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Abstract

In a previous paper [4] we showed that for any infinite set of (finite) graphs drawn in a fixed surface,
one of the graphs is isomorphic to a minor of another. In this paper we extend that result in two
ways:

• we generalize from graphs to hypergraphs drawn in a fixed surface, in which each edge has two
or three ends, and

• the edges of our hypergraphs are labelled from a well-quasi-order, and the minor relation is
required to respect this order.

This result is another step in the proof of Wagner’s conjecture, that for any infinite set of graphs,
one is isomorphic to a minor of another.



1 Introduction

This paper is the penultimate step in the proof of Wagner’s conjecture, that for any infinite set of
finite graphs, one is isomorphic to a minor of another. Roughly speaking (we shall define our terms
later), we wish to show that for any fixed surface Σ and fixed well-quasi-order Ω, if H1, H2, . . . is an
infinite sequence of hypergraphs drawn in Σ where each edge has two or three ends, and for each
i ≥ 1, φi : E(Hi)→ E(Ω) is some function, then there exist j > i ≥ 1 such that Hi is isomorphic to
a “minor” of Hj , and for each edge e of Hi the corresponding edge f of Hj satisfies φi(e) ≤ φj(f).
There are also special rules concerning the boundary of Σ and edges drawn touching the boundary
(roughly, we ask that when we do contractions in producing a minor, any such edge remain in contact
with the boundary during the contraction process).

Our approach is by a grand induction on the complexity of the surface and the well-quasi-order Ω.
Thus, we first assume the result for all simpler surfaces, that is, with fewer handles and crosscaps, even
if the surface boundary has more components (“cuffs”) and the well-quasi-order is bigger. Second,
for a fixed number of handles and crosscaps, we assume the result for sets of labelled hypergraphs
in which the labels of the “internal” edges (that is, not on the boundary of Σ) all come from some
proper subideal of our well-quasi-order, even if the labels on the boundary come from some larger
well-quasi-order. Third, we proceed by induction on the number of cuffs, and there is a fourth of the
same kind. To make this induction work, we find it necessary to divide the boundary of our surface
into segments, and then have different restrictions on the labels of edges bordering each segment;
and also, some edges drawn on the boundary have to be regarded as fixed.

The method of proof is to apply two theorems of earlier papers concerned with “tangles” in
hypergraphs. Let H1, H2, . . . be a “bad” sequence of hypergraphs all drawn in Σ, with labelling
functions φ1, φ2, . . ., such that each pair (Hi, φi) satisfies the restrictions on labels described above.
A theorem of [7] implies that if T is a tangle in Hi, and (Hi, φi) is “sufficiently general” relative to T ,
then (Hi, φi) contains (H1, φ1) in the required way, a contradiction. It follows that, for every tangle
T in every Hi, there is one of a bounded number of “structural deficiencies”. But a theorem of [10]
says that if relative to every tangle in every Hi we have a suitable kind of decomposition of Hi, then
again some (Hj , φj) contains some (Hi, φi). Thus, it remains to show that our structural deficiencies
can be converted to the right kind of decompositions, and that is the main part of the proof. This
is where the grand induction is used—since the pieces into which we propose to decompose our
hypergraphs are simpler than the originals (that is, are covered by the inductive hypothesis), we can
infer that these pieces satisfy the theorem; and inferring that is a large part of showing that our
decompositions are indeed of the “right kind”.

The paper is organized as follows. We begin in sections 2 and 3 with definitions, and in section
4 explain the overall induction. In sections 5 and 6 we reconcile our containment relation with that
of the theorem of [10] (unfortunately, they are not quite the same). Sections 7 and 8 are more
definitions, introducing “tangles” and “tie-breakers”, and in section 9 we state the theorem of [10]
that we wish to apply, and begin the application. This is continued in sections 10-14. Finally, in
section 15 we use a theorem of [7] to complete the proof.
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2 Surfaces

In this paper, we mean by a surface a compact, connected 2-manifold Σ, with (possibly null) bound-
ary, denoted by bd(Σ). An O-arc in Σ is a subset of Σ homeomorphic to a circle, and a line is a
subset of Σ homeomorphic to [0, 1]. A closed disc (or just “disc”) in Σ is a subset of Σ homeomorphic
to the unit disc in the real plane {(x, y) : x2 + y2 ≤ 1}, and an open disc is defined similarly. Each
component of bd(Σ) is an O-arc, and we call them the cuffs of Σ. The surface obtained from Σ by
“pasting” a disc onto each cuff we denote by Σ̂. (It will not be necessary to distinguish between the
different surfaces obtained by pasting different discs onto the cuffs.) If X ⊆ Σ, we denote its closure
by X̄, and define X̃ = X̄ \X.

A drawing G in Σ is a pair (U, V ), where U ⊆ Σ is closed and V ⊆ U is finite, such that

• U \ V has only finitely many arc-wise connected components, called edges

• for each edge e, |ẽ| = 2, and ē is a line with ends the two members of ẽ

• for each edge e, either e ⊆ bd(Σ) or e ∩ bd(Σ) = ∅.

Thus, our drawings may have multiple edges, but not loops. We write U(G) = U and V (G) = V .
The set of edges of G is denoted by E(G), and the elements of V (G) are the vertices of G. The
components of Σ \ U(G) are called the regions of G in Σ (we shall occasionally also need to discuss
the regions of G in Σ̂). Paths and circuits have no “repeated” vertices. The remainder of our
graph-theory terminology is standard.

A march in a set V is a sequence of distinct elements of V . If µ is the march v1, . . . , vk we denote
the set {v1, . . . , vk} by µ̄. A painting Γ in Σ is a triple (U, V, γ), where U ⊆ Σ is closed and V ⊆ U
is finite, such that

• bd(Σ) ⊆ U , and U \ V has only finitely many arc-wise connected components, called edges

• for each edge e, either |ẽ| = 2 and ē is a line with ends the two members of ẽ, or |ẽ| = 3 and ē
is a disc with ẽ ⊆ bd(ē)

• γ is a function assigning to each edge e a march γ(e) with γ̄(e) = ẽ; we call the ith term of
γ(e) the ith end of e, and the first and last terms of γ(e) are the tail and head of e

• every edge e with e ∩ bd(Σ) 6= ∅ satisfies |ẽ| = 2 and e ⊆ bd(Σ).

We write U(Γ) = U, V (Γ) = V, γΓ = γ, and we denote the set of edges of Γ by E(Γ). Again, the
elements of V are the vertices of Γ, and the connected components of Σ \U are the regions of Γ. We
call |ẽ| the size of an edge e. Let

U ′ = V ∪
⋃

(e : e ∈ E(Γ), |ẽ| = 2) ∪
⋃

(bd(ē) : e ∈ E(Γ), |ẽ| = 3).

Then (U ′, V ) is a drawing in Σ which we denote by sk(Γ) (it is the “1-skeleton” of Γ).
(This definition is a little different from the definition of a painting in [9], but since we do not

use here any results from [9] about paintings, we do not have to pay for the discrepancy yet.) For a
painting or drawing in Σ, an edge e is a border edge if e ∩ bd(Σ) 6= ∅, and otherwise is internal . (It
is possible that ẽ ∩ bd(Σ) 6= ∅ for internal edges e.) An edge e borders a cuff Θ if e ∩ Θ 6= ∅. Note
that all border edges in paintings have size 2.
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Let Γ,Γ′ be paintings in Σ. An inflation of Γ in Γ′ is a function σ with domain V (Γ) ∪ E(Γ),
satisfying

• σ(e) ∈ E(Γ′) and has the same size as e, for each e ∈ E(Γ), and if e1, e2 ∈ E(Γ) are distinct
then σ(e1) 6= σ(e2)

• σ(v) is a non-null connected induced subdrawing of sk(Γ′), for each v ∈ V (Γ); and if v1, v2 ∈
V (Γ) are distinct then σ(v1), σ(v2) are disjoint

• for each e ∈ E(Γ) and 1 ≤ i ≤ |ẽ|, if v is the ith end of e then σ(v) contains the ith end of
σ(e).

We remark that it follows that for e ∈ E(Γ) and 1 ≤ i ≤ |ẽ|, if v is not the ith end of e then σ(v)
does not contain the ith end of σ(e), because σ(v), σ(v′) are disjoint where v′ is the ith end of e.
Consequently σ(v) contains at most one end of σ(e), for all v ∈ V (Γ) and e ∈ E(Γ), and in particular
every edge of each σ(v) is a subset of some e ∈ E(Γ′) \ σ(E(Γ)). (We denote {σ(e) : e ∈ E(Γ)} by
σ(E(Γ)).)

An inflation σ of Γ in Γ′ is linear if

• for each e ∈ E(Γ) and for each cuff Θ, e borders Θ if and only if σ(e) borders Θ (and so e is
internal if and only if σ(e) is internal)

• for each border edge e′ of Γ′, if e′ /∈ σ(E(Γ)) then e′ is an edge of σ(v) for some v ∈ V (Γ)

• for each e ∈ E(Γ) bordering a cuff Θ, if we orient Θ such that the tail of e immediately
precedes e under this orientation, then the tail of σ(e) immediately precedes σ(e) under the
same orientation of Θ.

It follows that if e1, . . . , ek are the edges of Γ bordering a cuff Θ, in cyclic order, then σ(e1), . . . , σ(ek)
occur in the same cyclic order around Θ.

Let Γ be a drawing or painting in Σ. A subset X ⊆ Σ is Γ-normal if X ∩ U(Γ) ⊆ V (Γ). We say
that Γ is internally 3-connected if E(Γ) 6= ∅ and every Γ-normal O-arc F ⊆ Σ with

|F ∩ V (Γ)|+ |F ∩ bd(Σ)| ≤ 2

bounds a disc ∆ ⊆ Σ with ∆ ∩ V (Γ) ⊆ F .
A quasi-order Ω consists of a set E(Ω) and a reflexive, transitive relation ≤. It is a well-quasi-

order if for every countable sequence ωi (i = 1, 2 . . .) of elements of E(Ω) there exist j > i ≥ 1 such
that ωi ≤ ωj . If Γ,Γ′ are paintings in Σ, and σ is an inflation of Γ in Γ′, and φ : E(Γ)→ E(Ω), φ′ :
E(Γ′)→ E(Ω) are functions, we write φ ≤ φ′ ◦ σ if φ(e) ≤ φ′(σ(e)) for every e ∈ E(Γ).

The following is a version of the main theorem of this paper, although it is not yet in the most
convenient form for us to prove.

2.1 Let Σ be a surface, and let Ω be a well-quasi-order. Let Γi (i = 1, 2 . . .) be a countable sequence
of internally 3-connected paintings in Σ, and for each i ≥ 1 let φi : E(Γi)→ E(Ω) be some function.
Then there exist j > i ≥ 1 and a linear inflation σ of Γi in Γj satisfying φi ≤ φj ◦ σ.
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3 Frames and colour schemes

In this section we cast 2.1 into a more convenient form. Let Σ be a surface. A directed drawing in Σ
means a drawing in Σ with a direction assigned to each edge. A frame Φ in Σ consists of a directed
drawing in Σ (which we also denote by Φ) with U(Φ) = bd(Σ), together with a designation of each
edge of Φ as long or short, such that no two long edges have a common end. We call the edges of Φ
the sides of the frame. A painting Γ in Σ is said to fit a frame Φ if

• V (Φ) ⊆ V (Γ)

• each short side of Φ is an edge of Γ

• for every border edge e of Γ, if S is the side of Φ with e ⊆ S then the tail of e precedes its
head as S is traversed from its tail in Φ to its head (that is, briefly, the direction of e defined
by γΓ(e) agrees with the direction of S in Φ)

• Γ is internally 3-connected

• if e ∈ E(Γ) and |ẽ| = 3 and r is a region of Γ in Σ with |r̄ ∩ V (Γ)| ≥ 3, then f̄ ∩ bd(Σ) 6= ∅ for
every component f of e ∩ r̄.

The fourth and fifth conditions have nothing to do with the frame, but this is a convenient place
to introduce them. The fifth condition is a very strong requirement; in particular, it says that for
any edge e of Γ with size 3, if no vertex of ẽ is in bd(Σ), then for any two u, v ∈ ẽ, there is a second
edge f with u, v ∈ f̃ . This might seem to be very restrictive, but really it is not. For given a general
painting, we can augment it to construct another satisying this restriction (for every edge e of size
3, just add three edges of size 2 joining the pairs of vertices of ẽ, drawn close to e); and it turns out
that one of these augmented paintings contains another in the required way, if and only if one of the
unaugmented paintings contains another. So if we only want to prove well-quasi-ordering, it suffices
to prove it for augmented paintings. And it turns out to be a convenient technical device for the
proof, later.

If e is a border edge of Γ and S is a side of Φ with e ⊆ S, we say that e borders S. If Γ,Γ′ are
paintings in Σ both fitting a frame Φ, and σ is an inflation of Γ in Γ′, we say that σ respects Φ if
for every border edge e of Γ, σ(e) is a border edge and e and σ(e) border the same side of Φ. If σ
respects Φ, it follows that σ(e) = e for every short side e of Φ, and v ∈ V (σ(v)) for every v ∈ V (Φ).
If σ respects Φ, and satisfies the second condition in the definition of “linear”, then σ is linear, as
the reader should verify.

A colour scheme χ consists of a surface Σχ, a frame Φχ in Σχ, two well-quasi-orders Ωχ(2) and
Ωχ(3), and a well-quasi-order Ωχ(S) for each side S of Φχ, such that E(Ωχ(S)) = {S} for every short
side S. (Thus, to specify a colour scheme, we need not define Ωχ(S) for short sides S.) If χ is a
colour scheme, a χ-coloured painting is a pair (Γ, φ), where

• Γ is a painting in Σχ fitting the frame Φχ

• φ is a function with domain E(Γ), such that if e ∈ E(Γ) is internal then φ(e) ∈ Ωχ(|ẽ|), and if
e borders a side S then φ(e) ∈ Ωχ(S).
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If (Γ, φ), (Γ′, φ′) are χ-coloured paintings, an inflation of (Γ, φ) in (Γ′, φ′) is an inflation σ of Γ in
Γ′ respecting Φχ, such that φ ≤ φ′ ◦ σ (with the natural meaning); and linear inflations are defined
similarly. The following is the main theorem of the paper.

3.1 For every colour scheme χ and every countable sequence (Γi, φi) (i = 1, 2, . . .) of χ-coloured
paintings, there exist j > i ≥ 1 and a linear inflation of (Γi, φi) in (Γj , φj).

We begin the proof of 3.1 in the next section. But let us first verify that it implies 2.1. If Ω1,Ω2

are quasi-orders, Ω1×Ω2 denotes their product, with element set {(x1, x2) : x1 ∈ E(Ω1), x2 ∈ E(Ω2)},
in which (x1, x2) ≤ (x′1, x

′
2) if x1 ≤ x′1 in Ω1 and x2 ≤ x′2 in Ω2.

Proof of 2.1, assuming 3.1.
Let Σ,Ω,Γi, φi(i ≥ 1) be as in 2.1. Let Φ be a frame for Σ, such that each component of Φ is a

2-edge circuit, one edge of which is long and one short. Now bd(Σ) ⊆ U(Γi) for each i. By replacing
each Γi by its image under a suitable homeomorphism of Σ to itself, we may therefore assume that
for each cuff Θ, the short side of Φ included in Θ is an edge of each Γi.

(1) We may assume that for each short side s of Φ,

• φ1(s) ≤ φ2(s) ≤ . . ., and

• for each i ≥ 1 the direction of s under γΓi(s) agrees with its direction in Φ.

Subproof. There is an infinite subset I ⊆ {1, 2, . . .} such that for all i, j ∈ I with i ≤ j and every
short side s of Φ, γΓi(s) = γΓj (s) and φi(s) ≤ φj(s). We may assume that I = {1, 2, . . .} by replacing
our original sequence by this subsequence, and we may reverse the direction in Φ of each short side
of Φ if necessary. This proves (1).

For each i ≥ 1, let Γi = (Ui, Vi, γi). For k = 2, 3, let Eki = {e ∈ E(Γi) : |ẽ| = k}. For each i ≥ 1
and each e ∈ E3

i , choose a disc ∆ ⊆ ē with ∆ ∩ bd(ē) = ẽ, and define si(e) = ∆ \ ẽ. Let

U ′i = U(sk(Γi)) ∪
⋃

(si(e) : e ∈ E3
i )

V ′i = Vi

and define γ′i as follows. For e ∈ E3
i , let γ′i(si(e)) = γi(e). For each border edge e of Γi, let γ′i(e)

agree with the direction of the side of Φ containing e. For each internal edge e of Γi with |ẽ| = 2,
let γ′i(e) = γi(e). For each internal edge e of sk(Γi) with e /∈ E(Γi), let γ′i(e) be an arbitrary march
with γ̄′i(e) = ẽ. Let Γ′i = (U ′i , V

′
i , γ
′
i). We see that Γ′i is a painting in Σ fitting the frame Φ.

Let R be the well-quasi-order with E(R) = {−1, 0, 1, 2, 3}, ordered by equality. Let χ be the
colour scheme with Σχ = Σ,Φχ = Φ,Ωχ(3) = Ωχ(2) = Ω × R, and Ωχ(S) = Ω × R for every long
side S of Φ. For each edge e of Γ′i, define φ′i(e) as follows. If |ẽ| = 3, choose c ∈ E(Γi) with e = si(c),
and let φ′i(e) = (φi(c), 3). If e ∈ E2

i and e is internal, let φ′i(e) = (φi(e), 2). If e is a border edge
of Γ′i (and therefore e ∈ E2

i ), but not a short side, let φ′i(e) = (φi(e),±1), where −1 is chosen if
γ′i(e) 6= γi(e). If |ẽ| = 2 and e /∈ E2

i , let φ′i(e) = (x, 0) where x ∈ E(Ω) is arbitrary. For each short
side e of Φ, let φ′i(e) = e. It follows easily that for each i ≥ 1, (Γ′i, φ

′
i) is a χ-coloured painting.

From 3.1, there exists j > i ≥ 1 and a linear inflation σ′ of (Γ′i, φ
′
i) in (Γ′j , φ

′
j). We claim that

there is a linear inflation σ of Γi in Γj such that φi ≤ φj ◦ σ. We construct σ as follows. For each
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v ∈ V (Γi) let σ(v) = σ′(v) ∩ sk(Γj). Since each σ′(v) is induced and every edge of sk(Γ′j) either is
an edge of sk(Γj) or is parallel to an edge of sk(Γj), it follows that each σ(v) is a non-null connected
induced subgraph of sk(Γj). For e ∈ E3

i , let σ(e) = f , where σ′(si(e)) = sj(f) (such an f exists
since σ′(si(e)) has the same size as si(e)). For e ∈ E2

i , let σ(e) = σ′(e). Let us verify that σ is a
linear inflation σ of Γi in Γj such that φi ≤ φj ◦ σ. First, by examining the second terms of φ′, it
follows that σ(e) = e for every short side e. Moreover, if e ∈ E2

i is not a short side then since the
second term of φ′i(e) is non-zero, so is the second term of φ′j(s

′(e)), since φ′i(e) ≤ φ′j(σ′(e)), and hence

σ′(e) ∈ E2
j . By examining the first term of φ′i(e) and using (1), we see that φi ≤ φj ◦σ. To complete

the proof, we must check that

(2) For each e ∈ E(Γi) and 1 ≤ k ≤ |ẽ|, if v is the kth end of e then σ(v) contains the kth end of σ(e).

Subproof. Now v is the kth term of γi(e). If |ẽ| = 3, then γ′i(si(e)) = γi(e), and therefore
V (σ′(v)) = V (σ(v)) contains the kth term of γ′j(σ

′(si(e))) = γj(σ(e)) as required. Similarly, if
|ẽ| = 2 and e is internal or a short side of Φ, then γ′i(e) = γi(e), and therefore V (σ′(v)) = V (σ(v))
contains the kth term of γ′j(σ

′(e)) = γj(σ(e)) as required. Finally, suppose that e is a border edge of
Γi and not a short side of Φ. Let S be the long side of Φ with e, σ(e) ⊆ S. Since the second terms of
φ′i(e) and φ′j(σ(e)) are equal, it follows that γ′i(e) = γi(e) if and only if γ′j(σ(e)) = γj(σ(e)), and so
there exists l(l = 1 or 2) such that the kth term of γi(e) is the lth term of γ′i(e), and the kth term
of γj(σ(e)) is the lth term of γ′j(σ(e)). Therefore v is the lth term of γ′i(e), and so σ′(v) contains the
lth term of γ′j(σ(e)). Consequently σ(v) contains the kth term of γj(σ(e)). This proves (2).

From (2), it follows that σ is an inflation of Γi in Γj . Moreover, it is clearly linear, and satisfies
φi ≤ φj ◦ σ, as required.

4 The induction

The remainder of the paper is devoted to proving 3.1. We proceed by an induction on χ which we
shall explain in this section.

A bad sequence for a colour scheme χ is a countable sequence (Γi, φi)(i = 1, 2, . . .) of χ-coloured
paintings, such that for all j > i ≥ 1 there is no linear inflation of (Γi, φi) in (Γj , φj). We say that a
colour scheme is bad if there is a bad sequence for it. Thus, we wish to show that no colour scheme
is bad. We wish to consider the following four statements S1–S4 about a colour scheme χ.

A surface without boundary is simpler than another if the second can be obtained from the first
by adding at least one handle or crosscap. Our first statement is

S1 There is no bad colour scheme χ′ with Σ̂χ′ simpler than Σ̂χ.

A set {(Γi, φi) : i ∈ I} of χ-coloured paintings is said to be similarly oriented if either Σχ is not
orientable, or there is an orientation ω of Σχ such that for all i ∈ I and every e ∈ E(Γi) with |ẽ| = 3,
the orientations of e given by ω and given by the cyclic order of the terms of γΓi(e) coincide. A
colour scheme χ is orientedly bad if there is a similarly oriented bad sequence for it.

If Ω,Ω′ are quasi-orders we write Ω′ � Ω if

• E(Ω′) ⊆ E(Ω)
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• for each x′ ∈ E(Ω′) and x ∈ E(Ω), if x ≤ x′ in Ω then x ∈ E(Ω′), and

• for x1, x2 ∈ E(Ω′), x1 ≤ x2 in Ω′ if and only if x1 ≤ x2 in Ω.

We write Ω′ ≺ Ω if Ω′ � Ω and Ω′ 6= Ω. We use∼= to denote homeomorphism. Our second statement is

S2 There is no orientedly bad colour scheme χ′ with Σ̂χ′
∼= Σ̂χ such that Ωχ′(3) � Ωχ(3) and

Ωχ′(2) � Ωχ(2) where at least one of the inclusions is strict.

We denote the number of cuffs of a surface Σ by c(Σ).

S3 There is no orientedly bad colour scheme χ′ with Σ̂χ′
∼= Σ̂χ,Ωχ′(k) = Ωχ(k)(k = 2, 3), and

c(Σχ′) < c(Σχ).

Now let χ, χ′ be colour schemes. We say that χ′ is a refinement of χ if Σχ′
∼= Σχ,Ωχ′(k) =

Ωχ(k)(k = 2, 3), and there is a function f from the set of long sides of Φχ′ to the set of long sides of
Φχ, such that

• Ωχ′(R) � Ωχ(f(R)) for each long side R of Φχ′

• if R1, R2 are distinct long sides of Φχ′ with f(R1) = f(R2) then Ωχ′(R1) ≺ Ωχ(f(R1))

• if for each long side S of Φχ there is a long side R of Φχ′ with f(R) = S and Ωχ′(R) = Ωχ(S),
then Φχ′ has fewer short sides then Φχ.

In this case, we call f an embedding of χ′ in χ.

S4 There is no orientedly bad colour scheme which is a refinement of χ.

The purpose of S1–S4 is that to prove 3.1, it suffices to prove the following.

4.1 If χ satisfies S1–S4 then it is not orientedly bad.

We prove 4.1 in section 15. The remainder of this section is devoted to proving that 4.1 implies
3.1. To show that, we need several lemmas, which follow.

4.2 If χ is a bad colour scheme, there is an orientedly bad colour scheme χ′ with Σχ′ = Σχ.

Proof. If Σχ is not orientable then χ itself is orientedly bad. Thus we may assume that ω is an
orientation of Σχ. Let (Γi, φi)(i = 1, 2 . . .) be a bad sequence for χ, and let Γi = (Ui, Vi, γi)(i ≥ 1).
Now for each e ∈ E(Γi) with |ẽ| = 3, let γ′i(e) be a march with γ̄′i(e) = ẽ, such that the orientations
of e given by ω and given by the cyclic order of the terms of γ′i(e) coincide, and γi(e), γ

′
i(e) have the

same first term. For each e ∈ E(Γi) with |ẽ| = 2 let γ′i(e) = γi(e). Let Γ′i = (Ui, Vi, γ
′
i). Let φ′i(e) be

defined by

φ′i(e) =

{
φi(e) if |ẽ| = 2

(φi(e),±1) if |ẽ| = 3

where we choose −1 if γi(e) 6= γ′i(e). Let R be the well-quasi-order with E(R) = {−1, 1}, ordered by
equality. Let χ′ be the colour scheme with Σχ′ = Σχ,Φχ′ = Φχ,Ωχ′(3) = Ωχ(3)×R,Ωχ′(2) = Ωχ(2),
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and Ωχ′(S) = Ωχ(S) for each long side S. Then for each i ≥ 1, (Γ′i, φ
′
i) is a χ′-coloured painting, and

{(Γ′i, φ′i) : i ≥ 1} is similarly oriented. Suppose that for some i, j with j > i ≥ 1, there is a linear
inflation σ of (Γ′i, φ

′
i) in (Γ′j , φ

′
j). We claim that σ is also a linear inflation of (Γi, φi) in (Γj , φj). This

is mostly clear, but let us show that the third condition in the definition of “inflation” is satisfied,
that is, that for each e ∈ E(Γi) and 1 ≤ k ≤ |ẽ|, if v is the kth term of γi(e), then σ(v) contains
the kth term of γj(σ(e)). If γi(e) = γ′i(e) and γj(σ(e)) = γ′j(σ(e)) then the claim holds since σ is
an inflation of Γ′i in Γ′j . We may assume then that |ẽ| = 3. Since the second terms of φ′i(e) and of
φ′j(σ(e)) are equal, and we may assume they are not both equal to 1, it follows that they are both
−1, and consequently γ′i(e) is obtained from γi(e) by exchanging the second and third terms, and
the same holds between γ′j(σ(e)) and γj(σ(e)). If k = 1 let k′ = 1, and if k = 2 or 3 let k′ be 3 or 2
respectively. Consequently the kth term of γi(e) (that is, v) is the k′th term of γ′i(e), and the kth
term of γj(σ(e)) is the k′th term of γ′j(σ(e)). Since σ is an inflation of (Γ′i, φ

′
i) in (Γ′j , φ

′
j) and v is

the k′th term of γ′i(e), it follows that σ(v) contains the k′th term of γ′j(σ(e)), and therefore contains
the kth term of γj(σ(e)), as required. This proves our claim that σ is a linear inflation of (Γi, φi) in
(Γj , φj), which is impossible since (Γi, φi)(i = 1, 2 . . .) is a bad sequence for χ. Thus there is no such
choice of i, j, σ, and so χ′ is orientedly bad, as required.

