i,( g) 2 0 for every g E E( Ti,) it follows that u precedes w  (with respect to 
pi,), and so u is M-adjacent (and hence N-adjacent) to U, as required. 

Let T=T,uT,u .... From (1) we may apply (2.1) to S1, S2, . . . and N, 
and we deduce (defining increasing as in (2.1)) that 

(2) There is a countable increasing sequence zl, z2, . . . of vertices of M 
such that {zl, z2, . ..} is M-stable, and each zj is the root of some 
component Ri of some Ti\Fi) and the set A of all heads (in T ) of all edges 
in F, u F2 u -. . with tails (in T) in R, u R, v . + . is M-rich. 

For each j > 1 let 4; : E( Rj) + { 0, 1, . . . . n - 1 } be defined by 
4jl(e) = 4i(e) - 1 (e E E(R,)), where Zj E V( Ti). From our inductive 
hypothesis applied to R, , RZ, . . . and to the restriction of A4 to 
V(R, u R2u .a.), we deduce that 
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(3) There is an infinite M-stable set X E V(R, v R2 LJ . . .) such that 
IXn V(T,)J d 1 f or each i 2 1, and the set B of heads of all edges of 
R,uR+ ... with tails in X is M-rich. 

We claim that X satisfies the theorem. For let C be the set of heads of 
all edges of T with tails in X, and let z E C. Then z is the head of some edge 
fof some Ti with tail in X. If cji(f)=O thenf EFi and so ZEA. If 4i(f)>O 
then f is an edge of some Rj, since its tail is in some V(R,), and so z E B. 
Thus CC A u B. But A is M-rich from (2), and B is M-rich from (3), and 
so C is M-rich. Thus X satisfies the theorem. 1 

To illustrate the use of (2.2) we show that it (indeed, (2.1)) implies 
Kruskal’s theorem (1.2). Let T1, T2, . . . be a countable sequence of disjoint 
trees, and let it4 be the infinite graph with V(M) = V( T, u T2 u . . .) in 
which for i’ > i 2 1, u E V( Ti) is M-adjacent to u E V( Ti,) if (with notation 
as in (2.1)) T” topologically contains T”. (We define topological contain- 
ment for directed graphs in the natural way; however, we do not demand 
that root be mapped to root.) Now the conclusion of (2.1) cannot be 
satisfied, by Higman’s “finite sequence” theorem ((8.3), later); and so its 
hypothesis that { o( T,), o( T2), . . . > is M-stable is false. This proves Kruskal’s 
theorem. 

One may derive similarly a theorem of Friedman [ 121 using (2.2) in 
place of (2.1). By adjusting the definition of M accordingly, one may also 
derive the versions of these theorems when the vertices are labelled from a 
well-quasi-order. 

3. HYPERGRAPHS AND TREE-DECOMPOSITIONS 

A hypergraph G consists of a finite set V(G) of vertices, a finite set E(G) 
of edges with E(G) n V(G) = 0, and an incidence relation, a subset of 
V(G) x E(G). The vertices incident with an edge e are its ends, and the set 
of ends of e in G is denoted by V(e) (or V,(e) in cases of ambiguity). If 
G, G’ are hypergraphs and V( G’) E V(G) and E(G’) c E(G), and 
V,(e) = V,!(e) for every e E E(G’), then we call G’ a subhypergraph of G 
and write G’ s G. If G1, G2 c G we define G, n G,, G, u G2 in the natural 
way. A separation of G is a pair (G,, G2) of subhypergraphs of G with 
G1 u G2 = G and E(G1 n G2) = 0; its order is 1 V(G, n G2)j. 

A march in a set V is a finite sequence of distinct elements of V. If 7t is 
the march vl, . . . . vk we denote {vl, . . . . vk} by 71. A rooted hypergraph 
G = (G-, n(G)) consists of a hypergraph G- and a march 7t( G) in V( G- ). 
We define V(G) = V(G- ), E(G) = E( G- ). A separation of a rooted hyper- 
graph G is a pair (G,, G2) of rooted hypergraphs such that (G;, G; ) is a 
separation of G-, and z(G2) = n(G), and 71(G1) = V(G; n G;). Its order is 
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1 V(G; n G; )I. A tree-decomposition (T, r) of a rooted hypergraph G 
consists of a tree T and a function z which assigns to each t E V(T) a 
rooted hypergraph z(t), such that 

(i) for each tE V(T), z(t)- EG- 

(ii) Ut, v(T) W- = G- 
(iii) for distinct t,, tZE V(T), E(z(t,)- n T(t&)= @ 

(iv) for t,, tZ, t, E V(T), if t, lies on the path of T between tl and t3 
then z(tJ n $tJ s r(tJ 

w JwGv) = W) 
(vi) for each edge f~ E(T) with head t 1 and tail t2, 

5(z(tl))= V(z(tl)- nz(t,)-). 

If T is a tree and f~ E(T) we denote by Tf, T’ the two components of 
T\f, where T“ has root the head off and Tf has root o(T). If u E V(T), we 
denote by TV the maximal subtree of T with root u; thus if fE E(T) has 
head v then TV = T’. Let (T, z) be a tree-decomposition of some rooted 
hypergraph. If T’ is a subtree of T we denote by z x T’ the rooted hypergraph 
G’ defined by 

G’- = u z(t)- 
fE Y(T) 

n(G’) = n(z(o( T’))). 

(3.1) Let (T, z) be a tree-decomposition of some rooted hypergraph G. 
Let f E E(T) with head tl and tail t2. Then (z x Tf, z x Tf) is a separation 
of G. 

This is almost identical with [9, Theorem (3.4)] or [ 8, Theorem (2.4)] 
and we omit the proof. The order of the separation in (3.1) is called the 
order off in (T, z). 

(3.2) Let (T, z) be a tree-decomposition of a rooted hypergraph G, and 
let FE E(T). Let S be the contraction of T onto F, and for each s E V(S), 
let a(s) be z x T, where T, is the component of T\F with root s. Then (S, a) 
is a tree-decomposition of G. 

The proof is clear, and we omit it. 
A star S is a tree such that o(S) is the tail of every edge of S, and we 

define U(S) = V(S) - (o(S)}. A star-decomposition is a tree-decomposition 
(S, a) where S is a star. If (S, a) is a star-decomposition and s E U(S) we 
call O(S) a tip of (S, a). Let (T, z) be a tree-decomposition of G, and let 
s E V(T). Let S be the maximal star with root s which is a subtree of T. 
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Define a(s) = r(s), and for each t E U(S) let a(t) be r x T’. Then (S, 0) is a 
star-decomposition of z x T”, and we call it the branching of (T, z) at s. 

We wish eventually to apply (2.2) to deduce results about a certain con- 
tainment relation defined on a class of rooted hypergraphs. This relation is 
very unwieldy, however, and it is convenient to postpone its introduction 
as long as possible. We shall therefore proceed with a general containment 
relation (“simulation”) satisfying certain “axioms;” and we shall verify that 
our concrete relation does indeed satisfy these axioms later. 

Axiom 1. 9 is a class of rooted hypergraphs, and if G E B and H is a 
rooted hypergraph with H- E G- then HE 9. 

Axiom 2. The relation “G is simulated in H” defines a quasi-order on J%?. 

