Graph minors
 XIX. Well-quasi-ordering on a surface

Neil Robertson ${ }^{1}$
Department of Mathematics, Ohio State University, 231 West 18th Ave., Columbus, OH 43210, U.S.A.
P. D. Seymour ${ }^{2}$
Telcordia Technologies,
445 South St., Morristown, NJ 07960, U.S.A.

April 1989: revised September 20, 2023

[^0]
Abstract

In a previous paper [4] we showed that for any infinite set of (finite) graphs drawn in a fixed surface, one of the graphs is isomorphic to a minor of another. In this paper we extend that result in two ways: - we generalize from graphs to hypergraphs drawn in a fixed surface, in which each edge has two or three ends, and - the edges of our hypergraphs are labelled from a well-quasi-order, and the minor relation is required to respect this order.

This result is another step in the proof of Wagner's conjecture, that for any infinite set of graphs, one is isomorphic to a minor of another.

1 Introduction

This paper is the penultimate step in the proof of Wagner's conjecture, that for any infinite set of finite graphs, one is isomorphic to a minor of another. Roughly speaking (we shall define our terms later), we wish to show that for any fixed surface Σ and fixed well-quasi-order Ω, if H_{1}, H_{2}, \ldots is an infinite sequence of hypergraphs drawn in Σ where each edge has two or three ends, and for each $i \geq 1, \phi_{i}: E\left(H_{i}\right) \rightarrow E(\Omega)$ is some function, then there exist $j>i \geq 1$ such that H_{i} is isomorphic to a "minor" of H_{j}, and for each edge e of H_{i} the corresponding edge f of H_{j} satisfies $\phi_{i}(e) \leq \phi_{j}(f)$. There are also special rules concerning the boundary of Σ and edges drawn touching the boundary (roughly, we ask that when we do contractions in producing a minor, any such edge remain in contact with the boundary during the contraction process).

Our approach is by a grand induction on the complexity of the surface and the well-quasi-order Ω. Thus, we first assume the result for all simpler surfaces, that is, with fewer handles and crosscaps, even if the surface boundary has more components ("cuffs") and the well-quasi-order is bigger. Second, for a fixed number of handles and crosscaps, we assume the result for sets of labelled hypergraphs in which the labels of the "internal" edges (that is, not on the boundary of Σ) all come from some proper subideal of our well-quasi-order, even if the labels on the boundary come from some larger well-quasi-order. Third, we proceed by induction on the number of cuffs, and there is a fourth of the same kind. To make this induction work, we find it necessary to divide the boundary of our surface into segments, and then have different restrictions on the labels of edges bordering each segment; and also, some edges drawn on the boundary have to be regarded as fixed.

The method of proof is to apply two theorems of earlier papers concerned with "tangles" in hypergraphs. Let H_{1}, H_{2}, \ldots be a "bad" sequence of hypergraphs all drawn in Σ, with labelling functions $\phi_{1}, \phi_{2}, \ldots$, such that each pair $\left(H_{i}, \phi_{i}\right)$ satisfies the restrictions on labels described above. A theorem of [7] implies that if \mathcal{T} is a tangle in H_{i}, and $\left(H_{i}, \phi_{i}\right)$ is "sufficiently general" relative to \mathcal{T}, then $\left(H_{i}, \phi_{i}\right)$ contains $\left(H_{1}, \phi_{1}\right)$ in the required way, a contradiction. It follows that, for every tangle \mathcal{T} in every H_{i}, there is one of a bounded number of "structural deficiencies". But a theorem of [10] says that if relative to every tangle in every H_{i} we have a suitable kind of decomposition of H_{i}, then again some $\left(H_{j}, \phi_{j}\right)$ contains some $\left(H_{i}, \phi_{i}\right)$. Thus, it remains to show that our structural deficiencies can be converted to the right kind of decompositions, and that is the main part of the proof. This is where the grand induction is used-since the pieces into which we propose to decompose our hypergraphs are simpler than the originals (that is, are covered by the inductive hypothesis), we can infer that these pieces satisfy the theorem; and inferring that is a large part of showing that our decompositions are indeed of the "right kind".

The paper is organized as follows. We begin in sections 2 and 3 with definitions, and in section 4 explain the overall induction. In sections 5 and 6 we reconcile our containment relation with that of the theorem of [10] (unfortunately, they are not quite the same). Sections 7 and 8 are more definitions, introducing "tangles" and "tie-breakers", and in section 9 we state the theorem of [10] that we wish to apply, and begin the application. This is continued in sections 10-14. Finally, in section 15 we use a theorem of [7] to complete the proof.

2 Surfaces

In this paper, we mean by a surface a compact, connected 2 -manifold Σ, with (possibly null) boundary, denoted by $b d(\Sigma)$. An O-arc in Σ is a subset of Σ homeomorphic to a circle, and a line is a subset of Σ homeomorphic to $[0,1]$. A closed disc (or just "disc") in Σ is a subset of Σ homeomorphic to the unit disc in the real plane $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$, and an open disc is defined similarly. Each component of $b d(\Sigma)$ is an O-arc, and we call them the cuffs of Σ. The surface obtained from Σ by "pasting" a disc onto each cuff we denote by $\hat{\Sigma}$. (It will not be necessary to distinguish between the different surfaces obtained by pasting different discs onto the cuffs.) If $X \subseteq \Sigma$, we denote its closure by \bar{X}, and define $\tilde{X}=\bar{X} \backslash X$.

A drawing G in Σ is a pair (U, V), where $U \subseteq \Sigma$ is closed and $V \subseteq U$ is finite, such that

- $U \backslash V$ has only finitely many arc-wise connected components, called edges
- for each edge $e,|\tilde{e}|=2$, and \bar{e} is a line with ends the two members of \tilde{e}
- for each edge e, either $e \subseteq b d(\Sigma)$ or $e \cap b d(\Sigma)=\emptyset$.

Thus, our drawings may have multiple edges, but not loops. We write $U(G)=U$ and $V(G)=V$. The set of edges of G is denoted by $E(G)$, and the elements of $V(G)$ are the vertices of G. The components of $\Sigma \backslash U(G)$ are called the regions of G in Σ (we shall occasionally also need to discuss the regions of G in $\hat{\Sigma})$. Paths and circuits have no "repeated" vertices. The remainder of our graph-theory terminology is standard.

A march in a set V is a sequence of distinct elements of V. If μ is the march v_{1}, \ldots, v_{k} we denote the set $\left\{v_{1}, \ldots, v_{k}\right\}$ by $\bar{\mu}$. A painting Γ in Σ is a triple (U, V, γ), where $U \subseteq \Sigma$ is closed and $V \subseteq U$ is finite, such that

- $b d(\Sigma) \subseteq U$, and $U \backslash V$ has only finitely many arc-wise connected components, called edges
- for each edge e, either $|\tilde{e}|=2$ and \bar{e} is a line with ends the two members of \tilde{e}, or $|\tilde{e}|=3$ and \bar{e} is a disc with $\tilde{e} \subseteq b d(\bar{e})$
- γ is a function assigning to each edge e a march $\gamma(e)$ with $\bar{\gamma}(e)=\tilde{e}$; we call the i th term of $\gamma(e)$ the i th end of e, and the first and last terms of $\gamma(e)$ are the tail and head of e
- every edge e with $e \cap b d(\Sigma) \neq \emptyset$ satisfies $|\tilde{e}|=2$ and $e \subseteq b d(\Sigma)$.

We write $U(\Gamma)=U, V(\Gamma)=V, \gamma_{\Gamma}=\gamma$, and we denote the set of edges of Γ by $E(\Gamma)$. Again, the elements of V are the vertices of Γ, and the connected components of $\Sigma \backslash U$ are the regions of Γ. We call $|\tilde{e}|$ the size of an edge e. Let

$$
U^{\prime}=V \cup \bigcup(e: e \in E(\Gamma),|\tilde{e}|=2) \cup \bigcup(b d(\bar{e}): e \in E(\Gamma),|\tilde{e}|=3)
$$

Then $\left(U^{\prime}, V\right)$ is a drawing in Σ which we denote by $s k(\Gamma)$ (it is the " 1 -skeleton" of Γ).
(This definition is a little different from the definition of a painting in [9], but since we do not use here any results from [9] about paintings, we do not have to pay for the discrepancy yet.) For a painting or drawing in Σ, an edge e is a border edge if $e \cap b d(\Sigma) \neq \emptyset$, and otherwise is internal. (It is possible that $\tilde{e} \cap b d(\Sigma) \neq \emptyset$ for internal edges e.) An edge e borders a cuff Θ if $e \cap \Theta \neq \emptyset$. Note that all border edges in paintings have size 2 .

Let Γ, Γ^{\prime} be paintings in Σ. An inflation of Γ in Γ^{\prime} is a function σ with domain $V(\Gamma) \cup E(\Gamma)$, satisfying

- $\sigma(e) \in E\left(\Gamma^{\prime}\right)$ and has the same size as e, for each $e \in E(\Gamma)$, and if $e_{1}, e_{2} \in E(\Gamma)$ are distinct then $\sigma\left(e_{1}\right) \neq \sigma\left(e_{2}\right)$
- $\sigma(v)$ is a non-null connected induced subdrawing of $s k\left(\Gamma^{\prime}\right)$, for each $v \in V(\Gamma)$; and if $v_{1}, v_{2} \in$ $V(\Gamma)$ are distinct then $\sigma\left(v_{1}\right), \sigma\left(v_{2}\right)$ are disjoint
- for each $e \in E(\Gamma)$ and $1 \leq i \leq|\tilde{e}|$, if v is the i th end of e then $\sigma(v)$ contains the i th end of $\sigma(e)$.

We remark that it follows that for $e \in E(\Gamma)$ and $1 \leq i \leq|\tilde{e}|$, if v is not the i th end of e then $\sigma(v)$ does not contain the i th end of $\sigma(e)$, because $\sigma(v), \sigma\left(v^{\prime}\right)$ are disjoint where v^{\prime} is the i th end of e. Consequently $\sigma(v)$ contains at most one end of $\sigma(e)$, for all $v \in V(\Gamma)$ and $e \in E(\Gamma)$, and in particular every edge of each $\sigma(v)$ is a subset of some $e \in E\left(\Gamma^{\prime}\right) \backslash \sigma(E(\Gamma)$). (We denote $\{\sigma(e): e \in E(\Gamma)\}$ by $\sigma(E(\Gamma))$.)

An inflation σ of Γ in Γ^{\prime} is linear if

- for each $e \in E(\Gamma)$ and for each cuff Θ, e borders Θ if and only if $\sigma(e)$ borders Θ (and so e is internal if and only if $\sigma(e)$ is internal)
- for each border edge e^{\prime} of Γ^{\prime}, if $e^{\prime} \notin \sigma(E(\Gamma))$ then e^{\prime} is an edge of $\sigma(v)$ for some $v \in V(\Gamma)$
- for each $e \in E(\Gamma)$ bordering a cuff Θ, if we orient Θ such that the tail of e immediately precedes e under this orientation, then the tail of $\sigma(e)$ immediately precedes $\sigma(e)$ under the same orientation of Θ.

It follows that if e_{1}, \ldots, e_{k} are the edges of Γ bordering a cuff Θ, in cyclic order, then $\sigma\left(e_{1}\right), \ldots, \sigma\left(e_{k}\right)$ occur in the same cyclic order around Θ.

Let Γ be a drawing or painting in Σ. A subset $X \subseteq \Sigma$ is Γ-normal if $X \cap U(\Gamma) \subseteq V(\Gamma)$. We say that Γ is internally 3 -connected if $E(\Gamma) \neq \emptyset$ and every Γ-normal O-arc $F \subseteq \Sigma$ with

$$
|F \cap V(\Gamma)|+|F \cap b d(\Sigma)| \leq 2
$$

bounds a disc $\Delta \subseteq \Sigma$ with $\Delta \cap V(\Gamma) \subseteq F$.
A quasi-order Ω consists of a set $E(\Omega)$ and a reflexive, transitive relation \leq. It is a well-quasiorder if for every countable sequence $\omega_{i}(i=1,2 \ldots)$ of elements of $E(\Omega)$ there exist $j>i \geq 1$ such that $\omega_{i} \leq \omega_{j}$. If Γ, Γ^{\prime} are paintings in Σ, and σ is an inflation of Γ in Γ^{\prime}, and $\phi: E(\Gamma) \rightarrow E(\Omega), \phi^{\prime}$: $E\left(\Gamma^{\prime}\right) \rightarrow E(\Omega)$ are functions, we write $\phi \leq \phi^{\prime} \circ \sigma$ if $\phi(e) \leq \phi^{\prime}(\sigma(e))$ for every $e \in E(\Gamma)$.

The following is a version of the main theorem of this paper, although it is not yet in the most convenient form for us to prove.
2.1 Let Σ be a surface, and let Ω be a well-quasi-order. Let $\Gamma_{i}(i=1,2 \ldots)$ be a countable sequence of internally 3-connected paintings in Σ, and for each $i \geq 1$ let $\phi_{i}: E\left(\Gamma_{i}\right) \rightarrow E(\Omega)$ be some function. Then there exist $j>i \geq 1$ and a linear inflation σ of Γ_{i} in Γ_{j} satisfying $\phi_{i} \leq \phi_{j} \circ \sigma$.

3 Frames and colour schemes

In this section we cast 2.1 into a more convenient form. Let Σ be a surface. A directed drawing in Σ means a drawing in Σ with a direction assigned to each edge. A frame Φ in Σ consists of a directed drawing in Σ (which we also denote by Φ) with $U(\Phi)=b d(\Sigma)$, together with a designation of each edge of Φ as long or short, such that no two long edges have a common end. We call the edges of Φ the sides of the frame. A painting Γ in Σ is said to fit a frame Φ if

- $V(\Phi) \subseteq V(\Gamma)$
- each short side of Φ is an edge of Γ
- for every border edge e of Γ, if S is the side of Φ with $e \subseteq S$ then the tail of e precedes its head as S is traversed from its tail in Φ to its head (that is, briefly, the direction of e defined by $\gamma_{\Gamma}(e)$ agrees with the direction of S in Φ)
- Γ is internally 3 -connected
- if $e \in E(\Gamma)$ and $|\tilde{e}|=3$ and r is a region of Γ in Σ with $|\bar{r} \cap V(\Gamma)| \geq 3$, then $\bar{f} \cap b d(\Sigma) \neq \emptyset$ for every component f of $e \cap \bar{r}$.

The fourth and fifth conditions have nothing to do with the frame, but this is a convenient place to introduce them. The fifth condition is a very strong requirement; in particular, it says that for any edge e of Γ with size 3 , if no vertex of \tilde{e} is in $b d(\Sigma)$, then for any two $u, v \in \tilde{e}$, there is a second edge f with $u, v \in \tilde{f}$. This might seem to be very restrictive, but really it is not. For given a general painting, we can augment it to construct another satisying this restriction (for every edge e of size 3 , just add three edges of size 2 joining the pairs of vertices of \tilde{e}, drawn close to e); and it turns out that one of these augmented paintings contains another in the required way, if and only if one of the unaugmented paintings contains another. So if we only want to prove well-quasi-ordering, it suffices to prove it for augmented paintings. And it turns out to be a convenient technical device for the proof, later.

If e is a border edge of Γ and S is a side of Φ with $e \subseteq S$, we say that e borders S. If Γ, Γ^{\prime} are paintings in Σ both fitting a frame Φ, and σ is an inflation of Γ in Γ^{\prime}, we say that σ respects Φ if for every border edge e of $\Gamma, \sigma(e)$ is a border edge and e and $\sigma(e)$ border the same side of Φ. If σ respects Φ, it follows that $\sigma(e)=e$ for every short side e of Φ, and $v \in V(\sigma(v))$ for every $v \in V(\Phi)$. If σ respects Φ, and satisfies the second condition in the definition of "linear", then σ is linear, as the reader should verify.

A colour scheme χ consists of a surface Σ_{χ}, a frame Φ_{χ} in Σ_{χ}, two well-quasi-orders $\Omega_{\chi}(2)$ and $\Omega_{\chi}(3)$, and a well-quasi-order $\Omega_{\chi}(S)$ for each side S of Φ_{χ}, such that $E\left(\Omega_{\chi}(S)\right)=\{S\}$ for every short side S. (Thus, to specify a colour scheme, we need not define $\Omega_{\chi}(S)$ for short sides S.) If χ is a colour scheme, a χ-coloured painting is a pair (Γ, ϕ), where

- Γ is a painting in Σ_{χ} fitting the frame Φ_{χ}
- ϕ is a function with domain $E(\Gamma)$, such that if $e \in E(\Gamma)$ is internal then $\phi(e) \in \Omega_{\chi}(|\tilde{e}|)$, and if e borders a side S then $\phi(e) \in \Omega_{\chi}(S)$.

If $(\Gamma, \phi),\left(\Gamma^{\prime}, \phi^{\prime}\right)$ are χ-coloured paintings, an inflation of (Γ, ϕ) in $\left(\Gamma^{\prime}, \phi^{\prime}\right)$ is an inflation σ of Γ in Γ^{\prime} respecting Φ_{χ}, such that $\phi \leq \phi^{\prime} \circ \sigma$ (with the natural meaning); and linear inflations are defined similarly. The following is the main theorem of the paper.
3.1 For every colour scheme χ and every countable sequence $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2, \ldots)$ of χ-coloured paintings, there exist $j>i \geq 1$ and a linear inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$.

We begin the proof of 3.1 in the next section. But let us first verify that it implies 2.1. If Ω_{1}, Ω_{2} are quasi-orders, $\Omega_{1} \times \Omega_{2}$ denotes their product, with element set $\left\{\left(x_{1}, x_{2}\right): x_{1} \in E\left(\Omega_{1}\right), x_{2} \in E\left(\Omega_{2}\right)\right\}$, in which $\left(x_{1}, x_{2}\right) \leq\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ if $x_{1} \leq x_{1}^{\prime}$ in Ω_{1} and $x_{2} \leq x_{2}^{\prime}$ in Ω_{2}.

Proof of 2.1, assuming 3.1.

Let $\Sigma, \Omega, \Gamma_{i}, \phi_{i}(i \geq 1)$ be as in 2.1. Let Φ be a frame for Σ, such that each component of Φ is a 2 -edge circuit, one edge of which is long and one short. Now $b d(\Sigma) \subseteq U\left(\Gamma_{i}\right)$ for each i. By replacing each Γ_{i} by its image under a suitable homeomorphism of Σ to itself, we may therefore assume that for each cuff Θ, the short side of Φ included in Θ is an edge of each Γ_{i}.
(1) We may assume that for each short side sof Φ,

- $\phi_{1}(s) \leq \phi_{2}(s) \leq \ldots$, and
- for each $i \geq 1$ the direction of s under $\gamma_{\Gamma_{i}}(s)$ agrees with its direction in Φ.

Subproof. There is an infinite subset $I \subseteq\{1,2, \ldots\}$ such that for all $i, j \in I$ with $i \leq j$ and every short side s of $\Phi, \gamma_{\Gamma_{i}}(s)=\gamma_{\Gamma_{j}}(s)$ and $\phi_{i}(s) \leq \phi_{j}(s)$. We may assume that $I=\{1,2, \ldots\}$ by replacing our original sequence by this subsequence, and we may reverse the direction in Φ of each short side of Φ if necessary. This proves (1).

For each $i \geq 1$, let $\Gamma_{i}=\left(U_{i}, V_{i}, \gamma_{i}\right)$. For $k=2,3$, let $E_{i}^{k}=\left\{e \in E\left(\Gamma_{i}\right):|\tilde{e}|=k\right\}$. For each $i \geq 1$ and each $e \in E_{i}^{3}$, choose a disc $\Delta \subseteq \bar{e}$ with $\Delta \cap b d(\bar{e})=\tilde{e}$, and define $s_{i}(e)=\Delta \backslash \tilde{e}$. Let

$$
\begin{aligned}
U_{i}^{\prime} & =U\left(s k\left(\Gamma_{i}\right)\right) \cup \bigcup\left(s_{i}(e): e \in E_{i}^{3}\right) \\
V_{i}^{\prime} & =V_{i}
\end{aligned}
$$

and define γ_{i}^{\prime} as follows. For $e \in E_{i}^{3}$, let $\gamma_{i}^{\prime}\left(s_{i}(e)\right)=\gamma_{i}(e)$. For each border edge e of Γ_{i}, let $\gamma_{i}^{\prime}(e)$ agree with the direction of the side of Φ containing e. For each internal edge e of Γ_{i} with $|\tilde{e}|=2$, let $\gamma_{i}^{\prime}(e)=\gamma_{i}(e)$. For each internal edge e of $s k\left(\Gamma_{i}\right)$ with $e \notin E\left(\Gamma_{i}\right)$, let $\gamma_{i}^{\prime}(e)$ be an arbitrary march with $\bar{\gamma}_{i}^{\prime}(e)=\tilde{e}$. Let $\Gamma_{i}^{\prime}=\left(U_{i}^{\prime}, V_{i}^{\prime}, \gamma_{i}^{\prime}\right)$. We see that Γ_{i}^{\prime} is a painting in Σ fitting the frame Φ.

Let R be the well-quasi-order with $E(R)=\{-1,0,1,2,3\}$, ordered by equality. Let χ be the colour scheme with $\Sigma_{\chi}=\Sigma, \Phi_{\chi}=\Phi, \Omega_{\chi}(3)=\Omega_{\chi}(2)=\Omega \times R$, and $\Omega_{\chi}(S)=\Omega \times R$ for every long side S of Φ. For each edge e of Γ_{i}^{\prime}, define $\phi_{i}^{\prime}(e)$ as follows. If $|\tilde{e}|=3$, choose $c \in E\left(\Gamma_{i}\right)$ with $e=s_{i}(c)$, and let $\phi_{i}^{\prime}(e)=\left(\phi_{i}(c), 3\right)$. If $e \in E_{i}^{2}$ and e is internal, let $\phi_{i}^{\prime}(e)=\left(\phi_{i}(e), 2\right)$. If e is a border edge of Γ_{i}^{\prime} (and therefore $e \in E_{i}^{2}$), but not a short side, let $\phi_{i}^{\prime}(e)=\left(\phi_{i}(e), \pm 1\right)$, where -1 is chosen if $\gamma_{i}^{\prime}(e) \neq \gamma_{i}(e)$. If $|\tilde{e}|=2$ and $e \notin E_{i}^{2}$, let $\phi_{i}^{\prime}(e)=(x, 0)$ where $x \in E(\Omega)$ is arbitrary. For each short side e of Φ, let $\phi_{i}^{\prime}(e)=e$. It follows easily that for each $i \geq 1,\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ is a χ-coloured painting.

From 3.1, there exists $j>i \geq 1$ and a linear inflation σ^{\prime} of $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ in $\left(\Gamma_{j}^{\prime}, \phi_{j}^{\prime}\right)$. We claim that there is a linear inflation σ of Γ_{i} in Γ_{j} such that $\phi_{i} \leq \phi_{j} \circ \sigma$. We construct σ as follows. For each
$v \in V\left(\Gamma_{i}\right)$ let $\sigma(v)=\sigma^{\prime}(v) \cap s k\left(\Gamma_{j}\right)$. Since each $\sigma^{\prime}(v)$ is induced and every edge of $s k\left(\Gamma_{j}^{\prime}\right)$ either is an edge of $s k\left(\Gamma_{j}\right)$ or is parallel to an edge of $s k\left(\Gamma_{j}\right)$, it follows that each $\sigma(v)$ is a non-null connected induced subgraph of $s k\left(\Gamma_{j}\right)$. For $e \in E_{i}^{3}$, let $\sigma(e)=f$, where $\sigma^{\prime}\left(s_{i}(e)\right)=s_{j}(f)$ (such an f exists since $\sigma^{\prime}\left(s_{i}(e)\right)$ has the same size as $\left.s_{i}(e)\right)$. For $e \in E_{i}^{2}$, let $\sigma(e)=\sigma^{\prime}(e)$. Let us verify that σ is a linear inflation σ of Γ_{i} in Γ_{j} such that $\phi_{i} \leq \phi_{j} \circ \sigma$. First, by examining the second terms of ϕ^{\prime}, it follows that $\sigma(e)=e$ for every short side e. Moreover, if $e \in E_{i}^{2}$ is not a short side then since the second term of $\phi_{i}^{\prime}(e)$ is non-zero, so is the second term of $\phi_{j}^{\prime}\left(s^{\prime}(e)\right)$, since $\phi_{i}^{\prime}(e) \leq \phi_{j}^{\prime}\left(\sigma^{\prime}(e)\right)$, and hence $\sigma^{\prime}(e) \in E_{j}^{2}$. By examining the first term of $\phi_{i}^{\prime}(e)$ and using (1), we see that $\phi_{i} \leq \phi_{j} \circ \sigma$. To complete the proof, we must check that
(2) For each $e \in E\left(\Gamma_{i}\right)$ and $1 \leq k \leq|\tilde{e}|$, if v is the k th end of e then $\sigma(v)$ contains the k th end of $\sigma(e)$.