4.3 There is no countable sequence Ωi (i = 1, 2, . . .) of well-quasi-orders such that Ωi+1 ≺ Ωi for all
i ≥ 1.

The result is well-known and the proof is easy, and so we omit it.

4.4 There is no countable sequence χi (i = 1, 2, . . .) of colour schemes such that χi+1 is a refinement
of χi for all i ≥ 1.

Proof. Suppose that χi (i = 1, 2, . . .) is such a sequence. For each i ≥ 1, let Si be the set of long
sides of Φχi , and let fi : Si+1 → Si be an embedding of χi+1 in χi. Let t0 be a new vertex, and let
T be the infinite tree with

V (T ) = {t0} ∪ {(i, S) : i ≥ 1, S ∈ Si}
E(T ) = {(t0, (1, S)) : S ∈ S1} ∪ {((i, fi(S)), (i+ 1, S)) : i ≥ 1, S ∈ Si+1}.

(1) T has infinitely many vertices with degree 6= 2.

Subproof. Otherwise fi is a bijection for all sufficiently large i, say for all i > n. For all i ≥ n, let
Si = {S1

i , . . . , S
k
i }, numbered such that fi(S

j
i+1) = Sji for all i > n and 1 ≤ j ≤ k. For all j with

1 ≤ j ≤ k it follows from the first condition in the definition of “refinement” that

Ωχi+1(Sji+1) � Ωχi(S
j
i )

for all i > n, and so by 4.3, equality holds here for all sufficiently large i; and we may therefore
assume, by increasing n, that equality holds for all i > n. From the third condition in the definition
of “refinement”, it follows that for all i > n, Φχi+1 has strictly fewer short sides than Φχi , which is
impossible. This proves (1).

Since every vertex of T has finite degree, we can apply applying König’s lemma to the infinite
tree obtained from T by suppressing all vertices of degree 2. We deduce that T has a path containing
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infinitely many vertices of degree 6= 2. Thus for all i there exists Si ∈ Si such that fi(Si+1) = Si,
and such that (i, Si) has degree ≥ 3 in T for infinitely many values of i. We deduce that

Ωχn+1(Sn+1) � Ωχn+2(Sn+2) � . . .

with strict inclusion infinitely many times, contrary to 4.3. Thus there is no such sequence χi (i =
1, 2, . . .). This proves 4.4.

Proof of 3.1, assuming 4.1.
Suppose that 3.1 is false; then there is a bad colour scheme χ, and we may choose it to satisfy

S1. By 4.2, we may choose χ orientedly bad. By 4.3, we may choose χ so that in addition it satisfies
S2. By choosing such a χ with c(Σχ) minimum, we find it also satisfies S3. By 4.4, we may choose
χ to satisfy S4 as well. But then 4.1 is contradicted. Thus 3.1 holds.

5 Surface homeomorphisms

Let Φ be a frame in Σ. A homeomorphism α : Σ→ Σ is Φ-preserving if

• α(v) = v for all v ∈ V (Φ), and α(S) = S for all S ∈ E(Φ) (and hence α preserves the direction
of each side, and maps each cuff onto itself in an orientation-preserving way)

• if Σ is orientable then α preserves the orientation of Σ.

Let (Γ, φ) be a χ-coloured painting, and let α : Σχ → Σχ be a Φχ-preserving homeomorphism.
We define the image of (Γ, φ) under α in the natural way; that is, it is the χ-coloured painting
(Γ′, φ′) where U(Γ′) = α(U(Γ)), V (Γ′) = α(V (Γ)), and for each e ∈ E(Γ), γΓ′(α(e)) = α(γΓ(e)) and
φ′(α(e)) = φ(e). The proof of the following lemma is clear.

5.1 Let (Γ1, φ1), (Γ2, φ2) be χ-coloured paintings, and let α1, α2 be Φχ-preserving homeomorphisms
of Σ. For i = 1, 2 let (Γ′i, φ

′
i) be the image of (Γi, φi) under αi. Then there is a (linear) inflation of

(Γ′1, φ
′
1) in (Γ′2, φ

′
2) if and only if there is one of (Γ1, φ1) in (Γ2, φ2).

Thus, for example, if we suppose that (Γi, φi)(i = 1, 2, . . .) is a bad sequence for χ, then we may
replace each (Γi, φi) by its image under some Φχ-preserving homeomorphism, and obtain another
bad sequence; and if the terms of the first sequence are similarly oriented, then so are the terms of
the second. This method will be used in combination with the following lemma. Let Φ be a frame
in Σ. A drawing K in Σ is a feature (in Φ) if K has no border edges and no isolated vertices, and
U(K) ∩ S = ∅ for every short side S of Φ. (U(K) may intersect the long sides of Φ.) Two features
K1,K2 are equivalent if there is a Φ-preserving homeomorphism α of Σ such that α maps K1 to K2.
Hence if K1,K2 are equivalent they have the same size. (The size of a drawing G is |V (G)|+ |E(G)|.)
This defines an equivalence relation, and it follows easily (by choosing a line to represent an edge
of K, cutting the surface along it, and using induction on |E(K)|—see section 3 of [3] for similar
proofs) that

5.2 For every surface Σ, every frame Φ in Σ and every integer n ≥ 0, there are only finitely many
equivalence classes of features in Φ with size ≤ n.
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Now let Φ be a frame in Σ, and let K be a feature in Φ. If we cut Σ along U(K) we obtain one
or several components Σ1, . . . ,Σk say, which we call fragments of Σ after cutting along U(K). There
is a natural surjection of ψ : Σ1 ∪ . . .∪Σk → Σ, which we shall call the associated surjection. Let Σ1

be a fragment. We denote by ψ−1(Φ) ∩ Σ1 the frame for Σ1 consisting of the drawing

(bd(Σ1), ψ−1(V (Φ) ∪ V (K)) ∩ Σ1)

where for each edge R of this drawing

• if ψ(R) ⊆ S for some side S of Φ, then R is directed such that ψ maps its direction onto that
of S, and R is designated as long if and only if S is long

• if there is no such S, then R is directed arbitrarily and is designated as short.

Now let Γ be a painting fitting Φ, such that U(Γ) ∩ U(K) = V (Γ) ∩ V (K). We denote by
ψ−1(Γ) ∩ Σ1 the painting Γ1 = (U1, V1, γ1) in Σ1, where

U1 = (ψ−1(U(Γ)) ∩ Σ1) ∪ bd(Σ1)

V1 = ψ−1(V (Γ) ∪ V (K)) ∩ Σ1

and for each edge e of Γ1, if e ⊆ bd(Σ1) then γ1(e) is defined such that the direction of e agrees with
the direction of the side of ψ−1(Φ) ∩ Σ1 including it, while if e 6⊆ bd(Σ1) then γ1(e) is defined such
that ψ maps it to γΓ(ψ(e)).

5.3 With Γ,K, etc. as above, if each component K ′ of K satisfies

|V (K ′) ∩ V (Γ)|+ |V (K ′) ∩ bd(Σ)| ≥ 2

then ψ−1(Γ) ∩ Σ1 fits the frame ψ−1(Φ) ∩ Σ1.

Proof. We observe first that the hypothesis implies that for every component K ′ of K, V (K ′)
contains a vertex of Γ, since V (K)∩bd(Σ) ⊆ V (K)∩U(Γ) ⊆ V (Γ). Verifying the first three conditions
in the definition of “fit” is easy and is omitted. Let us verify the fourth and fifth conditions. Let
Γ1 = ψ−1(Γ) ∩ Σ1, and let F1 be a Γ1-normal O-arc in Σ1 with |F1 ∩ V (Γ1)| + |F1 ∩ bd(Σ1)| ≤ 2.
Then |F1 ∩ bd(Σ1)| ≤ 1 since F1 ∩ bd(Σ1) ⊆ F1 ∩ V (Γ1), and so F = ψ(F1) is a Γ-normal O-arc in Σ
with |F ∩ V (Γ)|+ |F ∩ bd(Σ)| ≤ 2. Since Γ is internally 3-connected, there is a disc ∆ ⊆ Σ bounded
by F with ∆∩ V (Γ) ⊆ F . If U(K)∩ (∆ \F ) = ∅, then ψ−1(∆) includes a disc in Σ1 bounded by F1

as required. We assume then (for a contradiction) that U(K)∩ (∆ \F ) 6= ∅. Let K ′ be a component
of K with U(K ′)∩ (∆\F ) 6= ∅. Since V (K ′) contains a vertex of Γ, and ∆\F is disjoint from V (Γ),
it follows that U(K ′) 6⊆ ∆ \ F , and since K ′ is connected, there is an edge e of K ′ with ē ∩ F 6= ∅
and with e ∩ (∆ \ F ) 6= ∅. Choose u ∈ ē ∩ F , and let u1 ∈ F1 with ψ(u1) = u. Since u ∈ U(K ′), it
follows that u1 ∈ bd(Σ1) ⊆ U(Γ1). Since F1 is Γ1-normal, we deduce that u1 ∈ V (Γ1). Consequently
u ∈ V (Γ) ∪ V (K), and since also u ∈ U(K) and V (Γ) ∩ U(K) ⊆ V (K), it follows that u ∈ V (K).
Since u1 belongs to both F1∩V (Γ1) and F1∩bd(Σ1), and |F1∩V (Γ1)|+ |F1∩bd(Σ1)| ≤ 2, we deduce
that F1 ∩ V (Γ1) = F1 ∩ bd(Σ1) = {u1}; and so F ∩ (U(K ′) ∪ bd(Σ)) = {u}.

Let L1 ⊆ F1 be a closed line segment with u1 in its interior. Since F1 is an O-arc, there is
a second line segment L′1 ⊆ Σ1 with the same ends as L1, such that L1 ∪ L′1 is an O-arc in Σ1,
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bounding a disc D1 ⊆ Σ1 with D1 ∩ F1 = L. Let D = ψ(D1), L = ψ(L1), and L′ = ψ(L′1). Then
D is a disc in Σ, with boundary L ∪ L′, where L is a line segment in F with u in its interior, and
D ∩ F = L. Moreover, the interior of D is disjoint from U(K), and in particular, disjoint from e.
It follows that D ∩∆ = L. Since the interiors of both D and ∆ are disjoint from bd(Σ), we deduce
that u /∈ bd(Σ); and since the interior of D is disjoint from U(K), it follows that there is no edge f
of K with f ⊆ Σ \∆ incident with u. We deduce that U(K ′) ⊆ ∆. Since u /∈ bd(Σ), it follows that
F ∩ bd(Σ) = ∅, and so V (K ′) ∩ bd(Σ) = ∅. Moreover, since V (Γ) ∩∆ ⊆ F , it follows that

V (K ′) ∩ V (Γ) = V (K ′) ∩ V (Γ) ∩∆ ⊆ V (K ′) ∩ F ⊆ {u}.

Consequently,
|V (K ′) ∩ V (Γ)|+ |V (K ′) ∩ bd(Σ)| ≤ 1

contrary to the hypothesis. This verifies the fourth condition.
For the fifth, let e1 ∈ E(Γ1) with |ẽ1| = 3, let r1 be a region of Γ1 in Σ1, let f1 be a component of

r̄1∩e1, and let f̄1∩ ẽ1 = {v1, v
′
1}; we suppose that v1, v

′
1 /∈ bd(Σ1), and will show that |r̄1∩V (Γ1)| = 2.

Let e = ψ(e1), f = ψ(f1), v = ψ(v1), v′ = ψ(v′1), and let r be the region of Γ in Σ including ψ(r1).
Then f is a component of r̄ ∩ e, and |f̄ ∩ ẽ| = {v, v′}. Since v1, v

′
1 /∈ bd(Σ1), it follows that

v, v′ /∈ bd(Σ). Since Γ fits Φ, it follows from the fifth condition in the definition of “fit”, applied
to Γ,Φ, that |r̄ ∩ V (Γ)| = 2 and so r̄ ∩ V (Γ) = {v, v′}. Hence U(K) ∩ bd(r̄) = ∅, and since each
component K ′ of K contains a vertex of Γ it follows that U(K) ∩ r̄ = ∅. Consequently ψ(r) = r1,
and so |r̄1 ∩ V (Γ1)| = 2 as required.

A painting Γ in a surface Σ is 2-cell if every region of Γ in Σ is homeomorphic to an open disc.
Every internally 3-connected painting is 2-cell. Let Γ be a 2-cell painting with E(Γ) 6= ∅. A drawing
Γ∗ in Σ̂ is a radial drawing of Γ if it satisfies the four conditions following, where R∗ denotes the set
of vertices of Γ∗ that are not in V (Γ):

• U(Γ) ∩ U(Γ∗) = V (Γ) ⊆ V (Γ∗)

• every region of Γ in Σ̂ contains a unique vertex of Γ∗

• Γ∗ is bipartite, and (V (Γ), R∗) is a bipartition of it

• for every v ∈ V (Γ), the edges of Γ and of Γ∗ incident with v alternate in their cyclic order
around v.

It is easy to see that such a drawing Γ∗ exists, and is unique up to homeomorphisms of Σ̂ to itself
that fix U(Γ) pointwise. If r is a region of Γ, the unique vertex of Γ∗ contained in r is denoted by
r∗; and if r 6⊆ Σ (and hence r is a component of Σ̂ \Σ) we call r∗ a pole . We shall use the Γ∗, R∗, r∗

notation without further explanation.
If Γ is an internally 3-connected painting in Σ, we define dist(Γ) to be the minimum of 1

2 |E(F )|,
taken over all paths F of Γ∗ with ends distinct poles. (If c(Σ) ≤ 1 we set dist(Γ) = ∞.) As a first
application of 5.1 and 5.2 we prove the following.

5.4 Let χ satisfy S3, and let (Γi, φi) (i = 1, 2, . . .) be a similarly oriented bad sequence for χ. Then
for all n ≥ 0, there exists h ≥ 0 such that dist(Γi) > n for all i ≥ h.
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Proof. Suppose that for some n there is no such h. Then c(Σχ) ≥ 2 and dist(Γi) ≤ n for infinitely
many values of i, and we may assume that dist(Γi) ≤ n for all i ≥ 1, by replacing our original
sequence by the appropriate subsequence. For each i ≥ 1, let Fi be a path of Γ∗i with 1

2 |E(Fi)| ≤ n
joining distinct poles, such that every vertex of Fi is in Σχ \ bd(Σχ) except the first two and the last
two. Then Ki = Fi ∩ Σχ is a feature in Φχ of size ≤ 4n, and by 5.2 (by replacing our sequence by
a subsequence) we may assume that all the Ki’s are equivalent. By 5.1 we may assume that all the
Ki’s are equal, to some K say. Let Σ1 be the (unique) fragment obtained by cutting Σχ along K,
with associated surjection ψ. Let χ′ be the colour scheme defined by Σχ′ = Σ1, Φχ′ = ψ−1(Φχ)∩Σ1,
Ωχ′(k) = Ωχ(k) (k = 2, 3), and for each long side S′ of Φχ′ ,Ωχ′(S

′) = Ωχ(S) where S is the long
side of Φχ with ψ(S′) ⊆ S. Then χ′ is not orientedly bad, since χ satisfies S3. For each i ≥ 1, let
Γ′i = ψ−1(Γi) ∩ Σ1, and for each e ∈ E(Γ′i), let φ′i(e) = φi(e) if e ∈ E(Γi), and φ′i(e) = e if e /∈ E(Γi)
(so that e is a short side of ψ−1(Φχ) ∩ Σ1). Then (Γ′i, φ

′
i) is a χ′-coloured painting, by 5.3, and the

sequence (Γ′i, φ
′
i) (i = 1, 2, . . .) is similarly oriented (for if Σχ′ is orientable then so is Σχ). Thus,

since χ′ is not orientedly bad, there exist j > i ≥ 1 and a linear inflation σ′ of (Γ′i, φ
′
i) in (Γ′j , φ

′
j).

Define σ by

σ(e) = ψ(σ′(ψ−1(e))) (e ∈ E(Γi))

V (σ(v)) =
⋃

v′∈ψ−1(v)

ψV ((σ′(v′)))i (v ∈ V (Γi)),

where each σ(v) is an induced subdrawing of sk(Γj) with given vertex set as given. If v ∈ V (Γi)
satisfies |ψ−1(v)| > 1, then every v′ ∈ ψ−1(v) belongs to V (Φ′χ), and consequently satisfies v′ ∈
V (σ′(v′)). So v belongs to V (ψ(σ′(v′))) for each such v′, and it follows that σ(v) is connected. It
is easy to deduce that σ is a linear inflation of (Γi, φi) in (Γj , φj) (for similar arguments, see for
example section 8 of [1]). This is a contradiction.

Let Γ be a 2-cell painting in Σ with E(Γ) 6= ∅. If Σ̂ is not a sphere, we define rep(Γ) to be the
minimum of 1

2 |E(F )| over all non-null-homotopic circuits F of Γ∗. (This exists, by theorem 11.10 of

[3].). If Σ̂ is a sphere we set rep(Γ) =∞.

5.5 Let χ satisfy S1, S3, and let (Γi, φi) (i = 1, 2, . . .) be a similarly oriented bad sequence for χ.
Then for all n ≥ 0 there exists h ≥ 1 such that rep(Γi) > n for all i ≥ h.

Proof. Suppose that for some n there is no such h. Then Σ̂χ is not a sphere, and for infinitely
many i ≥ 1 there is a circuit Fi of Γ∗i with 1

2 |E(Fi)| ≤ n such that U(Fi) bounds no disc in Σ̂χ. If
we choose Fi with |V (Fi) ∩ Σχ| minimum, it is easy to see that for each pole r∗, V (F ) contains at
most two neighbours of r∗, and at most one if r∗ /∈ V (Fi). As in 5.4 we may assume that Fi exists
for all i ≥ 1, and all the Fi are equal to some F say. Let F ∩ Σχ = K. Then K is a feature.

If for some i ≥ 1 there is a component K ′ of K with

|V (K ′) ∩ V (Γi)|+ |V (K ′) ∩ bd(Σχ)| ≤ 1

then V (K ′) ∩ bd(Σχ) = ∅, and so K ′ = K = F , and |F ∩ V (Γi)| ≤ 1, which is impossible since
Γi is internally 3-connected. Thus 5.3 can be applied. Now by 5.4, U(K) meets at most one cuff
(for K is a subgraph of each Γ∗i , and yet dist(Γi) >

1
2 |E(F )| for all sufficiently large i). Moreover,
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|U(K) ∩ bd(Σχ)| ≤ 2, with equality only if K 6= F (from our choice of the Fi’s.) In particular, when
we cut along U(K) (with surjection ψ) we obtain either one or two fragments. For each fragment
Σ1 say, Σ̂1 is simpler than Σ̂χ because U(F ) is non-null-homotopic in Σ̂, and so if there is only one
fragment the proof is completed as for 5.4, using S1 in place of S3. (Since we are applying S1 it does
not matter whether the fragment is orientable.) Suppose then that there are two fragments Σ1,Σ2.
For t = 1, 2, let χt be the colour scheme defined by Σχt = Σt,Φχt = ψ−1(Φ) ∩ Σt etc., as in 5.4.
For each i ≥ 1, let Γ′i = ψ−1(Γi) ∩ Σ1,Γ

′′
i = ψ−1(Γi) ∩ Σ2. For e ∈ E(Γ′i), define φ′i(e) = φi(ψ(e))

if ψ(e) ∈ E(Γi), and φ′i(e) = e otherwise. Define φ′′i similarly. Then each (Γ′i, φ
′
i) is a χ1-coloured

painting, and each (Γ′′i , φ
′′
i ) is a χ2-coloured painting, and χ1, χ2 are not bad since χ satisfies S1. It

follows that there exist j > i ≥ 1 such that there is a linear inflation σ′ of (Γ′i, φ
′
i) in (Γ′j , φ

′
j), and a

linear inflation σ′′ of (Γ′′i , φ
′′
i ) in (Γ′′j , φ

′′
j ). Define σ by

σ(e) =

{
ψ(σ′(ψ−1(e))) if ψ−1(e) ⊆ Σ1

ψ(σ′′(ψ−1(e))) if ψ−1(e) ⊆ Σ2

σ(v) =
⋃

v′∈ψ−1(v)∩Σ1

ψ(σ′(v′)) ∪
⋃

v′′∈ψ−1(v)∩Σ2

ψ(σ′′(v′′)).

Then σ is a linear inflation of (Γi, φi) in (Γj , φj), a contradiction, as required.

6 Inflations and linear inflations

Our strategy to prove 4.1 is to apply a theorem of [10], which we describe later. That, however,
applies to inflations rather than linear inflations, and the objective of this section is to smooth over
the discrepancy, by means of the following.

6.1 Let χ satisfy S1, S3, and let (Γi, φi) (i = 1, 2 . . .) be a similarly oriented bad sequence for χ.
Then there exists h ≥ 1 such that for all j > i ≥ h there is no inflation of (Γi, φi) in (Γj , φj).

6.1 is a consequence of 5.5 and the following.

6.2 For any surface Σ there is a number n with the following property. Let Φ be a frame in Σ, and
let Γ1,Γ2 be paintings in Σ fitting Φ, with rep(Γ1) ≥ n. Let σ be an inflation of Γ1 in Γ2 respecting Φ.
Then there is a linear inflation σ′ of Γ1 in Γ2 respecting Φ, such that σ(e) = σ′(e) for all e ∈ E(Γ1),
and σ(v) ⊆ σ′(v) for all v ∈ V (Γ1).

Proof of 6.1, assuming 6.2.
Choose n to satisfy 6.2, taking Σ = Σχ. Choose h ≥ 1 such that rep(Γi) ≥ n for all i ≥ h (this

is possible by 5.5). Suppose that j > i ≥ h and σ is an inflation of (Γi, φi) in (Γj , φj). Then σ is an
inflation of Γi in Γj respecting Φχ, and φi ≤ φj ◦ σ. From 6.2, there is a linear inflation σ′ of Γi in
Γj respecting Φχ with σ(e) = σ′(e) for all e ∈ E(Γ1), and hence with φi ≤ φj ◦ σ′. But then σ′ is
a linear inflation of (Γi, φi) in (Γj , φj), a contradiction. Thus there are no such i, j, σ, as required.
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The proof of 6.2 will require several lemmas, however. If G is a drawing in a surface Σ, not
a sphere, we define rep(G) to be the minimum of |F∩V (G)|, taken over all non-null-homotopic G-
normal O-arcs F in Σ. If Σ is a sphere, we set rep(G) =∞. If G,G′ are drawings in Σ,Σ′ respectively
we say that G,G′ are isomorphic if there is a bijection β : V (G) ∪E(G)→ V (G′) ∪E(G′), mapping
vertices to vertices and edges to edges and preserving incidence. (This is the usual definition of
isomorphism for non-embedded graphs, and it takes no note of the way the graphs are drawn in the
surface.) An enlargement of G in G′ is a function σ with domain V (G) ∪ E(G), such that

• for each e ∈ E(G), σ(e) ∈ E(G′), and if e1, e2 ∈ E(G) are distinct then σ(e1) 6= σ(e2)

• for each v ∈ V (G), σ(v) is a non-null connected subdrawing of G′, and if v1, v2 ∈ V (G) are
distinct then σ(v1), σ(v2) are disjoint

• for each e ∈ E(G) and v ∈ V (G), σ(v) contains an end of σ(e) if and only if v is an end of e.

(Thus, there is an enlargement of G in G′ if and only if G is isomorphic to a minor of G′, with the
usual definition of “minor” for graphs.)

6.3 Let G,G′ be drawings in a surface Σ with bd(Σ) = ∅, such that there is an enlargement of G in
G′. Then G is isomorphic to a drawing H in Σ with rep(H) ≤ rep(G′).

Proof. Let σ be an enlargement of G in G′. We may assume that σ(v) is a tree, for each v ∈ V (G).
Let H ′ be the subdrawing of G′ with

V (H ′) =
⋃

(V (σ(v)) : v ∈ V (G))

E(H ′) =
⋃

(E(σ(v)) : v ∈ V (G)) ∪ {σ(e) : e ∈ E(G)}.

Then rep(H ′) ≤ rep(G′). Let Σ′ be obtained from Σ by identifying all the elements of U(σ(v)), for
each v ∈ V (G), and let H be the image of H ′ under this identification. Since each σ(v) is a tree it
follows that Σ′ ∼= Σ; and since σ is an enlargement of G it follows that H is isomorphic to G. But
rep(H) ≤ rep(H ′), and so rep(H) ≤ rep(G′), as required.

Theorem 9.2 of [3] asserts the following.

6.4 For every surface Σ with bd(Σ) = ∅, not a sphere, and every drawing H in Σ, there is a number
k such that for every drawing G in Σ with rep(G) ≥ k there is an enlargement of H in G.

We deduce

6.5 For every surface Σ with bd(Σ) = ∅, not a sphere, there is a number k ≥ 0 such that if G is a
drawing in Σ with rep(G) ≥ k and G′ is a drawing in Σ such that there is an enlargement of G in
G′, then rep(G′) ≥ 1.

Proof. Let H be a connected drawing in Σ which is not isomorphic to any drawing in any simpler
surface. (Such a drawing H exists; for instance, it follows by considering the Euler characteristic of
the surfaces that any triangulation of Σ without parallel edges has the desired property.)

Choose k as in 6.4. Let G,G′ be as in the theorem. By 6.4, there is an enlargement of H in
G, and hence an enlargement of H in G′. By 6.3, H is isomorphic to a drawing H ′ in Σ with
rep(H ′) ≤ rep(G′). If rep(H ′) = 0, then we can cut Σ along a non-null-homotopic O-arc F with
F ∩ U(H ′) = ∅, to obtain a drawing isomorphic to H in a surface simpler than Σ, a contradiction.
Hence rep(H ′) ≥ 1, and so rep(G′) ≥ 1.
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A drawing G in Σ is a block if G is non-null and connected, and G \ v is connected for every
vertex v ∈ V (G).