We assume henceforth that Axioms 1 and 2 are satisfied. 
A subclass of B is we&simulated if it is well-quasi-ordered by simulation. 

The index of a star-decomposition (S, a) is max( IE(a(s))l : SE V(S)), and 
the index of a class 9 of star-decompositions is the maximum index of its 
members (or GO if there is no such maximum). A class 9 of star-decom- 
positions is good if 

(a) axSE.98 for each (S, o)E9’ 

(b) 9 has finite index, and 

(c) for every countable sequence (Si, ai) (i = 1, 2, . ..) of members of 
9 such that the set of all tips of all the (Sj, oi)‘s is well-simulated, there 
exist i’ > i > 1 such that pi x Sj is simulated in pi’ x Sir. 

Let (T, z) be a tree-decomposition with z x TE 9. A subset FE E(T) is 
linked in (T, z) if for every directed path P of T with first edge f2 E I; and 
last edge fi E I; such that fi, f2 have the same order and no element of 
E(P) n I; has smaller order, z x Tfi is simulated in r x Tfi. We say that 
(T, z) is linked if E(T) is linked in (T, 7). 

(3.3) Let 9 be good, and let (Ti, Zi) (i = 1, 2, . ..) be a countable sequence 
of linked tree-decompositions, each branching of which is in 9. Then there 
exist i’ > i> 1 such that Zi x T, is simulated in Zir x Tile 

ProojI Let n be the index of 9. We may assume that T,, T2, . . . are 
mutually disjoint. Let M be the infinite graph with V(M) = 
V(T, u T2u mm.) such that for i’ > it 1, u E V( Ti) is M-adjacent to 
u E V( Tit) if zi x Tr is simulated in zjT x Tr,. For each i 2 1, and each 
f~ E( Ti), let tii( f) be the order off in (Ti, zj). Then 0 < ~i( f) < n since each 
branching belongs to 9’. Define “precedes” as before (2.2). 
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(1) If i’>ial and uE V(Ti) is M-adjacent to WE V(Ti,), and 
v E V( Ti,) precedes w, then u is M-adjacent to v. 

For zi x Tr is simulated in Zi’ x Tz!‘Y since i’ > i and u, w  are M-adjacent. 
Since v precedes w  it follows that v # o( T,!); let e, f be the edges of Tif with 
heads v, w, respectively. Since v precedes w  it follows that e and f have the 
same order and no edge of the path of Tif between them has smaller order. 
Since (Tit, zie) is linked, we deduce that z,~ x TIY is simulated in Zi’ x T:,. 
By Axiom 2 it follows that zi x Tr is simulated in ri’ x Tly,, and so u is 
M-adjacent to v, as required. 

(2) There is no infinite subset X E V(M) such that 1 X n V( Ti)l < 1 for 
each i > 1, and X is M-stable, and the set of heads of all edges of 
T,uT,v .a- with tails in X is M-rich. 

For suppose that such a set X exists; let X = {x1, x2, . ..) where for all 
j’ > j > 1, if xj E V( Ti) and Xj, E V( Ti’), then i’ > i. For each j > 1, let (si, CJ~) 
be the branching of (Ti, ri) at Xj, where xi E V( Tj); then Cj x Sj = Zi x TF. 
Since X is M-stable, aj x Sj is not simulated in aj, x si, for j’ > j 2 1. Let .9 
be the set of all tips of all the (Sj, ~j)‘s. Since 9 is good, 9 is not well- 
simulated, and so there is a countable sequence L, , Lz, . . . of members of .9’ 
such that for j’ > j 3 1, Lj is not simulated in Lj,. For each j 2 1 there exists 
i > 1 and a vertex vj E V( Ti) such that Lj = Zi x Tz!Q; and vj is the head of an 
edge of Ti with tail in X. Now vl, v2, . . . are all distinct, since if vj = vj~ for 
some j’ > j then Li= Ljr and hence Lj is simulated in Lj, by Axiom 2. 
Hence { vl, v2, . ..} is infinite and M-stable, contrary to our assumption that 
the set of heads of all edges of T, u T2 u a a e with tails in X is M-rich. This 
proves (2). 

From (1 ), (2) and (2.2), (o( T, ), o( T2), . . . > is not M-stable, and the 
theorem follows. m 

4. ROTUNDITY 

Now we introduce a third axiom. 

Axiom 3. Let GE 9 and let (G,, G2) be a separation of G of order 
IW)I. S PP u ose that there is no separation (H,, H2) of G with G; c H; of 
order less than 171( G)I. Then there is a march n1 with E 1 = 5( G, ) such that 
(G;, zn,) is simulated in G. 

Let (T, z) be a tree-decomposition. A subset FE E(T) is rotund in (T, 2) 
if for every directed path P of T with first edge f2 E F and last edge fi E F 
such that fi , f2 have the same order, k say, and no element of Fn E(P) 
has smaller order, there is no separation (H,, H2) of (z x T)- with 
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(z x T-“)) c H, and (z x T,,) - c H, of order smaller than k. We say that 
(T, z) is rotund if E(T) is rotund in (T’, 7). 

(4.1) Let (T, z) be a tree-decomposition with z x TE B, and let FG E(T) 
be rotund in (T, 2). Then there is a tree-decomposition (T, 7’) of z x T, such 
that z(t)- = z’(t)- f or each t E V(T), and such that F is linked in (T, 7’). 

Proof: For each f~ F we shall choose a march. zf with Ef = Z(r x Tf) in 
such a way that 

(I) For every directed path P in T with first edge e E F and last edge 
f E F such that e and f have the same order and no edge of P has smaller 
order, ((7 x Tf)-, z/) is simulated in ((7 x T’)-, n,). 

We do so inductively, working out from the root. At a step of the induc- 
tion, there is a subtree S of T with o(S) = o(T) such that 7tf is defined for 
each f~ F n E(S), and not defined for f E F - E(S); and (1) is satisfied for 
paths in S. If FC E(S) the inductive definition is complete, and so we may 
assume that F g E(S); and hence we may choose f E F- E(S) such that 
every other edge in F of the path of T from o(T) to f lies in E(S). Let Q 
be the maximal directed path of T with last edge f such that every edge of 
Q has order 2 k, where f has order k. If no edge of Q in F has order k 
except f we set nf = ~(2 x Tf) and the inductive step is complete. We 
assume then that p 2 2, where fi , f2, . . . . fp are the edges of E(Q) n F of 
order k, listed in the order in which they appear in Q (whence f, = f ). 

(2) There is a march nf with 7tf = 71(~ x Tf) such that ((z x TJ^)), zf) 
is simulated in ((7 x T&-l)-, z~,-,). 