Subproof. Now v is the k th term of $\gamma_{i}(e)$. If $|\tilde{e}|=3$, then $\gamma_{i}^{\prime}\left(s_{i}(e)\right)=\gamma_{i}(e)$, and therefore $V\left(\sigma^{\prime}(v)\right)=V(\sigma(v))$ contains the k th term of $\gamma_{j}^{\prime}\left(\sigma^{\prime}\left(s_{i}(e)\right)\right)=\gamma_{j}(\sigma(e))$ as required. Similarly, if $|\tilde{e}|=2$ and e is internal or a short side of Φ, then $\gamma_{i}^{\prime}(e)=\gamma_{i}(e)$, and therefore $V\left(\sigma^{\prime}(v)\right)=V(\sigma(v))$ contains the k th term of $\gamma_{j}^{\prime}\left(\sigma^{\prime}(e)\right)=\gamma_{j}(\sigma(e))$ as required. Finally, suppose that e is a border edge of Γ_{i} and not a short side of Φ. Let S be the long side of Φ with $e, \sigma(e) \subseteq S$. Since the second terms of $\phi_{i}^{\prime}(e)$ and $\phi_{j}^{\prime}(\sigma(e))$ are equal, it follows that $\gamma_{i}^{\prime}(e)=\gamma_{i}(e)$ if and only if $\gamma_{j}^{\prime}(\sigma(e))=\gamma_{j}(\sigma(e))$, and so there exists $l(l=1$ or 2$)$ such that the k th term of $\gamma_{i}(e)$ is the l th term of $\gamma_{i}^{\prime}(e)$, and the k th term of $\gamma_{j}(\sigma(e))$ is the l th term of $\gamma_{j}^{\prime}(\sigma(e))$. Therefore v is the l th term of $\gamma_{i}^{\prime}(e)$, and so $\sigma^{\prime}(v)$ contains the l th term of $\gamma_{j}^{\prime}(\sigma(e))$. Consequently $\sigma(v)$ contains the k th term of $\gamma_{j}(\sigma(e))$. This proves (2).

From (2), it follows that σ is an inflation of Γ_{i} in Γ_{j}. Moreover, it is clearly linear, and satisfies $\phi_{i} \leq \phi_{j} \circ \sigma$, as required.

4 The induction

The remainder of the paper is devoted to proving 3.1. We proceed by an induction on χ which we shall explain in this section.

A bad sequence for a colour scheme χ is a countable sequence $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2, \ldots)$ of χ-coloured paintings, such that for all $j>i \geq 1$ there is no linear inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$. We say that a colour scheme is bad if there is a bad sequence for it. Thus, we wish to show that no colour scheme is bad. We wish to consider the following four statements $\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{4}}$ about a colour scheme χ.

A surface without boundary is simpler than another if the second can be obtained from the first by adding at least one handle or crosscap. Our first statement is
$\mathbf{S}_{\mathbf{1}}$ There is no bad colour scheme χ^{\prime} with $\hat{\Sigma}_{\chi^{\prime}}$ simpler than $\hat{\Sigma}_{\chi}$.
A set $\left\{\left(\Gamma_{i}, \phi_{i}\right): i \in I\right\}$ of χ-coloured paintings is said to be similarly oriented if either Σ_{χ} is not orientable, or there is an orientation ω of Σ_{χ} such that for all $i \in I$ and every $e \in E\left(\Gamma_{i}\right)$ with $|\tilde{e}|=3$, the orientations of e given by ω and given by the cyclic order of the terms of $\gamma_{\Gamma_{i}}(e)$ coincide. A colour scheme χ is orientedly bad if there is a similarly oriented bad sequence for it.

If Ω, Ω^{\prime} are quasi-orders we write $\Omega^{\prime} \preceq \Omega$ if

- $E\left(\Omega^{\prime}\right) \subseteq E(\Omega)$
- for each $x^{\prime} \in E\left(\Omega^{\prime}\right)$ and $x \in E(\Omega)$, if $x \leq x^{\prime}$ in Ω then $x \in E\left(\Omega^{\prime}\right)$, and
- for $x_{1}, x_{2} \in E\left(\Omega^{\prime}\right), x_{1} \leq x_{2}$ in Ω^{\prime} if and only if $x_{1} \leq x_{2}$ in Ω.

We write $\Omega^{\prime} \prec \Omega$ if $\Omega^{\prime} \preceq \Omega$ and $\Omega^{\prime} \neq \Omega$. We use \cong to denote homeomorphism. Our second statement is
$\mathbf{S}_{\mathbf{2}}$ There is no orientedly bad colour scheme χ^{\prime} with $\hat{\Sigma}_{\chi^{\prime}} \cong \hat{\Sigma}_{\chi}$ such that $\Omega_{\chi^{\prime}}(3) \preceq \Omega_{\chi}(3)$ and $\Omega_{\chi^{\prime}}(2) \preceq \Omega_{\chi}(2)$ where at least one of the inclusions is strict.

We denote the number of cuffs of a surface Σ by $c(\Sigma)$.
$\mathbf{S}_{\mathbf{3}}$ There is no orientedly bad colour scheme χ^{\prime} with $\hat{\Sigma}_{\chi^{\prime}} \cong \hat{\Sigma}_{\chi}, \Omega_{\chi^{\prime}}(k)=\Omega_{\chi}(k)(k=2,3)$, and $c\left(\Sigma_{\chi^{\prime}}\right)<c\left(\Sigma_{\chi}\right)$.

Now let χ, χ^{\prime} be colour schemes. We say that χ^{\prime} is a refinement of χ if $\Sigma_{\chi^{\prime}} \cong \Sigma_{\chi}, \Omega_{\chi^{\prime}}(k)=$ $\Omega_{\chi}(k)(k=2,3)$, and there is a function f from the set of long sides of $\Phi_{\chi^{\prime}}$ to the set of long sides of Φ_{χ}, such that

- $\Omega_{\chi^{\prime}}(R) \preceq \Omega_{\chi}(f(R))$ for each long side R of $\Phi_{\chi^{\prime}}$
- if R_{1}, R_{2} are distinct long sides of $\Phi_{\chi^{\prime}}$ with $f\left(R_{1}\right)=f\left(R_{2}\right)$ then $\Omega_{\chi^{\prime}}\left(R_{1}\right) \prec \Omega_{\chi}\left(f\left(R_{1}\right)\right)$
- if for each long side S of Φ_{χ} there is a long side R of $\Phi_{\chi^{\prime}}$ with $f(R)=S$ and $\Omega_{\chi^{\prime}}(R)=\Omega_{\chi}(S)$, then $\Phi_{\chi^{\prime}}$ has fewer short sides then Φ_{χ}.
In this case, we call f an embedding of χ^{\prime} in χ.
\mathbf{S}_{4} There is no orientedly bad colour scheme which is a refinement of χ.
The purpose of $\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{4}}$ is that to prove 3.1, it suffices to prove the following.

4.1 If χ satisfies $\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{4}}$ then it is not orientedly bad.

We prove 4.1 in section 15 . The remainder of this section is devoted to proving that 4.1 implies 3.1. To show that, we need several lemmas, which follow.
4.2 If χ is a bad colour scheme, there is an orientedly bad colour scheme χ^{\prime} with $\Sigma_{\chi^{\prime}}=\Sigma_{\chi}$.

Proof. If Σ_{χ} is not orientable then χ itself is orientedly bad. Thus we may assume that ω is an orientation of Σ_{χ}. Let $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2 \ldots)$ be a bad sequence for χ, and let $\Gamma_{i}=\left(U_{i}, V_{i}, \gamma_{i}\right)(i \geq 1)$. Now for each $e \in E\left(\Gamma_{i}\right)$ with $|\tilde{e}|=3$, let $\gamma_{i}^{\prime}(e)$ be a march with $\bar{\gamma}_{i}^{\prime}(e)=\tilde{e}$, such that the orientations of e given by ω and given by the cyclic order of the terms of $\gamma_{i}^{\prime}(e)$ coincide, and $\gamma_{i}(e), \gamma_{i}^{\prime}(e)$ have the same first term. For each $e \in E\left(\Gamma_{i}\right)$ with $|\tilde{e}|=2$ let $\gamma_{i}^{\prime}(e)=\gamma_{i}(e)$. Let $\Gamma_{i}^{\prime}=\left(U_{i}, V_{i}, \gamma_{i}^{\prime}\right)$. Let $\phi_{i}^{\prime}(e)$ be defined by

$$
\phi_{i}^{\prime}(e)=\left\{\begin{array}{cc}
\phi_{i}(e) & \text { if }|\tilde{e}|=2 \\
\left(\phi_{i}(e), \pm 1\right) & \text { if }|\tilde{e}|=3
\end{array}\right.
$$

where we choose -1 if $\gamma_{i}(e) \neq \gamma_{i}^{\prime}(e)$. Let R be the well-quasi-order with $E(R)=\{-1,1\}$, ordered by equality. Let χ^{\prime} be the colour scheme with $\Sigma_{\chi^{\prime}}=\Sigma_{\chi}, \Phi_{\chi^{\prime}}=\Phi_{\chi}, \Omega_{\chi^{\prime}}(3)=\Omega_{\chi}(3) \times R, \Omega_{\chi^{\prime}}(2)=\Omega_{\chi}(2)$,
and $\Omega_{\chi^{\prime}}(S)=\Omega_{\chi}(S)$ for each long side S. Then for each $i \geq 1,\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ is a χ^{\prime}-coloured painting, and $\left\{\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right): i \geq 1\right\}$ is similarly oriented. Suppose that for some i, j with $j>i \geq 1$, there is a linear inflation σ of $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ in $\left(\Gamma_{j}^{\prime}, \phi_{j}^{\prime}\right)$. We claim that σ is also a linear inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$. This is mostly clear, but let us show that the third condition in the definition of "inflation" is satisfied, that is, that for each $e \in E\left(\Gamma_{i}\right)$ and $1 \leq k \leq|\tilde{e}|$, if v is the k th term of $\gamma_{i}(e)$, then $\sigma(v)$ contains the k th term of $\gamma_{j}(\sigma(e))$. If $\gamma_{i}(e)=\gamma_{i}^{\prime}(e)$ and $\gamma_{j}(\sigma(e))=\gamma_{j}^{\prime}(\sigma(e))$ then the claim holds since σ is an inflation of Γ_{i}^{\prime} in Γ_{j}^{\prime}. We may assume then that $|\tilde{e}|=3$. Since the second terms of $\phi_{i}^{\prime}(e)$ and of $\phi_{j}^{\prime}(\sigma(e))$ are equal, and we may assume they are not both equal to 1 , it follows that they are both -1 , and consequently $\gamma_{i}^{\prime}(e)$ is obtained from $\gamma_{i}(e)$ by exchanging the second and third terms, and the same holds between $\gamma_{j}^{\prime}(\sigma(e))$ and $\gamma_{j}(\sigma(e))$. If $k=1$ let $k^{\prime}=1$, and if $k=2$ or 3 let k^{\prime} be 3 or 2 respectively. Consequently the k th term of $\gamma_{i}(e)$ (that is, v) is the k^{\prime} th term of $\gamma_{i}^{\prime}(e)$, and the k th term of $\gamma_{j}(\sigma(e))$ is the k^{\prime} th term of $\gamma_{j}^{\prime}(\sigma(e))$. Since σ is an inflation of $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ in $\left(\Gamma_{j}^{\prime}, \phi_{j}^{\prime}\right)$ and v is the k^{\prime} th term of $\gamma_{i}^{\prime}(e)$, it follows that $\sigma(v)$ contains the k^{\prime} th term of $\gamma_{j}^{\prime}(\sigma(e))$, and therefore contains the k th term of $\gamma_{j}(\sigma(e))$, as required. This proves our claim that σ is a linear inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$, which is impossible since $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2 \ldots)$ is a bad sequence for χ. Thus there is no such choice of i, j, σ, and so χ^{\prime} is orientedly bad, as required.
4.3 There is no countable sequence $\Omega_{i}(i=1,2, \ldots)$ of well-quasi-orders such that $\Omega_{i+1} \prec \Omega_{i}$ for all $i \geq 1$.

The result is well-known and the proof is easy, and so we omit it.
4.4 There is no countable sequence $\chi_{i}(i=1,2, \ldots)$ of colour schemes such that χ_{i+1} is a refinement of χ_{i} for all $i \geq 1$.

Proof. Suppose that $\chi_{i}(i=1,2, \ldots)$ is such a sequence. For each $i \geq 1$, let \mathcal{S}_{i} be the set of long sides of $\Phi_{\chi_{i}}$, and let $f_{i}: \mathcal{S}_{i+1} \rightarrow \mathcal{S}_{i}$ be an embedding of χ_{i+1} in χ_{i}. Let t_{0} be a new vertex, and let T be the infinite tree with

$$
\begin{aligned}
& V(T)=\left\{t_{0}\right\} \cup\left\{(i, S): i \geq 1, S \in \mathcal{S}_{i}\right\} \\
& E(T)=\left\{\left(t_{0},(1, S)\right): S \in \mathcal{S}_{1}\right\} \cup\left\{\left(\left(i, f_{i}(S)\right),(i+1, S)\right): i \geq 1, S \in \mathcal{S}_{i+1}\right\} .
\end{aligned}
$$

(1) T has infinitely many vertices with degree $\neq 2$.

Subproof. Otherwise f_{i} is a bijection for all sufficiently large i, say for all $i>n$. For all $i \geq n$, let $\mathcal{S}_{i}=\left\{S_{i}^{1}, \ldots, S_{i}^{k}\right\}$, numbered such that $f_{i}\left(S_{i+1}^{j}\right)=S_{i}^{j}$ for all $i>n$ and $1 \leq j \leq k$. For all j with $1 \leq j \leq k$ it follows from the first condition in the definition of "refinement" that

$$
\Omega_{\chi_{i+1}}\left(S_{i+1}^{j}\right) \preceq \Omega_{\chi_{i}}\left(S_{i}^{j}\right)
$$

for all $i>n$, and so by 4.3 , equality holds here for all sufficiently large i; and we may therefore assume, by increasing n, that equality holds for all $i>n$. From the third condition in the definition of "refinement", it follows that for all $i>n, \Phi_{\chi_{i+1}}$ has strictly fewer short sides than $\Phi_{\chi_{i}}$, which is impossible. This proves (1).

Since every vertex of T has finite degree, we can apply applying König's lemma to the infinite tree obtained from T by suppressing all vertices of degree 2 . We deduce that T has a path containing
infinitely many vertices of degree $\neq 2$. Thus for all i there exists $S_{i} \in \mathcal{S}_{i}$ such that $f_{i}\left(S_{i+1}\right)=S_{i}$, and such that $\left(i, S_{i}\right)$ has degree ≥ 3 in T for infinitely many values of i. We deduce that

$$
\Omega_{\chi_{n+1}}\left(S_{n+1}\right) \succeq \Omega_{\chi_{n+2}}\left(S_{n+2}\right) \succeq \ldots
$$

with strict inclusion infinitely many times, contrary to 4.3 . Thus there is no such sequence $\chi_{i}(i=$ $1,2, \ldots)$. This proves 4.4.

Proof of 3.1, assuming 4.1.

Suppose that 3.1 is false; then there is a bad colour scheme χ, and we may choose it to satisfy $\mathbf{S}_{\mathbf{1}}$. By 4.2, we may choose χ orientedly bad. By 4.3 , we may choose χ so that in addition it satisfies $\mathbf{S}_{\mathbf{2}}$. By choosing such a χ with $c\left(\Sigma_{\chi}\right)$ minimum, we find it also satisfies $\mathbf{S}_{\mathbf{3}}$. By 4.4 , we may choose χ to satisfy $\mathbf{S}_{\mathbf{4}}$ as well. But then 4.1 is contradicted. Thus 3.1 holds.

5 Surface homeomorphisms

Let Φ be a frame in Σ. A homeomorphism $\alpha: \Sigma \rightarrow \Sigma$ is Φ-preserving if

- $\alpha(v)=v$ for all $v \in V(\Phi)$, and $\alpha(S)=S$ for all $S \in E(\Phi)$ (and hence α preserves the direction of each side, and maps each cuff onto itself in an orientation-preserving way)
- if Σ is orientable then α preserves the orientation of Σ.

Let (Γ, ϕ) be a χ-coloured painting, and let $\alpha: \Sigma_{\chi} \rightarrow \Sigma_{\chi}$ be a Φ_{χ}-preserving homeomorphism. We define the image of (Γ, ϕ) under α in the natural way; that is, it is the χ-coloured painting $\left(\Gamma^{\prime}, \phi^{\prime}\right)$ where $U\left(\Gamma^{\prime}\right)=\alpha(U(\Gamma)), V\left(\Gamma^{\prime}\right)=\alpha(V(\Gamma))$, and for each $e \in E(\Gamma), \gamma_{\Gamma^{\prime}}(\alpha(e))=\alpha\left(\gamma_{\Gamma}(e)\right)$ and $\phi^{\prime}(\alpha(e))=\phi(e)$. The proof of the following lemma is clear.
5.1 Let $\left(\Gamma_{1}, \phi_{1}\right),\left(\Gamma_{2}, \phi_{2}\right)$ be χ-coloured paintings, and let α_{1}, α_{2} be Φ_{χ}-preserving homeomorphisms of Σ. For $i=1,2$ let $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ be the image of $\left(\Gamma_{i}, \phi_{i}\right)$ under α_{i}. Then there is a (linear) inflation of $\left(\Gamma_{1}^{\prime}, \phi_{1}^{\prime}\right)$ in $\left(\Gamma_{2}^{\prime}, \phi_{2}^{\prime}\right)$ if and only if there is one of $\left(\Gamma_{1}, \phi_{1}\right)$ in $\left(\Gamma_{2}, \phi_{2}\right)$.

Thus, for example, if we suppose that $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2, \ldots)$ is a bad sequence for χ, then we may replace each $\left(\Gamma_{i}, \phi_{i}\right)$ by its image under some Φ_{χ}-preserving homeomorphism, and obtain another bad sequence; and if the terms of the first sequence are similarly oriented, then so are the terms of the second. This method will be used in combination with the following lemma. Let Φ be a frame in Σ. A drawing K in Σ is a feature (in Φ) if K has no border edges and no isolated vertices, and $U(K) \cap S=\emptyset$ for every short side S of Φ. ($U(K)$ may intersect the long sides of Φ.) Two features K_{1}, K_{2} are equivalent if there is a Φ-preserving homeomorphism α of Σ such that α maps K_{1} to K_{2}. Hence if K_{1}, K_{2} are equivalent they have the same size. (The size of a drawing G is $|V(G)|+|E(G)|$.) This defines an equivalence relation, and it follows easily (by choosing a line to represent an edge of K, cutting the surface along it, and using induction on $|E(K)|$-see section 3 of [3] for similar proofs) that
5.2 For every surface Σ, every frame Φ in Σ and every integer $n \geq 0$, there are only finitely many equivalence classes of features in Φ with size $\leq n$.

Now let Φ be a frame in Σ, and let K be a feature in Φ. If we cut Σ along $U(K)$ we obtain one or several components $\Sigma_{1}, \ldots, \Sigma_{k}$ say, which we call fragments of Σ after cutting along $U(K)$. There is a natural surjection of $\psi: \Sigma_{1} \cup \ldots \cup \Sigma_{k} \rightarrow \Sigma$, which we shall call the associated surjection. Let Σ_{1} be a fragment. We denote by $\psi^{-1}(\Phi) \cap \Sigma_{1}$ the frame for Σ_{1} consisting of the drawing

$$
\left(b d\left(\Sigma_{1}\right), \psi^{-1}(V(\Phi) \cup V(K)) \cap \Sigma_{1}\right)
$$

where for each edge R of this drawing

- if $\psi(R) \subseteq S$ for some side S of Φ, then R is directed such that ψ maps its direction onto that of S, and R is designated as long if and only if S is long
- if there is no such S, then R is directed arbitrarily and is designated as short.

Now let Γ be a painting fitting Φ, such that $U(\Gamma) \cap U(K)=V(\Gamma) \cap V(K)$. We denote by $\psi^{-1}(\Gamma) \cap \Sigma_{1}$ the painting $\Gamma_{1}=\left(U_{1}, V_{1}, \gamma_{1}\right)$ in Σ_{1}, where

$$
\begin{aligned}
U_{1} & =\left(\psi^{-1}(U(\Gamma)) \cap \Sigma_{1}\right) \cup b d\left(\Sigma_{1}\right) \\
V_{1} & =\psi^{-1}(V(\Gamma) \cup V(K)) \cap \Sigma_{1}
\end{aligned}
$$

and for each edge e of Γ_{1}, if $e \subseteq b d\left(\Sigma_{1}\right)$ then $\gamma_{1}(e)$ is defined such that the direction of e agrees with the direction of the side of $\psi^{-1}(\Phi) \cap \Sigma_{1}$ including it, while if $e \nsubseteq b d\left(\Sigma_{1}\right)$ then $\gamma_{1}(e)$ is defined such that ψ maps it to $\gamma_{\Gamma}(\psi(e))$.
5.3 With Γ, K, etc. as above, if each component K^{\prime} of K satisfies

$$
\left|V\left(K^{\prime}\right) \cap V(\Gamma)\right|+\left|V\left(K^{\prime}\right) \cap b d(\Sigma)\right| \geq 2
$$

then $\psi^{-1}(\Gamma) \cap \Sigma_{1}$ fits the frame $\psi^{-1}(\Phi) \cap \Sigma_{1}$.
Proof. We observe first that the hypothesis implies that for every component K^{\prime} of $K, V\left(K^{\prime}\right)$ contains a vertex of Γ, since $V(K) \cap b d(\Sigma) \subseteq V(K) \cap U(\Gamma) \subseteq V(\Gamma)$. Verifying the first three conditions in the definition of "fit" is easy and is omitted. Let us verify the fourth and fifth conditions. Let $\Gamma_{1}=\psi^{-1}(\Gamma) \cap \Sigma_{1}$, and let F_{1} be a Γ_{1}-normal O-arc in Σ_{1} with $\left|F_{1} \cap V\left(\Gamma_{1}\right)\right|+\left|F_{1} \cap b d\left(\Sigma_{1}\right)\right| \leq 2$. Then $\left|F_{1} \cap b d\left(\Sigma_{1}\right)\right| \leq 1$ since $F_{1} \cap b d\left(\Sigma_{1}\right) \subseteq F_{1} \cap V\left(\Gamma_{1}\right)$, and so $F=\psi\left(F_{1}\right)$ is a Γ-normal O-arc in Σ with $|F \cap V(\Gamma)|+|F \cap b d(\Sigma)| \leq 2$. Since Γ is internally 3-connected, there is a disc $\Delta \subseteq \Sigma$ bounded by F with $\Delta \cap V(\Gamma) \subseteq F$. If $U(K) \cap(\Delta \backslash F)=\emptyset$, then $\psi^{-1}(\Delta)$ includes a disc in Σ_{1} bounded by F_{1} as required. We assume then (for a contradiction) that $U(K) \cap(\Delta \backslash F) \neq \emptyset$. Let K^{\prime} be a component of K with $U\left(K^{\prime}\right) \cap(\Delta \backslash F) \neq \emptyset$. Since $V\left(K^{\prime}\right)$ contains a vertex of Γ, and $\Delta \backslash F$ is disjoint from $V(\Gamma)$, it follows that $U\left(K^{\prime}\right) \nsubseteq \Delta \backslash F$, and since K^{\prime} is connected, there is an edge e of K^{\prime} with $\bar{e} \cap F \neq \emptyset$ and with $e \cap(\Delta \backslash F) \neq \emptyset$. Choose $u \in \bar{e} \cap F$, and let $u_{1} \in F_{1}$ with $\psi\left(u_{1}\right)=u$. Since $u \in U\left(K^{\prime}\right)$, it follows that $u_{1} \in b d\left(\Sigma_{1}\right) \subseteq U\left(\Gamma_{1}\right)$. Since F_{1} is Γ_{1}-normal, we deduce that $u_{1} \in V\left(\Gamma_{1}\right)$. Consequently $u \in V(\Gamma) \cup V(K)$, and since also $u \in U(K)$ and $V(\Gamma) \cap U(K) \subseteq V(K)$, it follows that $u \in V(K)$. Since u_{1} belongs to both $F_{1} \cap V\left(\Gamma_{1}\right)$ and $F_{1} \cap b d\left(\Sigma_{1}\right)$, and $\left|F_{1} \cap V\left(\Gamma_{1}\right)\right|+\left|F_{1} \cap b d\left(\Sigma_{1}\right)\right| \leq 2$, we deduce that $F_{1} \cap V\left(\Gamma_{1}\right)=F_{1} \cap b d\left(\Sigma_{1}\right)=\left\{u_{1}\right\}$; and so $F \cap\left(U\left(K^{\prime}\right) \cup b d(\Sigma)\right)=\{u\}$.