6.6 For every surface Σ with bd(Σ) = ∅ there is a number k ≥ 0 with the following property. Let
G,G′ be blocks in Σ with rep(G) > k, and let σ be an enlargement of G in G′. Then there is an
enlargement σ′ of G in G′ such that

• σ(e) = σ′(e) for every e ∈ E(G), and σ(v) ⊆ σ′(v) for every v ∈ V (G)

•
⋃

(V (σ′(v)) : v ∈ V (G)) = V (G′), and each σ′(v) is an induced subgraph of G′

• for every region r of G′, and every v ∈ V (G), σ′(v) ∩ r̄ is null or connected.

Proof. If Σ is a sphere, let k = 0. If not, choose k to satisfy 6.5. Now let G,G′, σ be as in the
theorem. Choose an enlargement σ′ of G in G′ satisfying the first statement of the theorem, in such
a way that ⋃

(σ′(v) : v ∈ V (G))

is maximal. Since G′ is connected and G is non-null because they are blocks, it follows that the
second statement of the theorem holds. It remains to verify the third. Let r be a region of G′, let
v ∈ V (G), and let a, b ∈ r̄ ∩ V (σ′(v)). We shall show that there is a path P of σ′(v) with ends a, b
and with U(P ) ⊆ r̄. For certainly there is a path Q of σ′(v) with ends a, b since σ′(v) is connected.
Let H = G \ v. Now rep(H) ≥ k, since rep(G) > k; and because there is an enlargement of H in
G′ \ V (Q), it follows that rep(G′ \ V (Q)) ≥ 1, since k satisfies 6.5 unless Σ is a sphere. Let F be an
O-arc in Σ with U(Q) ⊆ F and F \U(Q) ⊆ r. Since F ∩U(G′ \ V (Q)) = ∅ and rep(G′ \ V (Q)) ≥ 1,
it follows that there is a disc ∆ ⊆ Σ bounded by F .

(1) If G′ ∩∆ ⊆ σ′(v) then there is a path P of σ′(v) with ends a, b and with U(P ) ⊆ r̄.

Subproof. r ∩ F is connected, and so there is a path of G′ ∩ (r̄ ∩ ∆) between a and b; and so
if G′ ∩∆ ⊆ σ′(v) we may take P to be this path. This proves (1).

(2) If U(σ′(u)) ⊆ ∆ for every u ∈ V (G) \ {v} then there is a path P of σ′(v) with ends a, b and with
U(P ) ⊆ r̄.

Subproof. Let G′′ be G′ ∩ ∆, regarded as a drawing in Σ. If Σ is not a sphere then there is
a non-null-homotopic O-arc disjoint from ∆, and hence rep(G′′) = 0, which is impossible under the
hypothesis of (2), because there is an enlargement of H in G′′, and rep(H) ≥ k, and k satisfies 6.5.
Thus Σ is a sphere. Let ∆′ ⊆ Σ be the disc bounded by F with ∆ 6= ∆′. Then G′ ∩∆′ ⊆ σ′(v), since
U(σ′(u)) ⊆ ∆ for every u ∈ V (G) \ {v} and the second statement of the theorem holds. But then
the claim follows by (1) applied to ∆′. This proves (2).

From (1) and (2) we may suppose, for a contradiction, that there exist u1, u2 ∈ V (G) \ {v} with
U(σ′(u1)) ∩∆ 6= ∅ and U(σ′(u2)) 6⊆ ∆. Since U(σ′(ui)) ∩ F = ∅ and σ′(ui) is connected (i = 1, 2),
it follows that U(σ′(u1)) ⊆ ∆ \ F and U(σ′(u2)) ∩∆ = ∅. In particular, u1 6= u2. Now every path
of G′ from V (σ′(u1)) to V (σ′(u2)) passes through V (σ′(v)), and so every path of G from u1 to u2

passes through v. But G is a block, a contradiction, as required.
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6.7 If Γ is an internally 3-connected painting in a surface Σ, then sk(Γ) is a block and rep(sk(Γ)) =
rep(Γ).

Proof. We may assume that |V (Γ)| ≥ 3. Now since for every region r of Γ in Σ, r is an open disc
and r ∪ {v} is simply-connected for every vertex v of Γ with v ∈ r̄, it follows that the closed curve
tracing the perimeter of r has no repeated vertices, and since |V (Γ)| ≥ 3 this curve is an O-arc. Thus
for each region r of Γ in Σ there is a circuit Cr of sk(Γ) with U(Cr) = bd(r̄). Hence the same is true
for each region r of sk(Γ) in Σ̂. Now if v ∈ V (sk(Γ)) and sk(Γ) \ v is disconnected, then there are
two vertices u1, u2 6= v belonging to the same circuit Cr, and belonging to different components of
sk(Γ) \ v, which is impossible. Thus sk(Γ) is a block. The second claim is clear.

Proof of 6.2.
Choose n such that 6.6 holds with Σ and k replaced by Σ̂ and n − 1. Let Φ,Γ1,Γ2, σ be as in

6.2. For each e ∈ E(sk(Γ1)) define τ(e) as follows. If e ∈ E(Γ1) let τ(e) = σ(e). If e is a component
of bd(c̄1) \ c̃1 for some c1 ∈ E(Γ1) with |c̃1| = 3, let c2 = σ(c1), let the ends of e be u, v and let τ(e)
be the edge of sk(Γ2) with τ(e) ⊆ bd(c̄2) and with ends in σ(u), σ(v). For each v ∈ V (sk(Γ1)) let
τ(v) = σ(v). Then τ is an enlargement of sk(Γ1) in sk(Γ2).

Now by 6.7 sk(Γ1), sk(Γ2) are blocks and rep(sk(Γ1)) = rep(Γ1) ≥ n > k. By 6.6, there is an
enlargement τ ′ of sk(Γ1) in sk(Γ2) such that

• τ ′(e) = τ(e) for every e ∈ E(sk(Γ1)), and τ(v) ⊆ τ ′(v) for every v ∈ V (sk(Γ1))

•
⋃

(V (τ ′(v)) : v ∈ V (sk(Γ1))) = V (sk(Γ2)), and each τ ′(v) is an induced subgraph of sk(Γ2)

• for every region r of sk(Γ2) in Σ̂, and every v ∈ V (sk(Γ1)), τ ′(v) ∩ r̄ is null or connected.

For each e ∈ E(Γ1), let σ′(e) = σ(e), and for each v ∈ V (Γ1), let σ′(v) = τ ′(v). Since all the
σ′(v)’s are disjoint, and for e ∈ E(Γ1) if v is the ith end of e then σ′(v) contains the ith end of σ′(e)
(because σ(v) does, and σ(v) = τ(v) ⊆ τ ′(v) = σ′(v)), it follows that σ′ is an inflation of Γ1 in Γ2

respecting Φ. We claim that σ′ is linear. For let Θ be a cuff of Σ and let Ci be the circuit of sk(Γi)
with U(Ci) = Θ (i = 1, 2). Let

E(C1) = {e1, . . . , et}
V (C1) = {v1, . . . , vt}

where ei has ends vi and vi+1 (1 ≤ i ≤ t), where vt+1 means v1. Now σ′(ei) = σ(ei) ⊆ Θ for 1 ≤ i ≤ t,
and for 1 ≤ i ≤ t σ(vi), and hence τ ′(vi), contains an end of both σ′(ei−1) and σ′(ei), where e0 means
et. Thus, by the third statement above, there is a path Pi of τ ′(vi) joining an end of σ′(ei−1) and
an end of σ′(ei), with U(Pi) ⊆ Θ. Since τ ′(v1), . . . , τ ′(vt) are disjoint, it follows that P1, . . . , Pt are
disjoint, and so

V (P1) ∪ . . . ∪ V (Pt) = V (C2)

E(P1) ∪ . . . ∪ E(Pt) ∪ {σ′(e1), . . . , σ′(et)} = E(C2).

Hence every edge e ∈ E(Γ2) \ σ′(E(Γ1)) with e ⊆ Θ is an edge of some Pi and hence of some σ′(vi).
Thus σ′ is linear, as required.

16



7 Tangles

A hypergraph H consists of a set V (H) of vertices, a set E(H) of edges, and an incidence relation
between them; the vertices incident with an edge are its ends. A hypergraph G is a subhypergraph
of H (written G ⊆ H) if V (G) ⊆ V (H), E(G) ⊆ E(H), and each edge of G has the same ends in G
and in H. If A,B ⊆ H, we define A ∩B,A ∪B in the natural way. A separation of H is an ordered
pair (A,B) of subhypergraphs with A∪B = H and E(A∩B) = ∅; its order is |V (A∩B)|. A tangle
of order θ ≥ 1 in H is a set T of separations of H, all of order < θ, such that

• for every separation (A,B) of H of order < θ, T contains either (A,B) or (B,A)

• if (Ai, Bi) ∈ T (i = 1, 2, 3) then A1 ∪A2 ∪A3 6= H

• if (A,B) ∈ T then V (A) 6= V (H).

We refer to these as the “tangle axioms”. We define ord(T ) to be the order of T .
If Γ is a painting then (V (Γ), E(Γ)) (with the natural incidence relation) is a hypergraph, and to

avoid proliferating notation we shall also call this hypergraph Γ. Thus, we may speak of subhyper-
graphs, tangles etc. of a painting Γ.

Let Γ be a 2-cell painting in Σ with E(Γ) 6= ∅, and let T be a tangle in Γ. We define rep(T )
to be the maximum k ≤ ord(T ) such that for every circuit F of Γ∗ with 1

2 |E(F )| < k there is a

disc ∆ ⊆ Σ̂ bounded by U(F ), such that (Γ ∩ ∆,Γ ∩ ∆′) ∈ T , where ∆′ is the closure of Σ̂ \ ∆.
If 1

2 |E(F )| < rep(T ) and ∆ is as described, we write ∆ = ins(F ),∆′ = out(F ). We make the
convention that when we are dealing with more than one tangle in the same painting, ins(F ) and
out(F ) will always be defined with reference to the tangle currently called T (the others will be
called T ′, T1 etc.). When there is only one tangle specified in the painting, ins(F ) and out(F ) are
defined with reference to that.

Let Γ be a 2-cell painting in Σ. The atoms of Γ are the sets {v}(v ∈ V (Γ)), the edges of Γ, and
the regions of Γ in Σ̂; and the set of atoms is denoted by A(Γ). To every atom of Γ there corresponds
an atom of Γ∗ in the natural way. Now assume in addition that E(Γ) 6= ∅, and let T be a tangle in
Γ. If W is a closed walk in Γ∗, we define Γ∗|W to be the subdrawing of Γ∗ consisting of all vertices
and edges in W . If W has length < 2 rep(T ), we define ins(W ) to be the union of U(Γ∗|W ) and all
the closed discs ins(F ) where F is a circuit of Γ∗|W . It is easy to see that if x ∈ A(Γ) and x∗ is the
corresponding atom of Γ∗, then x ∩ ins(W ) 6= ∅ if and only if x∗ ⊆ ins(W ), and we frequently use
this fact without further explanation.

In theorem 9.1 of [6], we defined a metric on the set of atoms of Γ∗, using so-called ”restraints”.
However, from theorems 8.5 and 9.2 of that paper, the same metric can be defined using the sets
ins(W ) instead of general restraints; and since every atom of Γ corresponds to an atom of Γ∗, this
induces a metric on A(Γ). In summary, for a, b ∈ A(Γ), we define d(a, b) as follows:

• if a = b then d(a, b) = 0

• if a 6= b and there is a closed walk W of Γ∗ with length < 2rep(T ) and with a ∩ ins(W ), b ∩
ins(W ) 6= ∅, we define d(a, b) to be half the minimum length of such a walk

• if neither of the above applies then d(a, b) = rep(T ).
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We call d the metric of T (it is indeed a metric on A(Γ), as explained earlier.) When v ∈ V (Γ) and
z ∈ A(Γ), we often write d(v, z) for d({v}, z)

In theorem 9.2 of [8], we proved a useful result about this metric, but only for drawings, not
paintings. Now we need to generalize that to paintings, as follows.

7.1 Let Γ be a 2-cell painting with E(Γ) 6= ∅ in a surface Σ, and let T be a tangle in Γ with metric
d. Let z ∈ A(Γ), and let κ be an integer with 4 ≤ κ ≤ rep(T )−6. Then there is a circuit C of sk(Γ),
bounding an open disc Λ ⊆ Σ̂ with z ⊆ Λ, such that

• d(z, x) ≤ κ+ 5 for every x ∈ A(Γ) with x ∩ Λ̄ 6= ∅

• d(z, x) ≥ κ for every x ∈ A(Γ) with x ∩ Λ = ∅

• x ⊆ Λ for for every x ∈ A(Γ) with d(z, x) ≤ κ− 2

• ins(C∗) ⊆ Λ̄ for every circuit C∗ of Γ∗ with U(C∗) ⊆ Λ̄ and |E(C∗)| < 2(rep(T )− κ− 5).

Proof. For 1 ≤ i ≤ rep(T ), let Z(i) be the union of ins(W ), taken over all closed walks W of Γ∗

with length < 2i and with z∗ ⊆ ins(W ), where z∗ is the atom of Γ∗ corresponding to z. By theorems
8.5, 8.10, 8.12 and 9.2 of [6], Z(rep(T )) is simply-connected and 6= Σ̂, and so by theorems 4.2 and
11.9 of [3], there is a closed disc ∆ ⊆ Σ̂ with Z(rep(T )) ⊆ ∆ \ bd(∆). Since κ ≥ 4, it follows that
z ⊆ Z(κ) ⊆ Z(rep(T )) ⊆ ∆.

(1) Let r be a region of sk(Γ) in Σ̂ with r̄∩Z(κ) 6= ∅, and let s ∈ A(Γ) with r ⊆ s; then d(z, s) ≤ κ+2
and s ⊆ ∆ \ bd(∆).

Subproof. Since r̄ ∩ Z(κ) 6= ∅ it follows that s̄ ∩ Z(κ) 6= ∅, and so there is a vertex v of Γ
with v ∈ s̄ ∩ Z(κ). Hence d(s, v) ≤ 3 and d(z, v) < κ, and so d(z, s) ≤ κ + 2. Suppose that
s 6⊆ Z(rep(T )). Since either r = s or s ∈ E(Γ) with |s̃| = 3, s is a subset of the closure of the union
of the regions of Γ∗ that meet s; and so there is a region e∗ of Γ∗ with s∩e∗ 6= ∅ and e∗ 6⊆ Z(rep(T )).
Let e be the corresponding edge of Γ; then d(z, e) = rep(T ) since e∗ 6⊆ Z(rep(T )). But d(s, e) ≤ 3
since s ∩ e∗ 6= ∅, and so

d(z, s) ≥ rep(T )− 3 ≥ κ+ 3,

a contradiction. Thus s ⊆ Z(rep(T )) ⊆ ∆ \ bd(∆). This proves (1).

From (1) and theorem 5.2 of [8] it follows that there is a circuit C of sk(Γ) with U(C) ⊆ ∆,
bounding an open disc Λ ⊆ ∆ including Z(κ), such that every edge of C is incident with a region
r of sk(Γ) in Σ̂ with r̄ ∩ Z(κ) 6= ∅. We claim that C satisfies the theorem. Certainly z ⊆ Λ, since
z ⊆ Z(κ). To verify the first assertion of the theorem, we shall show that Λ̄ ⊆ Z(κ + 6). Let
e ∈ E(C), and let r be a region of sk(Γ) in Σ̂ with e ⊆ r̄ and with r̄ ∩ Z(κ) 6= ∅. Let s ∈ A(Γ) with
r ⊆ s. Then by (1), d(z, s) ≤ κ + 2. Let f ∈ E(Γ) with e ⊆ f ; then e ⊆ s̄ ∩ f and so d(s, f) ≤ 3.
Hence d(z, f) ≤ κ+ 5, and so f ⊆ f∗ ⊆ Z(κ+ 6), where f∗ ∈ A(Γ∗) corresponds to f . Consequently
e ⊆ Z(κ + 6). Since this holds for every edge e of C it follows that U(C) ⊆ Z(κ + 6). By theorem
8.10 of [6], Z(κ + 6) is simply-connected, and so there is a closed disc D ⊆ Z(κ + 6) ⊆ ∆ bounded
by U(C). Thus D and Λ̄ are both closed discs in ∆ bounded by U(C), and hence D = Λ̄; and
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consequently Λ̄ ⊆ Z(κ + 6). Now let x ∈ A(Γ) with x ∩ Λ̄ 6= ∅. Then x ∩ Z(κ + 6) 6= ∅, and so
d(z, x) ≤ κ+ 5. Hence the first assertion of the theorem holds.

To verify the second, let x ∈ A(Γ) with x ∩ Λ = ∅, and let x∗ be the corresponding atom of Γ∗.
Since x ∩ x∗ 6= ∅ and x ∩ Λ = ∅ it follows that x∗ 6⊆ Λ, and so x∗ 6⊆ Z(κ). Hence d(z, x) ≥ κ. This
verifies the second assertion.

For the third, let x ∈ A(Γ) with x 6⊆ Λ. If x ∩ Λ = ∅ then because the second assertion of the
theorem holds, d(z, x) ≥ κ as required. We may assume then that x ∩ Λ 6= ∅, and since x 6⊆ Λ it
follows that x ∩ U(C) 6= ∅. Since x ∈ A(Γ) and x ∩ Λ 6= ∅ and x ∩ U(C) 6= ∅, it follows that x is an
edge of Γ with |x̃| = 3, and there is a vertex v ∈ x̃ ∩ V (C). The atoms of Γ∗ corresponding to {v}
and to x are adjacent in Γ∗, and so d(x, {v}) ≤ 1. But since {v} ∩ Λ = ∅, it follows from the second
assertion that d(z, {v}) ≥ κ, and so

d(z, x) ≥ d(z, {v})− d(x, {v}) ≥ κ− 1.

This proves the third assertion.
To verify the fourth, let f ∈ E(Γ) with d(z, f) = rep(T ). (This exists by theorem 8.12 of [6].)

Let C∗ be a circuit of Γ∗ with U(C∗) ⊆ Λ̄ and with |E(C∗)| < 2(rep(T ) − κ − 5). Let D be
the closed disc in Λ̄ bounded by U(C∗), and let v ∈ V (C∗) ∩ V (Γ). Then d(z, v) ≤ κ + 5, and
so d(v, f) ≥ rep(T ) − κ − 5. Hence f 6⊆ ins(C∗), because |E(C∗)| < 2(rep(T ) − κ − 5), and so
ins(C∗) and D are both closed discs in Σ \ f bounded by U(C∗). Consequently D = ins(C∗), and
so ins(C∗) ⊆ Λ̄. This verifies the fourth assertion, and so completes the proof of 7.1.

8 Tie-breakers

Throughout this section Γ is an internally 3-connected painting in Σ. Let e ∈ E(Γ∗) with ends
v ∈ V (Γ) and r∗ ∈ R∗(Γ), and let C be the circuit of sk(Γ) with U(C) bounding r. (We assume for
the moment that C exists.) Let f1, f2 be the two edges of C incident with v, and let c1, c2 be the
two edges of Γ with f1 ⊆ c1, f2 ⊆ c2. Now if (A,B) is a separation of Γ, we say that (A,B) splits e
if c1 ∈ E(A) and c2 ∈ E(B) or vice versa. (If the circuit C does not exist, then, since the perimeter
of r has no “repeated” vertices because Γ is internally 3-connected, it follows that |V (Γ)| = 2 and
|E(Γ)| = 1. In this case we say that (A,B) does not split e.) We shall need the following lemma.

8.1 Let (A, B) be a separation of Γ of order < rep(Γ), with E(A), E(B) 6= ∅. Then there is a circuit
F of Γ∗ such that (A,B) splits every edge of F and there is a disc ∆ ⊆ Σ̂ bounded by U(F ) such
that either Γ ∩∆ ⊆ A or Γ ∩∆ ⊆ B.

Proof. Let G be the subdrawing of Γ∗ with V (G) = V (Γ∗) and edges those edges of Γ∗ with are
split by (A,B). Now E(G) 6= ∅ since E(A), E(B) 6= ∅; and every vertex of G has even degree from
the definition of G. Moreover, for any circuit F of G, half its vertices belong to V (A ∩ B), and so
1
2 |E(F )| < rep(Γ); and therefore there is a disc in Σ̂ bounded by U(F ). Let us choose a minimal

disc ∆ ⊆ Σ̂ with bd(∆) ⊆ U(G); and let F be the circuit of Γ∗ with U(F ) = bd(∆). Since every edge
of G is contained in a circuit of G, and G ∩∆ has no circuit except F , it follows that G ∩∆ = F .
But then Γ ∩∆ ⊆ A or Γ ∩∆ ⊆ B, as required.
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In [5] we discussed “tie-breakers” in general hypergraphs. In this paper we only need a particular
kind of tie-breaker, chosen to work nicely in paintings, but we use the same name. Thus, for each
e ∈ E(Γ∗) let λ(e) > 0 be some real number, and for each v ∈ V (Γ) let λ(v) > 0 be some real
number, such that all the λ(e)’s and λ(v)’s are rationally independent; that is,∑

(α(e)λ(e) : e ∈ E(Γ∗)) =
∑

(β(v)λ(v) : v ∈ V (Γ))

for rationals α(e), β(v) only if each α(e) = 0 and each β(v) = 0. Moreover, let λ(e) < λ(f) for
all e, f ∈ E(Γ∗) such that e ⊆ Σ̂ \ Σ and f ⊆ Σ. We call λ a tie-breaker in Γ. Throughout this
section, λ is a fixed tie-breaker in Γ. We define the λ-order of a separation (A,B) of Γ to be the
triple (N1, N2, N3), where

N1 = |V (A ∩B)|,

N2 =
∑

(λ(e) : e is split by (A,B)),

N3 =
∑

(λ(v) : v ∈ V (A ∩B)).

We order λ-orders lexicographically; thus, if (A,B), (A′, B′) have λ-orders (N1, N2, N3) and (N ′1, N
′
2, N

′
3)

respectively, we say that (A,B) has smaller λ-order than (A′, B′) if either N1 < N ′1, or N1 = N ′1 and
N2 < N ′2, or N1 = N ′1 and N2 = N ′2 and N3 < N ′3. The next two results prove that the tie-breakers
in this paper are indeed tie-breakers in the sense of [5]. It is easy to prove that

8.2 If (A, B), (A′, B′) are separations with the same λ-order, then (A,B) = (A′, B′) or (B′, A′).

Moreover,

8.3 If (A,B), (A′, B′) are separations then so are (A ∪ A′, B ∩ B′), (A ∩ A′, B ∪ B′), and either
(A ∪ A′, B ∩ B′) has smaller λ-order than (A,B), or (A ∩ A′, B ∪ B′) has λ-order at most that of
(A′, B′).

Proof. Let these four separations have λ-orders (N1, N2, N3), (N ′1, N
′
2, N

′
3), (N ′′1 , N

′′
2 , N

′′
3 ), and

(N ′′′1 , N
′′′
2 , N

′′′
3 ) respectively. Then N1+N ′1 = N ′′1 +N ′′′1 , N2+N ′2 ≥ N ′′2 +N ′′′2 , and N3+N ′3 = N ′′3 +N ′′′3 ,

and the result follows.

Let T , T ′ be tangles in Γ, with T 6⊆ T ′ and T ′ 6⊆ T . Then there exists (A,B) ∈ T with
(B,A) ∈ T ′, and there is a unique such (A,B) with minimum λ-order, called the (T , T ′)-distinction.

8.4 Let T , T ′ be tangles in Γ and let (A,B) be the (T , T ′)-distinction. Suppose that |V (A ∩ B)| <
rep(T ). Then there is a circuit F in Γ∗ such that A = Γ ∩ ins(F ), B = Γ ∩ out(F ).

Proof. By the second tangle axiom, E(A), E(B) 6= ∅ since (A,B) ∈ T and (B,A) ∈ T ′. By 8.1
there is a circuit F of Γ∗ such that (A,B) splits every edge of F and there is a disc ∆ ⊆ Σ̂ bounded
by U(F ) with either Γ ∩∆ ⊆ A or Γ ∩∆ ⊆ B. Let ∆′ be the closure of Σ̂ \∆, and let H = Γ ∩∆
and H ′ = Γ ∩∆′. Then H ∩H ′ ⊆ A ∩B.

The three separations (H,H ′), (A∩H ′, B∪H) and (A∪H,B∩H ′) all have λ-order at most that
of (A,B), because H ∩H ′ ⊆ A ∩B and every edge of Γ∗ split by one of these separations is split by
(A,B).
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If H ⊆ A then A∪H ′ = Γ, and so (H ′, H) /∈ T since (A,B) ∈ T ; while if H ⊆ B then B∪H = Γ,
and so (H ′, H) /∈ T ′ since (B,A) ∈ T ′. In either case it follows that (H ′, H) does not belong to both
T , T ′, and so (H,H ′) belongs to at least one of them.

Suppose that (H,H ′) belongs to both of T , T ′. Now (A∩H ′, B∪H) /∈ T ′, from the second tangle
axiom, since (H,H ′), (B,A) ∈ T ′ and H∪B∪(A∩H ′) = Γ. Consequently (B∪H,A∩H ′) ∈ T ′. But
(A∩H ′, B∪H) ∈ T , since (A,B) ∈ T ; and since (A∩H ′, B∪H) has λ-order at most that of (A,B),
and (A,B) is the (T , T ′)-distinction, it follows that equality holds, and so (A∩H ′, B ∪H) = (A,B),
that is, A ⊆ H ′ and H ⊆ B. Similarly, (B ∩ H ′, A ∪ H) /∈ T , since (H,H ′), (A,B),∈ T , and
H∪A∪(B∩H ′) = Γ. Consequently (A∪H,B∩H ′) ∈ T . But (B∩H ′, A∪H) ∈ T ′, since (B,A) ∈ T ′,
and so this separation has the same λ-order as (A,B), and therefore (A∪H,B ∩H ′) = (A,B), that
is, H ⊆ A and B ⊆ H ′. But we already showed that A ⊆ H ′ and H ⊆ B, and so E(H) = ∅. Since
∆ includes a region of Γ∗ and hence an edge of Γ, this is impossible.

It follows that (H,H ′) belongs to exactly one of T , T ′. Since its λ-order is at most that of
(A,B), and (A,B) is the (T , T ′)-distinction, it follows that equality holds, and so (H,H ′) = (A,B)
or (B,A). The first is the desired result. If the second holds, then since (H,H ′) has order less than
rep(T ) and (H,H ′) /∈ T , it follows that there is a disc bounded by F different from ∆; and so ∆′ is
a disc. Since in this case ∆′ = ins(F ), we deduce that again the desired result holds.

Given a tangle T in Γ, a circuit F of Γ∗ is a T -enclave if 1
2 |E(F )| < rep(T ), and there is a tangle

T ′ in Γ for which (Γ ∩ ins(F ),Γ ∩ out(F )) is the (T , T ′)-distinction. We also call F a T -enclave
around T ′. If K is a subgraph of Γ∗, λ(K) denotes

∑
e∈E(K) λ(e).