For suppose that (H,, Hz) is a separation of z x Tfp- l of order <k with 
(z x T-‘)) E HF. Then (K,, Kz) = (Hi, H; u (z x T&-,)-) is a separation 
of (r x T)- of order <k, contrary to the rotundity of F in (T, z), for f, _ 1 
and fp = f both have order k and no edge of the path between them has 
order <k, and yet (rx Tf)- EK, and (zx Tfp-,)- _C K,. Hence there is no 
such separation (H, , Hz), and (2) follows from Axiom 3 applied to the 
separation (z x Tf, ((z x (Th-l)r)- 3 nfp-,)I of ((7 x Tfp-‘I-, y-J 

Let S’ = SW Q; we must verify that (1) remains true for every directed 
path P of S’; that is, that for 1 < i < p - 1, ((7 x Tf)-, zf) is simulated 
in ((z x TA)-, nJ). But from (l), ((7 x Tf)-, 7~~) is simulated in 
((7 x TfpL)-, nf -,I and that in turn is simulated in ((7 x T’;) -, 7~~) 
because (1) is s&is$ed for all directed paths P of S. By Axiom 2, the desired 
result follows. This completes our inductive definition. We define z’(t) = 
z(t) if t is not the head of an edge in F, and z’(t) = (z(t)-, 7tf) if t is the 
head of fE F; then 7’ satisfies the theorem. 1 
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Let us say that a class Y’ of star-decompositions is symmetric if for every 
(S, a) E 9, and every star-decomposition (S, a’) with a’(s)- = a(s)- and 
E( a’(s)) = 7t( CT(S)) for each s E V(S), we have (S, a’) E 9. 

(4.2) Let 9 be good and symmetric, and let (Ti, Zi) (i= 1, 2, . ..) be a 
countable sequence of rotund tree-decompositions, each branching of which is 
in 9. Then there exist i’ > i b 1 such that Zi x Ti is simulated in Zi’ x Ti,. 

Proof Since Y’ is good, and contains the branching of (Ti, Zi) at O( Ti), 
it follows that each Zi x Ti E 9. From (4.1) for each i > 1 we may choose a 
linked tree-decomposition (T,, 7;) of Zi x Ti such that z;(t)- = zip for 
each t E V( Ti). Then %(7:(t)) = %(7,(t)) for all t E V( Ti), by conditions (v) 

and (vi) in the definition of a tree-decomposition. From the symmetry of 
9, every branching of every (Ti, 7;) is in 9. Since 9 is good, by (3.3) there 
exist i’ > i > 1 such that Z: x T, = zi x Ti is simulated in z:, x Ti, = z,, x Ti,, 
as required. 1 

5. A LEMMA OF THOMAS 

It is convenient to make use of a result of R. Thomas [ 131. (We should 
perhaps comment on who did what in this area, because of a certain 
amount of circularity of reference. Theorem (1.5) was first proved in the 
original draft of this paper in 1982. Thomas, having heard of our result but 
not having seen the proof, worked out his own proof, and indeed extended 
(1.5) to infinite graphs and to better-quasi-ordering. He proved a lemma 
which we had not been able to prove in our early work and for which we 
had been forced to construct a clumsy substitute. Thomas’ lemma is clearly 
better than our substitute, and we see no reason to stick to our original 
method.) 

The width of a tree-decomposition (T, z) of a rooted hypergraph G is 

max( 1 V@(t))1 - 1: t E V(T)) 

and the tree-width of G is the minimum w  3 0 such that G has a tree- 
decomposition of width d w. Thomas [ 131 proved (where 0 denotes the 
null sequence) that 

(5.1) Let G be a graph. If (G, 0) has a tree-decomposition of width < w, 
then it has a tree-decomposition (T, z) of width < w such that for all distinct 
tI, t2 E V(T) and all k > 0 either there are k-mutually vertex-disjoint paths of 
G from V(T( tl)) to V(z( t2)), or some edge of the path of T between tl and 
t7 has order < k. 
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Indeed, Thomas found a decomposition with even stronger properties, 
which will not concern us. We should perhaps stress that there is no 
assumption in (5.1) that tl, t2 and O(T) lie on a directed path (in contrast 
with our definition of rotundity) and so which vertex of, the underlying 
undirected tree of T is chosen as the root is irrelevant to (5.1), as are the 
arbitrary choices of the $$t))‘s. Indeed, (5.1) is most naturally stated in 
terms of a different kind of tree-decomposition, where T is undirected and 
the z( t)‘s are (unrooted) hypergraphs. 

We apply (5.1) to deduce 

(5.2) Let G be a rooted hypergraph of tree-width <w. Then there is a 
rotund tree-decomposition of G of width <w. 

ProoJ Let K be the simple graph with V(K) = V(G), in which distinct 
ul, v2 are adjacent if either some edge of G is incident with them both, or 
vi, v2 are both terms of n(G). 

(1) (K, 0) has tree-width < w. 

For let (T, z) be a tree-decomposition of G of width < w. Since for each 
edge of K there exists t E V(T) such that both ends of the edge are in 
V(r( t)), we may choose edge-disjoint rooted subgraphs z’(t) (t E V(T)) of 
K such that V(z’(t)) = V(z(t)) for each t E V(T), and such that (T, 6) is a 
tree-decomposition of (K, 0). Then (1) follows. 

From (1) and (5.1), we deduce 

(2) There is a tree-decomposition (T, z) of (K, 0) of width < w, such 
that for all distinct tl, t, E V(T) and all k > 0, either there are k mutually 
vertex-disjoint paths of K between V(z(tl)) and V(r(t2)), or some edge of the 
path of T between t, and t2 has order <k. 

(3) For every complete subgraph X of K there exists t E V(T) such that 
V(X) c V(z(t)). 

For if x E V(X) the set (t E V(T) : x E V(T( t)) > is the vertex set of a sub- 
tree TX of T, and any two of these subtrees TX, TX, have a common vertex 
(since x, x’ are adjacent in G). By an elementary property of subtrees of a 
tree, it follows that all the T.X’s have a common vertex, as required. 

From (3) and the fact that (2) does not depend on which vertex of T is 
the root, we may choose (T, z) (redefining the n($t))‘s suitably) so that 

Again, from (3) and (4) we deduce that 

(5) There is a tree-decomposition (T, 7’) of G such that for each 
t E V(T), V(z’(t)) = V(z(t)). 

582b/48/2-7 
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We claim that (T, 7’) is rotund, For let P be a directed path of T with 
first edge fz and last edge fi, such that fi, f2 have the same order k and 
every other edge of P has order 2 k in (T, 7’). Let the first and last vertices 
of P be tZ, t, . By (2), there are k mutually vertex-disjoint paths Q, , . . . . Qk 
of K between V(z(t,)) and V(r(t2)). Let (H,, Hz) be a separation of G- 
with (6 x Tf’)- c HI and (7’ x Tf,)) c H, . Each Qi has one end in V( H, ) 
and the other end in V( Hz), and for each e E E(Qi) either both ends of e 
in K are ends in G of some e’ E E(G) or both ends of e in K are in n(G); 
and in either case both ends of e in K lie in some V(z’( t)) and hence either 
both lie in V( H,) or both lie in V( Hz). Hence each V(Qi) meets 
V(H, n Hz), and so 1 V(H, n Hz)1 2 k. Thus (H,, H2) has order > k; and 
hence (T, 7’) is rotund, as required. 1 

We introduce a fourth axiom. For each n >, 0, let sPn denote the class of 
all star-decompositions (S, a) with 0 x S E 9 and with 1 V(a(o( S)))l d n. 

Axiom 4. For each n 2 0, Yn is good. 

From (5.2) we deduce 

(5.3) Let Gi (i = 1,2, . ..) be a countable sequence of elements of 9, each 
of tree-width <n. Then there exist i’ > i 2 1 such that Gi is simulated in Gil. 