Let $L_{1} \subseteq F_{1}$ be a closed line segment with u_{1} in its interior. Since F_{1} is an O-arc, there is a second line segment $L_{1}^{\prime} \subseteq \Sigma_{1}$ with the same ends as L_{1}, such that $L_{1} \cup L_{1}^{\prime}$ is an O-arc in Σ_{1},
bounding a disc $D_{1} \subseteq \Sigma_{1}$ with $D_{1} \cap F_{1}=L$. Let $D=\psi\left(D_{1}\right), L=\psi\left(L_{1}\right)$, and $L^{\prime}=\psi\left(L_{1}^{\prime}\right)$. Then D is a disc in Σ, with boundary $L \cup L^{\prime}$, where L is a line segment in F with u in its interior, and $D \cap F=L$. Moreover, the interior of D is disjoint from $U(K)$, and in particular, disjoint from e. It follows that $D \cap \Delta=L$. Since the interiors of both D and Δ are disjoint from $b d(\Sigma)$, we deduce that $u \notin b d(\Sigma)$; and since the interior of D is disjoint from $U(K)$, it follows that there is no edge f of K with $f \subseteq \Sigma \backslash \Delta$ incident with u. We deduce that $U\left(K^{\prime}\right) \subseteq \Delta$. Since $u \notin b d(\Sigma)$, it follows that $F \cap b d(\Sigma)=\emptyset$, and so $V\left(K^{\prime}\right) \cap b d(\Sigma)=\emptyset$. Moreover, since $V(\Gamma) \cap \Delta \subseteq F$, it follows that

$$
V\left(K^{\prime}\right) \cap V(\Gamma)=V\left(K^{\prime}\right) \cap V(\Gamma) \cap \Delta \subseteq V\left(K^{\prime}\right) \cap F \subseteq\{u\} .
$$

Consequently,

$$
\left|V\left(K^{\prime}\right) \cap V(\Gamma)\right|+\left|V\left(K^{\prime}\right) \cap b d(\Sigma)\right| \leq 1
$$

contrary to the hypothesis. This verifies the fourth condition.
For the fifth, let $e_{1} \in E\left(\Gamma_{1}\right)$ with $\left|\tilde{e}_{1}\right|=3$, let r_{1} be a region of Γ_{1} in Σ_{1}, let f_{1} be a component of $\bar{r}_{1} \cap e_{1}$, and let $\bar{f}_{1} \cap \tilde{e}_{1}=\left\{v_{1}, v_{1}^{\prime}\right\}$; we suppose that $v_{1}, v_{1}^{\prime} \notin b d\left(\Sigma_{1}\right)$, and will show that $\left|\bar{r}_{1} \cap V\left(\Gamma_{1}\right)\right|=2$. Let $e=\psi\left(e_{1}\right), f=\psi\left(f_{1}\right), v=\psi\left(v_{1}\right), v^{\prime}=\psi\left(v_{1}^{\prime}\right)$, and let r be the region of Γ in Σ including $\psi\left(r_{1}\right)$. Then f is a component of $\bar{r} \cap e$, and $|\bar{f} \cap \tilde{e}|=\left\{v, v^{\prime}\right\}$. Since $v_{1}, v_{1}^{\prime} \notin b d\left(\Sigma_{1}\right)$, it follows that $v, v^{\prime} \notin b d(\Sigma)$. Since Γ fits Φ, it follows from the fifth condition in the definition of "fit", applied to Γ, Φ, that $|\bar{r} \cap V(\Gamma)|=2$ and so $\bar{r} \cap V(\Gamma)=\left\{v, v^{\prime}\right\}$. Hence $U(K) \cap b d(\bar{r})=\emptyset$, and since each component K^{\prime} of K contains a vertex of Γ it follows that $U(K) \cap \bar{r}=\emptyset$. Consequently $\psi(r)=r_{1}$, and so $\left|\bar{r}_{1} \cap V\left(\Gamma_{1}\right)\right|=2$ as required.

A painting Γ in a surface Σ is 2-cell if every region of Γ in Σ is homeomorphic to an open disc. Every internally 3 -connected painting is 2 -cell. Let Γ be a 2 -cell painting with $E(\Gamma) \neq \emptyset$. A drawing Γ^{*} in $\hat{\Sigma}$ is a radial drawing of Γ if it satisfies the four conditions following, where R^{*} denotes the set of vertices of Γ^{*} that are not in $V(\Gamma)$:

- $U(\Gamma) \cap U\left(\Gamma^{*}\right)=V(\Gamma) \subseteq V\left(\Gamma^{*}\right)$
- every region of Γ in $\hat{\Sigma}$ contains a unique vertex of Γ^{*}
- Γ^{*} is bipartite, and $\left(V(\Gamma), R^{*}\right)$ is a bipartition of it
- for every $v \in V(\Gamma)$, the edges of Γ and of Γ^{*} incident with v alternate in their cyclic order around v.

It is easy to see that such a drawing Γ^{*} exists, and is unique up to homeomorphisms of $\hat{\Sigma}$ to itself that fix $U(\Gamma)$ pointwise. If r is a region of Γ, the unique vertex of Γ^{*} contained in r is denoted by r^{*}; and if $r \nsubseteq \Sigma$ (and hence r is a component of $\hat{\Sigma} \backslash \Sigma$) we call r^{*} a pole. We shall use the Γ^{*}, R^{*}, r^{*} notation without further explanation.

If Γ is an internally 3 -connected painting in Σ, we define $\operatorname{dist}(\Gamma)$ to be the minimum of $\frac{1}{2}|E(F)|$, taken over all paths F of Γ^{*} with ends distinct poles. (If $c(\Sigma) \leq 1$ we set $\operatorname{dist}(\Gamma)=\infty$.) As a first application of 5.1 and 5.2 we prove the following.
5.4 Let χ satisfy $\mathbf{S}_{\mathbf{3}}$, and let $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2, \ldots)$ be a similarly oriented bad sequence for χ. Then for all $n \geq 0$, there exists $h \geq 0$ such that $\operatorname{dist}\left(\Gamma_{i}\right)>n$ for all $i \geq h$.

Proof. Suppose that for some n there is no such h. Then $c\left(\Sigma_{\chi}\right) \geq 2$ and $\operatorname{dist}\left(\Gamma_{i}\right) \leq n$ for infinitely many values of i, and we may assume that $\operatorname{dist}\left(\Gamma_{i}\right) \leq n$ for all $i \geq 1$, by replacing our original sequence by the appropriate subsequence. For each $i \geq 1$, let F_{i} be a path of Γ_{i}^{*} with $\frac{1}{2}\left|E\left(F_{i}\right)\right| \leq n$ joining distinct poles, such that every vertex of F_{i} is in $\Sigma_{\chi} \backslash b d\left(\Sigma_{\chi}\right)$ except the first two and the last two. Then $K_{i}=F_{i} \cap \Sigma_{\chi}$ is a feature in Φ_{χ} of size $\leq 4 n$, and by 5.2 (by replacing our sequence by a subsequence) we may assume that all the K_{i} 's are equivalent. By 5.1 we may assume that all the K_{i} 's are equal, to some K say. Let Σ_{1} be the (unique) fragment obtained by cutting Σ_{χ} along K, with associated surjection ψ. Let χ^{\prime} be the colour scheme defined by $\Sigma_{\chi^{\prime}}=\Sigma_{1}, \Phi_{\chi^{\prime}}=\psi^{-1}\left(\Phi_{\chi}\right) \cap \Sigma_{1}$, $\Omega_{\chi^{\prime}}(k)=\Omega_{\chi}(k)(k=2,3)$, and for each long side S^{\prime} of $\Phi_{\chi^{\prime}}, \Omega_{\chi^{\prime}}\left(S^{\prime}\right)=\Omega_{\chi}(S)$ where S is the long side of Φ_{χ} with $\psi\left(S^{\prime}\right) \subseteq S$. Then χ^{\prime} is not orientedly bad, since χ satisfies $\mathbf{S}_{\mathbf{3}}$. For each $i \geq 1$, let $\Gamma_{i}^{\prime}=\psi^{-1}\left(\Gamma_{i}\right) \cap \Sigma_{1}$, and for each $e \in E\left(\Gamma_{i}^{\prime}\right)$, let $\phi_{i}^{\prime}(e)=\phi_{i}(e)$ if $e \in E\left(\Gamma_{i}\right)$, and $\phi_{i}^{\prime}(e)=e$ if $e \notin E\left(\Gamma_{i}\right)$ (so that e is a short side of $\left.\psi^{-1}\left(\Phi_{\chi}\right) \cap \Sigma_{1}\right)$. Then $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ is a χ^{\prime}-coloured painting, by 5.3 , and the sequence $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)(i=1,2, \ldots)$ is similarly oriented (for if $\Sigma_{\chi^{\prime}}$ is orientable then so is Σ_{χ}). Thus, since χ^{\prime} is not orientedly bad, there exist $j>i \geq 1$ and a linear inflation σ^{\prime} of $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ in $\left(\Gamma_{j}^{\prime}, \phi_{j}^{\prime}\right)$. Define σ by

$$
\begin{aligned}
\sigma(e) & =\psi\left(\sigma^{\prime}\left(\psi^{-1}(e)\right)\right)\left(e \in E\left(\Gamma_{i}\right)\right) \\
V(\sigma(v)) & =\bigcup_{v^{\prime} \in \psi^{-1}(v)} \psi V\left(\left(\sigma^{\prime}\left(v^{\prime}\right)\right)\right) i\left(v \in V\left(\Gamma_{i}\right)\right)
\end{aligned}
$$

where each $\sigma(v)$ is an induced subdrawing of $s k\left(\Gamma_{j}\right)$ with given vertex set as given. If $v \in V\left(\Gamma_{i}\right)$ satisfies $\left|\psi^{-1}(v)\right|>1$, then every $v^{\prime} \in \psi^{-1}(v)$ belongs to $V\left(\Phi_{\chi}^{\prime}\right)$, and consequently satisfies $v^{\prime} \in$ $V\left(\sigma^{\prime}\left(v^{\prime}\right)\right)$. So v belongs to $V\left(\psi\left(\sigma^{\prime}\left(v^{\prime}\right)\right)\right.$) for each such v^{\prime}, and it follows that $\sigma(v)$ is connected. It is easy to deduce that σ is a linear inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$ (for similar arguments, see for example section 8 of [1]). This is a contradiction.

Let Γ be a 2-cell painting in Σ with $E(\Gamma) \neq \emptyset$. If $\hat{\Sigma}$ is not a sphere, we define $r e p(\Gamma)$ to be the minimum of $\frac{1}{2}|E(F)|$ over all non-null-homotopic circuits F of Γ^{*}. (This exists, by theorem 11.10 of [3].). If $\hat{\Sigma}$ is a sphere we set $\operatorname{rep}(\Gamma)=\infty$.
5.5 Let χ satisfy $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{3}}$, and let $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2, \ldots)$ be a similarly oriented bad sequence for χ. Then for all $n \geq 0$ there exists $h \geq 1$ such that $\operatorname{rep}\left(\Gamma_{i}\right)>n$ for all $i \geq h$.

Proof. Suppose that for some n there is no such h. Then $\hat{\Sigma_{\chi}}$ is not a sphere, and for infinitely many $i \geq 1$ there is a circuit F_{i} of Γ_{i}^{*} with $\frac{1}{2}\left|E\left(F_{i}\right)\right| \leq n$ such that $U\left(F_{i}\right)$ bounds no disc in $\hat{\Sigma_{\chi}}$. If we choose F_{i} with $\left|V\left(F_{i}\right) \cap \Sigma_{\chi}\right|$ minimum, it is easy to see that for each pole $r^{*}, V(F)$ contains at most two neighbours of r^{*}, and at most one if $r^{*} \notin V\left(F_{i}\right)$. As in 5.4 we may assume that F_{i} exists for all $i \geq 1$, and all the F_{i} are equal to some F say. Let $F \cap \Sigma_{\chi}=K$. Then K is a feature.

If for some $i \geq 1$ there is a component K^{\prime} of K with

$$
\left|V\left(K^{\prime}\right) \cap V\left(\Gamma_{i}\right)\right|+\left|V\left(K^{\prime}\right) \cap b d\left(\Sigma_{\chi}\right)\right| \leq 1
$$

then $V\left(K^{\prime}\right) \cap b d\left(\Sigma_{\chi}\right)=\emptyset$, and so $K^{\prime}=K=F$, and $\left|F \cap V\left(\Gamma_{i}\right)\right| \leq 1$, which is impossible since Γ_{i} is internally 3 -connected. Thus 5.3 can be applied. Now by $5.4, U(K)$ meets at most one cuff (for K is a subgraph of each Γ_{i}^{*}, and yet $\operatorname{dist}\left(\Gamma_{i}\right)>\frac{1}{2}|E(F)|$ for all sufficiently large i). Moreover,
$\left|U(K) \cap b d\left(\Sigma_{\chi}\right)\right| \leq 2$, with equality only if $K \neq F$ (from our choice of the F_{i} 's.) In particular, when we cut along $U(K)$ (with surjection ψ) we obtain either one or two fragments. For each fragment Σ_{1} say, $\hat{\Sigma}_{1}$ is simpler than $\hat{\Sigma}_{\chi}$ because $U(F)$ is non-null-homotopic in $\hat{\Sigma}$, and so if there is only one fragment the proof is completed as for 5.4, using $\mathbf{S}_{\mathbf{1}}$ in place of $\mathbf{S}_{\mathbf{3}}$. (Since we are applying $\mathbf{S}_{\mathbf{1}}$ it does not matter whether the fragment is orientable.) Suppose then that there are two fragments Σ_{1}, Σ_{2}. For $t=1,2$, let χ_{t} be the colour scheme defined by $\Sigma_{\chi_{t}}=\Sigma_{t}, \Phi_{\chi_{t}}=\psi^{-1}(\Phi) \cap \Sigma_{t}$ etc., as in 5.4. For each $i \geq 1$, let $\Gamma_{i}^{\prime}=\psi^{-1}\left(\Gamma_{i}\right) \cap \Sigma_{1}, \Gamma_{i}^{\prime \prime}=\psi^{-1}\left(\Gamma_{i}\right) \cap \Sigma_{2}$. For $e \in E\left(\Gamma_{i}^{\prime}\right)$, define $\phi_{i}^{\prime}(e)=\phi_{i}(\psi(e))$ if $\psi(e) \in E\left(\Gamma_{i}\right)$, and $\phi_{i}^{\prime}(e)=e$ otherwise. Define $\phi_{i}^{\prime \prime}$ similarly. Then each $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ is a χ_{1}-coloured painting, and each $\left(\Gamma_{i}^{\prime \prime}, \phi_{i}^{\prime \prime}\right)$ is a χ_{2}-coloured painting, and χ_{1}, χ_{2} are not bad since χ satisfies \mathbf{S}_{1}. It follows that there exist $j>i \geq 1$ such that there is a linear inflation σ^{\prime} of $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ in $\left(\Gamma_{j}^{\prime}, \phi_{j}^{\prime}\right)$, and a linear inflation $\sigma^{\prime \prime}$ of $\left(\Gamma_{i}^{\prime \prime}, \phi_{i}^{\prime \prime}\right)$ in $\left(\Gamma_{j}^{\prime \prime}, \phi_{j}^{\prime \prime}\right)$. Define σ by

$$
\begin{aligned}
\sigma(e) & = \begin{cases}\psi\left(\sigma^{\prime}\left(\psi^{-1}(e)\right)\right) & \text { if } \psi^{-1}(e) \subseteq \Sigma_{1} \\
\psi\left(\sigma^{\prime \prime}\left(\psi^{-1}(e)\right)\right) & \text { if } \psi^{-1}(e) \subseteq \Sigma_{2}\end{cases} \\
\sigma(v) & =\bigcup_{v^{\prime} \in \psi^{-1}(v) \cap \Sigma_{1}} \psi\left(\sigma^{\prime}\left(v^{\prime}\right)\right) \cup \bigcup_{v^{\prime \prime} \in \psi^{-1}(v) \cap \Sigma_{2}} \psi\left(\sigma^{\prime \prime}\left(v^{\prime \prime}\right)\right) .
\end{aligned}
$$

Then σ is a linear inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$, a contradiction, as required.

6 Inflations and linear inflations

Our strategy to prove 4.1 is to apply a theorem of [10], which we describe later. That, however, applies to inflations rather than linear inflations, and the objective of this section is to smooth over the discrepancy, by means of the following.
6.1 Let χ satisfy $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{3}}$, and let $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2 \ldots)$ be a similarly oriented bad sequence for χ. Then there exists $h \geq 1$ such that for all $j>i \geq h$ there is no inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$.
6.1 is a consequence of 5.5 and the following.
6.2 For any surface Σ there is a number n with the following property. Let Φ be a frame in Σ, and let Γ_{1}, Γ_{2} be paintings in Σ fitting Φ, with rep $\left(\Gamma_{1}\right) \geq n$. Let σ be an inflation of Γ_{1} in Γ_{2} respecting Φ. Then there is a linear inflation σ^{\prime} of Γ_{1} in Γ_{2} respecting Φ, such that $\sigma(e)=\sigma^{\prime}(e)$ for all $e \in E\left(\Gamma_{1}\right)$, and $\sigma(v) \subseteq \sigma^{\prime}(v)$ for all $v \in V\left(\Gamma_{1}\right)$.

Proof of 6.1, assuming 6.2.

Choose n to satisfy 6.2, taking $\Sigma=\Sigma_{\chi}$. Choose $h \geq 1$ such that $\operatorname{rep}\left(\Gamma_{i}\right) \geq n$ for all $i \geq h$ (this is possible by 5.5). Suppose that $j>i \geq h$ and σ is an inflation of (Γ_{i}, ϕ_{i}) in (Γ_{j}, ϕ_{j}). Then σ is an inflation of Γ_{i} in Γ_{j} respecting Φ_{χ}, and $\phi_{i} \leq \phi_{j} \circ \sigma$. From 6.2, there is a linear inflation σ^{\prime} of Γ_{i} in Γ_{j} respecting Φ_{χ} with $\sigma(e)=\sigma^{\prime}(e)$ for all $e \in E\left(\Gamma_{1}\right)$, and hence with $\phi_{i} \leq \phi_{j} \circ \sigma^{\prime}$. But then σ^{\prime} is a linear inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$, a contradiction. Thus there are no such i, j, σ, as required.

The proof of 6.2 will require several lemmas, however. If G is a drawing in a surface Σ, not a sphere, we define $\operatorname{rep}(G)$ to be the minimum of $|\mathrm{F} \cap V(G)|$, taken over all non-null-homotopic G normal $O-\operatorname{arcs} F$ in Σ. If Σ is a sphere, we set $\operatorname{rep}(G)=\infty$. If G, G^{\prime} are drawings in Σ, Σ^{\prime} respectively we say that G, G^{\prime} are isomorphic if there is a bijection $\beta: V(G) \cup E(G) \rightarrow V\left(G^{\prime}\right) \cup E\left(G^{\prime}\right)$, mapping vertices to vertices and edges to edges and preserving incidence. (This is the usual definition of isomorphism for non-embedded graphs, and it takes no note of the way the graphs are drawn in the surface.) An enlargement of G in G^{\prime} is a function σ with domain $V(G) \cup E(G)$, such that

- for each $e \in E(G), \sigma(e) \in E\left(G^{\prime}\right)$, and if $e_{1}, e_{2} \in E(G)$ are distinct then $\sigma\left(e_{1}\right) \neq \sigma\left(e_{2}\right)$
- for each $v \in V(G), \sigma(v)$ is a non-null connected subdrawing of G^{\prime}, and if $v_{1}, v_{2} \in V(G)$ are distinct then $\sigma\left(v_{1}\right), \sigma\left(v_{2}\right)$ are disjoint
- for each $e \in E(G)$ and $v \in V(G), \sigma(v)$ contains an end of $\sigma(e)$ if and only if v is an end of e.
(Thus, there is an enlargement of G in G^{\prime} if and only if G is isomorphic to a minor of G^{\prime}, with the usual definition of "minor" for graphs.)
6.3 Let G, G^{\prime} be drawings in a surface Σ with $b d(\Sigma)=\emptyset$, such that there is an enlargement of G in G^{\prime}. Then G is isomorphic to a drawing H in Σ with $\operatorname{rep}(H) \leq \operatorname{rep}\left(G^{\prime}\right)$.

Proof. Let σ be an enlargement of G in G^{\prime}. We may assume that $\sigma(v)$ is a tree, for each $v \in V(G)$. Let H^{\prime} be the subdrawing of G^{\prime} with

$$
\begin{aligned}
& V\left(H^{\prime}\right)=\bigcup(V(\sigma(v)): v \in V(G)) \\
& E\left(H^{\prime}\right)=\bigcup(E(\sigma(v)): v \in V(G)) \cup\{\sigma(e): e \in E(G)\}
\end{aligned}
$$

Then $\operatorname{rep}\left(H^{\prime}\right) \leq \operatorname{rep}\left(G^{\prime}\right)$. Let Σ^{\prime} be obtained from Σ by identifying all the elements of $U(\sigma(v))$, for each $v \in V(G)$, and let H be the image of H^{\prime} under this identification. Since each $\sigma(v)$ is a tree it follows that $\Sigma^{\prime} \cong \Sigma$; and since σ is an enlargement of G it follows that H is isomorphic to G. But $\operatorname{rep}(H) \leq \operatorname{rep}\left(H^{\prime}\right)$, and so $\operatorname{rep}(H) \leq \operatorname{rep}\left(G^{\prime}\right)$, as required.

Theorem 9.2 of [3] asserts the following.
6.4 For every surface Σ with $b d(\Sigma)=\emptyset$, not a sphere, and every drawing H in Σ, there is a number k such that for every drawing G in Σ with $\operatorname{rep}(G) \geq k$ there is an enlargement of H in G.

We deduce
6.5 For every surface Σ with $b d(\Sigma)=\emptyset$, not a sphere, there is a number $k \geq 0$ such that if G is a drawing in Σ with $\operatorname{rep}(G) \geq k$ and G^{\prime} is a drawing in Σ such that there is an enlargement of G in G^{\prime}, then $\operatorname{rep}\left(G^{\prime}\right) \geq 1$.

Proof. Let H be a connected drawing in Σ which is not isomorphic to any drawing in any simpler surface. (Such a drawing H exists; for instance, it follows by considering the Euler characteristic of the surfaces that any triangulation of Σ without parallel edges has the desired property.)

Choose k as in 6.4. Let G, G^{\prime} be as in the theorem. By 6.4, there is an enlargement of H in G, and hence an enlargement of H in G^{\prime}. By 6.3, H is isomorphic to a drawing H^{\prime} in Σ with $\operatorname{rep}\left(H^{\prime}\right) \leq \operatorname{rep}\left(G^{\prime}\right)$. If $\operatorname{rep}\left(H^{\prime}\right)=0$, then we can cut Σ along a non-null-homotopic O-arc F with $F \cap U\left(H^{\prime}\right)=\emptyset$, to obtain a drawing isomorphic to H in a surface simpler than Σ, a contradiction. Hence $\operatorname{rep}\left(H^{\prime}\right) \geq 1$, and so $\operatorname{rep}\left(G^{\prime}\right) \geq 1$.

A drawing G in Σ is a block if G is non-null and connected, and $G \backslash v$ is connected for every vertex $v \in V(G)$.
6.6 For every surface Σ with $b d(\Sigma)=\emptyset$ there is a number $k \geq 0$ with the following property. Let G, G^{\prime} be blocks in Σ with $\operatorname{rep}(G)>k$, and let σ be an enlargement of G in G^{\prime}. Then there is an enlargement σ^{\prime} of G in G^{\prime} such that

- $\sigma(e)=\sigma^{\prime}(e)$ for every $e \in E(G)$, and $\sigma(v) \subseteq \sigma^{\prime}(v)$ for every $v \in V(G)$
- $\bigcup\left(V\left(\sigma^{\prime}(v)\right): v \in V(G)\right)=V\left(G^{\prime}\right)$, and each $\sigma^{\prime}(v)$ is an induced subgraph of G^{\prime}
- for every region r of G^{\prime}, and every $v \in V(G), \sigma^{\prime}(v) \cap \bar{r}$ is null or connected.