8.5 Let T be a tangle in Γ, and let F be a T -enclave around T ′, and let u, v ∈ V (F ) be distinct.
Let F1, F2 be the two paths of F between u and v, and let P be a path of Γ∗ between u and v with no
other vertex or edge in common with F . Suppose that |E(P )| ≤ |E(F1)|, and if equality holds then
λ(P ) ≤ λ(F1). Then

• (Γ ∩ ins(P ∪ F2),Γ ∩ out(P ∪ F2)) ∈ T ′

• if U(P ) 6⊆ ins(F ) then ins(P ∪ F2) ∩ ins(F ) = U(F2)

• |E(P )| ≥ |E(F2)|, and if equality holds then λ(P ) > λ(F2).

Proof. Let Ci be the circuit P ∪ Fi (i = 1, 2). Certainly |E(C2)| ≤ |E(F )|, and if equality holds
then λ(C2) < λ(F ), because the λ(e)’s are rationally independent. Since F is a T -enclave around
T ′, it follows that (Γ∩ ins(C2),Γ∩out(C2)) /∈ T \T ′. Hence the first assertion of the theorem holds.
It follows that ins(F ) 6⊆ ins(C2), because (Γ∩ out(F ),Γ∩ ins(F )) ∈ T ′, and so the second assertion
holds. Suppose that the third is false. Then by the same argument (Γ∩ins(C1),Γ∩out(C1)) ∈ T ′, and
so ins(F ) 6⊆ ins(C1) ∪ ins(C2) from the second tangle axiom applied to T ′. Hence U(P ) 6⊆ ins(F ),
and so ins(Ci) ∩ ins(F ) = U(Fi)(i = 1, 2). But then ins(C1) ∪ ins(C2) ∪ ins(F ) = Σ̂, contrary to
the second tangle axiom applied to T . Thus the third assertion holds. This proves 8.5.

8.6 Let T be a tangle in Γ, and let F1, F2 be T -enclaves. Then either ins(F1) ⊆ ins(F2), or
ins(F2) ⊆ ins(F1), or ins(F1) ∩ ins(F2) = U(F1) ∩ U(F2).

Proof. Let T1, T2 be tangles such that Fi is a T -enclave around Ti (i = 1, 2). Let Ai = Γ ∩
ins(Fi), Bi = Γ ∩ out(Fi)(i = 1, 2). Since (Ai, Bi) is the (T , Ti)- distinction (i = 1, 2) it follows
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from theorems 9.4 and 10.2 of [5] that one of E(A1 ∩ A2), E(A1 ∩ B2), E(B1 ∩ A2), E(B1 ∩ B2) is
empty. Since (Ai, Bi) ∈ T (i = 1, 2) it follows that E(B1 ∩ B2) 6= ∅, and so the fourth alternative is
false. From the symmetry between the second and third alternatives, we may assume without loss
of generality that if either holds then the second does. Thus, one of the first two alternatives holds.

If E(A1 ∩B2) = ∅, then every edge of A1 is included in ins(F2) \ U(F2) and so every edge of Γ∗

split by (A1, B1) is included in ins(F2); therefore U(F1) ⊆ ins(F2), and hence ins(F1) ⊆ ins(F2) as
required. On the other hand, if E(A1 ∩ A2) = ∅, then no edge of Γ∗ split by (A1, B1) is included in
ins(F2)\U(F2), and so U(F1)∩ins(F2) = U(F1)∩U(F2). Similarly, U(F2)∩ins(F1) = U(F1)∩U(F2),
and so ins(F1) ∩ ins(F2) = U(F1) ∩ U(F2), as required.

If T is a tangle in Γ, a separation (A,B) ∈ T is said to be λ-linked to T if there is no (A′, B′) ∈ T of
smaller λ-order with A ⊆ A′ and B′ ⊆ B. If F is a circuit of Γ∗ with 1

2 |E(F )| < min(ord(T ), rep(Γ)),

let Σ1,Σ2 be the closures of the two components of Σ̂ \ U(F ); then T contains one of (Γ ∩ Σ1,Γ ∩
Σ2), (Γ ∩ Σ2,Γ ∩ Σ1), and if that separation is λ-linked to T we say that F is λ-linked (to T ).

8.7 Let T be a tangle in Γ, let F be a circuit of Γ∗ with 1
2 |E(F )| < min(ord(T ), rep(Γ)), and let

Σ1,Σ2 be the closures of the two components of Σ̂ \ U(F ), where (Γ ∩ Σ1,Γ ∩ Σ2) ∈ T . Then there
is a λ-linked circuit F ′ in Γ∗ such that

• |E(F ′)| ≤ |E(F )| and if equality holds then λ(F ′) ≤ λ(F )

• Σ1 ⊆ Σ′1 and Σ′2 ⊆ Σ2, where Σ′1,Σ
′
2 are the closures of the two components of Σ̂ \ U(F ′) and

(Γ ∩ Σ′1,Γ ∩ Σ′2) ∈ T .

Proof. Choose (A,B) ∈ T with Γ ∩Σ1 ⊆ A and B ⊆ Γ ∩Σ2 of minimum λ-order. Then E(B) 6= ∅
since (A,B) ∈ T , and E(A) 6= ∅ since E(Γ ∩ Σ1) 6= ∅. From 8.1 there is a circuit F ′ of Γ∗ such that
(A,B) splits every edge of F ′, and such that U(F ′) bounds a disc ∆ ⊆ Σ̂ with either Γ ∩∆ ⊆ A or
Γ∩∆ ⊆ B. Let Σ′1,Σ

′
2 be the closures of the two components of Σ̂\U(F ′), where (Γ∩Σ′1,Γ∩Σ′2) ∈ T .

It follows that (Γ ∩ Σ′1,Γ ∩ Σ′2) has λ-order at most that of (A,B).
Suppose that Σ1 ⊆ Σ′2. Then Σ′2 includes an edge of A (since Γ ∩ Σ1 ⊆ A). Now (A,B) ∈ T ,

and (Γ ∩ Σ′2,Γ ∩ Σ′1) /∈ T , and yet the second separation has order < ord(T ), and T has order
> 1

2 |E(F )| ≥ 1, and so by the third assertion of theorem 2.9 of [5], not every edge of Γ ∩Σ′2 belongs
to A. Consequently, Σ′2 includes an edge of B. We deduce that Γ ∩Σ′2 6⊆ A and Γ ∩Σ′2 6⊆ B. Hence
Σ′2 6= ∆, and so Σ′1 = ∆. Furthermore,

(A ∩ Σ′2, B ∪ (Γ ∩ Σ′1)), (A ∪ (Γ ∩ Σ′1), B ∩ Σ′2) ∈ T

because they both have order at most that of (A,B), and (Γ ∩ Σ′1,Γ ∩ Σ′2) ∈ T . Yet if Γ ∩ Σ′1 ⊆ A,
the first separation has smaller λ-order than (A,B), while if Γ∩Σ′1 ⊆ B the second does (for in both
cases the first term of the λ-order does not increase, and the second term strictly decreases). In either
case this is contrary to our choice of (A,B); and one of these occurs since Σ′1 = ∆, a contradiction.
Thus, Σ1 6⊆ Σ′2.

Now no edge of F ′ lies in Σ1 \ U(F ), because every edge of F ′ is split; and so Σ1 ⊆ Σ′1 and
Σ′2 ⊆ Σ2. Hence (Γ ∩ Σ′1,Γ ∩ Σ′2) has λ-order at least that of (A,B), from the choice of (A,B).
Since we already shown the reverse inequality, it follows that the λ-orders are equal and so from 8.2,
(A,B) = (Γ∩Σ′1,Γ∩Σ′2). Hence F ′ is λ-linked to T , and (from the choice of (A,B)) |E(F ′)| ≤ |E(F )|,
and if equality holds then λ(F ′) ≤ λ(F ). This proves 8.7.
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An arm A of a painting Γ is a pair (A−, π(A)), where A− is a subhypergraph of Γ and π(A) is
a march in V (A−), with the property that there exists B ⊆ Γ such that (A−, B) is a separation of
Γ and V (A− ∩B) = π̄(A). (In other words, for each edge e of Γ not in E(A−), π̄(A) contains every
end of e in V (A−).) In this case, we call B the complement of A (it is unique) and write B = Ac.
We define V (A) = V (A−), E(A) = E(A−). We say that A is λ-linked to T if (A−, Ac) is λ-linked to
T . The order of A is |π̄(A)|, that is, the order of (A−, Ac).

A rooted location in Γ is a set L of arms, such that if A1, A2 ∈ L with A−1 6= A−2 then A−1 ⊆ Ac2. Its
order ord(L) is the maximum order of its members (or zero, if L = ∅). We define L− = {(A−, Ac) :
A ∈ L}. A rooted location L with L− ⊆ T is λ-linked to T if each of its members is λ-linked to T .
A rooted location L θ-isolates a tangle T if L− ⊆ T , ord(L) < θ ≤ ord(T ), and for every A ∈ L and
for every tangle T ′ of order ≥ θ with (Ac, A−) ∈ T ′, the (T , T ′)-distinction (C,D) satisfies C ⊆ A−
and Ac ⊆ D. It follows by applying theorem theorem 7.1 of [10] to L− that

8.8 If T is a tangle in Γ, and L is a rooted location with L− ⊆ T , and ord(L) < θ ≤ ord(T ), and
L is λ-linked to T , then L θ-isolates T .

9 An application of patchworks

The reader familiar with [1, 10] will see that we can regard a painting Γ as a patchwork, by assigning
to e ∈ E(Γ) the free patch on ẽ; and by doing so, we can apply theorem 6.7 of [10]. Our object now
is to state that theorem in the terminology of paintings.

If Ω1, . . . ,Ωk are well-quasi-orders with E(Ω1), . . . , E(Ωk) mutually disjoint, we define their union
to be the well-quasi-order Ω with E(Ω) = E(Ω1) ∪ . . . ∪ E(Ωk), in which x ≤ y if and only if
x, y ∈ E(Ωi) for some i and x ≤ y in Ωi. A colour scheme χ is disjoint if Ωχ(3), Ωχ(2) and all the
Ωχ(S)’s (over all sides S of Φχ) have mutually disjoint element sets, and if χ is disjoint we denote
the union of these well-quasi-orders by Ωχ. If χ is disjoint and (Γ, φ) is a χ-coloured painting, we
may regard φ as a function from E(Γ) into E(Ωχ).

9.1 Let (Γ, φ), (Γ′, φ′) be χ-coloured paintings, where χ is disjoint. Let σ be an inflation of Γ in Γ′,
such that φ(e) ≤ φ′(σ(e)) (in Ωχ) for every e ∈ E(Γ). Then σ is an inflation of (Γ, φ) in (Γ′, φ′).

Proof. If e ∈ E(Γ), then since φ(e) ≤ φ′(σ(e)) in Ωχ and Ωχ is disjoint it follows that σ(e) is
internal if and only if e is internal, and σ(e) borders a side S if and only if e does. Thus σ respects
Φχ, as required.

In section 2 we defined an inflation of one painting in another. Let us broaden that definition a
little. If Γ,Γ′ are paintings in Σ, and H ⊆ Γ is a subhypergraph, an inflation of H in Γ′ is a function
σ with domain V (H) ∪ E(H) satisfying the three conditions of the definition of inflation in section
2 with Γ replaced by H.

If L is a rooted location in Γ we define M(Γ,L) to be

Γ ∩
⋂

(Ac : A ∈ L).

Thus π̄(A) ⊆ V (M(Γ,L)) for each A ∈ L. Let (Γ, φ), (Γ′, φ′) be χ-coloured paintings, where χ is
disjoint, and let L,L′ be rooted locations in Γ,Γ′ respectively. A function τ : L → L′ is an outline of
(Γ, φ,L) in (Γ′, φ′,L′) if there is an inflation σ of M(Γ,L) in Γ′, such that
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• σ(e) ∈ E(M(Γ′,L′)) for each e ∈ E(M(Γ,L))

• for each A ∈ L, |π̄(τ(A))| = |π̄(A)|, and if A1, A2 ∈ L are distinct then τ(A1) 6= τ(A2)

• for each A ∈ L and 1 ≤ i ≤ |π̄(A)|, if v is the ith term of π(A) then σ(v) contains the ith term
of π(τ(A))

• for each A ∈ L and v ∈ V (M(Γ,L)), |V (σ(v)) ∩ V (τ(A))| ≤ 1

• for each e ∈ E(M(Γ,L)), φ(e) ≤ φ′(σ(e)) in Ωχ.

We stress that the σ(v)’s are subgraphs of sk(Γ′), but not necessarily of sk(M(Γ′,L′)).
If χ is disjoint, (Γ, φ) is a χ-coloured painting, and L is a rooted location in Γ, we call (Γ, φ,L)

a χ-place. A set P of χ-places is well-behaved if for every well-quasi-order Ω and every countable
sequence (Γi, φi,Li)(i = 1, 2, . . .) of members of P, and for all functions ξi : Li → E(Ω), there exist
j > i ≥ 1 and an outline τ of (Γi, φi,Li) in (Γj , φj ,Lj) such that ξi(A) ≤ ξj(τ(A)) for all A ∈ Li.
Theorem 6.7 of [10], together with 9.1, imply the following.

9.2 Let χ be a disjoint colour scheme, let (Γi, φi) (i = 1, 2, . . .) be a countable sequence of χ-coloured
paintings and for each i ≥ 1 let λi be a tie-breaker in Γi. Let θ ≥ 1, and for each i ≥ 1 and every
tangle T in Γi of order ≥ θ, let L(T ) be a rooted location in Γi which θ-isolates T . Let the set of all
these (Γi, φi,L(T )) (over all i and T ) be well-behaved. Then there exist j > i ≥ 1 such that there is
an inflation of (Γi, φi) in (Γj , φj).

Now we can give the reader a little better intuition as to how the proof of 4.1 will work. Let χ
be a colour scheme satisfying S1, . . . ,S4, and let (Γi, φi) (i = 1, 2, . . .) be a countable sequence of
χ-coloured paintings. By 6.1, it will suffice to show that there exist j > i ≥ 1 such that there is an
inflation of (Γi, φi) in (Γj , φj), and to show this we will apply 9.2. We therefore need to produce
an infinite subsequence of this sequence, and a well-behaved set of rooted locations, so that the
subsequence satisfies the hypotheses of 9.2. To get the subsequence, discard from the given sequence
the first term, and all terms (Γi, φi) with dist(Γi) or rep(Γi) at most some appropriately-chosen
number that depends only on (Γ1, φ1). By 5.4 and 5.5, an infinite sequence still remains, and this is
the one we need. Now we need to produce the well-behaved set of rooted locations. Let (Γi, φi) be
some term of the sequence that still remains. We know that there is no inflation of (Γ1, φ1) in (Γi, φi);
and a theorem of [7] therefore can be applied. That theorem implies that for every large-order tangle
T in Γi (the meaning of “large” depending only on (Γ1, φ1)), the triple (Γi, φi, T ) is “insufficiently
general”, in one of only a few possible ways. We deduce that there is a “flaw” in (Γi, φi, T ), of one
of only a few possible kinds (and in particular, of only finitely many different kinds). For each kind
of flaw, we shall show that there corresponds a well-behaved set of rooted locations, such that if
(Γi, φi, T ) admits the flaw then some rooted location in this set θ-isolates T (for appropriate θ); and
then the union of these finitely many well-behaved sets is another well-behaved set, now satisfying
the hypotheses of 9.2, as required.

In sections 10-14 we look at the various kinds of flaw, and in each case construct the desired
well-behaved set, and in section 15 we complete the proof by applying the theorem of [7].

We shall need the following lemmas.

9.3 Let χ be a disjoint colour scheme, and let P be a set of χ-places. For each (Γ, φ,L) ∈ P let
π(L) be a march with π̄(L) =

⋃
(π̄(A) : A ∈ L). Suppose that
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• there exist m,n such that |L| ≤ m and |π̄(L)| ≤ n for all (Γ, φ,L) ∈ P

• for every countable sequence (Γi, φi,Li)(i = 1, 2, . . .) of members of P there exist j > i ≥ 1 and
an inflation σ of M(Γi,Li) in Γj, such that

– for each v ∈ V (M(Γi,Li)), V (σ(v)) ⊆ V (M(Γj ,Lj))
– for each e ∈ E(M(Γi,Li)), σ(e) ∈ E(M(Γj ,Lj)) and φi(e) ≤ φj(σ(e))

– |π̄(Li)| = |π̄(Lj)|, and for 1 ≤ h ≤ |π̄(Li)| if v is the hth term of π(Li) then σ(v) contains
the hth term of π(Lj).

Then P is well-behaved.

The proof is easy and we omit it (see [10] for the proofs of several similar results).

We define the image of a χ-place under a Φχ-preserving homeomorphism in the natural way.

9.4 Let χ be a disjoint colour scheme, and let C be a well-behaved set of χ-places. Let C′ be the set
of all images of members of C under Φχ-preserving homeomorphisms of Σχ. Then C′ is well-behaved.

Again, the proof is clear.

10 Tangle flaws

Our next objective is to produce some well-behaved sets of χ-places. The proofs of several of these
theorems are similar, and so we give only the first in detail. Throughout this section and the next,
χ is a disjoint colour scheme, and S is a similarly oriented set of χ-coloured paintings, such that if
(Γ, φ) ∈ S and α is a Φχ-preserving homeomorphism of Σχ, then S contains the image of (Γ, φ) under
α (briefly, S is closed under Φχ-preserving homeomorphisms). Let D be the set of all quadruples
(Γ, φ, λ, T ) such that (Γ, φ) ∈ S, λ is a tie-breaker in Γ, and T is a tangle in Γ.

Let (Γ, φ, λ, T ) ∈ D, such that rep(Γ), ord(T ) > rep(T ). Then Σ̂χ is not a sphere, and there is a
circuit F of Γ∗ with 1

2 |E(F )| ≤ rep(T ) such that Σ1 is not a disc, where Σ1,Σ2 are the closures of

the two components of Σ̂χ \ U(F ) and (Γ ∩ Σ1,Γ ∩ Σ2) ∈ T . (It follows that 1
2 |E(F )| = rep(T ) for

every such F .) Let us choose such a circuit F with λ(F ) minimal. We call F a representativeness
flaw for (Γ, φ, λ, T ).

10.1 With Γ, φ, λ, T , F,Σ1,Σ2 as above,

• Σ2 is a disc

• either |U(F ) ∩ bd(Σχ)| ≤ 1 and U(F ) ⊆ Σχ, or |U(F ) ∩ bd(Σχ)| = 2 and U(F ) 6⊆ Σχ, or
dist(Γ) ≤ 1

4 |E(F )|+ 1

• F is λ-linked to T .
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Proof. Since rep(Γ) > rep(T ) = 1
2 |E(F )|, it follows that one of Σ1,Σ2 (and hence Σ2) is a disc, and

so the first assertion of the theorem holds. If U(F ) meets two distinct cuffs then dist(Γ) ≤ 1
4 |E(F )|+1,

while if |U(F ) ∩ bd(Σχ)| ≤ 1 then U(F ) ⊆ Σχ, and in either case the second assertion holds. Thus,
to prove the second assertion, we may assume that U(F ) intersects a unique cuff r̄ \ r say, where r∗

is a pole, and |U(F ) ∩ (r̄ \ r)| ≥ 2. Let v1, v2 ∈ U(F ) ∩ (r̄ \ r) be distinct, and let ei ∈ E(Γ∗) have
ends r∗, vi (i = 1, 2). We shall prove that e1, e2 ∈ E(F ), from which the second assertion follows.
For suppose that e1 /∈ E(F ). Let u = r∗ if r∗ ∈ V (F ), and u = v2 if r∗ /∈ V (F ). Let Q be a path of
Γ∗ between v1 and u with E(Q) ⊆ {e1, e2}. Let F1, F2 be the two paths of F with ends v1, u. Now
|E(Q)| ≤ |E(F1)|, |E(F2)|, and λ(Q) < λ(Fi)(i = 1, 2) by the second condition in the definition of
a tie-breaker. Thus if e1 ⊆ Σ2 then one of F1 ∪ Q,F2 ∪ Q contradicts the choice of F . If e1 6⊆ Σ2

then one of U(F1 ∪Q), U(F2 ∪Q) bounds a disc in Σ̂χ including Σ2, because Σ̂ is not a sphere and
rep(Γ) > 1

2 |E(F )|, and again the choice of F is contradicted. This proves the second assertion of the
theorem.

For the third assertion, choose F ′,Σ′1,Σ
′
2 as in 8.7; then (Γ ∩ Σ′1,Γ ∩ Σ′2) ∈ T , and Σ′1 is not a

disc. From the choice of F , λ(F ′) = λ(F ) and therefore F ′ = F ; and so F is λ-linked to T . This
proves 10.1.

10.2 Let χ satisfy S1, let F be a circuit in Σ̂χ, with vertex set {v1, . . . , v2n}, numbered in order in
F, and let π be the march v2, v4, . . . , v2n. Then there is a well-behaved set C(F, π) of χ-places with
the following property. Let (Γ, φ, λ, T ) ∈ D satisfy

• F ⊆ Γ∗, and U(F ) ∩ V (Γ) = π̄

• F is a representativeness flaw for (Γ, φ, λ, T ), and

• dist(Γ) > 1
4 |(E(F )|+ 1.

Then there is a rooted location L with ord(L−) = 1
2 |E(F )|, which (1

2 |E(F )| + 1)-isolates T and for
which (Γ, φ,L) ∈ C(F, π).

Proof. Let D1 be the set of members (Γ, φ, λ, T ) of D satisfying the three displayed statements of
the theorem. We may assume that D1 6= ∅, and so Σ̂χ is not a sphere, and, defining Σ1 and Σ2 as
before, Σ2 is a disc by 10.1. Let (Γ, φ, λ, T ) ∈ D1, let A be the rooted hypergraph with A− = Γ∩Σ1

and π(A) = π, and let L = {A}. Then L (1
2 |E(F )|+ 1)-isolates T , by 8.8, since F is λ-linked to T

by 10.1. Let C(F, π) be the set of all such (Γ, φ, {A}); we must show that C(F, π) is well-behaved.
By 9.3, it suffices to show that for any countable sequence (Γi, φi,Li)(i = 1, 2, . . .) of members of
C(F, π), there exist j > i ≥ 1 and an inflation σ of Γi ∩ Σ2 in Γj such that

(a) for each v ∈ V (Γi ∩ Σ2), V (σ(v)) ⊆ V (Γj ∩ Σ2)

(b) for each e ∈ E(Γi ∩ Σ2), σ(e) ∈ E(Γj ∩ Σ2) and φi(e) ≤ φj(σ(e))

(c) for each v ∈ π̄, σ(v) contains v.

Now by 10.1 U(F ) meets at most one cuff of Σχ, and either |U(F ) ∩ bd(Σχ)| ≤ 1 and U(F ) ⊆ Σχ,
or |U(F ) ∩ bd(Σχ)| = 2 and U(F ) 6⊆ Σχ. Thus there are two fragments obtained by cutting Σχ

along U(F ) ∩ Σχ; let Σ′ be the fragment with ψ(Σ′) ⊆ Σ2, where ψ is the associated surjection.
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Let χ′ be the colour scheme with Σχ′ = Σ′, Φχ′ = ψ−1(Φχ) ∩ Σ′, Ωχ′(k) = Ωχ(k) (k = 2, 3), and
Ωχ′(S

′) = Ωχ(S) for each long side S′ of Φχ′ , where S is the long side of Φχ with ψ(S′) ⊆ S. Since

Σ̂χ is not a sphere, and Σ̂χ′ is a sphere, and χ satisfies S1, it follows that χ′ is not bad. Now for
each i ≥ 1, let Γ′i = ψ−1(Γi) ∩ Σ′, and for each e ∈ E(Γ′i), let φ′i(e) = φi(ψ(e)) if e is not a short
side of Φχ′ , and φ′i(e) = e if e is a short side. Then (Γ′i, φ

′
i) is a χ′-coloured painting. Since χ′ is not

bad, there exist j > i ≥ 1 and a linear inflation σ′ of (Γ′i, φ
′
i) in (Γ′j , φ

′
j). For each e ∈ E(Γj ∩ Σ2),

let σ(e) = ψ(σ′(ψ−1(e))), and for each v ∈ V (Γj ∩ Σ2), let σ(v) = ψ(σ′(v′)), where ψ−1(v) = {v′}.
Then σ is an inflation satisfying (a), (b), (c) above, as required. This proves 10.2.

10.3 Let χ satisfy S1, and let n ≥ 1 be an integer. Then there is a well-behaved set C1(n) of χ-
places with the following property. Let (Γ, φ, λ, T ) ∈ D satisfy rep(Γ), ord(T ) ≥ n > rep(T ), and
dist(Γ) ≥ 1

2n+1. Then there is a rooted location L which n-isolates T and for which (Γ, φ,L) ∈ C1(n).

Proof. By 5.2, there are finitely many pairs (Fi, πi)(i ∈ I), such that each Fi is an even length
circuit in Σ̂χ with 1

2 |E(Fi)| < n, and πi is a march with π̄i ⊆ V (Fi) consisting of every second
vertex of Fi, with the following property. Let (Γ, φ, λ, T ) be as in the theorem, and let F be a
representativeness flaw. Then there exist i ∈ I and a Φχ-preserving homeomorphism α of Σχ which
maps F to Fi and U(F )∩V (Γ) to π̄i. Let C1(n) be the union, over all i ∈ I, of the set of all images of
members of C(Fi, πi) (defined in 10.2) under Φχ-preserving homeomorphisms. By 9.4, C1(n) is well-
behaved (since I is finite). Let (Γ, φ, λ, T ), F, i, α be as before, and let (Γ′, φ′, λ′, T ′) be the image of
(Γ, φ, λ, T ) under α (in the natural sense). Since S is closed under Φχ-preserving homeomorphisms,
it follows that (Γ′, φ′, λ′, T ′) ∈ D, and Fi is a representativeness flaw for it with U(Fi) ∩ V (Γ′) = π̄i.
By 10.2, there is a rooted location L′ with ord(L′) = 1

2 |E(F )| < n which n-isolates T ′ and with
(Γ′, φ′,L′) ∈ C(Fi, πi). Let L be the image of L′ under α−1. Then it satisfies the theorem.

The sets C1(n) will handle failure of representativeness. Now we turn to another possible failure
when rep(T ) is large but d(r∗1, r

∗
2) is small for two poles r∗1, r

∗
2. More precisely, for n ≥ 1 an integer,

let us say that (Γ, φ, λ, T ) ∈ D is n-flawed in distance if rep(T ) > n, and dist(Γ) > 1
2n+1, and there

are distinct poles r∗1, r
∗
2 with d(r∗1, r

∗
2) ≤ n. Suppose that (Γ, φ, λ, T ) ∈ D is n-flawed in distance.