Proof. From (5.2), for each i 2 1 there is a rotund tree-decomposition 
of Gi of width <n, and hence with all its branchings in $Yn + 1. Since Yn + 1 
is good and symmetric, the result follows from (4.2). m 

Proof of (1.5) (Sketch). Let Gi (i = 1,2, . ..) be a countable sequence of 
graphs, each of tree-width <n. Let 9 be the class of all rooted graphs G 
such that G- is a subgraph of some Gi. For HI, H, E 99 we say that H, is 
simulated in H, if j%(H,)I = In( and there exists HE 99 with H- E H; 
and n(H) = n( Hz), such that a rooted graph isomorphic to H, can be 
obtained from H by edge-contraction. We verify Axioms 1-4, and (1.5) 
follows from (5.3). 1 

We have omitted verifying Axioms 1-4, because it is easy and we shall 
later carry out the verification for a more general “concrete” definition of 
simulation. 

6. PATCHWORKS 

Now we come to the second part of the paper. We introduce a concrete 
containment relation on a class of rooted hypergraphs, and verify that it 
satisfies the axioms. 
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If V is a finite set we denote by KV the complete graph on V, that is, the 
simple graph with vertex set I/ and edge set the set of all subsets of V of 
cardinality 2, with the natural incidence relation, A grouping in V is a sub- 
graph of K, every component of which is complete. A pairing in V is a 
grouping in I/ every component of which has at most two vertices. If K is 
a pairing in I’, we say that K pairs X, Y if X, Y s V are disjoint and 

(i) every 2-vertex component of K has one vertex in X and the other 
in Y, and 

(ii) every vertex of Xu Y belongs to some 2-vertex component of K. 

A patch in V is a collection d of groupings in I’, each with the same vertex 
set V(d) c V. A patch d is free if it contains every grouping in V with 
vertex set V(d); and it is robust if for every choice of X, Yr V(d) with 
1x1 = 1 YI and Xn Y = 0, there is a pairing in d which pairs X, Y. 

Let Sz be a quasi-order. An Q-patchwork is a quadruple (G, p, d, d), 
where 

(i) G is a rooted hypergraph 

(ii) ,U is a function with domain dam(p) E E(G); and for each 
e E dam(p), p(e) is a march with F(e) = V(e). 

(iii) d is a function with domain E(G), and for each e E E(G), d(e) 
is a patch with V(d(e)) = V(e); and for each e E E(G) -dam(p), d(e) is free 

(iv) 4 is a function from E(G) into E(Q). 

The Q-patchwork is robust if each d(e) (e E E(G)) is robust. (This is 
automatic if e $ dam(y), since free patches are robust.) 

If Y is a finite set, NV denotes the graph with vertex set V and no edges. 
A realization of an Q-patchwork (G, p, d, 4) is a subgraph of KVtGj expres- 
sible in the form 

N v(G) U u (6, : eE WW 

where 6, E d(e) for each e E E(G). The significance of robustness is that for 
robust S2-patchworks we can prove a form of Menger’s theorem, as follows. 

(6.1) Let P= (G, p, A, 4) b e a robust f&patchwork, let X1, X2 E V(G), 
and let k > 0 be an integer. The following are equivalent : 

(i) every separation (G,, G2) of G- with XiC V(G,) (i= 1,2) has 
order >k 

(ii) there is a realization OfP such that k 
empty intersection with both X1 and x2 

of its components have non- 
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(iii) there is a realization of P such that k of its components are paths 
from X1 to X2 with no vertex except their first in X1, and no vertex except 
their last in X2, and the remainder of the components of this realization are 
isolated vertices. 

Proof. Let K be the simple graph with V(K) = V(G) in which distinct 
a, b E V(G) are adjacent if and only if some edge of G is incident with both 
a and b. By Menger’s theorem, (i) is equivalent to statement (i)‘, that there 
are k paths of K from X, to X2, mutually vertex-disjoint. We must prove 
the equivalence of (i)‘, (ii), and (iii). 

Obviously (iii) implies (ii), and (ii) implies (i)‘; it remains to show that 
(i)’ implies (iii). Suppose then that P,, . . . . P, are mutually vertex-disjoint 
paths of K from X1 to X2, and let us choose them with C (E( Pi)1 minimum. 
Then for 1 f i < k, no vertex of Pi except its first is in X,, and no vertex 
except its last is in X2. Moreover, for each e E E(G), at most two vertices 
of Pi are incident with e in G, since any two such vertices are adjacent in 
K; and if there are two such vertices then they are consecutive in Pi. 

For l<idk and each fEE(Pi), let the ends off be f+, f- where f- 
is before f + in Pi. Choose e(f) E E(G) such that f +, f - are both incident 
with e(f) in G. For each eEE(G), let A,= (f-:e=e(f)} and 
B,=(f+: e = e( f )}. Then A, n B, = 0 and [A,[ = jB,J. Since d(e) is 
robust there is a pairing 6, E d(e) which pairs A,, B,. The graph 

N V(G) ” t) (6,: e E WW 

is a realization of P satisfying (iii), as is easily seen (for example by 
rerouting the paths patch by patch). This completes the proof. 1 

7. PATCHWORK CONTAINMENT 

We wish now to introduce our containment relation on patchworks. 
Before we do so we attempt to motivate it by giving in the same spirit a 
definition of when a graph is isomorphic to a minor of another; our 
patchwork relation is not much different. If a graph G is isomorphic to a 
minor of a graph G’, then each edge e of G is represented by an edge q(e) 
of G’, and each vertex v of G is “formed” by identifying under contraction 
a nonempty subset q(v) of the vertex set of G’. Moreover, there is a 
connected subgraph of G’ with vertex set q(v) all edges of which are to be 
contracted in producing this minor. Thus, in summary: 

(i) q is a function with domain V(G) u E(G); for each v E V(G), q(v) 
is a non-empty subset of V( G’) and for each e E E(G), q(e) E E( G’) 
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(ii) q(v,)n ye = 0 for distinct Us, u2 E V(G), and r(el) # q(e,) for 
distinct e,, e2 E E(G) 

(iii) for each u E V(G) and e E E(G), e is incident with u in G if and 
only if q(u) contains an end of q(e) in G’, and e is a loop of G with end 
u if and only if q(u) contains every end of r(e) in G,’ 

(iv) for each u E V(G) there is a connected subgraph of G’\q(E( G)) 
with vertex set q(u). 

(If q : A -+ B is a function and XE A we denote {q(x) : x E X} by q(X).) If 
our graphs were directed, and we wanted our minor relation to preserve 
edge-directions, we would replace (iii) by 

(iii)’ for each u E V(G) and eE E(G), u is the head (respectively, tail) 
of e in G if and only if y(u) contains the head (respectively, tail) of r(e) 
in G’. 

If in addition we wanted no non-loop edge of G’ to correspond to a loop 
of G we would add 

(v) for each e E E(G), e and q(e) have the same number of ends. 

If G, G’ were rooted graphs 
roots, we would demand 

and we wanted our relation to take roots to 

(vi) z(G) and rc(G’) h ave the same length k say, and for 1 < i < k, 
y(u) contains the ith term of z(G’) where u is the ith term of n(G). 

Thus, we can regard (i), (ii), (iii)‘, (iv), (v), (vi) as natural. As we said, 
our Q-patchwork relation is not much different. There are three principal 
differences : 

(i) Our edges are labelled from 0, and we demand that the relation 
respect this ordering. 