Proof. If Σ is a sphere, let $k=0$. If not, choose k to satisfy 6.5 . Now let G, G^{\prime}, σ be as in the theorem. Choose an enlargement σ^{\prime} of G in G^{\prime} satisfying the first statement of the theorem, in such a way that

$$
\bigcup\left(\sigma^{\prime}(v): v \in V(G)\right)
$$

is maximal. Since G^{\prime} is connected and G is non-null because they are blocks, it follows that the second statement of the theorem holds. It remains to verify the third. Let r be a region of G^{\prime}, let $v \in V(G)$, and let $a, b \in \bar{r} \cap V\left(\sigma^{\prime}(v)\right)$. We shall show that there is a path P of $\sigma^{\prime}(v)$ with ends a, b and with $U(P) \subseteq \bar{r}$. For certainly there is a path Q of $\sigma^{\prime}(v)$ with ends a, b since $\sigma^{\prime}(v)$ is connected. Let $H=G \backslash v$. Now $\operatorname{rep}(H) \geq k$, since $\operatorname{rep}(G)>k$; and because there is an enlargement of H in $G^{\prime} \backslash V(Q)$, it follows that $\operatorname{rep}\left(G^{\prime} \backslash V(Q)\right) \geq 1$, since k satisfies 6.5 unless Σ is a sphere. Let F be an $O-\operatorname{arc}$ in Σ with $U(Q) \subseteq F$ and $F \backslash U(Q) \subseteq r$. Since $F \cap U\left(G^{\prime} \backslash V(Q)\right)=\emptyset$ and $\operatorname{rep}\left(G^{\prime} \backslash V(Q)\right) \geq 1$, it follows that there is a disc $\Delta \subseteq \Sigma$ bounded by F.
(1) If $G^{\prime} \cap \Delta \subseteq \sigma^{\prime}(v)$ then there is a path P of $\sigma^{\prime}(v)$ with ends a, b and with $U(P) \subseteq \bar{r}$.

Subproof. $r \cap F$ is connected, and so there is a path of $G^{\prime} \cap(\bar{r} \cap \Delta)$ between a and b; and so if $G^{\prime} \cap \Delta \subseteq \sigma^{\prime}(v)$ we may take P to be this path. This proves (1).
(2) If $U\left(\sigma^{\prime}(u)\right) \subseteq \Delta$ for every $u \in V(G) \backslash\{v\}$ then there is a path P of $\sigma^{\prime}(v)$ with ends a, b and with $U(P) \subseteq \bar{r}$.

Subproof. Let $G^{\prime \prime}$ be $G^{\prime} \cap \Delta$, regarded as a drawing in Σ. If Σ is not a sphere then there is a non-null-homotopic O-arc disjoint from Δ, and hence $\operatorname{rep}\left(G^{\prime \prime}\right)=0$, which is impossible under the hypothesis of (2), because there is an enlargement of H in $G^{\prime \prime}$, and $\operatorname{rep}(H) \geq k$, and k satisfies 6.5. Thus Σ is a sphere. Let $\Delta^{\prime} \subseteq \Sigma$ be the disc bounded by F with $\Delta \neq \Delta^{\prime}$. Then $G^{\prime} \cap \Delta^{\prime} \subseteq \sigma^{\prime}(v)$, since $U\left(\sigma^{\prime}(u)\right) \subseteq \Delta$ for every $u \in V(G) \backslash\{v\}$ and the second statement of the theorem holds. But then the claim follows by (1) applied to Δ^{\prime}. This proves (2).

From (1) and (2) we may suppose, for a contradiction, that there exist $u_{1}, u_{2} \in V(G) \backslash\{v\}$ with $U\left(\sigma^{\prime}\left(u_{1}\right)\right) \cap \Delta \neq \emptyset$ and $U\left(\sigma^{\prime}\left(u_{2}\right)\right) \nsubseteq \Delta$. Since $U\left(\sigma^{\prime}\left(u_{i}\right)\right) \cap F=\emptyset$ and $\sigma^{\prime}\left(u_{i}\right)$ is connected ($i=1,2$), it follows that $U\left(\sigma^{\prime}\left(u_{1}\right)\right) \subseteq \Delta \backslash F$ and $U\left(\sigma^{\prime}\left(u_{2}\right)\right) \cap \Delta=\emptyset$. In particular, $u_{1} \neq u_{2}$. Now every path of G^{\prime} from $V\left(\sigma^{\prime}\left(u_{1}\right)\right)$ to $V\left(\sigma^{\prime}\left(u_{2}\right)\right)$ passes through $V\left(\sigma^{\prime}(v)\right)$, and so every path of G from u_{1} to u_{2} passes through v. But G is a block, a contradiction, as required.
6.7 If Γ is an internally 3-connected painting in a surface Σ, then sk (Γ) is a block and rep $(\operatorname{sk}(\Gamma))=$ $r e p(\Gamma)$.

Proof. We may assume that $|V(\Gamma)| \geq 3$. Now since for every region r of Γ in Σ, r is an open disc and $r \cup\{v\}$ is simply-connected for every vertex v of Γ with $v \in \bar{r}$, it follows that the closed curve tracing the perimeter of r has no repeated vertices, and since $|V(\Gamma)| \geq 3$ this curve is an O-arc. Thus for each region r of Γ in Σ there is a circuit C_{r} of $s k(\Gamma)$ with $U\left(C_{r}\right)=b d(\bar{r})$. Hence the same is true for each region r of $s k(\Gamma)$ in $\hat{\Sigma}$. Now if $v \in V(s k(\Gamma))$ and $s k(\Gamma) \backslash v$ is disconnected, then there are two vertices $u_{1}, u_{2} \neq v$ belonging to the same circuit C_{r}, and belonging to different components of $s k(\Gamma) \backslash v$, which is impossible. Thus $s k(\Gamma)$ is a block. The second claim is clear.

Proof of $\mathbf{6 . 2}$.

Choose n such that 6.6 holds with Σ and k replaced by $\hat{\Sigma}$ and $n-1$. Let $\Phi, \Gamma_{1}, \Gamma_{2}, \sigma$ be as in 6.2. For each $e \in E\left(s k\left(\Gamma_{1}\right)\right)$ define $\tau(e)$ as follows. If $e \in E\left(\Gamma_{1}\right)$ let $\tau(e)=\sigma(e)$. If e is a component of $b d\left(\bar{c}_{1}\right) \backslash \tilde{c}_{1}$ for some $c_{1} \in E\left(\Gamma_{1}\right)$ with $\left|\tilde{c}_{1}\right|=3$, let $c_{2}=\sigma\left(c_{1}\right)$, let the ends of e be u, v and let $\tau(e)$ be the edge of $s k\left(\Gamma_{2}\right)$ with $\tau(e) \subseteq b d\left(\bar{c}_{2}\right)$ and with ends in $\sigma(u), \sigma(v)$. For each $v \in V\left(s k\left(\Gamma_{1}\right)\right)$ let $\tau(v)=\sigma(v)$. Then τ is an enlargement of $s k\left(\Gamma_{1}\right)$ in $s k\left(\Gamma_{2}\right)$.

Now by $6.7 \operatorname{sk}\left(\Gamma_{1}\right), s k\left(\Gamma_{2}\right)$ are blocks and $\operatorname{rep}\left(s k\left(\Gamma_{1}\right)\right)=\operatorname{rep}\left(\Gamma_{1}\right) \geq n>k$. By 6.6, there is an enlargement τ^{\prime} of $s k\left(\Gamma_{1}\right)$ in $s k\left(\Gamma_{2}\right)$ such that

- $\tau^{\prime}(e)=\tau(e)$ for every $e \in E\left(s k\left(\Gamma_{1}\right)\right)$, and $\tau(v) \subseteq \tau^{\prime}(v)$ for every $v \in V\left(s k\left(\Gamma_{1}\right)\right)$
- $\bigcup\left(V\left(\tau^{\prime}(v)\right): v \in V\left(s k\left(\Gamma_{1}\right)\right)\right)=V\left(s k\left(\Gamma_{2}\right)\right)$, and each $\tau^{\prime}(v)$ is an induced subgraph of $s k\left(\Gamma_{2}\right)$
- for every region r of $s k\left(\Gamma_{2}\right)$ in $\hat{\Sigma}$, and every $v \in V\left(s k\left(\Gamma_{1}\right)\right), \tau^{\prime}(v) \cap \bar{r}$ is null or connected.

For each $e \in E\left(\Gamma_{1}\right)$, let $\sigma^{\prime}(e)=\sigma(e)$, and for each $v \in V\left(\Gamma_{1}\right)$, let $\sigma^{\prime}(v)=\tau^{\prime}(v)$. Since all the $\sigma^{\prime}(v)$'s are disjoint, and for $e \in E\left(\Gamma_{1}\right)$ if v is the i th end of e then $\sigma^{\prime}(v)$ contains the i th end of $\sigma^{\prime}(e)$ (because $\sigma(v)$ does, and $\sigma(v)=\tau(v) \subseteq \tau^{\prime}(v)=\sigma^{\prime}(v)$), it follows that σ^{\prime} is an inflation of Γ_{1} in Γ_{2} respecting Φ. We claim that σ^{\prime} is linear. For let Θ be a cuff of Σ and let C_{i} be the circuit of $\operatorname{sk}\left(\Gamma_{i}\right)$ with $U\left(C_{i}\right)=\Theta(i=1,2)$. Let

$$
\begin{aligned}
E\left(C_{1}\right) & =\left\{e_{1}, \ldots, e_{t}\right\} \\
V\left(C_{1}\right) & =\left\{v_{1}, \ldots, v_{t}\right\}
\end{aligned}
$$

where e_{i} has ends v_{i} and $v_{i+1}(1 \leq i \leq t)$, where v_{t+1} means v_{1}. Now $\sigma^{\prime}\left(e_{i}\right)=\sigma\left(e_{i}\right) \subseteq \Theta$ for $1 \leq i \leq t$, and for $1 \leq i \leq t \sigma\left(v_{i}\right)$, and hence $\tau^{\prime}\left(v_{i}\right)$, contains an end of both $\sigma^{\prime}\left(e_{i-1}\right)$ and $\sigma^{\prime}\left(e_{i}\right)$, where e_{0} means e_{t}. Thus, by the third statement above, there is a path P_{i} of $\tau^{\prime}\left(v_{i}\right)$ joining an end of $\sigma^{\prime}\left(e_{i-1}\right)$ and an end of $\sigma^{\prime}\left(e_{i}\right)$, with $U\left(P_{i}\right) \subseteq \Theta$. Since $\tau^{\prime}\left(v_{1}\right), \ldots, \tau^{\prime}\left(v_{t}\right)$ are disjoint, it follows that P_{1}, \ldots, P_{t} are disjoint, and so

$$
\begin{aligned}
& V\left(P_{1}\right) \cup \ldots \cup V\left(P_{t}\right)=V\left(C_{2}\right) \\
& E\left(P_{1}\right) \cup \ldots \cup E\left(P_{t}\right) \cup\left\{\sigma^{\prime}\left(e_{1}\right), \ldots, \sigma^{\prime}\left(e_{t}\right)\right\}=E\left(C_{2}\right) .
\end{aligned}
$$

Hence every edge $e \in E\left(\Gamma_{2}\right) \backslash \sigma^{\prime}\left(E\left(\Gamma_{1}\right)\right)$ with $e \subseteq \Theta$ is an edge of some P_{i} and hence of some $\sigma^{\prime}\left(v_{i}\right)$. Thus σ^{\prime} is linear, as required.

7 Tangles

A hypergraph H consists of a set $V(H)$ of vertices, a set $E(H)$ of edges, and an incidence relation between them; the vertices incident with an edge are its ends. A hypergraph G is a subhypergraph of H (written $G \subseteq H$) if $V(G) \subseteq V(H), E(G) \subseteq E(H)$, and each edge of G has the same ends in G and in H. If $A, B \subseteq H$, we define $A \cap B, A \cup B$ in the natural way. A separation of H is an ordered pair (A, B) of subhypergraphs with $A \cup B=H$ and $E(A \cap B)=\emptyset$; its order is $|V(A \cap B)|$. A tangle of order $\theta \geq 1$ in H is a set \mathcal{T} of separations of H, all of order $<\theta$, such that

- for every separation (A, B) of H of order $<\theta, \mathcal{T}$ contains either (A, B) or (B, A)
- if $\left(A_{i}, B_{i}\right) \in \mathcal{T}(i=1,2,3)$ then $A_{1} \cup A_{2} \cup A_{3} \neq H$
- if $(A, B) \in \mathcal{T}$ then $V(A) \neq V(H)$.

We refer to these as the "tangle axioms". We define $\operatorname{ord}(\mathcal{T})$ to be the order of \mathcal{T}.
If Γ is a painting then $(V(\Gamma), E(\Gamma)$) (with the natural incidence relation) is a hypergraph, and to avoid proliferating notation we shall also call this hypergraph Γ. Thus, we may speak of subhypergraphs, tangles etc. of a painting Γ.

Let Γ be a 2-cell painting in Σ with $E(\Gamma) \neq \emptyset$, and let \mathcal{T} be a tangle in Γ. We define $\operatorname{rep}(\mathcal{T})$ to be the maximum $k \leq \operatorname{ord}(\mathcal{T})$ such that for every circuit F of Γ^{*} with $\frac{1}{2}|E(F)|<k$ there is a disc $\Delta \subseteq \hat{\Sigma}$ bounded by $U(F)$, such that $\left(\Gamma \cap \Delta, \Gamma \cap \Delta^{\prime}\right) \in \mathcal{T}$, where Δ^{\prime} is the closure of $\hat{\Sigma} \backslash \Delta$. If $\frac{1}{2}|E(F)|<\operatorname{rep}(\mathcal{T})$ and Δ is as described, we write $\Delta=\operatorname{ins}(F), \Delta^{\prime}=\operatorname{out}(F)$. We make the convention that when we are dealing with more than one tangle in the same painting, ins (F) and out (F) will always be defined with reference to the tangle currently called \mathcal{T} (the others will be called $\mathcal{T}^{\prime}, \mathcal{T}_{1}$ etc.). When there is only one tangle specified in the painting, ins (F) and out (F) are defined with reference to that.

Let Γ be a 2 -cell painting in Σ. The atoms of Γ are the sets $\{v\}(v \in V(\Gamma))$, the edges of Γ, and the regions of Γ in $\hat{\Sigma}$; and the set of atoms is denoted by $A(\Gamma)$. To every atom of Γ there corresponds an atom of Γ^{*} in the natural way. Now assume in addition that $E(\Gamma) \neq \emptyset$, and let \mathcal{T} be a tangle in Γ. If W is a closed walk in Γ^{*}, we define $\Gamma^{*} \mid W$ to be the subdrawing of Γ^{*} consisting of all vertices and edges in W. If W has length $<2 \operatorname{rep}(\mathcal{T})$, we define $\operatorname{ins}(W)$ to be the union of $U\left(\Gamma^{*} \mid W\right)$ and all the closed discs $\operatorname{ins}(F)$ where F is a circuit of $\Gamma^{*} \mid W$. It is easy to see that if $x \in A(\Gamma)$ and x^{*} is the corresponding atom of Γ^{*}, then $x \cap \operatorname{ins}(W) \neq \emptyset$ if and only if $x^{*} \subseteq i n s(W)$, and we frequently use this fact without further explanation.

In theorem 9.1 of [6], we defined a metric on the set of atoms of Γ^{*}, using so-called "restraints". However, from theorems 8.5 and 9.2 of that paper, the same metric can be defined using the sets ins (W) instead of general restraints; and since every atom of Γ corresponds to an atom of Γ^{*}, this induces a metric on $A(\Gamma)$. In summary, for $a, b \in A(\Gamma)$, we define $d(a, b)$ as follows:

- if $a=b$ then $d(a, b)=0$
- if $a \neq b$ and there is a closed walk W of Γ^{*} with length $<2 \operatorname{rep}(\mathcal{T})$ and with $a \cap \operatorname{ins}(W), b \cap$ $\operatorname{ins}(W) \neq \emptyset$, we define $d(a, b)$ to be half the minimum length of such a walk
- if neither of the above applies then $d(a, b)=\operatorname{rep}(\mathcal{T})$.

We call d the metric of \mathcal{T} (it is indeed a metric on $A(\Gamma)$, as explained earlier.) When $v \in V(\Gamma)$ and $z \in A(\Gamma)$, we often write $d(v, z)$ for $d(\{v\}, z)$

In theorem 9.2 of [8], we proved a useful result about this metric, but only for drawings, not paintings. Now we need to generalize that to paintings, as follows.
7.1 Let Γ be a 2-cell painting with $E(\Gamma) \neq \emptyset$ in a surface Σ, and let \mathcal{T} be a tangle in Γ with metric d. Let $z \in A(\Gamma)$, and let κ be an integer with $4 \leq \kappa \leq \operatorname{rep}(\mathcal{T})-6$. Then there is a circuit C of $\operatorname{sk}(\Gamma)$, bounding an open disc $\Lambda \subseteq \hat{\Sigma}$ with $z \subseteq \Lambda$, such that

- $d(z, x) \leq \kappa+5$ for every $x \in A(\Gamma)$ with $x \cap \bar{\Lambda} \neq \emptyset$
- $d(z, x) \geq \kappa$ for every $x \in A(\Gamma)$ with $x \cap \Lambda=\emptyset$
- $x \subseteq \Lambda$ for for every $x \in A(\Gamma)$ with $d(z, x) \leq \kappa-2$
- ins $\left(C^{*}\right) \subseteq \bar{\Lambda}$ for every circuit C^{*} of Γ^{*} with $U\left(C^{*}\right) \subseteq \bar{\Lambda}$ and $\left|E\left(C^{*}\right)\right|<2(\operatorname{rep}(\mathcal{T})-\kappa-5)$.

Proof. For $1 \leq i \leq \operatorname{rep}(\mathcal{T})$, let $Z(i)$ be the union of $\operatorname{ins}(W)$, taken over all closed walks W of Γ^{*} with length $<2 i$ and with $z^{*} \subseteq \operatorname{ins}(W)$, where z^{*} is the atom of Γ^{*} corresponding to z. By theorems 8.5, 8.10, 8.12 and 9.2 of $[6], Z(\operatorname{rep}(\mathcal{T})$) is simply-connected and $\neq \hat{\Sigma}$, and so by theorems 4.2 and 11.9 of [3], there is a closed disc $\Delta \subseteq \hat{\Sigma}$ with $Z(\operatorname{rep}(\mathcal{T})) \subseteq \Delta \backslash b d(\Delta)$. Since $\kappa \geq 4$, it follows that $z \subseteq Z(\kappa) \subseteq Z(r e p(\mathcal{T})) \subseteq \Delta$.
(1) Let r be a region of $s k(\Gamma)$ in $\hat{\Sigma}$ with $\bar{r} \cap Z(\kappa) \neq \emptyset$, and let $s \in A(\Gamma)$ with $r \subseteq s$; then $d(z, s) \leq \kappa+2$ and $s \subseteq \Delta \backslash b d(\Delta)$.

Subproof. Since $\bar{r} \cap Z(\kappa) \neq \emptyset$ it follows that $\bar{s} \cap Z(\kappa) \neq \emptyset$, and so there is a vertex v of Γ with $v \in \bar{s} \cap Z(\kappa)$. Hence $d(s, v) \leq 3$ and $d(z, v)<\kappa$, and so $d(z, s) \leq \kappa+2$. Suppose that $s \nsubseteq Z(\operatorname{rep}(\mathcal{T}))$. Since either $r=s$ or $s \in E(\Gamma)$ with $|\tilde{s}|=3, s$ is a subset of the closure of the union of the regions of Γ^{*} that meet s; and so there is a region e^{*} of Γ^{*} with $s \cap e^{*} \neq \emptyset$ and $e^{*} \nsubseteq Z(r e p(\mathcal{T}))$. Let e be the corresponding edge of Γ; then $d(z, e)=\operatorname{rep}(\mathcal{T})$ since $e^{*} \nsubseteq Z(\operatorname{rep}(\mathcal{T}))$. But $d(s, e) \leq 3$ since $s \cap e^{*} \neq \emptyset$, and so

$$
d(z, s) \geq \operatorname{rep}(\mathcal{T})-3 \geq \kappa+3
$$

a contradiction. Thus $s \subseteq Z(\operatorname{rep}(\mathcal{T})) \subseteq \Delta \backslash b d(\Delta)$. This proves (1).
From (1) and theorem 5.2 of [8] it follows that there is a circuit C of $s k(\Gamma)$ with $U(C) \subseteq \Delta$, bounding an open disc $\Lambda \subseteq \Delta$ including $Z(\kappa)$, such that every edge of C is incident with a region r of $s k(\Gamma)$ in $\hat{\Sigma}$ with $\bar{r} \cap Z(\kappa) \neq \emptyset$. We claim that C satisfies the theorem. Certainly $z \subseteq \Lambda$, since $z \subseteq Z(\kappa)$. To verify the first assertion of the theorem, we shall show that $\bar{\Lambda} \subseteq Z(\kappa+6)$. Let $e \in E(C)$, and let r be a region of $s k(\Gamma)$ in $\hat{\Sigma}$ with $e \subseteq \bar{r}$ and with $\bar{r} \cap Z(\kappa) \neq \emptyset$. Let $s \in A(\Gamma)$ with $r \subseteq s$. Then by (1), $d(z, s) \leq \kappa+2$. Let $f \in E(\Gamma)$ with $e \subseteq f$; then $e \subseteq \bar{s} \cap f$ and so $d(s, f) \leq 3$. Hence $d(z, f) \leq \kappa+5$, and so $f \subseteq f^{*} \subseteq Z(\kappa+6)$, where $f^{*} \in A\left(\Gamma^{*}\right)$ corresponds to f. Consequently $e \subseteq Z(\kappa+6)$. Since this holds for every edge e of C it follows that $U(C) \subseteq Z(\kappa+6)$. By theorem 8.10 of $[6], Z(\kappa+6)$ is simply-connected, and so there is a closed disc $D \subseteq Z(\kappa+6) \subseteq \Delta$ bounded by $U(C)$. Thus D and $\bar{\Lambda}$ are both closed discs in Δ bounded by $U(C)$, and hence $D=\bar{\Lambda}$; and
consequently $\bar{\Lambda} \subseteq Z(\kappa+6)$. Now let $x \in A(\Gamma)$ with $x \cap \bar{\Lambda} \neq \emptyset$. Then $x \cap Z(\kappa+6) \neq \emptyset$, and so $d(z, x) \leq \kappa+5$. Hence the first assertion of the theorem holds.

To verify the second, let $x \in A(\Gamma)$ with $x \cap \Lambda=\emptyset$, and let x^{*} be the corresponding atom of Γ^{*}. Since $x \cap x^{*} \neq \emptyset$ and $x \cap \Lambda=\emptyset$ it follows that $x^{*} \nsubseteq \Lambda$, and so $x^{*} \nsubseteq Z(\kappa)$. Hence $d(z, x) \geq \kappa$. This verifies the second assertion.

For the third, let $x \in A(\Gamma)$ with $x \nsubseteq \Lambda$. If $x \cap \Lambda=\emptyset$ then because the second assertion of the theorem holds, $d(z, x) \geq \kappa$ as required. We may assume then that $x \cap \Lambda \neq \emptyset$, and since $x \nsubseteq \Lambda$ it follows that $x \cap U(C) \neq \emptyset$. Since $x \in A(\Gamma)$ and $x \cap \Lambda \neq \emptyset$ and $x \cap U(C) \neq \emptyset$, it follows that x is an edge of Γ with $|\tilde{x}|=3$, and there is a vertex $v \in \tilde{x} \cap V(C)$. The atoms of Γ^{*} corresponding to $\{v\}$ and to x are adjacent in Γ^{*}, and so $d(x,\{v\}) \leq 1$. But since $\{v\} \cap \Lambda=\emptyset$, it follows from the second assertion that $d(z,\{v\}) \geq \kappa$, and so

$$
d(z, x) \geq d(z,\{v\})-d(x,\{v\}) \geq \kappa-1 .
$$

This proves the third assertion.
To verify the fourth, let $f \in E(\Gamma)$ with $d(z, f)=\operatorname{rep}(\mathcal{T})$. (This exists by theorem 8.12 of [6].) Let C^{*} be a circuit of Γ^{*} with $U\left(C^{*}\right) \subseteq \bar{\Lambda}$ and with $\left|E\left(C^{*}\right)\right|<2(\operatorname{rep}(\mathcal{T})-\kappa-5)$. Let D be the closed disc in $\bar{\Lambda}$ bounded by $U\left(C^{*}\right)$, and let $v \in V\left(C^{*}\right) \cap V(\Gamma)$. Then $d(z, v) \leq \kappa+5$, and so $d(v, f) \geq \operatorname{rep}(\mathcal{T})-\kappa-5$. Hence $f \nsubseteq \operatorname{ins}\left(C^{*}\right)$, because $\left|E\left(C^{*}\right)\right|<2(\operatorname{rep}(\mathcal{T})-\kappa-5)$, and so $\operatorname{ins}\left(C^{*}\right)$ and D are both closed discs in $\Sigma \backslash f$ bounded by $U\left(C^{*}\right)$. Consequently $D=i n s\left(C^{*}\right)$, and so ins $\left(C^{*}\right) \subseteq \bar{\Lambda}$. This verifies the fourth assertion, and so completes the proof of 7.1.