Then since dist(Γ) ≥ 1
2n + 1, it follows from theorem 9.2 of [6] that there exists F ⊆ Γ∗ such that

one of the following holds:

• F is a circuit with |E(F )| ≤ 2n, satisfying

– either |U(F ) ∩ bd(Σχ)| ≤ 1 and U(F ) ⊆ Σχ, or |U(F ) ∩ bd(Σχ)| = 2 and U(F ) 6⊆ Σχ, and

– ins(F ) contains at least two poles;

• F = F0 ∪ F1 with 2|E(F0)|+ |E(F1)| ≤ 2n, where F0 is a path with distinct ends and F1 is a
circuit, satisfying

– one end of F1 is a pole r∗ say, and the other end is the unique element of F0 ∩ F1

– every vertex of F0 is in Σχ \ bd(Σχ) except r∗ and its neighbour,

– every vertex of F1 \ F0 is in Σχ \ bd(Σχ), and

– ins(F1) contains exactly one pole and does not contain r∗;
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• F = F0 ∪ F1 ∪ F2 with 2|E(F0)| + |E(F1)| + |E(F2)| ≤ 2n, where F0 is a path and F1, F2 are
circuits, satisfying

– F0 ∩ F1 = {v1} and F0 ∩ F2 = {v2} where v1, v2 are the ends of F0,

– U(F0 ∪ F1) ⊆ Σχ \ bd(Σχ),

– U(F2) ⊆ Σχ and |U(F2) ∩ bd(Σχ)| ≤ 1,

– either E(F0) = ∅ and F0 = F1 ∩ F2 or E(F0) 6= ∅ and F1 ∩ F2 is null, and

– for i = 1, 2, ins(Fi) contains exactly one pole r∗i , say, and r∗1 6= r∗2.

By 8.5 we may choose F such that every circuit of F is λ-linked to T . (To see this, choose F with
ins(F ) maximal.) In this case we call (F, ins(F )) a distance flaw for (Γ, φ, λ, T ).

10.4 Let χ satisfy S3, and let n ≥ 1 be an integer. Then there is a well-behaved set C2(n) of
χ-places with the following property. Let (Γ, φ, λ, T ) ∈ D be n-flawed in distance. Then there is a
rooted location L which (n+ 1)-isolates T and for which (Γ, φ,L) ∈ C2(n).

Proof. By the argument of 10.3, it suffices to prove that if D′ ⊆ D, and all members of D′ have the
same distance flaw, (F,X) say, and U(F )∩ V (Γ) is the same for all (Γ, φ, λ, T ) ∈ D′, then there is a
well-behaved set C of χ-places, such that for all (Γ, φ, λ, T ) ∈ D′ there is a rooted location L which
(n+ 1)-isolates T and for which (Γ, φ,L) ∈ C.

For each circuit C of F , let πC be a march with π̄C = U(C)∩V (Γ) for every (Γ, φ, λ, T ) ∈ D′, and
let ΣC ⊆ X be the disc in Σ̂χ bounded by U(C) such that ΣC = ins(C) for each (Γ, φ, λ, T ) ∈ D′.
Let Σ0 be obtained from Σ̂χ by deleting the interior of each ΣC . For each (Γ, φ, λ, T ) ∈ D′, let L be
the set of all rooted hypergraphs (Γ ∩ ΣC , πC), as C ranges over the (one or two) circuits of F . Let
C be the set of all such (Γ, φ,L). As in the proof of 10.2, it suffices to show that for any countable
sequence (Γi, φi,Li) (i = 1, 2, . . .) of members of C there exist j > i ≥ 1 and an inflation σ of Γi ∩Σ0

in Γj such that

• for each v ∈ V (Γi ∩ Σ0), V (σ(v)) ⊆ V (Γj ∩ Σ0)

• for each e ∈ E(Γi ∩ Σ0), σ(e) ∈ E(Γj ∩ Σ0) and φi(e) ≤ φj(σ(e))

• for each circuit C of F and each v ∈ π̄C , σ(v) contains v.

If we cut Σχ along U(F ) we obtain two or three fragments; let Σ′ be the fragment with ψ(Σ′) ⊆ Σ0,
where ψ is the associated surjection. Let χ′ be defined as in the proof of 10.2. Since χ satisfies S3

and since Σ̂χ′
∼= Σ̂χ and Ωχ′(k) = Ωχ(k)(k = 2, 3), and c(Σχ′) < c(Σχ), it follows that χ′ is not

orientedly bad. For each i ≥ 1 define Γ′i, φ
′
i as in the proof of 10.2. The sequence (Γ′i, φ

′
i)(i = 1, 2, . . .)

is similarly oriented, because S is similarly oriented and if Σχ′ is orientable then so is Σχ. Thus there
exist j > i ≥ 1 and a linear inflation of (Γ′i, φ

′
i) in (Γ′j , φ

′
j). The result follows as in the proof of 10.2.

We say that (Γ, φ, λ, T ) ∈ D is n-flawed in freedom if rep(T ) > n, and d(r∗1, r
∗
2) > n for every

two distinct poles r∗1, r
∗
2, and there is a circuit F of Γ∗ with 1

2 |E(F )| ≤ n such that ins(F ) includes
a long side of Φχ or more than 1

2 |E(F )| vertices of Φχ. Then F may be chosen to be λ-linked to T
(by choosing F with ins(F ) maximal), and in this case we call it a freedom flaw for (Γ, φ, λ, T ). By
adapting the proofs of 10.2, 10.3, 10.4 in the natural way, using S4 in place of S1 and S3, we obtain
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10.5 Let χ satisfy S4, and let n ≥ 0 be an integer. Then there is a well-behaved set C3(n) of
χ-places with the following property. Let (Γ, φ, λ, T ) ∈ D be n-flawed in freedom. Then there is a
rooted location L which (n+ 1)-isolates T and for which (Γ, φ,L) ∈ C3(n).

11 Border label flaws

So far we have examined flaws in our paintings (Γ, φ) due to some kind of lack of generality in Γ —
representativeness, distance and freedom flaws. There are two other flaws we must investigate, both
concerned with a lack of generality in φ, and it is to deal with these that S2 and the full strength
of S4 are needed. In this section we examine the situation when for some long side S, the values of
φ(e) over edges e bordering S fail to be sufficiently general.

Let χ,S,D be as in section 10. Let (Γ, φ, λ, T ) ∈ D, and let r∗ be a pole. By a bite at r∗ we mean
a circuit F of Γ∗ with 1

2 |E(F )| < rep(T ), such that r∗ ∈ V (F ). If e1, e2 are edges of Γ bordering
r̄ \ r, we define l(e1, e2) to be the minimum of 1

2 |E(F )| over all bites F at r∗ with e1, e2 ⊆ ins(F ), if
there is such a bite, and otherwise l(e1, e2) = rep(T ).

Let S be a long side of Φχ, let m ≥ 1, let ω1, . . . , ωm be a sequence of elements of Ωχ(S), and let
n ≥ 4. We say that (Γ, φ, λ, T ) ∈ D is (n, (ω1, . . . , ωm))-flawed on S if

• rep(T ) ≥ 2(m+ 1)n+ 8, and dist(Γ) ≥ 1
2(m+ 1)n+ 1,

• (Γ, φ, λ, T ) is not (m+ 1)n-flawed in distance,

• (Γ, φ, λ, T ) is not (m+ 1)n-flawed in freedom, and

• there do not exist distinct edges e1, . . . , em ∈ E(Γ) bordering S in order, such that φ(ei) ≥
ωi (1 ≤ i ≤ m), and l(ei, ej) > n (1 ≤ i < j ≤ m) and l(ei, s) > n (1 ≤ i ≤ m) for every short
side s bordering the same cuff as S.

The main result of this section is

11.1 Let χ satisfy S4, let S be a long side of Φχ, let ω1, . . . , ωm ∈ E(Ωχ(S)) with m ≥ 1, and
let n ≥ 4. Then there is a well-behaved set C4(S, (ω1, . . . , ωm), n) of χ-places with the following
property. Let (Γ, φ, λ, T ) ∈ D be (n, (ω1, . . . , ωm))-flawed on S. Then there is a rooted location L
which (m+ 1)n-isolates T , and for which (Γ, φ,L) ∈ C4(S, (ω1, . . . , ωm), n).

The proof of 11.1 will require some lemmas, however, which follow. Throughout the section,
χ, S, ω1, . . . , ωm and n are as in 11.1.

Let (Γ, φ, λ, T ) ∈ D, and let r∗ be the pole with S ⊆ r̄. If F is a bite at r∗, we define I(F ) to be
the I-arc in ins(F ) ∩ (r̄ \ r) joining the two neighbours in F of r∗. If F is a set of bites at r∗, we
define I(F) =

⋃
(I(F ) : F ∈ F). The order of a set F of bites at r∗ is Σ(1

2 |E(F )| : F ∈ F). A set F
of bites at r∗ is a feast if

• |F| ≤ m+ 1

• I(F) includes the short sides of Φχ with an end in common with S, and

• for each component X of S \ I(F) there exists h with 1 ≤ h ≤ m such that φ(e) 6≥ ωh for all
e ∈ E(Γ) with e ⊆ X.
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11.2 If (Γ, φ, λ, T ) ∈ D is (n, (ω1, . . . , ωm))-flawed on S, then there is a feast of order ≤ (m+ 1)n.

Proof. Let the edges of Γ bordering S be e1, . . . , ek in order, and define e0 and ek+1 to be the short
sides of Φχ with an end in common with S, numbered such that for 0 ≤ i ≤ k, ei and ei+1 have a
common end. (It is possible that e0 = ek+1.) For 0 ≤ i < j ≤ k+ 1, we write i� j if there is no bite
F at r∗ with 1

2 |E(F )| ≤ n and ei, ei+1, . . . , ej ⊆ ins(F ). Since (Γ, φ, λ, T ) is not (m+ 1)n-flawed in
freedom, it follows that 1� k. (To see this, observe that since (Γ, φ, λ, T ) is (n, (ω1, . . . , ωm))-flawed
on S, we have rep(T ) ≥ 2(m+ 1)n+ 8, and dist(Γ) ≥ 1

2(m+ 1)n+ 1. In particular, rep(T ) > n and
d(r∗1, r

∗
2) > n for every two poles r∗1, r

∗
2.) Let us choose p maximum with 0 ≤ p ≤ m such that there

is a sequence of integers
0 = b0 < a1 < b1 < a2 < . . . < bp < k + 1

satisfying

• b0 � b1 � . . .� bp � k + 1

• bi−1 6� ai for 1 ≤ i ≤ p

• φ(ebi) ≥ ωi for 1 ≤ i ≤ p

• for 1 ≤ i ≤ p there is no j with ai < j < bi such that φ(ej) ≥ ωi.

(This is possible, for there is such a sequence with p = 0.)

(1) p ≤ m− 1.

Subproof. If p = m, then by the fourth condition in the definition of “(n, (ω1, . . . , ωm))-flawed
on S” there exist 1 ≤ i ≤ m and a bite F at r∗ with 1

2 |E(F )| ≤ n such that e, ebi ⊆ ins(F ), where
either e = ebj for some j 6= i or e is a short side. But then ins(F ) includes one of

ebi−1
∪ ebi−1+1 ∪ · · · ∪ ebi

ebi ∪ ebi+1 ∪ · · · ∪ ebi+1

(where bp+1 means k + 1), contrary to the first statement above. Thus (1) holds.

(2) There is no j with bp < j < k + 1 such that bp � j � k + 1 and φ(ej) ≥ ωp+1.

Subproof. Suppose that some such j exists. Choose i with bp < i < j, maximal such that
bp 6� i. (This is possible because bp 6� bp + 1, since n ≥ 3, and so j 6= bp + 1.) Set ap+1 = i. Choose
j′ with i < j′ ≤ j, minimal such that φ(ej′) ≥ ωp+1. (This is possible because φ(ej) ≥ ωp+1.) Set
bp+1 = j′. Then j′ > i, and so bp � bp+1 by the maximality of i; and j′ ≤ j, and so bp+1 � k + 1
since j � k+ 1. Moreover bp 6� ap+1 from the choice of i; and φ(ebp+1) ≥ ωp+1 from the choice of j′;
and there is no j′′ with ap+1 < j′′ < bp+1 such that φ(ej′′) ≥ ωp+1, from the choice of j′. But then
the sequence

0 = b0 < a1 < b1 < . . . < bp < ap+1 < bp+1 < k + 1

disproves the maximality of p, a contradiction. Thus (2) holds.
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(3) There exist ap+1, bp+1 with bp < ap+1 < bp+1 < k + 1, such that bp 6� ap+1 and bp+1 6� k + 1,
and such that there is no j with ap+1 < j < bp+1 and with φ(ej) ≥ ωp+1.

Subproof. Choose i with bp < i < k + 1 maximum such that bp 6� i. (This is possible since
bp + 1 < k + 1 and bp 6� bp + 1, since n ≥ 3.) Suppose first that i < k. Since k 6� k + 1, we may
choose i′ with i < i′ < k + 1 minimum such that i′ 6� k + 1. Set ap+1 = i, bp+1 = i′. From (2), it
follows that there is no j with i < j < i′ such that φ(ej) ≥ ωp + 1, and so we may satisfy (3) by
setting ap+1 = i and bp+1 = i′. Now assume that i = k. Since bp � k + 1 and n ≥ 4, it follows that
k − 1 > bp; and so we may set ap+1 = k − 1 and bp+1 = k to satisfy (3). This proves (3).

For 0 ≤ i ≤ p let Fi be a bite at r∗ with 1
2 |E(Fi)| ≤ n such that ebi , ebi+1, . . . , eai+1 ⊆ ins(Fi),

and let Fp+1 be a bite with 1
2 |E(Fp+1)| ≤ n such that ebp+1 , . . . , ek+1 ⊆ ins(Fp+1). Let F =

{F0, F1, . . . , Fp+1}. Then |F| = p + 2 ≤ m + 1, and I(F) includes e0, ek+1. If X is a component of
S \ I(F), then there exists h with 1 ≤ h ≤ p+ 1 such that ah < i < bh for every ei ⊆ X, and hence
φ(ei) 6≥ ωh for every ei ⊆ X. Hence F is a feast. Its order is at most (m + 1)n since each Fi has
1
2 |E(Fi)| ≤ n.

A feast F is disjoint if I(F ) = ins(F ) ∩ (r̄ \ r) for each F ∈ F , and ins(F ) ∩ ins(F ′) = {r∗} for
all distinct F, F ′ ∈ F .

11.3 Every feast of minimum order with order ≤ (m+ 1)n is disjoint.

Proof. By 7.1, taking z = r and κ = (m + 1)n + 2, we deduce that there is a circuit C of sk(Γ),
bounding an open disc Λ ⊆ Σ̃ with r ⊆ Λ, satisfying (1) and (2) below:

(1) x ⊆ Λ for every x ∈ A(Γ) with d(r, x) ≤ (m+ 1)n.

(2) ins(C∗) ⊆ Λ̄ for every circuit C∗ of Γ∗ with U(C∗) ⊆ Λ̄ and |E(C∗)| ≤ 2(m+ 1)n.

In particular, for every bite F with 1
2 |E(F )| ≤ (m + 1)n, since r∗ ∈ V (F ) it follows that d(r, x) ≤

(m + 1)n for every x ∈ A(Γ) with x ∩ U(F ) 6= ∅, and hence x ⊆ Λ for every such x, by (1); and so
F ⊆ Λ, and hence ins(F ) ⊆ Λ, by (2).

Let F be a feast of minimum order, with order ≤ (m + 1)n, and let G =
⋃

(F : F ∈ F). Hence
U(G) ⊆ Λ, and since

|E(G)| ≤ Σ(|E(F )| : F ∈ F) ≤ 2(m+ 1)n

it follows from (2) that ins(F ) ⊆ Λ for every circuit F of G.
Now G is a connected subdrawing of the planar drawing Γ∗ ∩ Λ̄, with r∗ ∈ V (G), and every

vertex and edge of G is in a circuit, and G has no cutvertex except possibly r∗. It follows that
there are circuits C1, . . . , Cp of G, bounding closed discs ∆1, . . . ,∆p ⊆ Λ respectively, such that
∆i ∩∆j = {r∗} (1 ≤ i < j ≤ p) and U(G) ⊆ ∆1 ∪ . . . ∪∆p. Thus ∆i = ins(Ci) (1 ≤ i ≤ p).

Suppose that r∗ /∈ V (Ci) for some i. Then p = 1 (since ∆i ∩ ∆j = {r∗} for j 6= i, which is
impossible) and i = 1, and r∗ belongs to ins(C1) \U(C1); and hence S ⊆ ins(C1), and (Γ, φ, λ, T ) is
(m+ 1)n-flawed in freedom, a contradiction. This proves that r∗ ∈ V (Ci) for 1 ≤ i ≤ p.

Let F ′ = {C1, . . . , Cp}. We shall show that F ′ is a feast. If F ∈ F there exists Ci ∈ F ′ with
ins(F ) ⊆ ins(Ci) and hence I(F ) ⊆ I(Ci). It follows that every component of S \ I(F ′) is a subset
of a component of S \ I(F), and I(F ′) includes the short sides with a common end with S.
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Now for 1 ≤ i ≤ p, there is a circuit C ′i ∈ F with E(C ′i) ∩ E(Ci) 6= ∅; and hence U(C ′′i ) ⊆ ∆i. It
follows that C ′1, . . . , C

′
p ∈ F are all distinct, and so p ≤ |F| ≤ m+ 1.

It follows that F ′ is a feast. Its order is 1
2Σ|E(Ci)|, and since C1, . . . , Cp are mutually edge-

disjoint, it follows that F ′ has order ≤ 1
2 |E(G)|. But F has order ≥ 1

2 |E(G)|, and F has minimum
order. Consequently we have equality throughout, and in particular G = C1 ∪ . . . ∪ Cp, and every
edge of G belongs to exactly one member of F , and F ⊆ G for every F ∈ F . Hence, since C1, . . . , Cp
are the only circuits of G, it follows that F ∈ {C1, . . . , Cp} for every F ∈ F , and so F ′ = F .

This proves that ins(F ) ∩ ins(F ′) = {r∗} for all distinct F, F ′ ∈ F . To complete the proof
that F is disjoint, let F ∈ F , and suppose that I(F ) 6= ins(F ) ∩ (r̄ \ r). Then there is an edge
e of Γ∗ with one end r∗, the other end in V (F ), and with e 6⊆ ins(F ). There is a circuit F ′ with
E(F ′) ⊆ E(F ) ∪ {e}, ins(F ) ⊆ ins(F ′), and |E(F ′)| < |E(F )|. But then (F \ {F}) ∪ {F ′} is a feast
of smaller order than F , a contradiction.

The result follows.

11.4 Let F be a feast of minimum order ≤ (m + 1)n and subject to that with Σ(λ(F ) : F ∈ F)
minimum. Then each F ∈ F is λ-linked to T .

Proof. Let F ∈ F , and choose F ′ as in 8.5. Then r∗ /∈ ins(F ′) \ U(F ′), because |E(F ′)| ≤
|E(F )| ≤ (m + 1)n and (Γ, φ, λ, T ) is not (m + 1)n-flawed in freedom. Thus r∗ ∈ V (F ′), and since
ins(F ) ⊆ ins(F ′) it follows that F ′ = (F \{F})∪{F ′} is a feast. From the minimality of the order of
F we deduce that |E(F )| = |E(F ′)|; but then λ(F ′) ≤ λ(F ), and again it follows that λ(F ′) = λ(F ).
Hence F ′ = F , and so F is λ-linked to T , as required.

If (Γ, φ, λ, T ) ∈ D is (n, (ω1, . . . , ωm))-flawed on S, it follows from 11.2, 11.3, 11.4 that there is a
disjoint feast F of order ≤ (m+ 1)n, such that each of its members is λ-linked to T . We call F an
((ω1, . . . , ωm), S)-flaw for (Γ, φ, λ, T ).

Proof of 11.1.
As usual, it suffices to prove that ifD′ ⊆ D, and each member ofD′ has the same ((ω1, . . . , ωm), S)-

flaw F , then there is a well-behaved set C of χ-places, such that for all (Γ, φ, λ, T ) ∈ D′ there is a
rooted location which (m + 1)n-isolates T and for which (Γ, φ,L) ∈ C. Let the components of
S \ I(F) be X1, . . . , Xt. For each (Γ, φ, λ, T ) ∈ D′ there exist ω′1, . . . , ω

′
t ∈ {ω1, . . . , ωp}, such that

for 1 ≤ i ≤ t, φ(e) 6≥ ωi for each edge e of Γ with e ⊆ Xi. Since there are only finitely many such
t-tuples (ω′1, . . . , ω

′
t), we may further assume that the same t-tuple (ω′1, . . . , ω

′
t) works for all members

of D′. For 1 ≤ i ≤ t, let Ωi be the ideal of Ωχ(S) with element set {x ∈ E(Ωχ(S)) : x 6≥ ω′i}. Then
for 1 ≤ i ≤ t,Ωi ≺ Ωχ(S), and for all (Γ, φ, λ, T ) ∈ D′, φ(e) ∈ E(Ωi) for all e ∈ E(Γ) with e ⊆ Xi.

Let (Γ, φ, λ, T ) ∈ D′. For each F ∈ F , let ∆(F ) = ins(F ); this does not depend on the choice
of (Γ, φ, λ, T ), since |F| ≥ 2 and ins(F ) meets no member of F except F . Since (Γ, φ, λ, T ) is not
((m + 1)n + 1)-flawed in distance and dist(Γ) > 1

2((m + 1)n + 1), it follows that F meets no cuff
except r̄ \ r.

Let Σ′ be obtained from Σχ by deleting Σχ ∩ (∆(F ) \ U(F )) for each F ∈ F . Then Σ′ is
homeomorphic to one of the fragments obtained by cutting Σχ along U(∪(F : F ∈ F)), and to
simplify notation we assume that Σ′ is such a fragment, and the associated surjection ψ is the identity
when restricted to Σ′. We see that X1, . . . , Xt are long sides of ψ−1(Φχ) ∩ Σ′. Let χ′ be the colour
scheme with Σχ′ = Σ′, Φχ′ = ψ−1(Φχ) ∩ Σ′, Ωχ′(k) = Ωχ(k) (k = 2, 3), Ωχ′(Xi) = Ωi (1 ≤ i ≤ t)
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and Ωχ′(S
′) = Ωχ(R) for each long side S′ 6= X1, . . . , Xt of Φχ′ , where R 6= S is the long side of Φχ

with S′ ⊆ R. Let us define f(Xi) = S(1 ≤ i ≤ t), and f(S′) = R for each long side S′ of Φχ′ with
S′ 6= X1, . . . , Xt, where R is the long side of Φχ with S′ ⊆ R. Then f is an embedding of χ′ in χ,
and so since χ satisfies S4, χ′ is not orientedly bad. But now the result follows as in the proofs of
10.2, 10.4, 10.5.

12 Internal label flaws

In this and the next two sections we consider the final kind of flaw. Let χ,S,D be as in section 10,
let ω0 ∈ E(Ωχ(2))∪E(Ωχ(3)), and let m ≥ 1, n ≥ 4. We say that (Γ, φ, λ, T ) ∈ D is (m,n, ω0)-flawed
internally if

• rep(T ) ≥ n · 52m+2, and dist(Γ) ≥ 1
2n · 5

2m+2 + 1

• (Γ, φ, λ, T ) is not n · 52m+2-flawed in distance

• there do not exist edges e1, . . . , em of Γ such that φ(ei) ≥ ω0 (1 ≤ i ≤ m), d(ei, ej) > n (1 ≤
i < j ≤ m), and d(ei, r

∗) > n (1 ≤ i ≤ m) for every pole r∗, where d is the metric of T .

Throughout this section and the next, (Γ, φ, λ, T ) ∈ D is (m,n, ω0)-flawed internally. Let W ⊆ Σ̂ be
a closed disc with bd(W ) ⊆ U(Γ∗), let H be a subdrawing of Γ∗ with U(H) ⊆ W \ bd(W ), and let
ρ ≥ 1 be an integer with rep(T ) ≥ 2ρ+ 3. We say that W is a wheel, and H is a W -hub of radius ρ,
if:

• W includes ins(F ) for every circuit F of Γ∗ with |E(F )| ≤ 4ρ+ 4 and U(F ) ⊆W

• W contains every vertex of Γ∗ adjacent in Γ∗ to two members of V (Γ)∩bd(W ), and W includes
every edge of Γ∗ with both ends in bd(W )

• either |V (H)| = 1 or H is a T -enclave with |E(H)| ≤ 4ρ + 4; if |V (H)| = 1, then there is no
T -enclave H ′ with |E(H ′)| ≤ 4ρ + 4 and V (H) ⊆ ins(H ′) \ U(H ′); and if H is a T -enclave,
then there is no T -enclave H ′ 6= H with |E(H ′)| ≤ 4ρ+ 4 and U(H) ⊆ ins(H ′)

• W contains every vertex of Γ joined to V (H) by a path in Γ∗ of ≤ ρ edges, and

• for every v ∈ V (Γ) ∩ bd(W ) there is a path of Γ∗ from v to V (H) with ≤ ρ edges, and no such
path with ≤ ρ− 2 edges.

The radius of a wheel W is the minimum radius of all W -hubs.

12.1 Let ρ ≥ 2, even, let rep(T ) ≥ 5ρ + 12, and let H be a subdrawing of Γ∗, satisfying the third
condition in the definition of a wheel above. Then there is a wheel W such that H is a W -hub of
radius ρ.

Proof. Let z∗ ∈ V (H), and let z be the atom of Γ with z∗ ⊆ z. By 7.1 (taking κ = 3ρ+ 4) there is
a circuit C of Γ∗, bounding an open disc Λ ⊆ Σ̂, such that

• x ⊆ Λ for every atom x of Γ with d(z, x) ≤ 3ρ+ 2, and
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• ins(F ) ⊆ Λ̄ for every circuit F of Γ∗ with U(F ) ⊆ Λ̄ and |E(F )| ≤ 4ρ+ 4.

(1) U(P ) ⊆ Λ for every path P of Γ∗ with one end in V (H) and with |E(P )| ≤ ρ.

Subproof. Let h be an end of P in V (H), and let a ∈ A(Γ) with h ⊆ a. Then d(a, z) ≤ 1
2 |E(H)|,

and so for every x ∈ A(Γ) with x ∩ U(P ) 6= ∅,

d(z, x) ≤ d(x, a) + d(a, z) ≤ |E(P )|+ 1

2
|E(H)| ≤ 3ρ+ 2

and so x ⊆ Λ by the first property of C above. Hence U(P ) ⊆ Λ. This proves (1).