(ii) Edges in S2-patchworks may have more than two ends. For 
graphs, if an edge is to be removed (when producing a minor) it is either 
deleted or contracted. For patchworks, an edge e may be removed in a 
greater variety of ways ; in effect, we choose a member 6 of d(e) and con- 
tract each component of 6 to a single vertex. (Thus, a graph may be 
“mimicked” by a patchwork by defining d(e) = (K,,,, , NV(,)) for each edge 
e of the graph.) 

(iii) An edge may also “shrink’‘-become incident with only some of 
the vertices with which it was previously incident. However, this is only 
permitted for edges not in dam(p).. (We remark that the “shrinking” feature 
is not needed for Wagner’s conjecture, but seems to be required for 
Nash-Williams’ conjecture. Our approach to the latter is to show that the 
class of all Q-patchworks with a bounded number of roots and in which all 
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patches are free is well-quasi-ordered by our containment relation, 
provided that 52 is a well-quasi-order; and in particular, it is important 
that we do not require the size of edges to be bounded. It is clear, therefore, 
that if our relation is to yield a well-quasi-order, it must permit edges to 
change size. ) 

The definition is as follows. If 71, 71’ are marches of the same length, we 
denote by X+ n’ the bijection from 71 onto it’ mapping 71 to n’. Let 
P = (G, p, d, +4), P’ = (G’, p’, d’, 4’) be Q-patchworks. An expansion of P in 
P’ is a function q with domain V(G) u E(G) such that 

(i) for each u E V(G), V(U) is a non-empty subset of V(G’), and for 
each e E E(G), r(e) E E(G’) 

(ii) for distinct ul, u2 E V(G), q(vr) n y(u2) = 0 

(iii) for distinct e,, e2 E E(G), q(er) # q(e,) 

(iv) for each e E E(G), e E dam(p) if and only if y(e) E dom(,u’) 

(v) for each e E E(G) - dam(p), if u is an end of e in G then V(U) 
contains an end of q(e) in G’ 

(vi) for each eEdom(p), p(e) and $(q(e)) have the same length, k, 
say, and for 1 6 i < k, V(V) contains the ith term of $(q(e)) where u is the 
ith term of p(e) 

(vii) n(G) and rc(G’) h ave the same length, k, say, and for 1~ i < k, 
y(u) contains the ith term of n(G’) where ZJ is the ith term of n(G) 

(viii) for each eE domfp), p(e) -+ $(r(e)) maps d(e) to d’(g(e)) 

(ix) for each e E E(G), 4(e) < @(q(e)). 

If G is a hypergraph and 3’~ E(G), G\F denotes the subhypergraph with 
the same vertex set and edge set E(G) - F. If G is a rooted hypergraph, 
G\F denotes (G-\F, n(G)). If P = (G, p, d, 4) is an Q-patchwork and 
FE E(G), P\F denotes the Q-patchwork (G\F, p”‘, d’, 4’) where $, d’, 4’ 
are the restrictions of ,u, d, 4 to dom(,u) n E(G\F), E(G\F), E( G\F), 
respectively. Let q be an expansion of P = (G, p, d, 4) in P’ = 
(G’, p’, d’, 4’). A realization H of P’\q(E(G)) is said to realize q if for every 
v E V(G), V(U) is the vertex set of some component of H; and if there is such 
a realization, q is said to be realizable. Let us say that P is simulated in P’ 
if there is a realizable expansion of P in P’. This is our containment 
relation. 

(7.1) Let y be a expansion of P = (G, p, A, 4) in P’ T (G’, p’, A’, @), and 
let q’ be an expansion of P’ in P” = (G”, ,u”, A”, 4”). Let q” be defined by 

q”(U) = u (rjqv’): I.?’ E r/(u)) WE WW 

r”(e) = elw (e E E(G)). 
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Then ff is an expansion of P in PI’, and if q and f are realizable then so 
is rf. In particular, the simulation relation provides a quasi-order of the class 
of all SZ-patchworks. 

Proof To verify that q” is an expansion of P in P” we check conditions 
(i), . . . . (ix). Conditions (i), (iii), (iv), and (ix) are clear. 

(1) For distinct vl, VIE V(G), ~“(v,)n~“(v,)=@: 

For 

m4 n r”(V2) = u W(4): 4 E rh)) n u ww: 0; E yI(vz)) 

= u Wo4) n ul’(4): v; E vh) and 4 E r(v*)) 
=0 

since vi # vi for vi E q(v,) and v; E q(v*), and hence q’(v;) n rf(v;) = 0. 

(2) For each eE E(G) - dam(p), if v is an end of e in G then q”(v) 
contains an end of q”(e) in G”. 

For q(v) contains an end v’ of q(e), and q(e)E E(G’) -dom(p’), and so 
I’ z q”(v) contains an end of q’(q(e)) = y”(e). 

(3) For each eEdom(p), p(e) and ,u”(r”(e)) have the same length, k, 
say, and for 1 < i < k, q”(v) contains the ith term of p”(q”(e)) where v is the 
ith term of p(e). 

For p(e) and p’(q(e)) have the same length, k, say, and q(e)Edom($), 
and so p”(q’(q(e))) also has length k. For 1 6 i< k, let v, v’, v” be the ith 
terms of p(e), ~‘WH, and p”(q”(e)) ; then v’ E q(v) and v” E q’( v’), and so 
v” E rf’( v). 

(4) n(G) and n(G”) h ave the same length, k, say, and for 16 i < k 
f’(v) contains the ith term of n(G”) where v is the ith term of n(G). 

The proof is similar to (3). 

(5) For each e E dam(p), ,u(e) --+ ,u”(q”(e)) maps d(e) to d”(q”(e)). 

For p(e) +$‘(q”(e)) is the composition of p(e) +$(q(e)) and 
ede)) + P”w’w)- 

From (l), . . . . (5) we deduce that q” is an expansion of P in P”. Now 
suppose that q, q’ are realized by H, H’, respectively. For each 
e E E(G’) - v(E(G)) choose 6, E d’(e) such that 

H=N V(G’) U u @t-: e E E(G’) - W(G))) 

and for each e E E(G”) - q’(E(G’)) choose 6: E d”(e) such that 

H’=N V(G”) u u (6;: e E E(G”) - f(E(G’))). 
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For each e E E(G”) - q”(E(G)) we define 8: as follows. If e 4 q’(E(G’)) we 
define Si = S:. If e = n’(f) where f~ E( G’) we define 8: to be the subgraph 
of G(G”) with vertex set V,,,(e), in which distinct ends a, b of e are adjacent 
if and only if a E q’(p) and b E q’(q) for some p, q in the same component 
of 6,. 

(6) For each e E E(G”) - v”(E(G)), 61 E d”(e). 

For if e 4 q’(E(G’)), this is clear since 8: = SL. Let e = y’(f). We claim 
that Sg is a grouping. For suppose that a, b, c E V,,,(e) are distinct and a, 
b are adjacent in Sg and so are b, c. Choose p, q in the same component 
of 6, with a E q’(p) and b E f(q) ; and choose r, s in the same component 
of S, with a E q’(r) and b E q’(s). Then p = Y since u]‘(p) n q’(r) # @, and so 
q and s are in the same component of S,.. Hence a is adjacent to c in Sz. 
This proves that 8: is a grouping. If’e # dom(p”) then 8: E d”(e) since d”(e) 
is free, and we may therefore assume that eEdom(p”). But then 8: is the 
image under p’(f) -+ ,~“(y’(f)) of aY, and therefore belongs to d”(e) since 
S/E d’(f) and ,u’(f) -+ ,~“(q’(f)) maps d’(f) to d”(e). This verifies (6). 