8 Tie-breakers

Throughout this section Γ is an internally 3 -connected painting in Σ. Let $e \in E\left(\Gamma^{*}\right)$ with ends $v \in V(\Gamma)$ and $r^{*} \in R^{*}(\Gamma)$, and let C be the circuit of $s k(\Gamma)$ with $U(C)$ bounding r. (We assume for the moment that C exists.) Let f_{1}, f_{2} be the two edges of C incident with v, and let c_{1}, c_{2} be the two edges of Γ with $f_{1} \subseteq c_{1}, f_{2} \subseteq c_{2}$. Now if (A, B) is a separation of Γ, we say that (A, B) splits e if $c_{1} \in E(A)$ and $c_{2} \in E(B)$ or vice versa. (If the circuit C does not exist, then, since the perimeter of r has no "repeated" vertices because Γ is internally 3 -connected, it follows that $|V(\Gamma)|=2$ and $|E(\Gamma)|=1$. In this case we say that (A, B) does not split e.) We shall need the following lemma.
8.1 Let (A, B) be a separation of Γ of order $<\operatorname{rep}(\Gamma)$, with $E(A), E(B) \neq \emptyset$. Then there is a circuit F of Γ^{*} such that (A, B) splits every edge of F and there is a disc $\Delta \subseteq \hat{\Sigma}$ bounded by $U(F)$ such that either $\Gamma \cap \Delta \subseteq A$ or $\Gamma \cap \Delta \subseteq B$.

Proof. Let G be the subdrawing of Γ^{*} with $V(G)=V\left(\Gamma^{*}\right)$ and edges those edges of Γ^{*} with are split by (A, B). Now $E(G) \neq \emptyset$ since $E(A), E(B) \neq \emptyset$; and every vertex of G has even degree from the definition of G. Moreover, for any circuit F of G, half its vertices belong to $V(A \cap B)$, and so $\frac{1}{2}|E(F)|<\operatorname{rep}(\Gamma)$; and therefore there is a disc in $\hat{\Sigma}$ bounded by $U(F)$. Let us choose a minimal disc $\Delta \subseteq \hat{\Sigma}$ with $b d(\Delta) \subseteq U(G)$; and let F be the circuit of Γ^{*} with $U(F)=b d(\Delta)$. Since every edge of G is contained in a circuit of G, and $G \cap \Delta$ has no circuit except F, it follows that $G \cap \Delta=F$. But then $\Gamma \cap \Delta \subseteq A$ or $\Gamma \cap \Delta \subseteq B$, as required.

In [5] we discussed "tie-breakers" in general hypergraphs. In this paper we only need a particular kind of tie-breaker, chosen to work nicely in paintings, but we use the same name. Thus, for each $e \in E\left(\Gamma^{*}\right)$ let $\lambda(e)>0$ be some real number, and for each $v \in V(\Gamma)$ let $\lambda(v)>0$ be some real number, such that all the $\lambda(e)$'s and $\lambda(v)$'s are rationally independent; that is,

$$
\sum\left(\alpha(e) \lambda(e): e \in E\left(\Gamma^{*}\right)\right)=\sum(\beta(v) \lambda(v): v \in V(\Gamma))
$$

for rationals $\alpha(e), \beta(v)$ only if each $\alpha(e)=0$ and each $\beta(v)=0$. Moreover, let $\lambda(e)<\lambda(f)$ for all $e, f \in E\left(\Gamma^{*}\right)$ such that $e \subseteq \hat{\Sigma} \backslash \Sigma$ and $f \subseteq \Sigma$. We call λ a tie-breaker in Γ. Throughout this section, λ is a fixed tie-breaker in Γ. We define the λ-order of a separation (A, B) of Γ to be the triple (N_{1}, N_{2}, N_{3}), where

$$
\begin{aligned}
& N_{1}=|V(A \cap B)|, \\
& N_{2}=\sum(\lambda(e): e \text { is split by }(A, B)), \\
& N_{3}=\sum(\lambda(v): v \in V(A \cap B)) .
\end{aligned}
$$

We order λ-orders lexicographically; thus, if $(A, B),\left(A^{\prime}, B^{\prime}\right)$ have λ-orders $\left(N_{1}, N_{2}, N_{3}\right)$ and $\left(N_{1}^{\prime}, N_{2}^{\prime}, N_{3}^{\prime}\right)$ respectively, we say that (A, B) has smaller λ-order than $\left(A^{\prime}, B^{\prime}\right)$ if either $N_{1}<N_{1}^{\prime}$, or $N_{1}=N_{1}^{\prime}$ and $N_{2}<N_{2}^{\prime}$, or $N_{1}=N_{1}^{\prime}$ and $N_{2}=N_{2}^{\prime}$ and $N_{3}<N_{3}^{\prime}$. The next two results prove that the tie-breakers in this paper are indeed tie-breakers in the sense of [5]. It is easy to prove that
8.2 If $(A, B),\left(A^{\prime}, B^{\prime}\right)$ are separations with the same λ-order, then $(A, B)=\left(A^{\prime}, B^{\prime}\right)$ or $\left(B^{\prime}, A^{\prime}\right)$.

Moreover,
8.3 If $(A, B),\left(A^{\prime}, B^{\prime}\right)$ are separations then so are $\left(A \cup A^{\prime}, B \cap B^{\prime}\right),\left(A \cap A^{\prime}, B \cup B^{\prime}\right)$, and either $\left(A \cup A^{\prime}, B \cap B^{\prime}\right)$ has smaller λ-order than (A, B), or $\left(A \cap A^{\prime}, B \cup B^{\prime}\right)$ has λ-order at most that of $\left(A^{\prime}, B^{\prime}\right)$.

Proof. Let these four separations have λ-orders $\left(N_{1}, N_{2}, N_{3}\right),\left(N_{1}^{\prime}, N_{2}^{\prime}, N_{3}^{\prime}\right),\left(N_{1}^{\prime \prime}, N_{2}^{\prime \prime}, N_{3}^{\prime \prime}\right)$, and $\left(N_{1}^{\prime \prime \prime}, N_{2}^{\prime \prime \prime}, N_{3}^{\prime \prime \prime}\right)$ respectively. Then $N_{1}+N_{1}^{\prime}=N_{1}^{\prime \prime}+N_{1}^{\prime \prime \prime}, N_{2}+N_{2}^{\prime} \geq N_{2}^{\prime \prime}+N_{2}^{\prime \prime \prime}$, and $N_{3}+N_{3}^{\prime}=N_{3}^{\prime \prime}+N_{3}^{\prime \prime \prime}$, and the result follows.

Let $\mathcal{T}, \mathcal{T}^{\prime}$ be tangles in Γ, with $\mathcal{T} \nsubseteq \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime} \nsubseteq \mathcal{T}$. Then there exists $(A, B) \in \mathcal{T}$ with $(B, A) \in \mathcal{T}^{\prime}$, and there is a unique such (A, B) with minimum λ-order, called the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction.
8.4 Let $\mathcal{T}, \mathcal{T}^{\prime}$ be tangles in Γ and let (A, B) be the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction. Suppose that $|V(A \cap B)|<$ $\operatorname{rep}(\mathcal{T})$. Then there is a circuit F in Γ^{*} such that $A=\Gamma \cap \operatorname{ins}(F), B=\Gamma \cap \operatorname{out}(F)$.

Proof. By the second tangle axiom, $E(A), E(B) \neq \emptyset$ since $(A, B) \in \mathcal{T}$ and $(B, A) \in \mathcal{T}^{\prime}$. By 8.1 there is a circuit F of Γ^{*} such that (A, B) splits every edge of F and there is a disc $\Delta \subseteq \hat{\Sigma}$ bounded by $U(F)$ with either $\Gamma \cap \Delta \subseteq A$ or $\Gamma \cap \Delta \subseteq B$. Let Δ^{\prime} be the closure of $\hat{\Sigma} \backslash \Delta$, and let $H=\Gamma \cap \Delta$ and $H^{\prime}=\Gamma \cap \Delta^{\prime}$. Then $H \cap H^{\prime} \subseteq A \cap B$.

The three separations $\left(H, H^{\prime}\right),\left(A \cap H^{\prime}, B \cup H\right)$ and $\left(A \cup H, B \cap H^{\prime}\right)$ all have λ-order at most that of (A, B), because $H \cap H^{\prime} \subseteq A \cap B$ and every edge of Γ^{*} split by one of these separations is split by (A, B).

If $H \subseteq A$ then $A \cup H^{\prime}=\Gamma$, and so $\left(H^{\prime}, H\right) \notin \mathcal{T}$ since $(A, B) \in \mathcal{T}$; while if $H \subseteq B$ then $B \cup H=\Gamma$, and so $\left(H^{\prime}, H\right) \notin \mathcal{T}^{\prime}$ since $(B, A) \in \mathcal{T}^{\prime}$. In either case it follows that $\left(H^{\prime}, H\right)$ does not belong to both $\mathcal{T}, \mathcal{T}^{\prime}$, and so $\left(H, H^{\prime}\right)$ belongs to at least one of them.

Suppose that $\left(H, H^{\prime}\right)$ belongs to both of $\mathcal{T}, \mathcal{T}^{\prime}$. Now $\left(A \cap H^{\prime}, B \cup H\right) \notin \mathcal{T}^{\prime}$, from the second tangle axiom, since $\left(H, H^{\prime}\right),(B, A) \in \mathcal{T}^{\prime}$ and $H \cup B \cup\left(A \cap H^{\prime}\right)=\Gamma$. Consequently $\left(B \cup H, A \cap H^{\prime}\right) \in \mathcal{T}^{\prime}$. But $\left(A \cap H^{\prime}, B \cup H\right) \in \mathcal{T}$, since $(A, B) \in \mathcal{T}$; and since $\left(A \cap H^{\prime}, B \cup H\right)$ has λ-order at most that of (A, B), and (A, B) is the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction, it follows that equality holds, and so $\left(A \cap H^{\prime}, B \cup H\right)=(A, B)$, that is, $A \subseteq H^{\prime}$ and $H \subseteq B$. Similarly, $\left(B \cap H^{\prime}, A \cup H\right) \notin \mathcal{T}$, since $\left(H, H^{\prime}\right),(A, B), \in \mathcal{T}$, and $H \cup A \cup\left(B \cap H^{\prime}\right)=\Gamma$. Consequently $\left(A \cup H, B \cap H^{\prime}\right) \in \mathcal{T}$. But $\left(B \cap H^{\prime}, A \cup H\right) \in \mathcal{T}^{\prime}$, since $(B, A) \in \mathcal{T}^{\prime}$, and so this separation has the same λ-order as (A, B), and therefore $\left(A \cup H, B \cap H^{\prime}\right)=(A, B)$, that is, $H \subseteq A$ and $B \subseteq H^{\prime}$. But we already showed that $A \subseteq H^{\prime}$ and $H \subseteq B$, and so $E(H)=\emptyset$. Since Δ includes a region of Γ^{*} and hence an edge of Γ, this is impossible.

It follows that $\left(H, H^{\prime}\right)$ belongs to exactly one of $\mathcal{T}, \mathcal{T}^{\prime}$. Since its λ-order is at most that of (A, B), and (A, B) is the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction, it follows that equality holds, and so $\left(H, H^{\prime}\right)=(A, B)$ or (B, A). The first is the desired result. If the second holds, then since $\left(H, H^{\prime}\right)$ has order less than $\operatorname{rep}(\mathcal{T})$ and $\left(H, H^{\prime}\right) \notin \mathcal{T}$, it follows that there is a disc bounded by F different from Δ; and so Δ^{\prime} is a disc. Since in this case $\Delta^{\prime}=\operatorname{ins}(F)$, we deduce that again the desired result holds.

Given a tangle \mathcal{T} in Γ, a circuit F of Γ^{*} is a \mathcal{T}-enclave if $\frac{1}{2}|E(F)|<\operatorname{rep}(\mathcal{T})$, and there is a tangle \mathcal{T}^{\prime} in Γ for which $(\Gamma \cap \operatorname{ins}(F), \Gamma \cap \operatorname{out}(F))$ is the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction. We also call F a \mathcal{T}-enclave around \mathcal{T}^{\prime}. If K is a subgraph of $\Gamma^{*}, \lambda(K)$ denotes $\sum_{e \in E(K)} \lambda(e)$.
8.5 Let \mathcal{T} be a tangle in Γ, and let F be a \mathcal{T}-enclave around \mathcal{T}^{\prime}, and let $u, v \in V(F)$ be distinct. Let F_{1}, F_{2} be the two paths of F between u and v, and let P be a path of Γ^{*} between u and v with no other vertex or edge in common with F. Suppose that $|E(P)| \leq\left|E\left(F_{1}\right)\right|$, and if equality holds then $\lambda(P) \leq \lambda\left(F_{1}\right)$. Then

- $\left(\Gamma \cap \operatorname{ins}\left(P \cup F_{2}\right), \Gamma \cap \operatorname{out}\left(P \cup F_{2}\right)\right) \in \mathcal{T}^{\prime}$
- if $U(P) \nsubseteq \operatorname{ins}(F)$ then ins $\left(P \cup F_{2}\right) \cap \operatorname{ins}(F)=U\left(F_{2}\right)$
- $|E(P)| \geq\left|E\left(F_{2}\right)\right|$, and if equality holds then $\lambda(P)>\lambda\left(F_{2}\right)$.

Proof. Let C_{i} be the circuit $P \cup F_{i}(i=1,2)$. Certainly $\left|E\left(C_{2}\right)\right| \leq|E(F)|$, and if equality holds then $\lambda\left(C_{2}\right)<\lambda(F)$, because the $\lambda(e)$'s are rationally independent. Since F is a \mathcal{T}-enclave around \mathcal{T}^{\prime}, it follows that $\left(\Gamma \cap \operatorname{ins}\left(C_{2}\right), \Gamma \cap \operatorname{out}\left(C_{2}\right)\right) \notin \mathcal{T} \backslash \mathcal{T}^{\prime}$. Hence the first assertion of the theorem holds. It follows that $\operatorname{ins}(F) \nsubseteq \operatorname{ins}\left(C_{2}\right)$, because $(\Gamma \cap \operatorname{out}(F), \Gamma \cap \operatorname{ins}(F)) \in \mathcal{T}^{\prime}$, and so the second assertion holds. Suppose that the third is false. Then by the same argument $\left(\Gamma \cap \operatorname{ins}\left(C_{1}\right), \Gamma \cap o u t\left(C_{1}\right)\right) \in \mathcal{T}^{\prime}$, and so $i n s(F) \nsubseteq i n s\left(C_{1}\right) \cup i n s\left(C_{2}\right)$ from the second tangle axiom applied to \mathcal{T}^{\prime}. Hence $U(P) \nsubseteq i n s(F)$, and so $\operatorname{ins}\left(C_{i}\right) \cap \operatorname{ins}(F)=U\left(F_{i}\right)(i=1,2)$. But then $\operatorname{ins}\left(C_{1}\right) \cup \operatorname{ins}\left(C_{2}\right) \cup \operatorname{ins}(F)=\hat{\Sigma}$, contrary to the second tangle axiom applied to \mathcal{T}. Thus the third assertion holds. This proves 8.5.
8.6 Let \mathcal{T} be a tangle in Γ, and let F_{1}, F_{2} be \mathcal{T}-enclaves. Then either ins $\left(F_{1}\right) \subseteq \operatorname{ins}\left(F_{2}\right)$, or $\operatorname{ins}\left(F_{2}\right) \subseteq \operatorname{ins}\left(F_{1}\right)$, or ins $\left(F_{1}\right) \cap \operatorname{ins}\left(F_{2}\right)=U\left(F_{1}\right) \cap U\left(F_{2}\right)$.

Proof. Let $\mathcal{T}_{1}, \mathcal{T}_{2}$ be tangles such that F_{i} is a \mathcal{T}-enclave around $\mathcal{T}_{i}(i=1,2)$. Let $A_{i}=\Gamma \cap$ $\operatorname{ins}\left(F_{i}\right), B_{i}=\Gamma \cap \operatorname{out}\left(F_{i}\right)(i=1,2)$. Since $\left(A_{i}, B_{i}\right)$ is the $\left(\mathcal{T}, \mathcal{T}_{i}\right)$ - distinction $(i=1,2)$ it follows
from theorems 9.4 and 10.2 of [5] that one of $E\left(A_{1} \cap A_{2}\right), E\left(A_{1} \cap B_{2}\right), E\left(B_{1} \cap A_{2}\right), E\left(B_{1} \cap B_{2}\right)$ is empty. Since $\left(A_{i}, B_{i}\right) \in \mathcal{T}(i=1,2)$ it follows that $E\left(B_{1} \cap B_{2}\right) \neq \emptyset$, and so the fourth alternative is false. From the symmetry between the second and third alternatives, we may assume without loss of generality that if either holds then the second does. Thus, one of the first two alternatives holds.

If $E\left(A_{1} \cap B_{2}\right)=\emptyset$, then every edge of A_{1} is included in $\operatorname{ins}\left(F_{2}\right) \backslash U\left(F_{2}\right)$ and so every edge of Γ^{*} split by $\left(A_{1}, B_{1}\right)$ is included in $\operatorname{ins}\left(F_{2}\right)$; therefore $U\left(F_{1}\right) \subseteq \operatorname{ins}\left(F_{2}\right)$, and hence ins $\left(F_{1}\right) \subseteq \operatorname{ins}\left(F_{2}\right)$ as required. On the other hand, if $E\left(A_{1} \cap A_{2}\right)=\emptyset$, then no edge of Γ^{*} split by $\left(A_{1}, B_{1}\right)$ is included in $\operatorname{ins}\left(F_{2}\right) \backslash U\left(F_{2}\right)$, and so $U\left(F_{1}\right) \cap \operatorname{ins}\left(F_{2}\right)=U\left(F_{1}\right) \cap U\left(F_{2}\right)$. Similarly, $U\left(F_{2}\right) \cap \operatorname{ins}\left(F_{1}\right)=U\left(F_{1}\right) \cap U\left(F_{2}\right)$, and so $\operatorname{ins}\left(F_{1}\right) \cap \operatorname{ins}\left(F_{2}\right)=U\left(F_{1}\right) \cap U\left(F_{2}\right)$, as required.

If \mathcal{T} is a tangle in Γ, a separation $(A, B) \in \mathcal{T}$ is said to be λ-linked to \mathcal{T} if there is no $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}$ of smaller λ-order with $A \subseteq A^{\prime}$ and $B^{\prime} \subseteq B$. If F is a circuit of Γ^{*} with $\frac{1}{2}|E(F)|<\min (\operatorname{ord}(\mathcal{T}), \operatorname{rep}(\Gamma))$, let Σ_{1}, Σ_{2} be the closures of the two components of $\hat{\Sigma} \backslash U(F)$; then \mathcal{T} contains one of $\left(\Gamma \cap \Sigma_{1}, \Gamma \cap\right.$ $\left.\Sigma_{2}\right),\left(\Gamma \cap \Sigma_{2}, \Gamma \cap \Sigma_{1}\right)$, and if that separation is λ-linked to \mathcal{T} we say that F is λ-linked (to \mathcal{T}).
8.7 Let \mathcal{T} be a tangle in Γ, let F be a circuit of Γ^{*} with $\frac{1}{2}|E(F)|<\min (\operatorname{ord}(\mathcal{T})$, $\operatorname{rep}(\Gamma))$, and let Σ_{1}, Σ_{2} be the closures of the two components of $\hat{\Sigma} \backslash U(F)$, where $\left(\Gamma \cap \Sigma_{1}, \Gamma \cap \Sigma_{2}\right) \in \mathcal{T}$. Then there is a λ-linked circuit F^{\prime} in Γ^{*} such that

- $\left|E\left(F^{\prime}\right)\right| \leq|E(F)|$ and if equality holds then $\lambda\left(F^{\prime}\right) \leq \lambda(F)$
- $\Sigma_{1} \subseteq \Sigma_{1}^{\prime}$ and $\Sigma_{2}^{\prime} \subseteq \Sigma_{2}$, where $\Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}$ are the closures of the two components of $\hat{\Sigma} \backslash U\left(F^{\prime}\right)$ and $\left(\Gamma \cap \Sigma_{1}^{\prime}, \Gamma \cap \Sigma_{2}^{\prime}\right) \in \mathcal{T}$.

Proof. Choose $(A, B) \in \mathcal{T}$ with $\Gamma \cap \Sigma_{1} \subseteq A$ and $B \subseteq \Gamma \cap \Sigma_{2}$ of minimum λ-order. Then $E(B) \neq \emptyset$ since $(A, B) \in \mathcal{T}$, and $E(A) \neq \emptyset$ since $E\left(\Gamma \cap \Sigma_{1}\right) \neq \emptyset$. From 8.1 there is a circuit F^{\prime} of Γ^{*} such that (A, B) splits every edge of F^{\prime}, and such that $U\left(F^{\prime}\right)$ bounds a disc $\Delta \subseteq \hat{\Sigma}$ with either $\Gamma \cap \Delta \subseteq A$ or $\Gamma \cap \Delta \subseteq B$. Let $\Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}$ be the closures of the two components of $\hat{\Sigma} \backslash U\left(\overline{F^{\prime}}\right)$, where $\left(\Gamma \cap \Sigma_{1}^{\prime}, \Gamma \cap \Sigma_{2}^{\prime}\right) \in \mathcal{T}$. It follows that $\left(\Gamma \cap \Sigma_{1}^{\prime}, \Gamma \cap \Sigma_{2}^{\prime}\right)$ has λ-order at most that of (A, B).

Suppose that $\Sigma_{1} \subseteq \Sigma_{2}^{\prime}$. Then Σ_{2}^{\prime} includes an edge of A (since $\left.\Gamma \cap \Sigma_{1} \subseteq A\right)$. Now $(A, B) \in \mathcal{T}$, and $\left(\Gamma \cap \Sigma_{2}^{\prime}, \Gamma \cap \Sigma_{1}^{\prime}\right) \notin \mathcal{T}$, and yet the second separation has order $<\operatorname{ord}(\mathcal{T})$, and \mathcal{T} has order $>\frac{1}{2}|E(F)| \geq 1$, and so by the third assertion of theorem 2.9 of [5], not every edge of $\Gamma \cap \Sigma_{2}^{\prime}$ belongs to A. Consequently, Σ_{2}^{\prime} includes an edge of B. We deduce that $\Gamma \cap \Sigma_{2}^{\prime} \nsubseteq A$ and $\Gamma \cap \Sigma_{2}^{\prime} \nsubseteq B$. Hence $\Sigma_{2}^{\prime} \neq \Delta$, and so $\Sigma_{1}^{\prime}=\Delta$. Furthermore,

$$
\left(A \cap \Sigma_{2}^{\prime}, B \cup\left(\Gamma \cap \Sigma_{1}^{\prime}\right)\right),\left(A \cup\left(\Gamma \cap \Sigma_{1}^{\prime}\right), B \cap \Sigma_{2}^{\prime}\right) \in \mathcal{T}
$$

because they both have order at most that of (A, B), and $\left(\Gamma \cap \Sigma_{1}^{\prime}, \Gamma \cap \Sigma_{2}^{\prime}\right) \in \mathcal{T}$. Yet if $\Gamma \cap \Sigma_{1}^{\prime} \subseteq A$, the first separation has smaller λ-order than (A, B), while if $\Gamma \cap \Sigma_{1}^{\prime} \subseteq B$ the second does (for in both cases the first term of the λ-order does not increase, and the second term strictly decreases). In either case this is contrary to our choice of (A, B); and one of these occurs since $\Sigma_{1}^{\prime}=\Delta$, a contradiction. Thus, $\Sigma_{1} \nsubseteq \Sigma_{2}^{\prime}$.