From (1), it follows that if k ≤ 1
2ρ and r1, . . . , rk is a sequence of regions of Γ such that

r̄1 ∩ U(H) 6= ∅ and r̄i ∩ r̄i+1 6= ∅ for 1 ≤ i < k then r̄k ⊆ Λ. Consequently the same state-
ment holds for sk(Γ). Since ρ ≥ 2, and U(H) is non-empty and arc-wise connected, it follows from
theorem 5.2 of [8] that there is a circuit C1 of sk(Γ) with U(C1) ⊆ Λ, bounding an open disc in Λ in-
cluding U(H), such that every edge of C1 is incident with a region r of sk(Γ) satisfying r̄∩U(H) 6= ∅.
By (1) and 1

2ρ− 1 further applications of theorem 5.2 of [8], there are circuits C1, . . . , C 1
2
ρ of sk(Γ),

such that for 2 ≤ i ≤ 1
2ρ, U(Ci) bounds an open disc in Λ including U(Ci−1), and every edge of Ci

is incident with a region r of sk(Γ) satisfying r̄ ∩ U(Ci−1) 6= ∅. We deduce

(2) For each v ∈ V (C 1
2
ρ) there is a path of Γ∗ from U(H) to v with ≤ ρ edges, and every such

path has ≥ ρ− 1 edges.

Subproof. Let v ∈ V (C 1
2
ρ). We have seen, from the construction of C1, . . . , C 1

2
ρ, that there is

a sequence r1, . . . , r 1
2
ρ of regions of sk(Γ) such that r̄1 ∩ U(H) 6= ∅, v ∈ r̄ 1

2
ρ, and r̄i ∩ r̄i+1 6= ∅ for

1 ≤ i < 1
2ρ. But for any two vertices of Γ∗, if there is a region of sk(Γ) whose closure contains them

both, then there is also a region of Γ whose closure contains them both. Hence we may assume that
r1, . . . , r 1

2
ρ are regions of Γ; and so there is a path of Γ∗ from U(H) to v with ≤ ρ edges. Any such

path P meets V (C1), . . . , V (C 1
2
ρ), and |V (P ) ∩ V (Γ)| ≤ 1

2(|E(P )| + 1), and so 1
2(|E(P )| + 1) ≥ 1

2ρ,

that is, |E(P )| ≥ ρ− 1. This proves (2).

Let F be a circuit of Γ∗ with U(F ) ⊆ Λ̄, bounding a disc D(F ) in Λ̄ including U(C 1
2
ρ), such

that U(F ) ∩ V (Γ) ⊆ V (C 1
2
ρ); and subject to that with D(F ) maximal. From the maximality of

D(F ) it follows that D(F ) contains every vertex of Γ∗ with two neighbours in V (F ) ∩ V (C 1
2
ρ), and

D(F ) includes every edge of Γ∗ with both ends in V (F ). It follows that D(F ) is a wheel and H is a
D(F )-hub of radius ρ. This proves 12.1.

We recall that (Γ, φ, λ, T ) ∈ D is (m,n, ω0)-flawed internally. Let Z = {e ∈ E(Γ) : φ(e) ≥ ω0}.
Since χ is disjoint, every member of Z is internal. We denote the set of all poles of Γ∗ by P ∗.

12.2 There exists X1 ⊆ V (Γ∗) with |X1| ≤ m + c(Σχ) and P ∗ ⊆ X1, such that for every e ∈ Z
there exists x ∈ X1 with d(e, x) ≤ n.

Proof. Choose e1, . . . , ek ∈ Z with k maximum such that d(ei, ej) > n (1 ≤ i < j ≤ k) and
d(ei, r

∗) > n (1 ≤ i ≤ k) for every pole r∗. Since (Γ, φ, λ, T ) is (m,n, ω0)-flawed internally, it follows
that k < m. For 1 ≤ i ≤ k let xi ∈ ẽi, and let X1 = P ∗ ∪ {x1, . . . , xk}. The result follows.
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12.3 There exists X2 ⊆ V (Γ∗) with |X2| ≤ m+ c(Σχ) and P ∗ ⊆ X2 and an integer t with n ≤ t ≤
n · 52m, such that

• d(x1, x2) > 24t for all distinct x1, x2 ∈ X2

• for every e ∈ Z there exists x ∈ X2 with d(e, x) ≤ t.

Proof. Let k = m + c(Σχ), and choose X1 as in 12.2. Choose X2 ⊆ X1 with P ∗ ⊆ X2, minimal
such that for every e ∈ Z there exists x ∈ X2 with

d(e, x) ≤ n · 52k−2|X2|.

Let t = n · 52k−2|X2|. Then n ≤ t ≤ n · 52m, since |X2| ≥ c(Σχ), and so the second assertion of the
theorem holds; we must verify the first.

Suppose that x1, x2 ∈ X2 are distinct and d(x1, x2) ≤ 24t. Since 24t < 52m+2n and T is
not n · 52m+2-flawed in distance, it follows that not both x1, x2 are poles; thus we may assume
that x2 /∈ P ∗. Let X ′2 = X2 \ {x2}. For any e ∈ Z we claim that there exists x′ ∈ X ′2 with
d(e, x′) ≤ n · 52k−2|X′2| = 25t. For certainly there exists x ∈ X2 with d(e, x) ≤ t, and if x 6= x2 we
may set x′ = x. If x = x2 we may set x′ = x1; for

d(e, x1) ≤ d(e, x2) + d(x1, x2) ≤ t+ 24t = 25t.

This proves our claim. But then the minimality of X2 is contradicted. We deduce that the first
assertion holds. This proves 12.3.

A set W of wheels is a cover (for (Γ, φ, λ, T )) if

• the members of W are mutually disjoint

• bd(W ) ⊆ Σχ \ bd(Σχ) for each W ∈ W

• for each pole r∗ there exists W ∈ W with r∗ ∈W and hence with r ⊆W

• for every e ∈ Z there exists W ∈ W with e ⊆W

• for each W ∈ W, (W \ bd(W )) ∩ V (Γ) 6= ∅.

12.4 There is a cover W with |W| ≤ m+ c(Σχ), each member of which has radius ≤ 2n · 52m.

Proof. Choose X2, t as in 12.3. For each x ∈ X2, let Cx be some circuit of Γ∗ with |E(Cx)| ≤ 2t,
with x ∈ ins(Cx) \U(Cx), chosen with ins(Cx) maximal, if there is such a circuit Cx, and otherwise
let Cx be the 1-vertex subgraph of Γ∗ with vertex x.

Let y(x) be some vertex of Cx. If there is a T -enclave H with y(x) ∈ ins(H) \ U(H) and with
|E(H)| ≤ 8t+ 4, let Hx be such a T -enclave H with ins(H) maximal; and otherwise let Hx be the
1-vertex subgraph of Γ∗ with vertex y(x). Let Wx be a wheel such that Hx is a Wx-hub of radius 2t.
(This exists by 12.1.)

(1) For x ∈ X2, ins(Cx) ⊆ Wx \ bd(Wx), and in particular, Wx \ bd(Wx) contains x and all its
neighbours in Γ∗.
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Subproof. Certainly y(x) ∈ Wx \ bd(Wx), and y(x) ∈ U(Cx), so it suffices for the first claim
to show that Cx ∩ bd(Wx) is null. Suppose that v ∈ V (Cx ∩ bd(Wx)). Then there is a path in Γ∗

from y(x) to v of length ≤ t, and hence a path of Γ∗ from V (Hx) to bd(Wx)∩V (Γ) of length ≤ t+ 1,
contradicting that Wx has radius 2t. Hence ins(Cx) ⊆ Wx \ bd(Wx). Since x ∈ ins(Cx) it follows
that x ∈ Wx \ bd(Wx). If some neighbour of x is in bd(Wx), then x ∈ V (Cx) and so x = y(x), and
there is a path in Γ∗ from V (Hx) to bd(Wx) ∩ V (Γ) of length ≤ 2, contradicting that Wx has radius
2t ≥ 6. This proves (1).

(2) For each x ∈ X2, if v ∈ bd(Wx) ∩ V (Γ∗) then d(x, v) ≤ 7t+ 3.

Subproof. There is a path of Γ∗ from v to V (Hx) with ≤ 2t + 1 edges. Then d(v, y(x)) ≤
(2t+ 1) + (4t+ 2) since 1

2 |E(Hx)| ≤ 4t+ 2; and so d(v, x) ≤ 7t+ 3 since d(y(x), x) ≤ t. This proves
(2).

(3) For each component r of Σ̂χ = Σχ, r̄ ⊆Wr∗ and r̄ ∩ bd(Wx) = ∅ for every x ∈ X2.

Subproof. By (1), Wr∗ \ bd(Wr∗) contains r∗ and all its neighbours, and so r̄ ⊆ Wr∗ . Let x ∈ X2

and suppose that r̄ ∩ bd(Wx) 6= ∅. (Consequently x 6= r∗.) Hence bd(Wx) contains a neighbour v of
r∗; and therefore v ∈ V (Γ). Since v ∈ bd(Wx), (2) implies that d(x, v) ≤ 7t+3, and since d(r∗, v) ≤ 1
it follows that d(x, r∗) ≤ 7t+ 4, a contradiction since x 6= r∗ and x, r∗ ∈ X2. This proves (3).

(4) For each e ∈ Z there exists x ∈ X2 with e ⊆Wx.

Subproof. Since X2 satisfies 12.3, there exists x ∈ X2 with d(e, x) ≤ t. Let K be a closed walk of
Γ∗ of length ≤ 2t such that x and e both meet ins(K). Suppose first that U(Γ∗|K) ∩ ins(Cx) = ∅.
Since x ∈ ins(Cx) and x ∈ ins(K), there is a circuit C of Γ∗|K with x ∈ ins(C) \ U(C); and hence
ins(Cx) ⊆ ins(C) \ U(C), since U(K) ∩ ins(Cx) = ∅. But K has length ≤ 2t, and so |E(C)| ≤ 2t,
contrary to the choice of Cx. This proves that U(Γ∗|K) ∩ ins(Cx) 6= ∅.

Now suppose that U(Γ∗|K) ∩ U(Cx) = ∅. Then U(Γ∗|K) ⊆ ins(Cx) \ U(Cx), and so

e ⊆ ins(K) ⊆ ins(Cx) ⊆Wx

by (1), as required. We may therefore assume that K meets U(Cx). Hence K is a subwalk of a closed
walk of length ≤ 4t of which y(x) is a vertex. Since Wx has radius 2t, this subwalk remains within
Wx; and so U(Γ∗|K) ⊆Wx. Hence ins(K) ⊆Wx, and so e ∈Wx. This proves (4).

In fact we can prove that the wheels Wx (x ∈ X2) are mutually disjoint, but that step can be
avoided. Let us choose a ⊂ W ⊆ {Wx : x ∈ X2} containing just the maximal wheels. We have seen,
by (2), that the sets bd(Wx)(x ∈ X2) are mutually disjoint, and consequently that if Wx1 ∩Wx2 6= ∅
then Wx1 ⊆ Wx2 or Wx2 ⊆ Wx1 , and so the members of W are mutually disjoint; and the theorem
is satisfied.
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13 The spokes of a wheel

Let Γ, φ,W etc. be as in 12.4 (and in particular with rep(T ) ≥ n · 52m+2), and let W ∈ W.
Our next objective is to examine the structure of the interior of W . Let W have radius ρ, and so
1 ≤ ρ ≤ 2n · 52m. Let H be a W -hub with radius ρ. We recall that R∗ = V (Γ∗) \ V (Γ).

13.1 There is no path in Γ∗ from R∗ ∩ bd(W ) to V (H) with ≤ ρ− 1 edges.

Proof. Suppose that there is such a path, and let r∗ be its end in R∗ ∩ bd(W ). From the fourth
condition in the definition of a wheel, W contains every neighbour of r∗ in Γ∗. Let e1, e2 be the
ends of Γ∗ incident with r∗ with e1, e2 ⊆ bd(W ), and let their other ends be v1, v2 respectively. Now
v1 6= v2, and indeed |V (Γ∗)∩ bd(W )| ≥ 6, because bd(W )∩ bd(Σχ) = ∅ and (W \ bd(W ))∩ V (Γ) 6= ∅
and Γ is internally 3-connected. Since W includes every edge of Γ∗ incident with r∗, it follows
that there is an edge e of sk(Γ) with ends v1, v2 and with e ⊆ r̄ \W . If there is a region r1 6= r
of Γ in Σ̂ with e ⊆ r̄1, then r∗1 has two neighbours in bd(W ) ∩ V (Γ) and so r∗1 ∈ W ; but then
bd(W ) ∩ V (Γ∗) = {v1, v2, r

∗, r∗1}, a contradiction. Thus there is no such r1. Choose f ∈ E(Γ) with
e ⊆ f . Then |f̃ | = 3, because of the non-existence of r1. Moreover, r̄ ∩ V (Γ) = {v1, v2}, because
v1, v2 /∈ bd(Σχ) and Γ fits Φχ (using the fifth condition in the definition of “fit”). Hence the path
of Γ∗ from r∗ to V (H) with ≤ ρ − 1 edges passes through one of v1, v2, a contradiction to the fifth
condition in the definition of a wheel. Thus there is no such path, as required.

By a spoke of W we mean a path P of Γ∗ from some v ∈ V (Γ) ∩ bd(W ) to some h ∈ V (H), such
that

• there is no path of Γ∗ from v to V (H) with fewer than |E(P )| edges, and

• there is no path P ′ of Γ∗ from v to V (H) with |E(P )| edges and with λ(P ′) < λ(P ).

For each v ∈ V (Γ)∩ bd(W ) there is thus a unique spoke ending at v, and we denote it by Sv. Clearly
no vertex of Sv except its end different from v belongs to V (H). From 13.1, no vertex of Sv except
v belongs to bd(W ). We call the end of Sv different from v the inner end of Sv.

13.2 Let v1, v2 ∈ V (Γ) ∩ bd(Σ). If Sv1 meets Sv2 then they have the same inner end, and Sv1 ∩ Sv2
is a path.

Proof. Let u ∈ V (Sv1 ∩ Sv2) be the first vertex of Sv2 in Sv1 (that is, nearest to v1), and let Pi, Qi
be the subpaths of Svi from vi to u and from u to the inner end of Svi respectively. Since Sv1 is
a spoke, E(P1 ∪ Q2) ≥ E(Sv1), that is, |E(Q2)| ≥ |E(Q1)|, and similarly |E(Q1)| ≥ |E(Q2)| since
Sv2 is a spoke. Thus |E(Q1)| = |E(Q2)|. Again, since Sv1 is a spoke, λ(P1 ∪ Q2) ≥ λ(Sv1), that
is, λ(Q2) ≥ λ(Q1), and similarly λ(Q1) ≥ λ(Q2). Thus λ(Q1) = λ(Q2), and so E(Q1) = E(Q2).
Since Q1, Q2 both have one end u, it follows that Q1 = Q2 and hence that Sv1 , Sv2 have the same
inner end. Since u is the first vertex of Sv2 in Sv1 we deduce that V (P1 ∩ Sv2) = {u}, and hence
Sv1 ∩ Sv2 = Q1. The result follows.

13.3 Let Sv be a spoke with inner end h, and let F be a T -enclave. If U(Sv) ∩ ins(F ) 6= ∅ then
Sv ∩ ins(F ) is a path, and if U(Sv) ∩ ins(F ) 6⊆ U(F ) then one of v, h ∈ ins(F ) \ U(F ).
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Proof. Let T ′ be a tangle in Γ with T 6⊆ T ′ 6⊆ T such that (Γ ∩ ins(F ),Γ ∩ out(F )) is the (T , T ′)-
distinction. Suppose that U(Sv)∩ ins(F ) 6= ∅, and Sv ∩ ins(F ) is not a path. Then there are distinct
vertices a, b of Sv, both in V (F ), such that no internal vertex or edge of the subpath of Sv between
a, b belong to ins(F ). Let this subpath be P , and let F1, F2 be the two subpaths of F between a and
b. Since P 6= F1, F2 it follows (since Sv is a spoke) that |E(P )| ≤ |E(Fi)|, and if equality holds then
λ(P ) < λ(Fi)(i = 1, 2). But this contradicts 8.5.

Thus Sv ∩ ins(F ) is a path. Suppose that v, h /∈ ins(F ) \ U(F ) and U(Sv) ∩ ins(F ) 6⊆ U(F ).
Then there are distinct vertices a, b of Sv, both in U(F ), such that every internal vertex and edge of
the subpath P of Sv joining a, b lies in ins(F ) \U(F ). Let F1, F2 be the two subpaths of F between
a and b. As before, |E(P )| ≤ |E(Fi)| and if equality holds then λ(P ) < λ(Fi)(i = 1, 2). Again, this
contradicts 8.5. Thus one of v, h ∈ ins(F ) \ U(F ), as required.

A W -hub H is said to be optimal if

• H has the same radius as W , that is, H has radius minimum over all W -hubs, and

• either |V (H)| = 1, or there is no 1-vertex W -hub with the same radius as W .

For every wheel W there is an optimal W -hub. For the remainder of this section we assume that H
is optimal.

13.4 Let r∗ ∈ R∗ ∩ bd(W ) with neighbours v1, v2 in Γ∗ ∩ bd(W ). Let Sv1 meet Sv2, and let Sv1 ∩Sv2
have ends u, h where h ∈ V (H). Let ∆ ⊆W be the disc bounded by

(U(Sv1 ∪ Sv2) \ U(Sv1 ∩ Sv2)) ∪ {u} ∪ f̄1 ∪ f̄2

where fi is the edge of Γ∗ ∩ bd(W ) with ends r∗, vi (i = 1, 2). Then ∆ ∩ U(H) = ∅ unless u = h, in
which case ∆ ∩ U(H) = {h}; and ∆ ∩ U(Sv) ⊆ bd(∆) for every v ∈ V (Γ) ∩ bd(W ).

Proof. Suppose that either u 6= h and ∆∩U(H) 6= ∅, or u = h and ∆∩U(H) 6= {h}. In either case it
follows that U(H) ⊆ ∆ and V (H) 6= {u}. For if u 6= h then bd(∆)∩U(H) = ∅ and so U(H) ⊆ ∆ and
clearly V (H) 6= {u}; while if u = h then |V (H)| 6= 1, and H is a circuit with U(H) ∩ bd(∆) = {h},
and so again U(H) ⊆ ∆ and V (H) 6= {u}. Now u is a vertex of every spoke; for every spoke meets
bd(∆) since it meets U(H), and hence contains u by 13.2.

Suppose that there is a T -enclave F with |E(F )| ≤ 4ρ + 4 and with u ∈ ins(F ) \ U(F ). Since
H is a W -hub, it follows that U(H) 6⊆ ins(F ), because H 6= F since u ∈ ins(F ) \ U(F ). By 8.6
it follows that U(H) ∩ ins(F ) ⊆ U(F ), and in particular h /∈ ins(F ) \ U(F ). Thus by 13.3, since
u ∈ ins(F ) \ U(F ), it follows that v1, v2 ∈ ins(F ) \ U(F ), and hence bd(∆) ⊆ ins(F ). Since the
circuit C of Γ∗ with U(C) = bd(∆) satisfies |E(C)| ≤ 2ρ + 2, it follows that ∆ = ins(C) because
W is a wheel, and ins(C) ⊆ ins(F ) since U(C) ⊆ ins(F ). Thus ∆ ⊆ ins(F ) and in particular,
U(H) ⊆ ins(F ), a contradiction. Thus there is no such T -enclave F .

Let H ′ be the 1-vertex graph with vertex u. We claim that H ′ is a W -hub with radius ρ −
|E(Sv1 ∩ Sv2)|. For if v ∈ V (Γ) ∩ bd(W ) then Sv1 ∩ Sv2 is a path of Sv as we have seen, and so the
subpath of Sv from v to u has |E(Sv)| − |E(Sv1 ∩ Sv2)| edges, and hence either ρ− |E(Sv1 ∩ Sv2)| or
one fewer. For a similar reason, there is no shorter path in Γ∗ from v to u, for we could augment it
by Sv1 ∩ Sv2 and obtain a path from v to V (H) shorter than Sv. It follows that H ′ is a W -hub with
radius ρ− |E(Sv1 ∩ Sv2)|. Since H is an optimal W -hub, we deduce that E(Sv1 ∩ Sv2) = ∅, and that
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|V (H)| = 1. But then V (H) = {h} = {u}, contrary to our supposition. This proves the first claim
of the theorem, that ∆ ∩ U(H) = ∅ unless u = h, when ∆ ∩ U(H) = {h}. The second claim follows
from the first claim and 13.2.

Let v ∈ R∗ ∩ bd(W ), with neighbours v1, v2 in Γ∗ ∩ bd(W ). Let fi be the edge of Γ∗ ∩ bd(W ) with
ends v, vi (i = 1, 2). If Sv1 meets Sv2 we define ∆v to be the disc in W bounded by the closure of

(U(Sv1 ∪ Sv2) \ U(Sv1 ∩ Sv2)) ∪ f1 ∪ f2.

If Sv1 does not meet Sv2 , let their inner ends be h1, h2 respectively, let P be the path of H joining
h1, h2 such that the disc in W bounded by

U(Sv1 ∪ Sv2 ∪ P ) ∪ f̄1 ∪ f̄2

does not include ins(H), and let ∆v be this disc. In either case, let Dv be the circuit of Γ∗ with
U(Dv) = bd(∆v).

13.5 With notation as above, |E(Dv)| ≤ 4ρ+ 4, and ins(Dv) = ∆v.

Proof. Suppose that |E(Dv)| > 4ρ + 4. Since |E(Sv1)|, |E(Sv2)| ≤ ρ, it follows that Sv1 ∩ Sv2 is
null. Let P,Q,R be three paths of Γ∗ from h1 to h2, where P ∪ Q = Dv and Q ∪ R = H. Now
|E(P )| ≤ 2ρ+ 2, and so |E(Q)| > |E(P )|. Since H = Q ∪ R is a T -enclave, the second assertion of
8.5 implies that ins(Q∪R)∩ ins(P ∪R) = U(R), which is false. Thus |E(Dv)| ≤ 4ρ+ 4. The second
claim of the theorem follows since W is a wheel of radius ρ.

13.6 With notation as above, let T ′ be a tangle with (Γ ∩ out(Dv),Γ ∩ ins(Dv)) ∈ T ′, and let F be
a T -enclave around T ′. Then ins(F ) ⊆ ∆v.

Proof. The proof requires several steps. Let the inner end of Svi be hi (i = 1, 2).

(1) |E(F )| ≤ |E(Dv)| ≤ 4ρ+ 4.

Subproof. Since (Γ ∩ ins(Dv),Γ ∩ out(Dv)) ∈ T \ T ′, it follows that |E(F )| ≤ |E(Dv)|, and
by 13.5, |E(Dv)| ≤ 4ρ+ 4.

(2) There is an edge of Γ included in ins(F ) ∩ ins(Dv).

Subproof. (Γ∩ out(F ),Γ∩ ins(F )), (Γ∩ out(Dv),Γ∩ ins(Dv)) ∈ T ′, and so not every edge belongs
to out(F ) ∪ out(Dv) by theorem 2.3 of [5]. This proves (2).

(3) ins(F ) ∩ ins(H) = U(F ) ∩ U(H).

Subproof. Otherwise either |V (H)| = 1 and V (H) ⊆ ins(F ) \ F , or H is a circuit and ins(H) ⊆
ins(F ), or H is a circuit and ins(F ) ⊆ ins(H), by 8.6. The first and second contradict that H is a
W -hub (since H 6= F by (2)), and the third contradicts (2). This proves (3).
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(4) There is a closed disc ∆0 ⊆ Σ̂ with W ∪ ins(F ) ⊆ ∆0, such that ∆0 includes ins(C) for ev-
ery circuit C of Γ∗ with |E(C)| ≤ 4ρ+ 4 and U(C) ⊆ ∆0.

Subproof. If ins(F ) ⊆ W we may take ∆0 = W . Otherwise, since U(H) 6⊆ ins(F ) \ U(F ), it
follows that V (F ) ∩ bd(W ) 6= ∅. Choose z∗ ∈ V (F ) ∩ bd(W ), and let z ∈ A(Γ) with z∗ ∈ z. By 7.1
(with κ = 4ρ+ 6), since rep(T ) ≥ 6ρ+ 14, there is a circuit of sk(Γ) bounding an open disc Λ ⊆ Σ̂χ

with z ⊆ Λ, such that

• x ⊆ Λ for every x ∈ A(Γ) with d(z, x) ≤ 4ρ+ 4, where d is the metric of T , and

• ins(C∗) ⊆ Λ̄ for every circuit C∗ of Γ∗ with U(C∗) ⊆ Λ̄ and |E(C∗)| < 4ρ+ 4.

Now if T is a path of Γ∗ with ≤ 4ρ + 4 edges and with one end z∗, then d(z, x) ≤ 4ρ + 4 for every
x ∈ A(Γ) with x ∩ U(T ) 6= ∅, and so every such x is a subset of Λ; and hence U(T ) ⊆ Λ. But
every edge of H or of Γ∗ ∩ bd(W ) or of any spoke of W belongs to some such path T , and hence
U(H) ⊆ Λ, bd(W ) ⊆ Λ and U(S) ⊆ Λ for every spoke S of W . Let ∆0 = Λ̄. Since H and each Dv′

have at most 4ρ+ 4 edges, it follows that ins(H), ins(Dv′) ⊆ ∆0 for each v′, and so W ⊆ ∆0. This
proves (4).

Since ins(F ),∆v are both discs in ∆0 and their interiors intersect by (2), it follows from (4) that
there is a circuit C of Γ∗ with C ⊆ F ∪ Dv, such that U(C) bounds a closed disc in ∆0 including
ins(F ) ∪∆v.

(5) |E(C)| ≤ |E(Dv)|, and if equality holds then λ(C) ≤ λ(Dv).

Subproof. Let (A,B) = (Γ ∩ out(F ),Γ ∩ ins(F )), and (A′, B′) = (Γ ∩ out(Dv),Γ ∩ ins(Dv)).
Since (A,B), (A′, B′) ∈ T ′ it follows from the second tangle axiom that (B ∩ B′, A ∪ A′) /∈ T ′. But
the latter has order at most the sum of the orders of (A,B) and (A′, B′), and hence at most 4ρ+ 4
by (1), and so (B ∩B′, A∪A′) ∈ T since (B,A) ∈ T . Thus (B ∩B′, A∪A′) ∈ T \ T ′, and it follows
that (A∪A′, B∩B′) does not have smaller λ-order than (A,B). By 8.3, (A∩A′, B∪B′) has λ-order
at most that of (A′, B′). In particular, since every edge of C is split by (A ∩ A′, B ∪ B′) and only
edges of Dv are split by (A′, B′),

1

2
|E(C)| ≤ |V ((A ∩A′) ∩ (B ∪B′))| ≤ |V (A′ ∩B′)| = 1

2
|E(Dv)|.