Let H” be 

N vccrrj u u (6: : e E E( G”) - y “(I?( G))). 

Then H” is a realization of G”\q”(E( G)), and we shall show that it realizes 
y”. Let v E V(G). We must show that y”(u) is the vertex of some component 
of H”. 

(7) No edge of H”joins a vertex ofy"(u) to a vertex of V(G")-q"(u). 

For suppose that some edge of H” has ends a E y”(u) and b E V(G”). We 
shall show that b E q”(u). Choose V’ E V(U) with a E I’, and choose 
e E E(G”) - q”(E(G)) with a, b adjacent in 8:. If e $ $(E(G’)) then a, b are 
adjacent in SL 5 H’ and since H’ realizes y’ and a E I’ we deduce that 
b E I’ c q”(u) as required. If e E $(E( G’)) and e = q’(f) where f  cz E( G’), 
then there exist p, q in the same component of S, such that a E q’(p) and 
b E q’(q). Since a E I’ n q’(p) we deduce that p = v’, and so u’, q are in 
the same component of S, and hence of H. Since H realizes y and U’ E V(U) 
we deduce that q E V(U) and hence b E q’(q) c q”(u) as required. 

(8) If p, qE UH) are adjacent in H then there exist aE f(p) and 
b E q’(q) adjacent in H”. 

For choose f  E E(G’) with p, q adjacent in S,-. Let e = y’(f) and choose 
ends a, b of e such that a E q’(p), b E v’(q). Then a, b are adjacent in 8: and 
hence in H” as required. 

(9) If a, b E q”(v) then a, b belong to the same component of H”. 
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For choose p, q E V(U) with a E q’(p), b E q’(q). Since H realizes q there is 
a path of H joining p and q with t edges, say. By applying (8) to each edge 
of this path, we deduce that there is a sequence a = a,, bI, a,, b,, . . . . 
a t-17 b,, a*, &+I = b of vertices of H” such that for 1 6 i 6 t, ai and b, are 
adjacent in H” and for 0 6 i< t, ai and bi+ 1 both belong to q’(r) for some 
vertex Y of our path. Since H’ realizes q’ we deduce that ‘for 0 < i < t, ai and 
bi+ 1 belong to the same component of H’, and hence of H” since H’ s H”. 
We deduce that a and b belong to the same component of H” as required. 

From (7) and (9) we deduce that H” realizes q”, and hence q” is 
realizable. This completes the proof of the second statement of the 
theorem; and the third follows, for the simulation relation has been shown 
to be transitive, and it is reflexive, because the “identity” expansion of an 
Dpatchwork P = (G, p, d, 4) in itself is realized by the realization NYCGJ of 
P\W)* I 

8. STARS WITH SMALL HEARTS 

The results of the previous two sections will be used to show that our 
containment relation satisfies Axioms 1, 2, and 3. In this section we prove 
a result will be used for Axiom 4. We begin with the following lemma. 

Let P = (G, p, d, 4) be an Q-patchwork. If G’ is a rooted hypergraph 
with G’- GG-, and p’, d’, 4’ are the restrictions of ,u, d, 4 to 
dam(p) n E(G’), E(G’), E(G’), respectively, then (G’, p’, d’, 4’) is an 
Q-patchwork which we denote by P) G’. 

(8.1) Let P = (G, ,u, A, 4), P’ = (G’, p’, A’, 4’) be SZ-patchworks, and let 
(G, , G2), (G;, G;) be separations of G, G’ respectively. Let y1 be a realizable 
expansion of PI G, in P’I G; (whence 171(Gl)l = /E(G;)I = k, say) and let q2 
be a realizable expansion of PI G2 in P’ 1 G; such that for 1 < i < k, q2(v) 
contains the ith term of n(G;), where v is the ith term of n(G,). Define q by 

r(v) = r,(v) (v E WA - fw2)) 

= r2(4 (v E W2) - W% )) 

= M4 ” r2(4 (VE W&-J VG2)) 

= r,(e) te E E(G2))- 

Then q is a realizable expansion of P in P’. 
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ProoJ: For 1 <i< k, let vi, U; be the ith terms of $G,), n(G;), respec- 
tively. 

(1) For 1 <i<k andall uE V(G), ifui~q(v) then u=ui. 

For either UE V(G,) and U; EYE, or VE V(G,) and U; c y2(u). But 
U; E yl(Ui) and vi E yZ(vI) (the first since q1 is an expansion of PI in Pi, and 
the second by hypothesis) and so either v E V(G,) and ql(ui) n ql(v) # a, 
or u E V(G,) and qz(Ui) n q2(u) # 0. In either case u = ZJ~ as required. 

(2) For distinct ul, u2 E V(G), q(q) n q(uJ = 0. 

For suppose that V’E I n V(Q). If U’ E V(G; n G;) then V’ = U: for 
some i, and by (1) u1 = vi and u2 = ui, a contradiction. If U’ E V( G; ) - V( G;) 
then ul, USE V(G,) and O’E yi(u,) n yi(u,), whence u1 = u2, a contra- 
diction, and similarly we obtain a contradiction if V’ E V(G;) - V(G;). 

From (2) it follows that y is an expansion of P in P’ ; for conditions 
(i), . . . . (ix) are all clearly satisfied except (ii), and the truth of (ii) follows 
from (2). 

NOW let Hi be a realization of (P’ 1 Gi)\qi(E(Gj)) which realizes yli 
(i= 1,2). Let H= H, u H,; then H is a realization of P’\q(E(G)) and we 
shall show that it realizes y. Let ZJ E V(G); we must show that y(v) is the 
vertex set of a component of H. If v E V( G, ) - V( G2), then V(U) = vi(u), and 
hence is the vertex set of a component of H, ; and since V(V) n V(G;) = 0 
(by (1)) it follows that this component is also a component of H, as 
required. The claim follows similarly if ZJ E V( G2) - V( G,). If v E V( G, n G2), 
let v = ZJ~ where 1 < i < k. Then y l(~) is the vertex set of a component of H, , 
and contains no vertex of H2 except U; by (1) ; and similarly, y*(u) is the 
vertex set of a component of H, containing no vertex of H, except vi. 
Hence V(V) = q 1(~) u q2( U) is the vertex set of a component of H as 
required. i 

Let P = (G, p, A, 4) be an Q-patchwork. We say that e E E(G) is 
removable if N vCej cz d(e) ; and P is removable if each e E E(G) is removable. 
Evidently robust patchworks are removable. 