Now no edge of F^{\prime} lies in $\Sigma_{1} \backslash U(F)$, because every edge of F^{\prime} is split; and so $\Sigma_{1} \subseteq \Sigma_{1}^{\prime}$ and $\Sigma_{2}^{\prime} \subseteq \Sigma_{2}$. Hence $\left(\Gamma \cap \Sigma_{1}^{\prime}, \Gamma \cap \Sigma_{2}^{\prime}\right)$ has λ-order at least that of (A, B), from the choice of (A, B). Since we already shown the reverse inequality, it follows that the λ-orders are equal and so from 8.2 , $(A, B)=\left(\Gamma \cap \Sigma_{1}^{\prime}, \Gamma \cap \Sigma_{2}^{\prime}\right)$. Hence F^{\prime} is λ-linked to \mathcal{T}, and (from the choice of $\left.(A, B)\right)\left|E\left(F^{\prime}\right)\right| \leq|E(F)|$, and if equality holds then $\lambda\left(F^{\prime}\right) \leq \lambda(F)$. This proves 8.7.

An $\operatorname{arm} A$ of a painting Γ is a pair $\left(A^{-}, \pi(A)\right)$, where A^{-}is a subhypergraph of Γ and $\pi(A)$ is a march in $V\left(A^{-}\right)$, with the property that there exists $B \subseteq \Gamma$ such that $\left(A^{-}, B\right)$ is a separation of Γ and $V\left(A^{-} \cap B\right)=\bar{\pi}(A)$. (In other words, for each edge e of Γ not in $E\left(A^{-}\right), \bar{\pi}(A)$ contains every end of e in $V\left(A^{-}\right)$.) In this case, we call B the complement of A (it is unique) and write $B=A^{c}$. We define $V(A)=V\left(A^{-}\right), E(A)=E\left(A^{-}\right)$. We say that A is λ-linked to \mathcal{T} if $\left(A^{-}, A^{c}\right)$ is λ-linked to \mathcal{T}. The order of A is $|\bar{\pi}(A)|$, that is, the order of $\left(A^{-}, A^{c}\right)$.

A rooted location in Γ is a set \mathcal{L} of arms, such that if $A_{1}, A_{2} \in \mathcal{L}$ with $A_{1}^{-} \neq A_{2}^{-}$then $A_{1}^{-} \subseteq A_{2}^{c}$. Its order $\operatorname{ord}(\mathcal{L})$ is the maximum order of its members (or zero, if $\mathcal{L}=\emptyset)$. We define $\mathcal{L}^{-}=\left\{\left(A^{-}, A^{c}\right)\right.$: $A \in \mathcal{L}\}$. A rooted location \mathcal{L} with $\mathcal{L}^{-} \subseteq \mathcal{T}$ is λ-linked to \mathcal{T} if each of its members is λ-linked to \mathcal{T}. A rooted location \mathcal{L}-isolates a tangle \mathcal{T} if $\mathcal{L}^{-} \subseteq \mathcal{T}, \operatorname{ord}(\mathcal{L})<\theta \leq \operatorname{ord}(\mathcal{T})$, and for every $A \in \mathcal{L}$ and for every tangle \mathcal{T}^{\prime} of order $\geq \theta$ with $\left(A^{c}, A^{-}\right) \in \mathcal{T}^{\prime}$, the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction (C, D) satisfies $C \subseteq A^{-}$ and $A^{c} \subseteq D$. It follows by applying theorem theorem 7.1 of [10] to \mathcal{L}^{-}that
8.8 If \mathcal{T} is a tangle in Γ, and \mathcal{L} is a rooted location with $\mathcal{L}^{-} \subseteq \mathcal{T}$, and $\operatorname{ord}(\mathcal{L})<\theta \leq \operatorname{ord}(\mathcal{T})$, and \mathcal{L} is λ-linked to \mathcal{T}, then $\mathcal{L} \theta$-isolates \mathcal{T}.

9 An application of patchworks

The reader familiar with $[1,10]$ will see that we can regard a painting Γ as a patchwork, by assigning to $e \in E(\Gamma)$ the free patch on \tilde{e}; and by doing so, we can apply theorem 6.7 of [10]. Our object now is to state that theorem in the terminology of paintings.

If $\Omega_{1}, \ldots, \Omega_{k}$ are well-quasi-orders with $E\left(\Omega_{1}\right), \ldots, E\left(\Omega_{k}\right)$ mutually disjoint, we define their union to be the well-quasi-order Ω with $E(\Omega)=E\left(\Omega_{1}\right) \cup \ldots \cup E\left(\Omega_{k}\right)$, in which $x \leq y$ if and only if $x, y \in E\left(\Omega_{i}\right)$ for some i and $x \leq y$ in Ω_{i}. A colour scheme χ is disjoint if $\Omega_{\chi}(3), \Omega_{\chi}(2)$ and all the $\Omega_{\chi}(S)$'s (over all sides S of Φ_{χ}) have mutually disjoint element sets, and if χ is disjoint we denote the union of these well-quasi-orders by Ω_{χ}. If χ is disjoint and (Γ, ϕ) is a χ-coloured painting, we may regard ϕ as a function from $E(\Gamma)$ into $E\left(\Omega_{\chi}\right)$.
9.1 Let $(\Gamma, \phi),\left(\Gamma^{\prime}, \phi^{\prime}\right)$ be χ-coloured paintings, where χ is disjoint. Let σ be an inflation of Γ in Γ^{\prime}, such that $\phi(e) \leq \phi^{\prime}(\sigma(e))$ (in Ω_{χ}) for every $e \in E(\Gamma)$. Then σ is an inflation of (Γ, ϕ) in $\left(\Gamma^{\prime}, \phi^{\prime}\right)$.

Proof. If $e \in E(\Gamma)$, then since $\phi(e) \leq \phi^{\prime}(\sigma(e))$ in Ω_{χ} and Ω_{χ} is disjoint it follows that $\sigma(e)$ is internal if and only if e is internal, and $\sigma(e)$ borders a side S if and only if e does. Thus σ respects Φ_{χ}, as required.

In section 2 we defined an inflation of one painting in another. Let us broaden that definition a little. If Γ, Γ^{\prime} are paintings in Σ, and $H \subseteq \Gamma$ is a subhypergraph, an inflation of H in Γ^{\prime} is a function σ with domain $V(H) \cup E(H)$ satisfying the three conditions of the definition of inflation in section 2 with Γ replaced by H.

If \mathcal{L} is a rooted location in Γ we define $M(\Gamma, \mathcal{L})$ to be

$$
\Gamma \cap \bigcap\left(A^{c}: A \in \mathcal{L}\right)
$$

Thus $\bar{\pi}(A) \subseteq V(M(\Gamma, \mathcal{L}))$ for each $A \in \mathcal{L}$. Let $(\Gamma, \phi),\left(\Gamma^{\prime}, \phi^{\prime}\right)$ be χ-coloured paintings, where χ is disjoint, and let $\mathcal{L}, \mathcal{L}^{\prime}$ be rooted locations in Γ, Γ^{\prime} respectively. A function $\tau: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ is an outline of $(\Gamma, \phi, \mathcal{L})$ in $\left(\Gamma^{\prime}, \phi^{\prime}, \mathcal{L}^{\prime}\right)$ if there is an inflation σ of $M(\Gamma, \mathcal{L})$ in Γ^{\prime}, such that

- $\sigma(e) \in E\left(M\left(\Gamma^{\prime}, \mathcal{L}^{\prime}\right)\right)$ for each $e \in E(M(\Gamma, \mathcal{L}))$
- for each $A \in \mathcal{L},|\bar{\pi}(\tau(A))|=|\bar{\pi}(A)|$, and if $A_{1}, A_{2} \in \mathcal{L}$ are distinct then $\tau\left(A_{1}\right) \neq \tau\left(A_{2}\right)$
- for each $A \in \mathcal{L}$ and $1 \leq i \leq|\bar{\pi}(A)|$, if v is the i th term of $\pi(A)$ then $\sigma(v)$ contains the i th term of $\pi(\tau(A))$
- for each $A \in \mathcal{L}$ and $v \in V(M(\Gamma, \mathcal{L})),|V(\sigma(v)) \cap V(\tau(A))| \leq 1$
- for each $e \in E(M(\Gamma, \mathcal{L})), \phi(e) \leq \phi^{\prime}(\sigma(e))$ in Ω_{χ}.

We stress that the $\sigma(v)^{\prime}$ s are subgraphs of $s k\left(\Gamma^{\prime}\right)$, but not necessarily of $s k\left(M\left(\Gamma^{\prime}, \mathcal{L}^{\prime}\right)\right)$.
If χ is disjoint, (Γ, ϕ) is a χ-coloured painting, and \mathcal{L} is a rooted location in Γ, we call $(\Gamma, \phi, \mathcal{L})$ a χ-place. A set \mathcal{P} of χ-places is well-behaved if for every well-quasi-order Ω and every countable sequence $\left(\Gamma_{i}, \phi_{i}, \mathcal{L}_{i}\right)(i=1,2, \ldots)$ of members of \mathcal{P}, and for all functions $\xi_{i}: \mathcal{L}_{i} \rightarrow E(\Omega)$, there exist $j>i \geq 1$ and an outline τ of $\left(\Gamma_{i}, \phi_{i}, \mathcal{L}_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}, \mathcal{L}_{j}\right)$ such that $\xi_{i}(A) \leq \xi_{j}(\tau(A))$ for all $A \in \mathcal{L}_{i}$. Theorem 6.7 of [10], together with 9.1 , imply the following.
9.2 Let χ be a disjoint colour scheme, let $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2, \ldots)$ be a countable sequence of χ-coloured paintings and for each $i \geq 1$ let λ_{i} be a tie-breaker in Γ_{i}. Let $\theta \geq 1$, and for each $i \geq 1$ and every tangle \mathcal{T} in Γ_{i} of order $\geq \theta$, let $\mathcal{L}(\mathcal{T})$ be a rooted location in Γ_{i} which θ-isolates \mathcal{T}. Let the set of all these $\left(\Gamma_{i}, \phi_{i}, \mathcal{L}(\mathcal{T})\right.$) (over all i and $\left.\mathcal{T}\right)$ be well-behaved. Then there exist $j>i \geq 1$ such that there is an inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$.

Now we can give the reader a little better intuition as to how the proof of 4.1 will work. Let χ be a colour scheme satisfying $\mathbf{S}_{\mathbf{1}}, \ldots, \mathbf{S}_{\mathbf{4}}$, and let $\left(\Gamma_{i}, \phi_{i}\right)(i=1,2, \ldots)$ be a countable sequence of χ-coloured paintings. By 6.1, it will suffice to show that there exist $j>i \geq 1$ such that there is an inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$, and to show this we will apply 9.2 . We therefore need to produce an infinite subsequence of this sequence, and a well-behaved set of rooted locations, so that the subsequence satisfies the hypotheses of 9.2 . To get the subsequence, discard from the given sequence the first term, and all terms $\left(\Gamma_{i}, \phi_{i}\right)$ with $\operatorname{dist}\left(\Gamma_{i}\right)$ or $r e p\left(\Gamma_{i}\right)$ at most some appropriately-chosen number that depends only on $\left(\Gamma_{1}, \phi_{1}\right)$. By 5.4 and 5.5 , an infinite sequence still remains, and this is the one we need. Now we need to produce the well-behaved set of rooted locations. Let $\left(\Gamma_{i}, \phi_{i}\right)$ be some term of the sequence that still remains. We know that there is no inflation of $\left(\Gamma_{1}, \phi_{1}\right)$ in $\left(\Gamma_{i}, \phi_{i}\right)$; and a theorem of [7] therefore can be applied. That theorem implies that for every large-order tangle \mathcal{T} in Γ_{i} (the meaning of "large" depending only on $\left(\Gamma_{1}, \phi_{1}\right)$), the triple $\left(\Gamma_{i}, \phi_{i}, \mathcal{T}\right)$ is "insufficiently general", in one of only a few possible ways. We deduce that there is a "flaw" in $\left(\Gamma_{i}, \phi_{i}, \mathcal{T}\right)$, of one of only a few possible kinds (and in particular, of only finitely many different kinds). For each kind of flaw, we shall show that there corresponds a well-behaved set of rooted locations, such that if $\left(\Gamma_{i}, \phi_{i}, \mathcal{T}\right)$ admits the flaw then some rooted location in this set θ-isolates \mathcal{T} (for appropriate θ); and then the union of these finitely many well-behaved sets is another well-behaved set, now satisfying the hypotheses of 9.2 , as required.

In sections $10-14$ we look at the various kinds of flaw, and in each case construct the desired well-behaved set, and in section 15 we complete the proof by applying the theorem of [7].

We shall need the following lemmas.
9.3 Let χ be a disjoint colour scheme, and let \mathcal{P} be a set of χ-places. For each $(\Gamma, \phi, \mathcal{L}) \in \mathcal{P}$ let $\pi(\mathcal{L})$ be a march with $\bar{\pi}(\mathcal{L})=\bigcup(\bar{\pi}(A): A \in \mathcal{L})$. Suppose that

- there exist m, n such that $|\mathcal{L}| \leq m$ and $|\bar{\pi}(\mathcal{L})| \leq n$ for all $(\Gamma, \phi, \mathcal{L}) \in \mathcal{P}$
- for every countable sequence $\left(\Gamma_{i}, \phi_{i}, \mathcal{L}_{i}\right)(i=1,2, \ldots)$ of members of \mathcal{P} there exist $j>i \geq 1$ and an inflation σ of $M\left(\Gamma_{i}, \mathcal{L}_{i}\right)$ in Γ_{j}, such that
- for each $v \in V\left(M\left(\Gamma_{i}, \mathcal{L}_{i}\right)\right), V(\sigma(v)) \subseteq V\left(M\left(\Gamma_{j}, \mathcal{L}_{j}\right)\right)$
- for each $e \in E\left(M\left(\Gamma_{i}, \mathcal{L}_{i}\right)\right), \sigma(e) \in E\left(M\left(\Gamma_{j}, \mathcal{L}_{j}\right)\right)$ and $\phi_{i}(e) \leq \phi_{j}(\sigma(e))$
- $\left|\bar{\pi}\left(\mathcal{L}_{i}\right)\right|=\left|\bar{\pi}\left(\mathcal{L}_{j}\right)\right|$, and for $1 \leq h \leq\left|\bar{\pi}\left(\mathcal{L}_{i}\right)\right|$ if v is the hth term of $\pi\left(\mathcal{L}_{i}\right)$ then $\sigma(v)$ contains the hth term of $\pi\left(\mathcal{L}_{j}\right)$.

Then \mathcal{P} is well-behaved.
The proof is easy and we omit it (see [10] for the proofs of several similar results).
We define the image of a χ-place under a Φ_{χ}-preserving homeomorphism in the natural way.
9.4 Let χ be a disjoint colour scheme, and let \mathcal{C} be a well-behaved set of χ-places. Let \mathcal{C}^{\prime} be the set of all images of members of \mathcal{C} under Φ_{χ}-preserving homeomorphisms of Σ_{χ}. Then \mathcal{C}^{\prime} is well-behaved.

Again, the proof is clear.

10 Tangle flaws

Our next objective is to produce some well-behaved sets of χ-places. The proofs of several of these theorems are similar, and so we give only the first in detail. Throughout this section and the next, χ is a disjoint colour scheme, and \mathcal{S} is a similarly oriented set of χ-coloured paintings, such that if $(\Gamma, \phi) \in \mathcal{S}$ and α is a Φ_{χ}-preserving homeomorphism of Σ_{χ}, then \mathcal{S} contains the image of (Γ, ϕ) under α (briefly, \mathcal{S} is closed under Φ_{χ}-preserving homeomorphisms). Let \mathcal{D} be the set of all quadruples $(\Gamma, \phi, \lambda, \mathcal{T})$ such that $(\Gamma, \phi) \in \mathcal{S}, \lambda$ is a tie-breaker in Γ, and \mathcal{T} is a tangle in Γ.

Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$, such that $\operatorname{rep}(\Gamma), \operatorname{ord}(\mathcal{T})>\operatorname{rep}(\mathcal{T})$. Then $\hat{\Sigma_{\chi}}$ is not a sphere, and there is a circuit F of Γ^{*} with $\frac{1}{2}|E(F)| \leq \operatorname{rep}(\mathcal{T})$ such that Σ_{1} is not a disc, where Σ_{1}, Σ_{2} are the closures of the two components of $\hat{\Sigma}_{\chi} \backslash U(F)$ and $\left(\Gamma \cap \Sigma_{1}, \Gamma \cap \Sigma_{2}\right) \in \mathcal{T}$. (It follows that $\frac{1}{2}|E(F)|=r e p(\mathcal{T})$ for every such F.) Let us choose such a circuit F with $\lambda(F)$ minimal. We call F a representativeness flaw for $(\Gamma, \phi, \lambda, \mathcal{T})$.
10.1 With $\Gamma, \phi, \lambda, \mathcal{T}, F, \Sigma_{1}, \Sigma_{2}$ as above,

- Σ_{2} is a disc
- either $\left|U(F) \cap b d\left(\Sigma_{\chi}\right)\right| \leq 1$ and $U(F) \subseteq \Sigma_{\chi}$, or $\left|U(F) \cap b d\left(\Sigma_{\chi}\right)\right|=2$ and $U(F) \nsubseteq \Sigma_{\chi}$, or $\operatorname{dist}(\Gamma) \leq \frac{1}{4}|E(F)|+1$
- F is λ-linked to \mathcal{T}.

Proof. Since $\operatorname{rep}(\Gamma)>\operatorname{rep}(\mathcal{T})=\frac{1}{2}|E(F)|$, it follows that one of Σ_{1}, Σ_{2} (and hence Σ_{2}) is a disc, and so the first assertion of the theorem holds. If $U(F)$ meets two distinct cuffs then $\operatorname{dist}(\Gamma) \leq \frac{1}{4}|E(F)|+1$, while if $\left|U(F) \cap b d\left(\Sigma_{\chi}\right)\right| \leq 1$ then $U(F) \subseteq \Sigma_{\chi}$, and in either case the second assertion holds. Thus, to prove the second assertion, we may assume that $U(F)$ intersects a unique cuff $\bar{r} \backslash r$ say, where r^{*} is a pole, and $|U(F) \cap(\bar{r} \backslash r)| \geq 2$. Let $v_{1}, v_{2} \in U(F) \cap(\bar{r} \backslash r)$ be distinct, and let $e_{i} \in E\left(\Gamma^{*}\right)$ have ends $r^{*}, v_{i}(i=1,2)$. We shall prove that $e_{1}, e_{2} \in E(F)$, from which the second assertion follows. For suppose that $e_{1} \notin E(F)$. Let $u=r^{*}$ if $r^{*} \in V(F)$, and $u=v_{2}$ if $r^{*} \notin V(F)$. Let Q be a path of Γ^{*} between v_{1} and u with $E(Q) \subseteq\left\{e_{1}, e_{2}\right\}$. Let F_{1}, F_{2} be the two paths of F with ends v_{1}, u. Now $|E(Q)| \leq\left|E\left(F_{1}\right)\right|,\left|E\left(F_{2}\right)\right|$, and $\lambda(Q)<\lambda\left(F_{i}\right)(i=1,2)$ by the second condition in the definition of a tie-breaker. Thus if $e_{1} \subseteq \Sigma_{2}$ then one of $F_{1} \cup Q, F_{2} \cup Q$ contradicts the choice of F. If $e_{1} \nsubseteq \Sigma_{2}$ then one of $U\left(F_{1} \cup Q\right), U\left(F_{2} \cup Q\right)$ bounds a disc in $\hat{\Sigma}_{\chi}$ including Σ_{2}, because $\hat{\Sigma}$ is not a sphere and $\operatorname{rep}(\Gamma)>\frac{1}{2}|E(F)|$, and again the choice of F is contradicted. This proves the second assertion of the theorem.

For the third assertion, choose $F^{\prime}, \Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}$ as in 8.7 ; then $\left(\Gamma \cap \Sigma_{1}^{\prime}, \Gamma \cap \Sigma_{2}^{\prime}\right) \in \mathcal{T}$, and Σ_{1}^{\prime} is not a disc. From the choice of $F, \lambda\left(F^{\prime}\right)=\lambda(F)$ and therefore $F^{\prime}=F$; and so F is λ-linked to \mathcal{T}. This proves 10.1.
10.2 Let χ satisfy $\mathbf{S}_{\mathbf{1}}$, let F be a circuit in $\hat{\Sigma}_{\chi}$, with vertex set $\left\{v_{1}, \ldots, v_{2 n}\right\}$, numbered in order in F, and let π be the march $v_{2}, v_{4}, \ldots, v_{2 n}$. Then there is a well-behaved set $\mathcal{C}(F, \pi)$ of χ-places with the following property. Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ satisfy

- $F \subseteq \Gamma^{*}$, and $U(F) \cap V(\Gamma)=\bar{\pi}$
- F is a representativeness flaw for $(\Gamma, \phi, \lambda, \mathcal{T})$, and
- $\left.\operatorname{dist}(\Gamma)>\frac{1}{4} \right\rvert\,(E(F) \mid+1$.

Then there is a rooted location \mathcal{L} with ord $\left(\mathcal{L}^{-}\right)=\frac{1}{2}|E(F)|$, which $\left(\frac{1}{2}|E(F)|+1\right)$-isolates \mathcal{T} and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}(F, \pi)$.

Proof. Let \mathcal{D}_{1} be the set of members $(\Gamma, \phi, \lambda, \mathcal{T})$ of \mathcal{D} satisfying the three displayed statements of the theorem. We may assume that $\mathcal{D}_{1} \neq \emptyset$, and so $\hat{\Sigma}_{\chi}$ is not a sphere, and, defining Σ_{1} and Σ_{2} as before, Σ_{2} is a disc by 10.1. Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}_{1}$, let A be the rooted hypergraph with $A^{-}=\Gamma \cap \Sigma_{1}$ and $\pi(A)=\pi$, and let $\mathcal{L}=\{A\}$. Then $\mathcal{L}\left(\frac{1}{2}|E(F)|+1\right)$-isolates \mathcal{T}, by 8.8, since F is λ-linked to \mathcal{T} by 10.1. Let $\mathcal{C}(F, \pi)$ be the set of all such $(\Gamma, \phi,\{A\})$; we must show that $\mathcal{C}(F, \pi)$ is well-behaved. By 9.3 , it suffices to show that for any countable sequence $\left(\Gamma_{i}, \phi_{i}, \mathcal{L}_{i}\right)(i=1,2, \ldots)$ of members of $\mathcal{C}(F, \pi)$, there exist $j>i \geq 1$ and an inflation σ of $\Gamma_{i} \cap \Sigma_{2}$ in Γ_{j} such that
(a) for each $v \in V\left(\Gamma_{i} \cap \Sigma_{2}\right), V(\sigma(v)) \subseteq V\left(\Gamma_{j} \cap \Sigma_{2}\right)$
(b) for each $e \in E\left(\Gamma_{i} \cap \Sigma_{2}\right), \sigma(e) \in E\left(\Gamma_{j} \cap \Sigma_{2}\right)$ and $\phi_{i}(e) \leq \phi_{j}(\sigma(e))$
(c) for each $v \in \bar{\pi}, \sigma(v)$ contains v.

Now by 10.1 $U(F)$ meets at most one cuff of Σ_{χ}, and either $\left|U(F) \cap b d\left(\Sigma_{\chi}\right)\right| \leq 1$ and $U(F) \subseteq \Sigma_{\chi}$, or $\left|U(F) \cap b d\left(\Sigma_{\chi}\right)\right|=2$ and $U(F) \nsubseteq \Sigma_{\chi}$. Thus there are two fragments obtained by cutting Σ_{χ} along $U(F) \cap \Sigma_{\chi}$; let Σ^{\prime} be the fragment with $\psi\left(\Sigma^{\prime}\right) \subseteq \Sigma_{2}$, where ψ is the associated surjection.