If equality occurs, then since (A ∩ A′, B ∪ B′) has λ-order at most that of (A′, B′), it follows that
λ(C) ≤ λ(Dv). This proves (5).

Let ∆ be the closed disc in ∆0 bounded by U(C).

(6) If ins(H) ∩∆ ⊆ U(C) then the theorem holds, that is, ins(F ) ⊆ ∆v.

Subproof. Suppose that ins(H) ∩ ∆ ⊆ U(C). If h1 6= h2, let K = Dv ∩ H, and if h1 = h2

let K be the null graph. Then K ⊆ C, because

U(K) ⊆ ins(H) ∩∆v ⊆ ins(H) ∩∆ ⊆ U(C).
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If h1 = h2, note that U(H) may not meet U(∆v), and indeed may not meet U(C); let L be a minimal
subpath of Sv1 ∩ Sv2 from V (C) to h1 = h2 (this exists, because h1 /∈ ∆ \ U(C) and ∆v ⊆ ∆). If
h1 6= h2, let L be the null graph.

Since V (K ∪L) ⊆W \ bd(W ) and some vertex of K ∪L belongs to C, it follows that some vertex
of C is in W \ bd(W ). If U(C) 6⊆ W let M be a maximal path of C with at least one edge, with
no edge in W ; and if U(C) ⊆ W let M be the path formed by the two edges f1, f2. In either case
|E(M)| ≥ 2, since W is a wheel; and we may number the ends of M as v′1, v

′
2 such that there are two

paths P1, P2 of C, with P1, P2,M,K mutually edge-disjoint and P1 ∪ P2 ∪M ∪ K = C, such that
Pi ∪ L is a path of Γ∗ from v′i to hi (i = 1, 2).

We claim that |E(Pi∪L)| ≥ |E(Svi)| (i = 1, 2). For certainly |E(Pi∪L)| ≥ ρ−1 and |E(Svi)| ≤ ρ,
and if equality holds in both then since Γ∗ is bipartite it follows that v′i ∈ R∗, contrary to 13.1. Thus
|E(Pi ∪ L)| ≥ |E(Svi)| (i = 1, 2). From (5),

|E(Dv)| ≥ |E(C)| = |E(P1)|+ |E(P2)|+ |E(K)|+ |E(M)|
≥ |E(Sv1)|+ |E(Sv2)| − 2|E(L)|+ |E(K)|+ |E(M)|
= |E(Dv)| − 2 + 2|E(Sv1 ∩ Sv2)| − 2|E(L)|+ |E(M)|.

Thus 2|E(Sv1 ∩ Sv2)| + |E(M)| ≤ 2|E(L)| + 2. Since L ⊆ Sv1 ∩ Sv2 and |E(M)| ≥ 2, we have
equality throughout. In particular, |E(Dv)| = |E(C)|, L = Sv1 ∩Sv2 , |E(M)| = 2, and |E(Pi ∪L)| =
|E(Svi)| (i = 1, 2). Hence v′1, v

′
2 ∈ V (Γ), since Γ∗ is bipartite. Let v′ be the middle vertex of M .

Since v′ has two neighbours v′1, v
′
2 both in V (Γ) ∩ bd(W ), it follows that v′ ∈W since W is a wheel.

Consequently both edges of M belong to W , and so, from the choice of M , U(C) ⊆ W, v′ = v,
{v′1, v′2} = {v1, v2}, and E(M) = {f1, f2}. Since ∆ ⊆ ∆0 and bd(∆) ⊆ W it follows that ∆ ⊆ W .
Since Sv1 , Sv2 are spokes and |E(Pi ∪L)| = |E(Svi)|, it follows that λ(Pi) + λ(L) = λ(Svi) (i = 1, 2).
From (5),

λ(Dv) ≥ λ(C) = λ(P1) + λ(P2) + λ(K) + λ(M)

= λ(Sv1) + λ(Sv2)− 2λ(L) + λ(K) + λ(M)

≥ λ(Sv1) + λ(Sv2)− 2λ(Sv1 ∩ Sv2) + λ(K) + λ(M) = λ(Dv)

and so again we have equality throughout. In particular, λ(Pi ∪ L) = λ(Svi)(i = 1, 2). Since
E(Svi) 6= ∅, it follows that Pi ∪ L = Svi (i = 1, 2), and so

E(Dv) = (E(Sv1 ∪ Sv2) \ E(Sv1 ∩ Sv2)) ∪ E(K) ∪ E(M) ⊆ E(C).

Hence C = Dv, and so ins(F ) ⊆ Dv, as required. This proves (6).

Henceforth, then, we suppose, for a contradiction, that ins(H)∩∆ 6⊆ U(C). In particular, F 6= C,
by (3). Let h ∈ (∆\U(C))∩ ins(H), choosing h /∈ U(H) if H is a circuit. (h is a point of the surface,
but not necessarily a vertex of Γ∗.)

If P is a path and u, v ∈ V (P ), we denote by P [u, v] the subpath of P with ends u, v. An arc is
a path of F with distinct ends both in V (Dv), and with no internal vertex in V (Dv) and no edge in
E(Dv). For every arc P , either U(P ) ⊆ ∆v or U(P ) ∩ ∆v consists of the ends of P ; we call these
inner and outer arcs respectively. Since F 6= C and hence ∆v 6⊆ ins(F ), there is an inner arc; and
since Dv 6= C (because h ∈ ∆ \ U(C)) there is an outer arc.
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(7) h /∈ ins(F ).

Subproof. Suppose that h ∈ ins(F ). By (3), h ∈ U(F )∩U(H), and so V (H) = {h} and h ∈ V (F ),
and h1 = h2 = h. We claim that every arc has one end v. For let P be an arc with ends a, b say. Since
a 6= b, we may assume that a 6= v1 and a ∈ V (Sv1) without loss of generality. Since a, h ∈ V (F ), it
follows from 13.3 that Sv1 [a, h] ⊆ F . Since there are ≥ 2 arcs, a and b do not belong to the same
component of F ∩Dv, and hence nor do h, b. By 13.3, it follows that b /∈ V (Sv1) ∪ V (Sv2), and so
b = v. This proves our claim that every arc has one end v. Hence there is exactly one outer arc, say
P1, and exactly one inner arc, say P2.

Let Pi have ends v, ai(i = 1, 2). Since h ∈ V (F ), if E(Sv1 ∩ Sv2) 6= ∅ then a1 = h, and if
E(Sv1 ∩ Sv2) = ∅ then both V (Sv1) and V (Sv2) meet {a1, a2}. Thus in either case we may assume
that a1 ∈ V (Sv1) and a2 ∈ V (Sv2).

Let Si be the path consisting of Svi and the vertex v and the edge fi (i = 1, 2). Let v′ be the first
vertex of P1 (that is, closest to v) different from v that belongs to W . Since W is a wheel and the
edge of P1 incident with v is not in W , it follows that |E(P1[v, v′])| ≥ 2, and since G∗ is bipartite,
either |E(P1[v, v′])| ≥ 3 or v′ ∈ R∗. But

P1[v′, a1] ∪ S1[a1, h]

is a path from a vertex of bd(W ) (namely, v′) to h, and so it has ≥ ρ − 1 edges, and at least ρ if
v′ ∈ R∗, by 13.1. By combining these two paths we deduce that P1 ∪S1[a1, h] has ≥ ρ+ 2 edges, and
consequently has strictly more edges than both S1 and S2.

Let Sv1 ∩ Sv2 have ends h, h′. Let

C1 = P2 ∪ S1[v, h′] ∪ S2[h′, a2]

C2 = P2 ∪ S2[v, a2].

Then C1, C2 are both circuits, bounding the two discs into which ∆v is divided by P2. Since |E(S1)| <
|E(P1 ∪S1[a1, h])| and since P1 ∪S1[a1, h], P2 ∪S2[h′, a2] are edge-disjoint paths of F , it follows that
|E(C1)| < |E(F )|. Since |E(S2)| < |E(P1 ∪ S1[a1, h])| and P1 ∪ S1[a1, h], P2 are edge-disjoint paths
of F , it follows that |E(C2)| < |E(F )|. Since

(Γ|out(Dv),Γ|ins(Dv)) ∈ T ′

and ins(C1) ∪ ins(C2) = ins(Dv), one of

(Γ|out(C1),Γ|ins(C1))

(Γ|out(C2),Γ|ins(C2))

belongs to T ′, contradicting that (Γ|ins(F ),Γ|out(F )) is the (T , T ′)- distinction. This proves (7).

(8) Let P be an outer arc with ends a, b. Then a, b ∈ V (Sv1)∪V (Sv2)∪{v}, and V (Sv1), V (Sv2) each
contain at most one of a, b.

Subproof. If say a /∈ V (Sv1) ∪ V (Sv2) ∪ {v} then a is an internal vertex of the path Dv ∩ H
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(and in particular, H is a circuit and h1 6= h2). Thus the edge of P incident with a is included
in ins(H) \ H (since it is not in ∆v) contrary to (3). Thus, a, b ∈ V (Sv1) ∪ V (Sv2) ∪ {v}. If say
a, b ∈ V (Sv1) then by 13.3, Sv1 [a, b] ⊆ F , and so F has a proper subgraph which is a circuit, a
contradiction. This proves (8).

Define ∆′v = ∆v if h /∈ ∆v, and ∆′v = ∆v \ {h} if h ∈ ∆v. If h ∈ ∆v then V (H) = {h} and
h ∈ V (Dv), and so in both cases ∆′v is simply-connected. Since h ∈ ∆ \ U(C), U(C) is non-null-
homotopic in ∆0 \ {h} (as a closed curve), and hence is not homotopic in ∆0 \ {h} to any closed
curve in ∆′v. But C is the union of some outer arcs and some paths of Dv, and hence there is at least
one outer arc that is not homotopic (as a curve with fixed endpoints) in ∆0 \ {h} to any curve in
∆′v with the same end-points. But by (7), U(F ) is null-homotopic in ∆0 \ {h}, and so there cannot
be exactly one such outer arc, since all outer arcs belong to F . Hence there are at least two outer
arcs with this property. Let F0, F1 be distinct outer arcs, with ends ai, bi (i = 0, 1) respectively, such
that for i = 0, 1, Fi is not homotopic (as a curve with fixed end-points) in ∆0 \ {h} to any curve in
∆′v with end-points ai, bi.

(9) {a0, b0, a1, b1} 6⊆ V (Sv1) ∪ V (Sv2).

Subproof. Otherwise, by (8), we may assume that a0, a1 ∈ V (Sv1) \ V (Sv2) and b0, b1 ∈ V (Sv2) \
V (Sv1). By 13.3 F = F1 ∪F2 ∪ Sv1 [a0, a1]∪ Sv2 [b0, b1], contradicting that there is an inner arc. This
proves (9).

(10) F ∩ Sv1 ∩ Sv2 is null.

Subproof. We may assume that a0, b0, a1, b1 /∈ V (Sv1 ∩ Sv2). Also we may assume that b0, b1 6= v
and hence b0, b1 ∈ V (Sv1 ∪Sv2) \ V (Sv1 ∩Sv2), by (8). If b0, b1 both lie in V (Sv1) then F ∩Sv1 is the
subpath of Sv1 between b0, b1 by 13.3 and so F ∩Sv1 ∩Sv2 is null. Thus we may assume without loss
of generality that b1 ∈ V (Sv1)\V (Sv2) and b0 ∈ V (Sv2)\V (Sv1). Suppose that u ∈ V (F ∩Sv1 ∩Sv2).
Then by 13.3, F includes the path of Sv1 between b1 and u, and the path of Sv2 between b0 and u,
and so since there is an inner arc, it is not the case that a0 = a1 = v. Without loss of generality we
assume that a0 6= v. By (8), a0 ∈ V (Sv1) \ V (Sv2), and by 13.3 F ∩ Sv1 is the path of Sv1 between
a0 and b1, contrary to u ∈ F ∩ Sv1 ∩ Sv2 . This proves (10).

From (8), (9) and (10) we may assume that a1 = v and b1 ∈ V (Sv1) \ V (Sv2), and b0 6= v. If
a0, b0 /∈ V (Sv2) \ V (Sv1), then by (8) a0 = v and b0 ∈ V (Sv1) \ V (Sv2), and by 13.3 F consists of the
union of F0, F1 and the path of Sv1 between b0 and b1, contradicting that there is an inner arc. Thus
we may assume without loss of generality that b0 ∈ V (Sv2) \ V (Sv1).

Let P1 be the path from v to b1 consisting of f1 and the path of Sv1 from v1 to b1.

(11) C = P1 ∪ F1.

Subproof. Let ∆′ be the disc in ∆0 bounded by P1 ∪ F1. Since ∆′ 6⊆ ∆0 \ {h} from the choice
of F1, it follows that h ∈ ∆′, and so ins(H) ∩ (∆′ \ bd(∆′)) 6= ∅. Since no point of bd(∆′) lies in
ins(H)\U(H), we deduce that ins(H) ⊆ ∆′. We claim that ∆v ∩ (∆′ \ bd(∆′)) 6= ∅; for if Sv1 ∩Sv2 is
non-null then U(Sv1 ∩ Sv2) is a subset of ∆′ \ bd(∆′) meeting ∆v (because it is connected and meets
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U(H) and not bd(∆′) by (10)), and if Sv1 ∩Sv2 is null then any point of U(Dv ∩H)\{h1, h2} belongs
to ∆v ∩ (∆′ \ bd(∆′)) (for it belongs to ∆v and to ins(H) and not to bd(∆′)). This proves our claim
that ∆v ∩ (∆′ \ bd(∆′)) 6= ∅. Since bd(∆′) ∩ (∆v \ bd(∆v)) = ∅, it follows that ∆v ⊆ ∆′. We claim
that ins(F ) ⊆ ∆′. For otherwise, there is a path F ′ of F with both ends in V (P1) and with no edge
or internal vertex in ∆′. Let the ends of F ′ be a′, b′, where a′ is closer than b′ to a1 on the path P1.
Then b′ ∈ V (Sv1), and so by 13.3 F includes Sv1 [b′, b1], and so a′ 6= a1 (because otherwise F has a
proper subgraph which is a circuit). Hence a′ ∈ V (Sv1), and by 13.3 F includes the path of Sv1 from
a′ to b′, again a contradiction. This proves that ins(F ) ⊆ ∆′, and hence C = P1∪F1. This proves (11).

(12) a0 ∈ V (Sv1) \ V (Sv2).

Subproof. If a0 = v then F0 ⊆ C, from (11) and the symmetry between F0 and F1. But then
F0 ⊆ P1 ∪ F1 from (11), a contradiction. Thus a0 6= v, and the claim follows from (8). This proves
(12).

Let F2 be a minimal path of F from v to V (Sv2), edge-disjoint from F1. Let the end of F2 in Sv2
be b2. From (10), b2 ∈ V (Sv2) \ V (Sv1). From 13.3,

F = F0 ∪ F1 ∪ F2 ∪ Sv1 [a0, b1] ∪ Sv2 [b0, b2].

By 13.3, F2 is disjoint from Sv1 , and so F2 is an arc. Since there is an inner arc, and F0, F1, F2 are
the only arcs, F2 must be an inner arc. Let P2 be the path from v to b2 consisting of f2 and Sv2 [v1, b2].

(13) |E(Pi)| ≥ |E(F )| − |E(Fi)| for (i = 1, 2).

Subproof. We may assume that |E(Pi ∪ Fi)| ≤ 4ρ+ 4, since |E(F )| ≤ 4ρ+ 4. Hence ins(Pi ∪ Fi)
is the disc in ∆0 bounded by U(Pi ∪ Fi). Now ∆v ⊆ ins(P1 ∪ F1) = ∆ by (11), and so

(Γ ∩ ins(P1 ∪ F1),Γ ∩ out(P1 ∪ F1)) ∈ T \ T ′,

and |E(P1 ∪ F1)| ≥ |E(F )| from the properties of F . Moreover,

(Γ ∩ ins(P2 ∪ F2),Γ ∩ out(P2 ∪ F2)) ∈ T \ T ′,

for it does not belong to T ′ by the second tangle axiom, since

(Γ ∩ out(F ),Γ ∩ ins(F )), (Γ ∩ out(Dv),Γ ∩ ins(Dv)) ∈ T ′

and
ins(P2 ∪ F2) ∪ out(F ) ∪ out(Dv2) = Σ̂χ.

Again, |E(P2 ∪ F2)| ≥ |E(F )| from the properties of F . This proves (13).

(14) |E(Fi)| ≥ |E(Pi)| (i = 1, 2).

Subproof. Let Qi be the union of Fi with the path of Svi from bi to hi. Then |E(Qi)| ≥ ρ
by 13.1, and hence |E(Qi)| ≥ |E(Svi)|. But |E(Qi)| − |E(Svi)| is odd, since Γ∗ is bipartite and v, vi
are adjacent, and so |E(Qi)| ≥ |E(Svi)|+ 1. Hence |E(Fi)| ≥ |E(Pi)|. This proves (14).
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From (13) and (14), |E(Fi)| ≥ |E(F )|− |E(Fi)|(i = 1, 2), and so |E(F1)|+ |E(F2)| ≥ |E(F )|. But
|E(F0)|+ |E(F1)|+ |E(F2)| ≤ |E(F )|, and so E(F0) = ∅, a contradiction. This completes the proof
of 13.6.

We shall also need the following lemma.

13.7 With notation as in 13.6, let Sv1 , Sv2 have the same inner end. Let the vertices of Svi in V (Γ)
be v1

i , . . . , v
k
i in order, where v1

i = vi(i = 1, 2). Then there are k paths P1, . . . , Pk of sk(Γ), mutually

vertex-disjoint, such that Pj has ends vj1 and vj2 (1 ≤ j ≤ k), and such that for 1 ≤ j ≤ k, either

• vj1 = vj2 ∈ V (Sv1 ∩ Sv2) and V (Pj) = {vj1}, or

• vj1, v
j
2 /∈ V (Sv1 ∩ Sv2) and U(Pj) ⊆ ∆v.

Proof. Choose t maximum such that v1
1, . . . , v

t
1 ∈ ∆v (and hence v1

2, . . . , v
t
2 ∈ ∆v). Let the path

Sv1 ∩ Sv2 have ends u ∈ ∆v and h ∈ V (H). It suffices to show that there are t mutually disjoint
paths of sk(Γ∩∆v) between {v1

1, . . . , v
t
1} and {v1

2, . . . , v
t
2}. Suppose not; then by a form of Menger’s

theorem for planar graphs (see [2], for example), there exists a path Q in Γ∗ with U(Q) ⊆ ∆v from
v to u, such that |V (Q) ∩ V (Γ)| < t. But then |E(Q)| ≤ 2t− 1, with equality only if u ∈ V (Γ). Let
P1 be the path of Sv1 between v1 and u. Then |E(P1)| ≥ 2t− 1, with equality only if u /∈ V (Γ); and
so |E(P1)| ≥ |E(Q)|+ 1. Since |E(Sv1)| ≤ ρ, it follows that |E(Q∪ (Sv1 ∩Sv2))| ≤ ρ− 1, contrary to
13.1.

14 Removing wheel covers

The object of this section is to prove the following.

14.1 Let χ,S,D be as in section 10, and let χ satisfy S2; let ω0 ∈ E(Ωχ(2)) ∪ E(Ωχ(3)), and
let m ≥ 1, n ≥ 4. Then there is a well-behaved set C5(m,n, q0) of χ-places with the following
property. Let (Γ, φ, λ, T ) ∈ D be (m,n, ω0)-flawed internally. Then there is a rooted location L which
(4n · 52m + 3)-isolates T , and for which (Γ, φ,L) ∈ C5(m,n, ω0).

Proof. Let (Γ, φ, λ, T ) ∈ D be (m,n, ω0)-flawed internally. By 12.4 there is a cover W with
|W| ≤ m+ c(Σχ), each member of which has radius ≤ 2n · 52m. For each W ∈ W, let H(W ) be an
optimal W -hub. If |V (H(W ))| = 1, designate some vertex of R∗ ∩ bd(W ) as singular , and the other
vertices of R∗ ∩ bd(W ) as regular . If |V (H(W ))| > 1, we say r∗ ∈ R∗ ∩ bd(W ) is singular if Sv1 , Sv2
have distinct inner ends, where v1, v2 are the neighbours of r∗ in Γ∗ ∩ bd(W ), and Sv1 , Sv2 are the
corresponding spokes; and r∗ is regular otherwise. We observe that for each W ∈ W, there are most
|V (H(W ))| singular members of R∗ ∩ bd(W ); and there is at least one (for since H(W ) is optimal,
it follows that if H(W ) is a circuit then not all spokes have the same inner end.) Let S(W ) be the
set of singular vertices in R∗ ∩ bd(W ).

For each W ∈ W, let N(W ) be the set of all v ∈ V (Γ) ∩ bd(W ) with a singular neighbour in
Γ∗ ∩ bd(W ). Thus |N(W )| ≤ 2|V (H(W ))|. Let G(W ) be the drawing with

U(G(W )) = bd(W ) ∪ U(H(W )) ∪
⋃

(U(Sv) : v ∈ N(W ))

V (G(W )) = S(W ) ∪N(W ) ∪ V (H(W )) ∪
⋃

(V (Sv) : v ∈ N(W ))
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where again Sv is the spoke corresponding to v. We see that

|V (G(W ))| ≤ |V (H(W ))|+ |S(W )|+ 2|S(W )|(2n · 52m)

≤ (8n · 52m + 4)(4n · 52m + 2)

and E(G(W )) is similarly bounded. We call (
⋃

(G(W ) : W ∈ W),W) a ω0-flaw in (Γ, φ, λ, T ).
By 5.2, to prove the theorem it suffices to show the following.

(1) Let D′ ⊆ D, such that each (Γ, φ, λ, T ) ∈ D′ is (m,n, ω0)-flawed internally and they all have
the same ω0-flaw. Then there is a well-behaved set C of χ-places such that for each (Γ, φ, λ, T ) ∈ D′
there is a rooted location L which (4n · 52m + 3)-isolates T and for which (Γ, φ,L) ∈ C.

Since each (Γ, φ, λ, T ) ∈ D′ has the same ω0-flaw, it follows that there is a W such that W is a
cover for each (Γ, φ, λ, T ) ∈ D′; and for each W ∈ W there exists H(W ) and ρ(W ) such that H(W )
is a W -hub of radius ρ(W ) for each (Γ, φ, λ, T ) ∈ D′ (they have the same radius in each Γ because
the common ω0-flaw includes a spoke). Moreover, for each W ∈ W the sets S(W ), N(W ) are the
same for each (Γ, φ, λ, T ) ∈ D′, and the spokes Sv(v ∈ N(W )) are also the same for each (Γ, φ, λ, T ).

Thus we may speak of S(W ), N(W ), Sv(v ∈ N(W )) and ∆v(v ∈ S(W )) without specifying a
particular member of D′. (This does not hold for general spokes, of course; they will differ for
different members of D′, as indeed will the sets V (Γ) ∩ bd(W ).) For each W ∈ W, fix a march
π(H(W )) with π̄(H(W )) = V (Γ) ∩ V (H(W )) for each (Γ, φ, λ, T ) ∈ D′, and for each r∗ ∈ S(W )
fix a march π(r∗) with π̄(r∗) = V (Γ) ∩ V (Sv1 ∪ Sv2) for each (Γ, φ, λ, T ) ∈ D′, where v1, v2 are the
neighbours of r∗ in Γ∗ ∩ bd(W ) (and hence v1, v2 ∈ N(W )).

Let Σ′ be obtained from Σχ by deleting Σχ ∩ (W \ bd(W )) for each W ∈ W. Then Σ′ is a surface
since bd(W ) ∩ bd(Σχ) = ∅ for each W ∈ W; and Σ̂′ ∼= Σ̂χ. Let Φ′ be the frame in Σ′ with

U(Φ′) = bd(Σ′)

V (Φ′) =
⋃

(N(W ) : W ∈ W)

where the edges of Φ′ are directed arbitrarily, and an edge of Φ′ is designated as short if it includes
a member of S(W ) for some W ∈ W, and long otherwise.

Let (Γ, φ, λ, T ) ∈ D′, and let W ∈ W. For v ∈ V (Γ) ∩ bd(W ), let the spoke Sv and disc ∆v

be defined as in 13.5. If |V (H(W ))| > 1, we define the hub sector (of (Γ, φ, λ, T ) at W ) to be the
rooted hypergraph (Γ∩ ins(H(W )), π(W )). If |V (H(W ))| = 1 then there is no hub sector. For each
r∗ ∈ (V (Γ∗) \V (Γ))∩ bd(W ), let r∗ have neighbours v1, v2 in Γ∗ ∩ bd(W ) and let A− be the union of
Γ ∩∆r∗ and the hypergraph with vertex set V (Sv1 ∩ Sv2) ∩ V (Γ) and edge set empty. Let A be the
rooted hypergraph (A−, π), where π = π(r∗) if r∗ ∈ S(W ), and otherwise π is an arbitrary march
with π̄ = V (Sv1 ∪ Sv2)∩ V (Γ). We call A the r∗- sector (at W ). Let L(W ) be the set containing the
hub sector at W if there is one and each r∗-sector at W , for all r∗ ∈ (V (Γ∗) \ V (Γ)) ∩ bd(W ); and
let L =

⋃
(L(W ) : W ∈ W).

(2) L(4n · 52m + 3)-isolates T .

Subproof. We claim first, that each ∈ of L has order at most 4n · 52m + 2. For each |E(H(W ))| ≤
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4ρ(W ) + 4 and so hub sectors have order ≤ 2ρ(W ) + 2; for r∗ singular, each r∗-sector has order

1

2
|bd(∆r∗) ∩ V (Γ)| ≤ 1

2
(4ρ(W ) + 4),

by 13.5; and for r∗ regular, each r∗-sector has order |V (Sv1 ∪ Sv2) ∩ V (Γ)| ≤ ρ(W ) + 1 where v1, v2

are the neighbours of r∗ in Γ∗∩bd(W ). Since each ρ(W ) ≤ 2n ·52m, this proves our claim. Moreover,
L− ⊆ T by 13.5. Let T ′ be a tangle in Γ of order ≥ 4n · 52m + 23 such that (B,A) ∈ T ′ for some
(A,B) ∈ L− where (A,B) ∈ (L(W ))− say; and let (C,D) be the (T , T ′)-distinction. Let F be a
T -enclave around T ′. Then |E(F )| ≤ 4ρ(W ) + 4. If (A,B) is the hub sector at W , then some edge
of A is included in ins(F ), and so by 8.6, either ins(H(W )) ⊆ ins(F ) or ins(F ) ⊆ ins(H(W )).
Now since |E(F )| ≤ 4ρ(W ) + 4 and H(W ) is a W -hub, we deduce that if ins(H(W )) ⊆ ins(F ) then
F = H(W ). Thus if (A,B) is the hub sector then ins(F ) ⊆ ins(H(W )) and so C ⊆ A and B ⊆ D
as required. On the other hand, if (A,B) is an r∗-sector for some r∗ ∈ (V (Γ∗) \V (Γ))∩ bd(W ), then
by 13.6 ins(F ) ⊆ ∆r∗ , and again C ⊆ A and B ⊆ D. Thus L(4n · 52m + 3)-isolates T . This proves
(2).