(8.2) Let P = (G, ,u, A, c$), P’ = (G’, p’, A’, 4’) be SZ-patchworks where P’ 
is removable. Let (S, a), (S, a’) be star-decompositions of G, G’, respec- 
tively. Let y be a bijection from V(a(o( S))) to V(a’(o(S’))) mapping TT( G) to 
n(G’). Let a be an injection from E(o(o(S))) into E(a’(o(S’))), such that for 
each e E E(a(o(S))) 

(i) a(e) E dam($) if and only if e E dam(p) 

(ii) ifeEdom(p) then y maps p(e) to p’(a(e)) 

(iii) ife 4 dam(p) then y maps V,(e) to V&a(e)) 

0~) 4(e) d 4’(W). 
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Let p be a bijection from U(S) to U(S), such that for each s E U(S), 

W Y maps 00)) to WUW)) 
(vi) P) o(s) is simulated in P’ ( a’(/?(~)). 

Then P is simulated in P’. 

Proof Let V(S) = (so, sl, . . . . s,} where so = o(S), and let V(9) = 
(sb, s; 9 “‘, s:) where p(Si) = S: (1 < i,< n). For each i 2 1, let vi be a 
realizable expansion of PI a(~,) in P’ 1 a’(~;). Let ylo be the expansion of 
P I a(~,) in P’ I a’($) defined by 

Now since P’ is removable, N, is a realization of (P’ Ip’(sb))\no(E(a(so))), 
where X = I+‘($,)) ; and it realizes qo. Thus ylo is realizable. 

For i > 0, let Si be the subtree of S with vertex set (so, sl, . . . . Si> and let 
Gi = 0 x S,; and define Si, Gi similarly. For each j > 0, let ri be defined by 

ljt4 = k(e) if 0 < i < j and e E E(a(si)) 

cj(v) = U (vi(u): 0 < i6 j, u E V(o(s,)). 

We claim that cj is a realizable expansion of P I Gj in P’ 1 Gj, for 0 < j < n. 
This is true if j= 0; we assume that it holds for some j with 0 < j < n, and 
we shall prove that it holds for j+ 1. Now for 1 < i< (il(rr(sj+ 1))/, let u, ZJ’ 
be the ith terms of n(o(sj+,)), $a’($+,)), respectively. By condition (v) 
above, y(v) = v’, and so qo(u) = (u’}. S ince qo(u) z 5j(U), it follows that 
u’ E cj(u). Hence we may apply (8.1) to the separations (~(Sj+ 1), Gj) and 
(~(sJ+l),Gi) of Gj+i, Gj+, (replacing P, P’ by PJG,+I, P’lGj+l, and 
replacing ql, q2 by qj+ i, rj) ; and we deduce that rj+ I is a realizable expan- 
sion of PIGj+l in P’IGJ+l. This proves our claim, by induction on j. In 
particular, PI G, = P is simulated in P’ I GL = P’, as required. 1 

We shall need the following theorem of Higman [3]. 

(8.3) Let D be a well-quasi -order, and let Xi (i= 1, 2, . ..) be a countable 
sequence of finite subsets of E(0). Then there exists an infinite subset 
IC ( 1, 2, .,, > with the property that for all i, i’ E I with i < i’ there is a injec- 
tion a 1 Xi + Xi’ such that x < a(~) for all x E Xi. 

(8.4) Let n b 0, let Q be a well-quasi-order, and let Pi = (Gi, pi, Ai, pi) 
(i = 1,2, . . . ) be a countable sequence of removable C?-patchworks. For each 
i > 1 let (Si, ai) be a star-decomposition of Gi with 1 V(ai(o(Si)))I < n. 
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Suppose that {Pila,(s): i>, 1, SE U(Si)} is well-quasi-ordered by simulation. 
Then there exist i’ > i> 1 such that Pi is simulated in Pi’. 

Proof Since there are only n + 1 possibilities for each 1 v(ai(o( Si)))l we 
may choose an infinite subset II c ( 1, 2, . ..) and m > 0 such that 

(1) For all iE II, 1 V(Oi(O(Si)))I =m. 

Similarly, we may choose an infinite I2 c I, and k > 0 such that 

(2) For all ie I*, 171(Gi)l = k. 

By replacing each Pi by an “isomorphic” Q-patchwork, we may therefore 
assume, to simplify notation, that for some set V0 and march no in V,, 

t3) V(ai(o(Si))) = vO and 71( Gi) = no for all i E I, . 

Let p be a march in Vo. Since Q is well-quasi-ordered and there are only 
finitely many different patches with a given vertex set, we may choose by 
(8.3) an infinite I3 E I, such that 

(4) For all i, i’ E I, with i’ > i there is an injection a from 
{e E dom(pi) n E(ai(o(Si))): pi(e) = p} into (e’ E: dom(pie) n E(ai,(o(Sit))): 

pit(e’) = p), such that for each e, #i(e) < #ir(a(e)) and di(e)=dif(a(e)). 

Since V. is finite, we may assume (by repeating this procedure for all p) 
that (4) holds for all p. We may similarly choose an infinite subset I4 c I3 
such that for all subsets Y of Vo, 

(5) For all i, i’ E I, with i’ > i there is an injection a from 
{eEE(ci(o(si)))-dom(pi): VG,(e)= Y} t ( in o e’ E E(ai,(o(Si~)))-dom(~u,,): 
VG,,(e’) = Y}, such that QSi(e) 6 #it(a(e)) for each e. 

By piecing together the injections of (4) and (5), we deduce 

(6) For all i, i’ E I, with i’ > i there is an injection a: E(ai(O(Si))) + 

E(ai’(o(Si’))) such that for each eE E(ai(O(Si))) 

(i) a(e) E dom(pif) if and only if e E dom(pi) 

(ii) ife~dom(p~) th en pi(e) = pu,,(a(e)) and d,(e) = di,(a(e)) 

(iii) if e # dom(pi) then V,,(e) = v,,,(u(e)) 

tiv) #ice) G di’tate))* 

Let p be a march in V,. Since (PilOi(S): i> 1, SE U(Si)} is well-quasi- 
ordered by simulation we may choose by (8.3) an infinite I, C_ I, such that 

(7) For all i, i’ E I, with i’ > i there is .an injection fl from (s E U(Si)Z 
~(ai(S)) = p} into (s' E U(Si~): 71(~i’(s’)) = p >, such that Pi I a,(s) is 
simulated in Pi, I ai,(D(s)) for each S. 
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BY repeating this for each p and piecing together the 
P, we deduce that there is an infinite I, c I4 such that 

resulting injections 

(8) For all i, i’ E I6 with i’ > i there is an injection fl: U(Si) + U(Sil ) 
such that for each s E U( Si), 

ti) n(6i(s)) = n(ai’(fi(s))) 

(ii) there is a realizable expansion of Pii Oi(s) in Pi, 1 ai,(P(s)). 

Choose i, i’ E Z6 with i’ > i. We claim that Pi is simulated in PiI. For let CI, 
/? be as in (6), (8). Let q. be defined by 

row = w G= Vo), 
row = a(e) te E E(“ito(Si))))* 

Then q. is an expansion of PiI ai(o(Si)) in Pi, 1 ai,(o(Si~)). Moreover, N, is 
a realization of 

tpir I cTi’ t”(Si’)))\rO(E(o,(o(Si)))) 

since Pi, is removable, and N, realizes qo. 
By applying (8.2) to Pi, PiI 1 (Oi, x T) we deduce that Pi is simulated in 

Pi, 1 (a,~ x T), where T is the subtree of Sir with 

But Pi, I (aim x T) is simulated in Pi, since Pit is removable, and hence Pi is 
simulated in Pi’ by (7.1). This completes the proof. i 

9. VERIFYING THE AXIOMS 

Let 52 be a well-quasi-order, and let Pi = (Gi, pi, Ai, di) (i = 1, 2, . ..) be a 
countable sequence of robust Q-patchworks, where for i’ > i > 1, Gi and Gif 
are disjoint. Let 9$? be the set of all rooted hypergraphs G such that 
G- E Gl: for some i. For each G E 9? we define P(G) to be Pi I G where 
G - E Gi. (This is well-defined since such a value of i is unique unless G 
is null.) Let us say that G E 9%’ is simulated in G’ E 9 if P(G) is simulated 
in P(G’). We verify Axioms l-4. 