Let χ^{\prime} be the colour scheme with $\Sigma_{\chi^{\prime}}=\Sigma^{\prime}, \Phi_{\chi^{\prime}}=\psi^{-1}\left(\Phi_{\chi}\right) \cap \Sigma^{\prime}, \Omega_{\chi^{\prime}}(k)=\Omega_{\chi}(k)(k=2,3)$, and $\Omega_{\chi^{\prime}}\left(S^{\prime}\right)=\Omega_{\chi}(S)$ for each long side S^{\prime} of $\Phi_{\chi^{\prime}}$, where S is the long side of Φ_{χ} with $\psi\left(S^{\prime}\right) \subseteq S$. Since $\hat{\Sigma}_{\chi}$ is not a sphere, and $\hat{\Sigma}_{\chi^{\prime}}$ is a sphere, and χ satisfies \mathbf{S}_{1}, it follows that χ^{\prime} is not bad. Now for each $i \geq 1$, let $\Gamma_{i}^{\prime}=\psi^{-1}\left(\Gamma_{i}\right) \cap \Sigma^{\prime}$, and for each $e \in E\left(\Gamma_{i}^{\prime}\right)$, let $\phi_{i}^{\prime}(e)=\phi_{i}(\psi(e))$ if e is not a short side of $\Phi_{\chi^{\prime}}$, and $\phi_{i}^{\prime}(e)=e$ if e is a short side. Then $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ is a χ^{\prime}-coloured painting. Since χ^{\prime} is not bad, there exist $j>i \geq 1$ and a linear inflation σ^{\prime} of $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ in $\left(\Gamma_{j}^{\prime}, \phi_{j}^{\prime}\right)$. For each $e \in E\left(\Gamma_{j} \cap \Sigma_{2}\right)$, let $\sigma(e)=\psi\left(\sigma^{\prime}\left(\psi^{-1}(e)\right)\right)$, and for each $v \in V\left(\Gamma_{j} \cap \Sigma_{2}\right)$, let $\sigma(v)=\psi\left(\sigma^{\prime}\left(v^{\prime}\right)\right)$, where $\psi^{-1}(v)=\left\{v^{\prime}\right\}$. Then σ is an inflation satisfying (a), (b), (c) above, as required. This proves 10.2.
10.3 Let χ satisfy $\mathbf{S}_{\mathbf{1}}$, and let $n \geq 1$ be an integer. Then there is a well-behaved set $\mathcal{C}_{1}(n)$ of χ places with the following property. Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D} \operatorname{satisfy} \operatorname{rep}(\Gamma), \operatorname{ord}(\mathcal{T}) \geq n>\operatorname{rep}(\mathcal{T})$, and $\operatorname{dist}(\Gamma) \geq \frac{1}{2} n+1$. Then there is a rooted location \mathcal{L} which n-isolates \mathcal{T} and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}_{1}(n)$.

Proof. By 5.2 , there are finitely many pairs $\left(F_{i}, \pi_{i}\right)(i \in I)$, such that each F_{i} is an even length circuit in $\hat{\Sigma}_{\chi}$ with $\frac{1}{2}\left|E\left(F_{i}\right)\right|<n$, and π_{i} is a march with $\bar{\pi}_{i} \subseteq V\left(F_{i}\right)$ consisting of every second vertex of F_{i}, with the following property. Let $(\Gamma, \phi, \lambda, \mathcal{T})$ be as in the theorem, and let F be a representativeness flaw. Then there exist $i \in I$ and a Φ_{χ}-preserving homeomorphism α of Σ_{χ} which maps F to F_{i} and $U(F) \cap V(\Gamma)$ to $\bar{\pi}_{i}$. Let $\mathcal{C}_{1}(n)$ be the union, over all $i \in I$, of the set of all images of members of $\mathcal{C}\left(F_{i}, \pi_{i}\right)$ (defined in 10.2) under Φ_{χ}-preserving homeomorphisms. By 9.4, $\mathcal{C}_{1}(n)$ is wellbehaved (since I is finite). Let ($\Gamma, \phi, \lambda, \mathcal{T}), F, i, \alpha$ be as before, and let $\left(\Gamma^{\prime}, \phi^{\prime}, \lambda^{\prime}, \mathcal{T}^{\prime}\right)$ be the image of $(\Gamma, \phi, \lambda, \mathcal{T})$ under α (in the natural sense). Since \mathcal{S} is closed under Φ_{χ}-preserving homeomorphisms, it follows that $\left(\Gamma^{\prime}, \phi^{\prime}, \lambda^{\prime}, \mathcal{T}^{\prime}\right) \in \mathcal{D}$, and F_{i} is a representativeness flaw for it with $U\left(F_{i}\right) \cap V\left(\Gamma^{\prime}\right)=\bar{\pi}_{i}$. By 10.2 , there is a rooted location \mathcal{L}^{\prime} with $\operatorname{ord}\left(\mathcal{L}^{\prime}\right)=\frac{1}{2}|E(F)|<n$ which n-isolates \mathcal{T}^{\prime} and with $\left(\Gamma^{\prime}, \phi^{\prime}, \mathcal{L}^{\prime}\right) \in \mathcal{C}\left(F_{i}, \pi_{i}\right)$. Let \mathcal{L} be the image of \mathcal{L}^{\prime} under α^{-1}. Then it satisfies the theorem.

The sets $\mathcal{C}_{1}(n)$ will handle failure of representativeness. Now we turn to another possible failure when $\operatorname{rep}(\mathcal{T})$ is large but $d\left(r_{1}^{*}, r_{2}^{*}\right)$ is small for two poles r_{1}^{*}, r_{2}^{*}. More precisely, for $n \geq 1$ an integer, let us say that $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ is n-flawed in distance if $\operatorname{rep}(\mathcal{T})>n$, and $\operatorname{dist}(\Gamma)>\frac{1}{2} n+1$, and there are distinct poles r_{1}^{*}, r_{2}^{*} with $d\left(r_{1}^{*}, r_{2}^{*}\right) \leq n$. Suppose that $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ is n-flawed in distance. Then since $\operatorname{dist}(\Gamma) \geq \frac{1}{2} n+1$, it follows from theorem 9.2 of [6] that there exists $F \subseteq \Gamma^{*}$ such that one of the following holds:

- F is a circuit with $|E(F)| \leq 2 n$, satisfying
- either $\left|U(F) \cap b d\left(\Sigma_{\chi}\right)\right| \leq 1$ and $U(F) \subseteq \Sigma_{\chi}$, or $\left|U(F) \cap b d\left(\Sigma_{\chi}\right)\right|=2$ and $U(F) \nsubseteq \Sigma_{\chi}$, and
- ins (F) contains at least two poles;
- $F=F_{0} \cup F_{1}$ with $2\left|E\left(F_{0}\right)\right|+\left|E\left(F_{1}\right)\right| \leq 2 n$, where F_{0} is a path with distinct ends and F_{1} is a circuit, satisfying
- one end of F_{1} is a pole r^{*} say, and the other end is the unique element of $F_{0} \cap F_{1}$
- every vertex of F_{0} is in $\Sigma_{\chi} \backslash b d\left(\Sigma_{\chi}\right)$ except r^{*} and its neighbour,
- every vertex of $F_{1} \backslash F_{0}$ is in $\Sigma_{\chi} \backslash b d\left(\Sigma_{\chi}\right)$, and
$-\operatorname{ins}\left(F_{1}\right)$ contains exactly one pole and does not contain r^{*};
- $F=F_{0} \cup F_{1} \cup F_{2}$ with $2\left|E\left(F_{0}\right)\right|+\left|E\left(F_{1}\right)\right|+\left|E\left(F_{2}\right)\right| \leq 2 n$, where F_{0} is a path and F_{1}, F_{2} are circuits, satisfying
- $F_{0} \cap F_{1}=\left\{v_{1}\right\}$ and $F_{0} \cap F_{2}=\left\{v_{2}\right\}$ where v_{1}, v_{2} are the ends of F_{0},
$-U\left(F_{0} \cup F_{1}\right) \subseteq \Sigma_{\chi} \backslash b d\left(\Sigma_{\chi}\right)$,
$-U\left(F_{2}\right) \subseteq \Sigma_{\chi}$ and $\left|U\left(F_{2}\right) \cap b d\left(\Sigma_{\chi}\right)\right| \leq 1$,
- either $E\left(F_{0}\right)=\emptyset$ and $F_{0}=F_{1} \cap F_{2}$ or $E\left(F_{0}\right) \neq \emptyset$ and $F_{1} \cap F_{2}$ is null, and
- for $i=1,2, \operatorname{ins}\left(F_{i}\right)$ contains exactly one pole r_{i}^{*}, say, and $r_{1}^{*} \neq r_{2}^{*}$.

By 8.5 we may choose F such that every circuit of F is λ-linked to \mathcal{T}. (To see this, choose F with $\operatorname{ins}(F)$ maximal.) In this case we call $(F, \operatorname{ins}(F))$ a distance flaw for $(\Gamma, \phi, \lambda, \mathcal{T})$.
10.4 Let χ satisfy $\mathbf{S}_{\mathbf{3}}$, and let $n \geq 1$ be an integer. Then there is a well-behaved set $\mathcal{C}_{2}(n)$ of χ-places with the following property. Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ be n-flawed in distance. Then there is a rooted location \mathcal{L} which $(n+1)$-isolates \mathcal{T} and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}_{2}(n)$.

Proof. By the argument of 10.3 , it suffices to prove that if $\mathcal{D}^{\prime} \subseteq \mathcal{D}$, and all members of \mathcal{D}^{\prime} have the same distance flaw, (F, X) say, and $U(F) \cap V(\Gamma)$ is the same for all $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$, then there is a well-behaved set \mathcal{C} of χ-places, such that for all $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$ there is a rooted location \mathcal{L} which $(n+1)$-isolates \mathcal{T} and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}$.

For each circuit C of F, let π_{C} be a march with $\bar{\pi}_{C}=U(C) \cap V(\Gamma)$ for every $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$, and let $\Sigma_{C} \subseteq X$ be the disc in $\hat{\Sigma_{\chi}}$ bounded by $U(C)$ such that $\Sigma_{C}=\operatorname{ins}(C)$ for each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$. Let Σ_{0} be obtained from $\hat{\Sigma_{\chi}}$ by deleting the interior of each Σ_{C}. For each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$, let \mathcal{L} be the set of all rooted hypergraphs ($\Gamma \cap \Sigma_{C}, \pi_{C}$), as C ranges over the (one or two) circuits of F. Let \mathcal{C} be the set of all such $(\Gamma, \phi, \mathcal{L})$. As in the proof of 10.2 , it suffices to show that for any countable sequence $\left(\Gamma_{i}, \phi_{i}, \mathcal{L}_{i}\right)(i=1,2, \ldots)$ of members of \mathcal{C} there exist $j>i \geq 1$ and an inflation σ of $\Gamma_{i} \cap \Sigma_{0}$ in Γ_{j} such that

- for each $v \in V\left(\Gamma_{i} \cap \Sigma_{0}\right), V(\sigma(v)) \subseteq V\left(\Gamma_{j} \cap \Sigma_{0}\right)$
- for each $e \in E\left(\Gamma_{i} \cap \Sigma_{0}\right), \sigma(e) \in E\left(\Gamma_{j} \cap \Sigma_{0}\right)$ and $\phi_{i}(e) \leq \phi_{j}(\sigma(e))$
- for each circuit C of F and each $v \in \bar{\pi}_{C}, \sigma(v)$ contains v.

If we cut Σ_{χ} along $U(F)$ we obtain two or three fragments; let Σ^{\prime} be the fragment with $\psi\left(\Sigma^{\prime}\right) \subseteq \Sigma_{0}$, where ψ is the associated surjection. Let χ^{\prime} be defined as in the proof of 10.2 . Since χ satisfies $\mathbf{S}_{\mathbf{3}}$ and since $\hat{\Sigma}_{\chi^{\prime}} \cong \hat{\Sigma}_{\chi}$ and $\Omega_{\chi^{\prime}}(k)=\Omega_{\chi}(k)(k=2,3)$, and $c\left(\Sigma_{\chi^{\prime}}\right)<c\left(\Sigma_{\chi}\right)$, it follows that χ^{\prime} is not orientedly bad. For each $i \geq 1$ define $\Gamma_{i}^{\prime}, \phi_{i}^{\prime}$ as in the proof of 10.2 . The sequence ($\left.\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)(i=1,2, \ldots$) is similarly oriented, because \mathcal{S} is similarly oriented and if $\Sigma_{\chi^{\prime}}$ is orientable then so is Σ_{χ}. Thus there exist $j>i \geq 1$ and a linear inflation of $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ in ($\Gamma_{j}^{\prime}, \phi_{j}^{\prime}$). The result follows as in the proof of 10.2.

We say that $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ is n-flawed in freedom if $\operatorname{rep}(\mathcal{T})>n$, and $d\left(r_{1}^{*}, r_{2}^{*}\right)>n$ for every two distinct poles r_{1}^{*}, r_{2}^{*}, and there is a circuit F of Γ^{*} with $\frac{1}{2}|E(F)| \leq n$ such that $\operatorname{ins}(F)$ includes a long side of Φ_{χ} or more than $\frac{1}{2}|E(F)|$ vertices of Φ_{χ}. Then F may be chosen to be λ-linked to \mathcal{T} (by choosing F with $\operatorname{ins}(F)$ maximal), and in this case we call it a freedom flaw for $(\Gamma, \phi, \lambda, \mathcal{T})$. By adapting the proofs of $10.2,10.3,10.4$ in the natural way, using $\mathbf{S}_{\mathbf{4}}$ in place of $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{3}}$, we obtain
10.5 Let χ satisfy \mathbf{S}_{4}, and let $n \geq 0$ be an integer. Then there is a well-behaved set $\mathcal{C}_{3}(n)$ of χ-places with the following property. Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ be n-flawed in freedom. Then there is a rooted location \mathcal{L} which $(n+1)$-isolates \mathcal{T} and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}_{3}(n)$.

11 Border label flaws

So far we have examined flaws in our paintings (Γ, ϕ) due to some kind of lack of generality in Γ representativeness, distance and freedom flaws. There are two other flaws we must investigate, both concerned with a lack of generality in ϕ, and it is to deal with these that $\mathbf{S}_{\mathbf{2}}$ and the full strength of $\mathbf{S}_{\mathbf{4}}$ are needed. In this section we examine the situation when for some long side S, the values of $\phi(e)$ over edges e bordering S fail to be sufficiently general.

Let $\chi, \mathcal{S}, \mathcal{D}$ be as in section 10 . Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$, and let r^{*} be a pole. By a bite at r^{*} we mean a circuit F of Γ^{*} with $\frac{1}{2}|E(F)|<\operatorname{rep}(\mathcal{T})$, such that $r^{*} \in V(F)$. If e_{1}, e_{2} are edges of Γ bordering $\bar{r} \backslash r$, we define $l\left(e_{1}, e_{2}\right)$ to be the minimum of $\frac{1}{2}|E(F)|$ over all bites F at r^{*} with $e_{1}, e_{2} \subseteq \operatorname{ins}(F)$, if there is such a bite, and otherwise $l\left(e_{1}, e_{2}\right)=\operatorname{rep}(\mathcal{T})$.

Let S be a long side of Φ_{χ}, let $m \geq 1$, let $\omega_{1}, \ldots, \omega_{m}$ be a sequence of elements of $\Omega_{\chi}(S)$, and let $n \geq 4$. We say that $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ is $\left(n,\left(\omega_{1}, \ldots, \omega_{m}\right)\right)$-flawed on S if

- $\operatorname{rep}(\mathcal{T}) \geq 2(m+1) n+8$, and $\operatorname{dist}(\Gamma) \geq \frac{1}{2}(m+1) n+1$,
- $(\Gamma, \phi, \lambda, \mathcal{T})$ is not $(m+1) n$-flawed in distance,
- $(\Gamma, \phi, \lambda, \mathcal{T})$ is not $(m+1) n$-flawed in freedom, and
- there do not exist distinct edges $e_{1}, \ldots, e_{m} \in E(\Gamma)$ bordering S in order, such that $\phi\left(e_{i}\right) \geq$ $\omega_{i}(1 \leq i \leq m)$, and $l\left(e_{i}, e_{j}\right)>n(1 \leq i<j \leq m)$ and $l\left(e_{i}, s\right)>n(1 \leq i \leq m)$ for every short side s bordering the same cuff as S.

The main result of this section is
11.1 Let χ satisfy $\mathbf{S}_{\mathbf{4}}$, let S be a long side of Φ_{χ}, let $\omega_{1}, \ldots, \omega_{m} \in E\left(\Omega_{\chi}(S)\right)$ with $m \geq 1$, and let $n \geq 4$. Then there is a well-behaved set $\mathcal{C}_{4}\left(S,\left(\omega_{1}, \ldots, \omega_{m}\right), n\right)$ of χ-places with the following property. Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ be $\left(n,\left(\omega_{1}, \ldots, \omega_{m}\right)\right)$-flawed on S. Then there is a rooted location \mathcal{L} which $(m+1) n$-isolates \mathcal{T}, and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}_{4}\left(S,\left(\omega_{1}, \ldots, \omega_{m}\right), n\right)$.

The proof of 11.1 will require some lemmas, however, which follow. Throughout the section, $\chi, S, \omega_{1}, \ldots, \omega_{m}$ and n are as in 11.1.

Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$, and let r^{*} be the pole with $S \subseteq \bar{r}$. If F is a bite at r^{*}, we define $I(F)$ to be the I-arc in $\operatorname{ins}(F) \cap(\bar{r} \backslash r)$ joining the two neighbours in F of r^{*}. If \mathcal{F} is a set of bites at r^{*}, we define $I(\mathcal{F})=\bigcup(I(F): F \in \mathcal{F})$. The order of a set \mathcal{F} of bites at r^{*} is $\Sigma\left(\frac{1}{2}|E(F)|: F \in \mathcal{F}\right)$. A set \mathcal{F} of bites at r^{*} is a feast if

- $|\mathcal{F}| \leq m+1$
- $I(\mathcal{F})$ includes the short sides of Φ_{χ} with an end in common with S, and
- for each component X of $S \backslash I(\mathcal{F})$ there exists h with $1 \leq h \leq m$ such that $\phi(e) \nsupseteq \omega_{h}$ for all $e \in E(\Gamma)$ with $e \subseteq X$.
11.2 If $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ is $\left(n,\left(\omega_{1}, \ldots, \omega_{m}\right)\right)$-flawed on S, then there is a feast of order $\leq(m+1) n$.

Proof. Let the edges of Γ bordering S be e_{1}, \ldots, e_{k} in order, and define e_{0} and e_{k+1} to be the short sides of Φ_{χ} with an end in common with S, numbered such that for $0 \leq i \leq k, e_{i}$ and e_{i+1} have a common end. (It is possible that $e_{0}=e_{k+1}$.) For $0 \leq i<j \leq k+1$, we write $i \ll j$ if there is no bite F at r^{*} with $\frac{1}{2}|E(F)| \leq n$ and $e_{i}, e_{i+1}, \ldots, e_{j} \subseteq \operatorname{ins}(F)$. Since $(\Gamma, \phi, \lambda, \mathcal{T})$ is not $(m+1) n$-flawed in freedom, it follows that $1 \ll k$. (To see this, observe that since $(\Gamma, \phi, \lambda, \mathcal{T})$ is $\left(n,\left(\omega_{1}, \ldots, \omega_{m}\right)\right)$-flawed on S, we have $\operatorname{rep}(\mathcal{T}) \geq 2(m+1) n+8$, and $\operatorname{dist}(\Gamma) \geq \frac{1}{2}(m+1) n+1$. In particular, $\operatorname{rep}(\mathcal{T})>n$ and $d\left(r_{1}^{*}, r_{2}^{*}\right)>n$ for every two poles r_{1}^{*}, r_{2}^{*}.) Let us choose p maximum with $0 \leq p \leq m$ such that there is a sequence of integers

$$
0=b_{0}<a_{1}<b_{1}<a_{2}<\ldots<b_{p}<k+1
$$

satisfying

- $b_{0} \ll b_{1} \ll \ldots \ll b_{p} \ll k+1$
- $b_{i-1} \nless a_{i}$ for $1 \leq i \leq p$
- $\phi\left(e_{b_{i}}\right) \geq \omega_{i}$ for $1 \leq i \leq p$
- for $1 \leq i \leq p$ there is no j with $a_{i}<j<b_{i}$ such that $\phi\left(e_{j}\right) \geq \omega_{i}$.
(This is possible, for there is such a sequence with $p=0$.)
(1) $p \leq m-1$.

Subproof. If $p=m$, then by the fourth condition in the definition of " $n,\left(\omega_{1}, \ldots, \omega_{m}\right)$)-flawed on S " there exist $1 \leq i \leq m$ and a bite F at r^{*} with $\frac{1}{2}|E(F)| \leq n$ such that $e, e_{b_{i}} \subseteq \operatorname{ins}(F)$, where either $e=e_{b_{j}}$ for some $j \neq i$ or e is a short side. But then $\operatorname{ins}(F)$ includes one of

$$
\begin{aligned}
& e_{b_{i-1}} \cup e_{b_{i-1}+1} \cup \cdots \cup e_{b_{i}} \\
& e_{b_{i}} \cup e_{b_{i}+1} \cup \cdots \cup e_{b_{i+1}}
\end{aligned}
$$

(where b_{p+1} means $k+1$), contrary to the first statement above. Thus (1) holds.
(2) There is no j with $b_{p}<j<k+1$ such that $b_{p} \ll j \ll k+1$ and $\phi\left(e_{j}\right) \geq \omega_{p+1}$.

Subproof. Suppose that some such j exists. Choose i with $b_{p}<i<j$, maximal such that $b_{p} \nless i$. (This is possible because $b_{p} \nless b_{p}+1$, since $n \geq 3$, and so $j \neq b_{p}+1$.) Set $a_{p+1}=i$. Choose j^{\prime} with $i<j^{\prime} \leq j$, minimal such that $\phi\left(e_{j^{\prime}}\right) \geq \omega_{p+1}$. (This is possible because $\phi\left(e_{j}\right) \geq \omega_{p+1}$.) Set $b_{p+1}=j^{\prime}$. Then $j^{\prime}>i$, and so $b_{p} \ll b_{p+1}$ by the maximality of i; and $j^{\prime} \leq j$, and so $b_{p+1} \ll k+1$ since $j \ll k+1$. Moreover $b_{p} \ll a_{p+1}$ from the choice of i; and $\phi\left(e_{b_{p+1}}\right) \geq \omega_{p+1}$ from the choice of $j^{\prime} ;$ and there is no $j^{\prime \prime}$ with $a_{p+1}<j^{\prime \prime}<b_{p+1}$ such that $\phi\left(e_{j^{\prime \prime}}\right) \geq \omega_{p+1}$, from the choice of j^{\prime}. But then the sequence

$$
0=b_{0}<a_{1}<b_{1}<\ldots<b_{p}<a_{p+1}<b_{p+1}<k+1
$$

disproves the maximality of p, a contradiction. Thus (2) holds.
(3) There exist a_{p+1}, b_{p+1} with $b_{p}<a_{p+1}<b_{p+1}<k+1$, such that $b_{p} \nless a_{p+1}$ and $b_{p+1} \nless k+1$, and such that there is no j with $a_{p+1}<j<b_{p+1}$ and with $\phi\left(e_{j}\right) \geq \omega_{p+1}$.

Subproof. Choose i with $b_{p}<i<k+1$ maximum such that $b_{p} k i$. (This is possible since $b_{p}+1<k+1$ and $b_{p} \nless b_{p}+1$, since $n \geq 3$.) Suppose first that $i<k$. Since $k \nless k+1$, we may choose i^{\prime} with $i<i^{\prime}<k+1$ minimum such that $i^{\prime} \nless k+1$. Set $a_{p+1}=i, b_{p+1}=i^{\prime}$. From (2), it follows that there is no j with $i<j<i^{\prime}$ such that $\phi\left(e_{j}\right) \geq \omega_{p}+1$, and so we may satisfy (3) by setting $a_{p+1}=i$ and $b_{p+1}=i^{\prime}$. Now assume that $i=k$. Since $b_{p} \ll k+1$ and $n \geq 4$, it follows that $k-1>b_{p}$; and so we may set $a_{p+1}=k-1$ and $b_{p+1}=k$ to satisfy (3). This proves (3).

For $0 \leq i \leq p$ let F_{i} be a bite at r^{*} with $\frac{1}{2}\left|E\left(F_{i}\right)\right| \leq n$ such that $e_{b_{i}}, e_{b_{i}+1}, \ldots, e_{a_{i+1}} \subseteq \operatorname{ins}\left(F_{i}\right)$, and let F_{p+1} be a bite with $\frac{1}{2}\left|E\left(F_{p+1}\right)\right| \leq n$ such that $e_{b_{p+1}}, \ldots, e_{k+1} \subseteq \operatorname{ins}\left(F_{p+1}\right)$. Let $\mathcal{F}=$ $\left\{F_{0}, F_{1}, \ldots, F_{p+1}\right\}$. Then $|\mathcal{F}|=p+2 \leq m+1$, and $I(\mathcal{F})$ includes e_{0}, e_{k+1}. If X is a component of $S \backslash I(\mathcal{F})$, then there exists h with $1 \leq h \leq p+1$ such that $a_{h}<i<b_{h}$ for every $e_{i} \subseteq X$, and hence $\phi\left(e_{i}\right) \nsupseteq \omega_{h}$ for every $e_{i} \subseteq X$. Hence \mathcal{F} is a feast. Its order is at most $(m+1) n$ since each F_{i} has $\frac{1}{2}\left|E\left(F_{i}\right)\right| \leq n$.