Let C be the set of all (Γ, φ,L) as above such that (Γ, φ, λ, T ) ∈ D′ for some λ, T . It remains
to show that C is well-behaved. Thus, let Ω be a well-quasi-order, and let (Γi, φi,Li)(i = 1, 2) be a
countable sequence of members of C. For each i ≥ 1, let ξi : Li → E(Ω) be some function. We must
show that there exist j > i ≥ 1 and an outline τ : Li → Lj such that ξi(A) ≤ ξj(τ(A)) for all A ∈ Li.
Let (Γi, φi, λi, Ti) ∈ D′ for each i ≥ 1.

For each W , if |V (H(W ))| 6= 1, let Ai(W ) be the hub sector of (Γi, φi, λi, Ti) at W . There is an
infinite set I ⊆ {1, 2, . . .} such that for all i, j ∈ I with j > i, ξi(Ai(W )) ≤ ξj(Aj(W )) because Ω is
a well-quasi-order. To simplify notation, let us replace our initial sequence by this subsequence. We
may therefore assume that

(3) For each W ∈ W with |V (H(W ))| 6= 1, ξ1(A1(W ) ≤ ξ2(A2(W )) ≤ . . .

For each r∗ ∈ (V (Γ∗i ) \ V (Γi)) ∩ bd(W ), let Ai(r
∗) be the sector of (Γi, φi, λi, Ti) at r∗. We may

similarly assume that

(4) For each W ∈ W and each r∗ ∈ S(W ), ξ1(A1(r∗)) ≤ ξ2(A2(r∗)) ≤ . . .

Let R be the well-quasi-order with element set all triples (π, π1, π2), where π is a march in Σχ

with |π̄| ≤ 4n · 52m + 2, and π1, π2 are marches with π̄1, π̄2 ⊆ π̄. We order R by isomorphism; that is,
(π, π1, π2) ≤ (π′, π′1, π

′
2) if there is a bijection of π̄ to π̄′ mapping π to π′, π1 to π′1 and π2 to π′2. For

each i ≥ 1, each W ∈ W, and each regular r∗ ∈ (V (Γ∗i ) \ V (Γi)) ∩ bd(W ), let er∗ be the component
of bd(W ) \ {v1, v2} containing r∗, where v1, v2 are the neighbours of r∗ in Γ∗i ∩ bd(W ). Let

φ′i(er∗) = (ξ(Ai(r
∗)), (π(Ai(r

∗)), µi(v1), µi(v2)),

where µi(v1), µi(v2) are the marches given by enumerating the vertices of V (Sv1) ∩ V (Γi), V (Sv2) ∩
V (Γi) (respectively) in order, starting with v1 and v2. Then φ′i(er∗) ∈ Ω×R.

Let Σ′ be obtained from Σχ by deleting Σχ ∩ (W \ bd(W )) for each W ∈ W. Then Σ′ is a surface
since the W ’s are disjoint and each bd(W ) is disjoint from bd(Σχ). Moreover, bd(Σ′) ∩ bd(Σχ) = ∅,
and Σ̂ ∼= Σ̂χ. Let Φ′ be the frame with U(Φ′) = bd(Σ′), V (Φ′) =

⋃
(N(W ) : W ∈ W), where the
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edges of Φ′ are directed arbitrarily, and an edge of Φ′ is short if it contains a vertex of S(W ) for
some W ∈ W, and long otherwise. Let χ′ be the colour scheme where Σχ′ = Σ′,Φχ′ = Φ′,Ωχ′(k) is
an ideal of Ωχ(k) defined by

E(Ωχ′(k)) = {x ∈ E(Ωχ(k)) : x 6≥ ω0} (k = 2, 3),

and for each long side S of Φ′,Ωχ′(S) = Ω×R.

(5) χ′ is not orientedly bad.

Subproof. Since ω0 ∈ E(Ωχ(2))∪E(Ωχ(3)), it follows that either Ωχ′(2) ≺ Ωχ(2) or Ωχ′(3) ≺ Ωχ(3).
Since χ satisfies S2, this proves (5).

For each i ≥ 1, let Γ′i be the painting in Σ′ defined by

U(Γ′i) = (U(Γi) ∩ Σ′) ∪ bd(Σ′)

V (Γ′i) = V (Γi) ∩ Σ′

and for each edge e of Γ′i, γΓ′i
(e) equals γΓi(e) if e ∈ Γi, and γΓi(e) agrees with the direction of the

short side of Φ′ containing e otherwise. For each e ∈ E(Γ′i), if e ∈ E(Γi) let φ′i(e) = φi(e); if e is a
short side let φ′i(e) = e; and otherwise φ′i(e) has already been defined. We see that

(6) For each i ≥ 1, (Γ′i, φ
′
i) is a χ′- coloured painting, and the set {(Γ′i, φ′i) : i ≥ 1} is similarly

oriented.

By (5), we deduce

(7) There exist j > i ≥ 1 and a linear inflation σ′ of (Γ′i, φ
′
i) in (Γ′j , φ

′
j).

For each A ∈ Li, if A is a hub sector or an r∗-sector for some singular r∗, let τ(A) be the
corresponding sector of Lj . If A is an r∗-sector of some W ∈ W for some regular r∗, let e be the
border edge of Γ′i with r∗ ∈ e, and let s∗ ∈ (V (Γ∗j ) \ V (Γj)) ∩ σ′(e). Let τ(A) be the s∗-sector of
(Γj , φj , λj , Tj) at W . We claim that τ : Li → Lj is an outline, satisfying ξi(A) ≤ ξj(τ(A)) for all
A ∈ Li.

(8) For every A ∈ Li, ξi(A) ≤ ξj(τ(A)).

Subproof. If A is a hub sector or an r∗-sector for some singular r∗, this follows from (3) and
(4). If A is an r∗-sector for some regular r∗, then τ(A) is an s∗-sector for some regular s∗, and
ξi(A) ≤ ξj(τ(A)) since φ′i(e) ≤ φ′j(σ

′(e)), where e is the border edge of Γ′i with r∗ ∈ e. This proves
(8).

Let G′ =
⋃

(σ′(v) : v ∈ V (Γ′i)). Now G′ is not necessarily a subgraph of sk(Γj), because some
of its edges are included in bd(Σ′). Let E′ = {e ∈ E(G′) : e ⊆ bd(Σ′)}. For each e ∈ E′, choose
v ∈ V (Γ∗j ) \ V (Γj) with v ∈ e. Then v is regular, because e is not a short side of Φ′. Let P (e) be the
union of the paths given by 13.6. Let G be the union of

(G′ ∩ sk(Γj)) ∪
⋃

(P (e) : e ∈ E′)
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with the graph with vertex set V (M(Γj ,Lj)) and no edges.
For each v ∈ V (Γ′i) there is a component K of G with V (σ′(v)) ⊆ V (K); because for each

e ∈ E(σ(v)) \ E(sk(Γj)) ⊆ E′, there is a path of P (e) joining the ends of e. Let σ′′(v) = K. For
v ∈ V (M(Γi,Li)) \ V (Γ′i), if v ∈ V (H(W )) ∩ V (Γi) for some W ∈ W, let σ′′(v) be the component
of G with v ∈ V (σ′′(v)). If v is the kth term of µi(u) for some u ∈ V (Γ) ∩ bd(W ), let σ′′(v) be the
component of G containing the kth term of µj(u

′), where if e is the border edge of Γ′i with tail u then
u′ is the tail of σ′(e). For each v, let σ(v) be the induced subgraph of sk(Γ) with vertex set V (σ′′(v)).
For each edge e of M(Γi,Li), let σ(e) = σ′(e). We claim that σ is an inflation of M(Γi,Li) in Γj , as
in the definition of outline. We omit the verification, because it is lengthy and almost identical with
(but easier than) the major part of the proof of theorem 9.1 of [11].

Thus τ : Li → Lj is an outline and by (8) the proof is complete.

15 Conclusion

The proof will be completed by using one further result. To prove it we need the following lemma.

15.1 Let Γ be a 2-cell drawing with E(Γ) 6= ∅ in a surface Σ with bd(Σ) = ∅, and let T be a tangle
in Γ with rep(T ) ≥ θ. Let r be a region of Γ, and let X ⊆ V (Γ)∩ r̄ with |X| ≤ θ. Then the following
are equivalent:

• there exists (A,B) ∈ T of order < |X| with X ⊆ V (A)

• there is a circuit C of Γ∗ of length < 2θ, such that |X ∩ ins(C)| > 1
2 |E(C)| and r∗ ∈ ins(C).

Proof. That the second statement implies the first is easy, for if C is as in the second statement,
let

V (A) = V (Γ ∩ ins(C)) ∪X
E(A) = E(Γ ∩ ins(C))

B = Γ ∩ out(C).

Then (A,B) ∈ T , (A,B) has order 1
2 |E(C)| + |X \ ins(C)| < |X|, and X ⊆ V (A); and so the first

statement holds.
For the converse, let (A,B) satisfy the first statement. Let G ⊆ Γ∗ be the subdrawing consisting

of all edges of Γ∗ split by (A,B), and their ends. Let C1, . . . , Ck be all the circuits C of G with
ins(C) maximal. By theorem 6.3 of [6], every edge of A is a subset of ins(Ci) for some i and hence
so is every edge of G; and by theorem 4.3 of [6], for 1 ≤ i ≤ k every path P of G with distinct
ends both in V (Ci) satisfies U(P ) ⊆ ins(Ci). Suppose that r∗ ∈ ins(Ci) \ U(Ci) for some i. Then
X ⊆ ins(Ci), and Ci satisfies the second statement of the theorem as required. We assume therefore
that there is no such i.

Now r∗ may belong to some of the Ci’s, say to C1, . . . , Cb. Consequently C1, . . . , Cb pairwise
meet in precisely {r∗}. For 1 ≤ i ≤ b, let Xi = X ∩ ins(Ci), and let X0 = X \X1∪ . . .∪Xb. Suppose
that some x ∈ X0 is not in V (A∩B). Certainly x ∈ V (A), and so every edge of Γ incident with x is
in E(A). Since Γ is 2-cell and has an edge, x is incident with at least one edge, and so there exists
e ∈ E(A) incident with x. Hence there exists i with 1 ≤ i ≤ k and e ∈ ins(Ci), and so x ∈ ins(Ci).
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Since x ∈ X0 it follows that r∗ /∈ V (Ci), and since x is adjacent to r∗ in Γ∗ it follows that x ∈ V (Ci).
Consequently x ∈ V (Ci) ∩ V (Γ) ⊆ V (A ∩B), a contradiction. This proves that X0 ⊆ V (A ∩B).

Consequently, ∑
1≤i≤b

1

2
|E(Ci)|+ |X0| ≤ |V (A ∩B)| < |X|

and so ∑
1≤i≤b

1

2
|E(Ci)| < |X \X0| =

∑
1≤i≤b

|Xi|.

Hence there exists i with 1 ≤ i ≤ b and 1
2 |E(Ci)| < |Xi|, and then Ci satisfies the second statement

of the theorem, as required.

We recall that the function l(e1, e2) was defined in the start of section 11.

15.2 Let χ be a colour scheme, and let (Γ0, φ0) be a χ-coloured painting. Then there exist n ≥ 0
with the following property. Let (Γ, φ) be a χ-coloured painting, such that (Γ0, φ0) and (Γ, φ) are
similarly oriented, and there is no inflation of (Γ0, φ0) in (Γ, φ). Let T be a tangle in Γ with metric
d, with rep(T ) > 3

2n. Then either

• d(r∗1, r
∗
2) ≤ n for two distinct poles r∗1, r

∗
2, or

• there is a circuit F of Γ∗ with 1
2 |E(F )| ≤ n such that ins(F ) includes a long side or more than

1
2 |E(F )| vertices of Φχ, or

• for some long side S, let the edges of Γ0 bordering S be f1, . . . , fk, in order; then there do
not exist e1, . . . , ek ∈ E(Γ), bordering S in order, such that φ0(fi) ≤ φ(ei) (1 ≤ i ≤ k),
l(ei, ej) >

1
2n (1 ≤ i < j ≤ k) and l(ei, s) >

1
2n (1 ≤ i ≤ k) for every short side s in the same

cuff as S, or

• let k = |E(Γ0)|; then for some internal edge f of Γ0, there do not exist e1, . . . , ek ∈ E(Γ)
such that |ẽi| = |f̃ | and φ0(f) ≤ φ(ei) (1 ≤ i ≤ k), d(ei, ej) > n (1 ≤ i < j ≤ k) and
d(ei, r

∗) > n (1 ≤ i ≤ k) for every pole r∗.

Proof. Given χ,Γ0, φ0, choose n ≥ 4|V (Γ0)|+8 and also satisfying another condition in terms of Γ0

which we shall describe later. Now let (Γ, φ), T be as in the theorem, and suppose for a contradiction
that none of the four outcomes hold.

Let f1, . . . , fm be the internal edges of Γ0. Choose t maximum with t ≤ m such that there exist
edges e1, . . . , et of Γ with the properties that

• |ẽi| = |f̃i| and φ(ei) ≥ φ0(fi) (1 ≤ i ≤ t)

• d(ei, ej) >
1
2n (1 ≤ i < j ≤ t)

• d(ei, r
∗) > n (1 ≤ i ≤ t) for every pole r∗.

We claim that t = m. For suppose that t < m. Since the fourth outcome of the theorem does not
hold, there are |E(Γ0)| internal edges c1, . . . , ck say of Γ, where k = |E(Γ0)|, such that |c̃j | = |f̃t+1|
and φ(cj) ≥ φ0(ft+1) (1 ≤ j ≤ k), and d(ci, cj) > n (1 ≤ i < j ≤ k), and d(ci, r

∗) > n (1 ≤ i ≤ k)
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for every pole r∗. From the maximality of t, for 1 ≤ j ≤ k there exist ij with 1 ≤ ij ≤ t such that
d(eij , cj) ≤ 1

2n. Since
k = |E(Γ0)| ≥ m > t,

it follows that ij = ij′ for some j 6= j′; say i1 = i2, and ei1 = e. Then d(e, c1), d(e, c2) ≤ 1
2n, and so

d(c1, c2) ≤ n, a contradiction. This proves that t = m.
It follows, since the third outcome of the theorem does not hold, that

(1) There is an injection β : E(Γ0)→ E(Γ) with the following properties:

• β(s) = s for every short side s of Φχ

• β(e) and e have the same size, and φ(β(e)) ≥ φ0(e), for all e ∈ E(Γ0)

• for each long side S, if the edges of Γ0 bordering S are f1, . . . , fk in order, then β(f1), . . . , β(fk)
also border S in order, and l(β(fi), β(fj)) >

1
2n for 1 ≤ i < j ≤ k, and l(β(fi), s) >

1
2n for

1 ≤ i ≤ k and every short side s bordering the same cuff as S

• for every internal e ∈ E(Γ0), d(β(e), r∗) > n for every pole r∗, and for all distinct internal
e1, e2 ∈ E(Γ0) , d(β(e1), β(e2)) > 1

2n.

If F is a line, we denote the set of ends of F by bd(F ).

(2) There is a Φχ-preserving homeomorphism α : Σχ → Σχ such that for every e ∈ E(Γ0) ex-
cept short sides, α(β(e)) ⊆ e \ bd(ē), and the orientation of α(β(e)) defined by α(γΓ(β(e))) agrees
with the orientation of e defined by γΓ0(e).

Subproof. There is clearly an α satisfying these conditions for all border edges e; for if e1, e2

are distinct border edges and not short sides, then β(e1), β(e2) have no common ends and have no
end in common with any short side (by the third property of β in (1), since n > 6); and if they
border the same long side then so do β(e1), β(e2), and the latter are in the proper order. Now for
any internal e ∈ E(Γ0), β(e) has no end in common with β(e′) for any e′ ∈ E(Γ0)\{e}, and it is easy
to arrange that α(β(e)) ⊆ e \ bd(ē), and that if |ẽ| = 2 the orientation given by α(γΓ(β(e))) and by
γΓ0(e) agree. It remains to arrange this orientation condition when |ẽ| = 3. Now if Σχ is orientable,
this last condition is automatically satisfied, for (Γ0, φ0) and (Γ, φ) are similarly oriented, and so we
may assume that Σχ is not orientable. Since Σχ is connected, there is, for each internal e ∈ E(Γ0)
with |ẽ| = 3, a Φχ-preserving homeomorphism αe : Σχ → Σχ which maps β(e) onto itself with
reversed orientation, and fixes bd(Σ) and every β(f) (f ∈ E(Γ0) \ {e}) pointwise. By an appropriate
combination of the αe’s we may correct every e ∈ E(Γ0) with |ẽ| = 3 for which α(γΓ(β(e))) and
γΓ0(e) give opposite orientation of β(e). This proves (2).

(3) For each v ∈ V (Γ0) there is a tree Tv in Σχ such that

• for distinct v, v′ ∈ V (Γ0), U(Tv) ∩ U(Tv′) = ∅

• for each v ∈ V (Γ0), e ∈ E(Γ0) and 1 ≤ i ≤ |ẽ|, U(Tv) contains the ith term of γΓ(β(e)) if and
only if v is the ith term of γΓ0(e), and
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• for each v ∈ V (Γ0) and e ∈ E(Γ0), U(Tv) ∩ β(e) = ∅.

Subproof. Let Sv be a tree in Σχ for each v ∈ V (Γ0), such that

• for distinct v, v′ ∈ V (Γ0), U(Sv) ∩ U(Sv′) = ∅

• for each v ∈ V (Γ0), e ∈ E(Γ0) and 1 ≤ i ≤ |ẽ|, U(Sv) contains the ith term of α(γΓ(β(e))) if
and only if v is the ith term of γΓ0(e), and

• for each v ∈ V (Γ0) and e ∈ E(Γ0), U(Sv) ∩ α(β(e)) = ∅.

These Sv’s clearly exist (let each Sv be a star centered at v, with edges entering all those e ∈ E(Γ0)
with v ∈ ẽ except short sides). Let Tv = α−1(Sv) for each v ∈ V (Γ0); then (3) is satisfied. This
proves (3).

(4) Let r∗ be a pole, and let N(r∗) =
⋃

(β̃(e) : e ∈ E(Γ0), e ⊆ r̄ \ r). There is no circuit F of
Γ∗ with 1

2 |E(F )| < rep(T ) and with r∗ ∈ ins(F ) and 1
2 |E(F )| < |ins(F ) ∩N(r∗)|.

Subproof. Suppose that F is such a circuit. Now |N(r∗)| ≤ 2|V (Γ0)|, and so

1

2
|E(F )| < 2|V (Γ0)| ≤ 1

2
n− 2.

Suppose first that r∗ ∈ ins(F ) \ U(F ). Since 1
2 |E(F )| ≤ n, and r̄ ⊆ ins(F ), it follows that r̄

includes no long side of Φχ, because the second outcome of the theorem does not hold. Hence
N(r∗) = V (Φχ) ∩ (r̄ \ r), and so ins(F ) contains more than 1

2 |E(F )| vertices of Φχ, and the third
outcome of the theorem holds, a contradiction.

Thus r∗ /∈ ins(F ) \ U(F ), and so r∗ ∈ V (F ). Hence F is a bite at r∗. We may assume that
ins(F )∩(r̄\r) is a line, for otherwise there is a circuit F ′ with |E(F ′)| < E(F ) and ins(F ) ⊆ ins(F ′).
Suppose that β(e) ⊆ ins(F ) for some e ∈ E(Γ0) bordering r̄\r which is not a short side. Let S be the
long side with e ⊆ S, and let s1, s2 be the short sides with common ends with S. (Possibly s1 = s2.)
Let v1, v2 be the corresponding ends of S. If v1 ∈ ins(F ) then l(β(e), s1) ≤ 1

2 |E(F )| + 2 ≤ 1
2n, a

contradiction to the third assertion of (1). Thus v1, v2 /∈ ins(F ). Since ins(F ) ∩ (r̄ \ r) is a line, it
follows that ins(F )∩ (r̄ \ r) ⊆ S. By (1) again, β(f) 6⊆ ins(F ) for any f ∈ E(Γ0)\{e} which borders
S, and so |ins(F ) ∩N(r∗)| = 2. Hence 1

2 |E(F )| ≤ 1, which is impossible.
Thus there is no e ∈ E(Γ0) bordering r̄ \ r, not a short side, with β(e) ⊆ ins(F ), and so

N(r∗) ∩ ins(F ) = V (Φχ) ∩ ins(F ).

But then the second outcome of the theorem holds, a contradiction. This proves (4).

Let T ′ be the set of all separations (A′, B′) of sk(Γ) of order ≤ n such that there exists (A,B) ∈ T
with V (A) = V (A′) and V (B) = V (B′). By theorem 14.1 of [9], T ′ is a tangle in sk(Γ) of order
n+ 1 and rep(T ′) = n+ 1, since ord(T ) > 3

2n and rep(T ) ≥ n+ 1.

(5) Let r∗, N(r∗) be as in (4). There is no (A′, B′) ∈ T ′ with N(r∗) ⊆ V (A′) and |N(r∗)| >
|V (A′ ∩B′)|.
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Subproof. Choose (sk(Γ))∗ such that Γ∗ ⊆ (sk(Γ))∗. Suppose there is such an (A′, B′). Then
by 15.1, there is a circuit F of (sk(Γ))∗ of length ≤ 2n, bounding a closed disc ∆ with r∗ ∈ ∆, such
that

(sk(Γ) ∩∆, sk(Γ) ∩∆′) ∈ T ′

where ∆′ is the closure of Σ̂χ \∆, and

|N(r∗) ∩∆| > 1

2
|E(F )|.

For every vertex v of F which lies in the interior of an edge of Γ, there is a vertex v′ of Γ∗ adjacent
in (sk(Γ))∗ to both neighbours of v in F ; and by replacing v by v′, and repeating, we may assume
that F ⊆ Γ∗. But this contradicts (4). This proves (5).

(6) Let e ∈ E(Γ0) be internal. There is no disc ∆ ⊆ Σ̂χ with bd(∆) sk(Γ)-normal, such that
|β̃(e) ∩∆| > |V (Γ) ∩ bd(∆)| and (Γ ∩∆,Γ ∩∆′) ∈ T ′, where ∆′ is the closure of Σ̂χ \∆.

Subproof. Suppose that ∆ is such a disc. Then |V (Γ) ∩ bd(∆)| ≤ 2, since |β̃(e) ∩ ∆| ≤ 3. Since
d(β(e), r∗) > n for every pole r∗, it follows that ∆ ⊆ Σχ \ bd(Σχ). Now

|V (Γ) ∩∆| ≥ |β̃(e) ∩∆| > |V (Γ) ∩ bd(∆)|

and so ∆ ∩ V (Γ) 6⊆ bd(∆). Since Γ is internally 3-connected and hence so is sk(Γ), we deduce
that ∆′ is a disc and ∆′ ∩ V (Γ) ⊆ bd(∆′). But then the third tangle axiom is violated, because
V (Γ ∩∆) = V (Γ). This proves (6).

Let n be so large (in terms of Σ̂χ and Γ0) that theorem 3.2 of [7] applies (as applied below).
From (1), (3), (4), (6), and theorem 3.2 of [7] applied to T ′ and sk(Γ), the trees Tv in (3) may be
chosen to be subgraphs of sk(Γ). For each v ∈ V (Γ0), let σ(v) be the induced subgraph of sk(Γ)
with vertex set V (Tv), and for each e ∈ E(Γ0) let σ(e) = β(e). Then σ is an inflation of (Γ0, φ0) in
(Γ, φ), a contradiction, as required.

Proof of 4.1.
Suppose that some χ satisfying S1–S4 is orientedly bad. Then (by replacing the Ωχ(k)’s and

Ωχ(S)’s by isomorphic well-quasi-orders) we may choose χ to be disjoint. Let (Γ0, φ0), (Γ1, φ1), . . .
be a similarly oriented bad sequence for χ. By 6.1 we may assume that for all j > i ≥ 0 there
is no inflation of (Γi, φi) in (Γj , φj). Choose n ≥ 4 and even such that 15.2 holds (for (Γ0, φ0)).
By 5.4 and 5.5, we may assume (by replacing the sequence (Γi, φi) (i ≥ 1) by a subsequence) that
dist(Γi), rep(Γi) > 25n · 52|E(Γ0)| for all i ≥ 1. From 15.2 we obtain
(1) For each i ≥ 1, and for every tangle T in Γi, and every tie-breaker λ in Γi, either

• rep(T ) ≤ 25n · 52|E(Γ0)|, or

• (Γ, φ, λ, T ) is 25n · 52|E(Γ0)|-flawed in distance, or

• (Γ, φ, λ, T ) is 1
2n(|E(Γ0)|+ 1)-flawed in freedom, or

• for some long side S of Φχ, let f1, . . . , fk be the edges of Γ0 bordering S in order; then (Γ, φ, λ, T )
is (1

2n, (φ0(f1), φ0(f2), . . . , φ0(fk)))-flawed on S, or

53



• for some internal e ∈ E(Γ0), (Γ, φ, λ, T ) is (|E(Γ0)|, n, φ0(e))-flawed internally.

Let S be a similarly oriented set of χ-coloured paintings containing (Γi, φi) for each i ≥ 0, and
closed under Φχ-preserving homeomorphisms of Σχ. This exists since {(Γi, φi) : i ≥ 0} is similarly
oriented and so are all images of each (Γi, φi) under Φχ-preserving homeomorphisms. Let D be the
set of all (Γ, φ, λ, T ) such that (Γ, φ) ∈ S, λ is a tie-breaker in Γ, and T is a tangle in Γ.

By 10.3, 10.4, 10.5, 11.1 and 14.1, there is a well-behaved set C of χ-places such that for each
(Γ, φ, λ, T ) ∈ D, if ord(T ) > 25n ·52|E(Γ0)| then there is a rooted location L which (25n ·52|E(Γ0)|+1)-
isolates T and for which (Γ, φ,L) ∈ C. By 9.2 there exist j > i ≥ 1 such that there is an inflation of
(Γi, φi) in (Γj , φj). This is a contradiction, and completes the proof.
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