Axiom 1. This is clear from the definition of 9% 

Axiom 2. This is immediate from (7.1). 

Axiom 3. Let G E 9, and let (G,, G2) be a separation of G of order 
k = 171( G)I, such that there is no separation (H, , H2) of G of order <k with 
G; c ir;. Then every separation (J1, Jz) of G; with V(G; n G;) s V(J,) 
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and 71( G2) s V(J,) has order > k. From (6.1) and the robustness of P(G,) 
there is a realization H of P(G,), k components of which contain a vertex 
of ?t(G2) and a vertex of V( G; n G; ). Since 

1 V’(G; n G,)I = (n(G2)l = k 

there is a march n1 with Zl = V(G; n G; ) such that for 1 < i < k some 
component Dj say of H contains the ith vertex of n(G2) and the ith vertex 
of 7~ I. Let 7~~ be ul, u2, . . . . uk. Define q by 

Then 11 is an expansion of (G 1, X, ) in G, and it is realized by H u NYtG,) 
which is a realization of G\q(E( G, )). Thus q is realizable, and so (G;, 71 1) 
is simulated in G as required. 

Axiom 4. Let n > 0; we must show that Yn is good. Certainly 
CJ x S E .?2!? for each (S, a) E Yn, and Yn has index <n, by definition of 9,. Let 
(Si, a,) (i= 1, 2, . ..) b e a countable sequence of members of ,4p, such that the 
set of all tips of all the (Sj, u~)‘s is well-simulated. Let Gi = Ui x Si (i 2 1). 
It remains to show that there exist i’ > i 2 1 such that Gi is simulated in 
Gif, that is, P(G,) is simulated in P(G,.). Since Pi, P,, . . . are all robust, it 
follows that P(G) is robust for all G E W, and in particular each P( Gj) is 
removable. Now for each i> 1, (Si, ai) is a star-decomposition of Gi with 
I ~b,MS,H)l 6 fz; and (P( Gi) I a,(s) : i 2 1, s E U( Si) > is well-quasi-ordered 
by simulation, since the set of all tips of all the (Sj, ~i)‘s is well-simulated. 
From (8.4), it follows that there exist i’ > i > 1 such that P(Gi) is simulated 
in P(Gif). This verifies Axiom 4. 

Consequently, we have 

(9.1) Let n>,O, let Sz be a well-quasi-order, and let Pi= (Gi, lui, Ai, pi) 
(i= 1,2, . ..) be a countable sequence of robust S2-patchworks, where each Gi 
has tree-width dn. Then there exist i’ > i b 1 such that there is a realizable 
expansion Of Pi in Pi’ * 

Prooj We may assume that Gi, GZ, . . . are mutually disjoint, and hence 
we may define 9, etc. as at the start of this section; and the claim follows 
from (5.3). 1 

As we mentioned earlier, (1.5) is a consequence of (9.1). Let 52 be the 
well-quasi-order with E(Q) = ( 11. If G is a graph, let P(G) be the 
Q-patchwork ((G, 0), p, A, d), where 
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(i) 0 is the null sequence 

(ii) dam(p) = E(G) 

(iii) for each GEE, p(e) is a march with F(e) = V(e), and 
44 = @b(e)9 &,,I. (If I vwt = 1 then NY(e) = f&e,.) 

(iv) 4(e) = 1 for each eE E(G). 

If P(G) is simulated in P(G’) then G is isomorphic .to a minor of G’, and 
hence (9.1) implies (1.5). 

A second application of (9.1) will be important in a future paper [ 111, 
and it is convenient to deal with that application here rather than to 
redefine all the apparatus of patchworks in that paper. A surface is a com- 
pact 2-manifold without boundary. A painting in a surface Z is a pair 
(U, N), where U c C is closed and N s U is hnite, such that 

(i) U- N has only finitely many arc-wise connected components, 
called cells 

(ii) for each cell e, its closure 2 is homeomorphic to a closed disc, 
and 2 n N = 2 - e is a finite subset of M(e). 

From (9.1) we deduce 

(9.2) Let Z be a surface, let n > 0, and let Q be a well-quasi-order. For 
i > 1 let (Ui, Ni, 71i, pi, pi) be such that 

(i) ( Ui, Ni) is a painting in C with set of cells Ei, say, and 71, is a 
march in Ni 

(ii) for each e E Ei, pi(e) is a march with /Iii(e) = Z-e, and 
dice) E E(SZ) 

(iii) the rooted hypergraph Gi with V(Gi) = N,, E(G,) = Ei, with the 
natural incidence relation and n(Gi) = Xi, has tree-width <n. 

Then there exist i’ > i 2 1 and a drawing Z of a forest in Z with vertex set 
Ni’, and a function o with domain Ni v Ei, such that 

(a) every edge of Z ’ IS a subset of a cell of (Ui,, Ni’) 

(b) for each v E Ni, a(v) is a component of Z, and for each e E Ei, 
a(e) E Eic 

(c) for distinct e,, e2 E Ei, a(e,) # o(e2), and for vl, V2 E Ni, a(~,) and 
o(v2) are disjoint 

(d) for each v E Ni and e E Ei, no edge of a(v) intersects o(e) 

(e) for each eEEi, [e---e1 = la(e)-a(e)1 =k, say, and for 1 <j<k 
the jth term of ,uJa(e)) is a vertex of a(v) where v is the jth term of pi(e) 

(0 Zi and 71,’ have the same length k, say, and for 
term of 7ti’ is a vertex Of a(V) where v is the jth term of 71, 

l<j<k the jth 

(g) for each e E Ei, 4i(e) d di,(a(e)). 
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Proof. For each i 2 1, let Gi be as in (iii) above, and for each e E Ei let 
Ai be the set of all pairings in pi(e) no two edges of which cross (where 
(a, c} crosses {b, d ) if a, b, c, d E 2 - e are all distinct and occur in that 
order, or the reverse, in the natural cyclic order of e-- e). Then 
Pi = (Gi, Pi, di, di) is an Q-patchwork, and it is robust. By (9.1) there exist 
i’ > i > 1 and a realizable expansion q of Pi in PiI. Let H be a realization 
Of Pi’\rl(E(Gi)) realizing y, and let F be a spanning forest of H. From our 
choice of the di(e)‘s and the fact that H is a realization of Pif\y(E( Gi)), 
there is a drawing 3 of F in C such that each vertex of F is represented by 
itself (we recall that V(F) = V(H) = Nil c C) and each edge is drawn within 
some cell e’ E Ec - q(Ei). Define a(e) - r(e) (e E Ei) and for each II E Ni, let 
a(u) be the component of Z with vertex set V(U). Then (a), . . . . (g) are 
satisfied, as required. 1 
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