A feast \mathcal{F} is disjoint if $I(F)=\operatorname{ins}(F) \cap(\bar{r} \backslash r)$ for each $F \in \mathcal{F}$, and $\operatorname{ins}(F) \cap \operatorname{ins}\left(F^{\prime}\right)=\left\{r^{*}\right\}$ for all distinct $F, F^{\prime} \in \mathcal{F}$.
11.3 Every feast of minimum order with order $\leq(m+1) n$ is disjoint.

Proof. By 7.1, taking $z=r$ and $\kappa=(m+1) n+2$, we deduce that there is a circuit C of $s k(\Gamma)$, bounding an open disc $\Lambda \subseteq \tilde{\Sigma}$ with $r \subseteq \Lambda$, satisfying (1) and (2) below:
(1) $x \subseteq \Lambda$ for every $x \in A(\Gamma)$ with $d(r, x) \leq(m+1) n$.
(2) ins $\left(C^{*}\right) \subseteq \bar{\Lambda}$ for every circuit C^{*} of Γ^{*} with $U\left(C^{*}\right) \subseteq \bar{\Lambda}$ and $\left|E\left(C^{*}\right)\right| \leq 2(m+1) n$.

In particular, for every bite F with $\frac{1}{2}|E(F)| \leq(m+1) n$, since $r^{*} \in V(F)$ it follows that $d(r, x) \leq$ $(m+1) n$ for every $x \in A(\Gamma)$ with $x \cap U(F) \neq \emptyset$, and hence $x \subseteq \Lambda$ for every such x, by (1); and so $F \subseteq \Lambda$, and hence $\operatorname{ins}(F) \subseteq \Lambda$, by (2).

Let \mathcal{F} be a feast of minimum order, with order $\leq(m+1) n$, and let $G=\bigcup(F: F \in \mathcal{F})$. Hence $U(G) \subseteq \Lambda$, and since

$$
|E(G)| \leq \Sigma(|E(F)|: F \in \mathcal{F}) \leq 2(m+1) n
$$

it follows from (2) that $\operatorname{ins}(F) \subseteq \Lambda$ for every circuit F of G.
Now G is a connected subdrawing of the planar drawing $\Gamma^{*} \cap \bar{\Lambda}$, with $r^{*} \in V(G)$, and every vertex and edge of G is in a circuit, and G has no cutvertex except possibly r^{*}. It follows that there are circuits C_{1}, \ldots, C_{p} of G, bounding closed discs $\Delta_{1}, \ldots, \Delta_{p} \subseteq \Lambda$ respectively, such that $\Delta_{i} \cap \Delta_{j}=\left\{r^{*}\right\}(1 \leq i<j \leq p)$ and $U(G) \subseteq \Delta_{1} \cup \ldots \cup \Delta_{p}$. Thus $\Delta_{i}=\operatorname{ins}\left(C_{i}\right)(1 \leq i \leq p)$.

Suppose that $r^{*} \notin V\left(C_{i}\right)$ for some i. Then $p=1$ (since $\Delta_{i} \cap \Delta_{j}=\left\{r^{*}\right\}$ for $j \neq i$, which is impossible) and $i=1$, and r^{*} belongs to $\operatorname{ins}\left(C_{1}\right) \backslash U\left(C_{1}\right)$; and hence $S \subseteq \operatorname{ins}\left(C_{1}\right)$, and $(\Gamma, \phi, \lambda, \mathcal{T})$ is $(m+1) n$-flawed in freedom, a contradiction. This proves that $r^{*} \in V\left(C_{i}\right)$ for $1 \leq i \leq p$.

Let $\mathcal{F}^{\prime}=\left\{C_{1}, \ldots, C_{p}\right\}$. We shall show that \mathcal{F}^{\prime} is a feast. If $F \in \mathcal{F}$ there exists $C_{i} \in \mathcal{F}^{\prime}$ with $\operatorname{ins}(F) \subseteq \operatorname{ins}\left(C_{i}\right)$ and hence $I(F) \subseteq I\left(C_{i}\right)$. It follows that every component of $S \backslash I\left(\mathcal{F}^{\prime}\right)$ is a subset of a component of $S \backslash I(\mathcal{F})$, and $I\left(\mathcal{F}^{\prime}\right)$ includes the short sides with a common end with S.

Now for $1 \leq i \leq p$, there is a circuit $C_{i}^{\prime} \in \mathcal{F}$ with $E\left(C_{i}^{\prime}\right) \cap E\left(C_{i}\right) \neq \emptyset$; and hence $U\left(C_{i}^{\prime \prime}\right) \subseteq \Delta_{i}$. It follows that $C_{1}^{\prime}, \ldots, C_{p}^{\prime} \in \mathcal{F}$ are all distinct, and so $p \leq|\mathcal{F}| \leq m+1$.

It follows that \mathcal{F}^{\prime} is a feast. Its order is $\frac{1}{2} \Sigma\left|E\left(C_{i}\right)\right|$, and since C_{1}, \ldots, C_{p} are mutually edgedisjoint, it follows that \mathcal{F}^{\prime} has order $\leq \frac{1}{2}|E(G)|$. But \mathcal{F} has order $\geq \frac{1}{2}|E(G)|$, and \mathcal{F} has minimum order. Consequently we have equality throughout, and in particular $G=C_{1} \cup \ldots \cup C_{p}$, and every edge of G belongs to exactly one member of \mathcal{F}, and $F \subseteq G$ for every $F \in \mathcal{F}$. Hence, since C_{1}, \ldots, C_{p} are the only circuits of G, it follows that $F \in\left\{C_{1}, \ldots, C_{p}\right\}$ for every $F \in \mathcal{F}$, and so $\mathcal{F}^{\prime}=\mathcal{F}$.

This proves that $\operatorname{ins}(F) \cap \operatorname{ins}\left(F^{\prime}\right)=\left\{r^{*}\right\}$ for all distinct $F, F^{\prime} \in \mathcal{F}$. To complete the proof that \mathcal{F} is disjoint, let $F \in \mathcal{F}$, and suppose that $I(F) \neq \operatorname{ins}(F) \cap(\bar{r} \backslash r)$. Then there is an edge e of Γ^{*} with one end r^{*}, the other end in $V(F)$, and with $e \nsubseteq \operatorname{ins}(F)$. There is a circuit F^{\prime} with $E\left(F^{\prime}\right) \subseteq E(F) \cup\{e\}, \operatorname{ins}(F) \subseteq \operatorname{ins}\left(F^{\prime}\right)$, and $\left|E\left(F^{\prime}\right)\right|<|E(F)|$. But then $(\mathcal{F} \backslash\{F\}) \cup\left\{F^{\prime}\right\}$ is a feast of smaller order than \mathcal{F}, a contradiction.

The result follows.
11.4 Let \mathcal{F} be a feast of minimum order $\leq(m+1) n$ and subject to that with $\Sigma(\lambda(F): F \in \mathcal{F})$ minimum. Then each $F \in \mathcal{F}$ is λ-linked to \mathcal{T}.

Proof. Let $F \in \mathcal{F}$, and choose F^{\prime} as in 8.5. Then $r^{*} \notin \operatorname{ins}\left(F^{\prime}\right) \backslash U\left(F^{\prime}\right)$, because $\left|E\left(F^{\prime}\right)\right| \leq$ $|E(F)| \leq(m+1) n$ and $(\Gamma, \phi, \lambda, \mathcal{T})$ is not $(m+1) n$-flawed in freedom. Thus $r^{*} \in V\left(F^{\prime}\right)$, and since $\operatorname{ins}(F) \subseteq \operatorname{ins}\left(F^{\prime}\right)$ it follows that $\mathcal{F}^{\prime}=(\mathcal{F} \backslash\{F\}) \cup\left\{F^{\prime}\right\}$ is a feast. From the minimality of the order of \mathcal{F} we deduce that $|E(F)|=\left|E\left(F^{\prime}\right)\right|$; but then $\lambda\left(F^{\prime}\right) \leq \lambda(F)$, and again it follows that $\lambda\left(F^{\prime}\right)=\lambda(F)$. Hence $F^{\prime}=F$, and so F is λ-linked to \mathcal{T}, as required.

If $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ is $\left(n,\left(\omega_{1}, \ldots, \omega_{m}\right)\right)$-flawed on S, it follows from 11.2, 11.3, 11.4 that there is a disjoint feast \mathcal{F} of order $\leq(m+1) n$, such that each of its members is λ-linked to \mathcal{T}. We call \mathcal{F} an $\left(\left(\omega_{1}, \ldots, \omega_{m}\right), S\right)$-flaw for $(\Gamma, \phi, \lambda, \mathcal{T})$.

Proof of 11.1.

As usual, it suffices to prove that if $\mathcal{D}^{\prime} \subseteq \mathcal{D}$, and each member of \mathcal{D}^{\prime} has the same $\left(\left(\omega_{1}, \ldots, \omega_{m}\right), S\right)$ flaw \mathcal{F}, then there is a well-behaved set \mathcal{C} of χ-places, such that for all $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$ there is a rooted location which $(m+1) n$-isolates \mathcal{T} and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}$. Let the components of $S \backslash I(\mathcal{F})$ be X_{1}, \ldots, X_{t}. For each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$ there exist $\omega_{1}^{\prime}, \ldots, \omega_{t}^{\prime} \in\left\{\omega_{1}, \ldots, \omega_{p}\right\}$, such that for $1 \leq i \leq t, \phi(e) \nsupseteq \omega_{i}$ for each edge e of Γ with $e \subseteq X_{i}$. Since there are only finitely many such t-tuples $\left(\omega_{1}^{\prime}, \ldots, \omega_{t}^{\prime}\right)$, we may further assume that the same t-tuple $\left(\omega_{1}^{\prime}, \ldots, \omega_{t}^{\prime}\right)$ works for all members of \mathcal{D}^{\prime}. For $1 \leq i \leq t$, let Ω_{i} be the ideal of $\Omega_{\chi}(S)$ with element set $\left\{x \in E\left(\Omega_{\chi}(S)\right): x \nsupseteq \omega_{i}^{\prime}\right\}$. Then for $1 \leq i \leq t, \Omega_{i} \prec \Omega_{\chi}(S)$, and for all $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}, \phi(e) \in E\left(\Omega_{i}\right)$ for all $e \in E(\Gamma)$ with $e \subseteq X_{i}$.

Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$. For each $F \in \mathcal{F}$, let $\Delta(F)=\operatorname{ins}(F)$; this does not depend on the choice of $(\Gamma, \phi, \lambda, \mathcal{T})$, since $|\mathcal{F}| \geq 2$ and $\operatorname{ins}(F)$ meets no member of \mathcal{F} except F. Since $(\Gamma, \phi, \lambda, \mathcal{T})$ is not $((m+1) n+1)$-flawed in distance and $\operatorname{dist}(\Gamma)>\frac{1}{2}((m+1) n+1)$, it follows that F meets no cuff except $\bar{r} \backslash r$.

Let Σ^{\prime} be obtained from Σ_{χ} by deleting $\Sigma_{\chi} \cap(\Delta(F) \backslash U(F))$ for each $F \in \mathcal{F}$. Then Σ^{\prime} is homeomorphic to one of the fragments obtained by cutting Σ_{χ} along $U(\cup(F: F \in \mathcal{F}))$, and to simplify notation we assume that Σ^{\prime} is such a fragment, and the associated surjection ψ is the identity when restricted to Σ^{\prime}. We see that X_{1}, \ldots, X_{t} are long sides of $\psi^{-1}\left(\Phi_{\chi}\right) \cap \Sigma^{\prime}$. Let χ^{\prime} be the colour scheme with $\Sigma_{\chi^{\prime}}=\Sigma^{\prime}, \Phi_{\chi^{\prime}}=\psi^{-1}\left(\Phi_{\chi}\right) \cap \Sigma^{\prime}, \Omega_{\chi^{\prime}}(k)=\Omega_{\chi}(k)(k=2,3), \Omega_{\chi^{\prime}}\left(X_{i}\right)=\Omega_{i}(1 \leq i \leq t)$
and $\Omega_{\chi^{\prime}}\left(S^{\prime}\right)=\Omega_{\chi}(R)$ for each long side $S^{\prime} \neq X_{1}, \ldots, X_{t}$ of $\Phi_{\chi^{\prime}}$, where $R \neq S$ is the long side of Φ_{χ} with $S^{\prime} \subseteq R$. Let us define $f\left(X_{i}\right)=S(1 \leq i \leq t)$, and $f\left(S^{\prime}\right)=R$ for each long side S^{\prime} of $\Phi_{\chi^{\prime}}$ with $S^{\prime} \neq X_{1}, \ldots, X_{t}$, where R is the long side of Φ_{χ} with $S^{\prime} \subseteq R$. Then f is an embedding of χ^{\prime} in χ, and so since χ satisfies $\mathbf{S}_{\mathbf{4}}, \chi^{\prime}$ is not orientedly bad. But now the result follows as in the proofs of $10.2,10.4,10.5$.

12 Internal label flaws

In this and the next two sections we consider the final kind of flaw. Let $\chi, \mathcal{S}, \mathcal{D}$ be as in section 10 , let $\omega_{0} \in E\left(\Omega_{\chi}(2)\right) \cup E\left(\Omega_{\chi}(3)\right)$, and let $m \geq 1, n \geq 4$. We say that $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ is $\left(m, n, \omega_{0}\right)$-flawed internally if

- $\operatorname{rep}(\mathcal{T}) \geq n \cdot 5^{2 m+2}$, and $\operatorname{dist}(\Gamma) \geq \frac{1}{2} n \cdot 5^{2 m+2}+1$
- $(\Gamma, \phi, \lambda, \mathcal{T})$ is not $n \cdot 5^{2 m+2}$-flawed in distance
- there do not exist edges e_{1}, \ldots, e_{m} of Γ such that $\phi\left(e_{i}\right) \geq \omega_{0}(1 \leq i \leq m), d\left(e_{i}, e_{j}\right)>n(1 \leq$ $i<j \leq m)$, and $d\left(e_{i}, r^{*}\right)>n(1 \leq i \leq m)$ for every pole r^{*}, where d is the metric of \mathcal{T}.

Throughout this section and the next, $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ is $\left(m, n, \omega_{0}\right)$-flawed internally. Let $W \subseteq \hat{\Sigma}$ be a closed disc with $b d(W) \subseteq U\left(\Gamma^{*}\right)$, let H be a subdrawing of Γ^{*} with $U(H) \subseteq W \backslash b d(W)$, and let $\rho \geq 1$ be an integer with $\operatorname{rep}(\mathcal{T}) \geq 2 \rho+3$. We say that W is a wheel, and H is a W-hub of radius ρ, if:

- W includes $\operatorname{ins}(F)$ for every circuit F of Γ^{*} with $|E(F)| \leq 4 \rho+4$ and $U(F) \subseteq W$
- W contains every vertex of Γ^{*} adjacent in Γ^{*} to two members of $V(\Gamma) \cap b d(W)$, and W includes every edge of Γ^{*} with both ends in $b d(W)$
- either $|V(H)|=1$ or H is a \mathcal{T}-enclave with $|E(H)| \leq 4 \rho+4$; if $|V(H)|=1$, then there is no \mathcal{T}-enclave H^{\prime} with $\left|E\left(H^{\prime}\right)\right| \leq 4 \rho+4$ and $V(H) \subseteq \operatorname{ins}\left(H^{\prime}\right) \backslash U\left(H^{\prime}\right)$; and if H is a \mathcal{T}-enclave, then there is no \mathcal{T}-enclave $H^{\prime} \neq H$ with $\left|E\left(H^{\prime}\right)\right| \leq 4 \rho+4$ and $U(H) \subseteq \operatorname{ins}\left(H^{\prime}\right)$
- W contains every vertex of Γ joined to $V(H)$ by a path in Γ^{*} of $\leq \rho$ edges, and
- for every $v \in V(\Gamma) \cap b d(W)$ there is a path of Γ^{*} from v to $V(H)$ with $\leq \rho$ edges, and no such path with $\leq \rho-2$ edges.

The radius of a wheel W is the minimum radius of all W-hubs.
12.1 Let $\rho \geq 2$, even, let $\operatorname{rep}(\mathcal{T}) \geq 5 \rho+12$, and let H be a subdrawing of Γ^{*}, satisfying the third condition in the definition of a wheel above. Then there is a wheel W such that H is a W-hub of radius ρ.

Proof. Let $z^{*} \in V(H)$, and let z be the atom of Γ with $z^{*} \subseteq z$. By 7.1 (taking $\kappa=3 \rho+4$) there is a circuit C of Γ^{*}, bounding an open disc $\Lambda \subseteq \hat{\Sigma}$, such that

- $x \subseteq \Lambda$ for every atom x of Γ with $d(z, x) \leq 3 \rho+2$, and
- ins $(F) \subseteq \bar{\Lambda}$ for every circuit F of Γ^{*} with $U(F) \subseteq \bar{\Lambda}$ and $|E(F)| \leq 4 \rho+4$.
(1) $U(P) \subseteq \Lambda$ for every path P of Γ^{*} with one end in $V(H)$ and with $|E(P)| \leq \rho$.

Subproof. Let h be an end of P in $V(H)$, and let $a \in A(\Gamma)$ with $h \subseteq a$. Then $d(a, z) \leq \frac{1}{2}|E(H)|$, and so for every $x \in A(\Gamma)$ with $x \cap U(P) \neq \emptyset$,

$$
d(z, x) \leq d(x, a)+d(a, z) \leq|E(P)|+\frac{1}{2}|E(H)| \leq 3 \rho+2
$$

and so $x \subseteq \Lambda$ by the first property of C above. Hence $U(P) \subseteq \Lambda$. This proves (1).
From (1), it follows that if $k \leq \frac{1}{2} \rho$ and r_{1}, \ldots, r_{k} is a sequence of regions of Γ such that $\bar{r}_{1} \cap U(H) \neq \emptyset$ and $\bar{r}_{i} \cap \bar{r}_{i+1} \neq \emptyset$ for $1 \leq i<k$ then $\bar{r}_{k} \subseteq \Lambda$. Consequently the same statement holds for $s k(\Gamma)$. Since $\rho \geq 2$, and $U(H)$ is non-empty and arc-wise connected, it follows from theorem 5.2 of [8] that there is a circuit C_{1} of $s k(\Gamma)$ with $U\left(C_{1}\right) \subseteq \Lambda$, bounding an open disc in Λ including $U(H)$, such that every edge of C_{1} is incident with a region r of $s k(\Gamma)$ satisfying $\bar{r} \cap U(H) \neq \emptyset$. By (1) and $\frac{1}{2} \rho-1$ further applications of theorem 5.2 of [8], there are circuits $C_{1}, \ldots, C_{\frac{1}{2} \rho}$ of $s k(\Gamma)$, such that for $2 \leq i \leq \frac{1}{2} \rho, U\left(C_{i}\right)$ bounds an open disc in Λ including $U\left(C_{i-1}\right)$, and every edge of C_{i} is incident with a region r of $s k(\Gamma)$ satisfying $\bar{r} \cap U\left(C_{i-1}\right) \neq \emptyset$. We deduce
(2) For each $v \in V\left(C_{\frac{1}{2} \rho}\right)$ there is a path of Γ^{*} from $U(H)$ to v with $\leq \rho$ edges, and every such path has $\geq \rho-1$ edges.

Subproof. Let $v \in V\left(C_{\frac{1}{2} \rho}\right)$. We have seen, from the construction of $C_{1}, \ldots, C_{\frac{1}{2} \rho}$, that there is a sequence $r_{1}, \ldots, r_{\frac{1}{2} \rho}$ of regions of $s k(\Gamma)$ such that $\bar{r}_{1} \cap U(H) \neq \emptyset, v \in \bar{r}_{\frac{1}{2} \rho}$, and $\bar{r}_{i} \cap \bar{r}_{i+1} \neq \emptyset$ for $1 \leq i<\frac{1}{2} \rho$. But for any two vertices of Γ^{*}, if there is a region of $s k(\Gamma)$ whose closure contains them both, then there is also a region of Γ whose closure contains them both. Hence we may assume that $r_{1}, \ldots, r_{\frac{1}{2} \rho}$ are regions of Γ; and so there is a path of Γ^{*} from $U(H)$ to v with $\leq \rho$ edges. Any such path P meets $V\left(C_{1}\right), \ldots, V\left(C_{\frac{1}{2}} \rho\right)$, and $|V(P) \cap V(\Gamma)| \leq \frac{1}{2}(|E(P)|+1)$, and so $\frac{1}{2}(|E(P)|+1) \geq \frac{1}{2} \rho$, that is, $|E(P)| \geq \rho-1$. This proves (2).

Let F be a circuit of Γ^{*} with $U(F) \subseteq \bar{\Lambda}$, bounding a disc $D(F)$ in $\bar{\Lambda}$ including $U\left(C_{\frac{1}{2} \rho}\right)$, such that $U(F) \cap V(\Gamma) \subseteq V\left(C_{\frac{1}{2} \rho}\right)$; and subject to that with $D(F)$ maximal. From the maximality of $D(F)$ it follows that $D(F)$ contains every vertex of Γ^{*} with two neighbours in $V(F) \cap V\left(C_{\frac{1}{2} \rho}\right)$, and $D(F)$ includes every edge of Γ^{*} with both ends in $V(F)$. It follows that $D(F)$ is a wheel and H is a $D(F)$-hub of radius ρ. This proves 12.1.

We recall that $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ is $\left(m, n, \omega_{0}\right)$-flawed internally. Let $Z=\left\{e \in E(\Gamma): \phi(e) \geq \omega_{0}\right\}$. Since χ is disjoint, every member of Z is internal. We denote the set of all poles of Γ^{*} by P^{*}.
12.2 There exists $X_{1} \subseteq V\left(\Gamma^{*}\right)$ with $\left|X_{1}\right| \leq m+c\left(\Sigma_{\chi}\right)$ and $P^{*} \subseteq X_{1}$, such that for every $e \in Z$ there exists $x \in X_{1}$ with $d(e, x) \leq n$.

Proof. Choose $e_{1}, \ldots, e_{k} \in Z$ with k maximum such that $d\left(e_{i}, e_{j}\right)>n(1 \leq i<j \leq k)$ and $d\left(e_{i}, r^{*}\right)>n(1 \leq i \leq k)$ for every pole r^{*}. Since $(\Gamma, \phi, \lambda, \mathcal{T})$ is (m, n, ω_{0})-flawed internally, it follows that $k<m$. For $1 \leq i \leq k$ let $x_{i} \in \tilde{e}_{i}$, and let $X_{1}=P^{*} \cup\left\{x_{1}, \ldots, x_{k}\right\}$. The result follows.
12.3 There exists $X_{2} \subseteq V\left(\Gamma^{*}\right)$ with $\left|X_{2}\right| \leq m+c\left(\Sigma_{\chi}\right)$ and $P^{*} \subseteq X_{2}$ and an integer t with $n \leq t \leq$ $n \cdot 5^{2 m}$, such that

- $d\left(x_{1}, x_{2}\right)>24 t$ for all distinct $x_{1}, x_{2} \in X_{2}$
- for every $e \in Z$ there exists $x \in X_{2}$ with $d(e, x) \leq t$.

Proof. Let $k=m+c\left(\Sigma_{\chi}\right)$, and choose X_{1} as in 12.2. Choose $X_{2} \subseteq X_{1}$ with $P^{*} \subseteq X_{2}$, minimal such that for every $e \in Z$ there exists $x \in X_{2}$ with

$$
d(e, x) \leq n \cdot 5^{2 k-2\left|X_{2}\right|}
$$

Let $t=n \cdot 5^{2 k-2\left|X_{2}\right|}$. Then $n \leq t \leq n \cdot 5^{2 m}$, since $\left|X_{2}\right| \geq c\left(\Sigma_{\chi}\right)$, and so the second assertion of the theorem holds; we must verify the first.

Suppose that $x_{1}, x_{2} \in X_{2}$ are distinct and $d\left(x_{1}, x_{2}\right) \leq 24 t$. Since $24 t<5^{2 m+2} n$ and \mathcal{T} is not $n \cdot 5^{2 m+2}$-flawed in distance, it follows that not both x_{1}, x_{2} are poles; thus we may assume that $x_{2} \notin P^{*}$. Let $X_{2}^{\prime}=X_{2} \backslash\left\{x_{2}\right\}$. For any $e \in Z$ we claim that there exists $x^{\prime} \in X_{2}^{\prime}$ with $d\left(e, x^{\prime}\right) \leq n \cdot 5^{2 k-2\left|X_{2}^{\prime}\right|}=25 t$. For certainly there exists $x \in X_{2}$ with $d(e, x) \leq t$, and if $x \neq x_{2}$ we may set $x^{\prime}=x$. If $x=x_{2}$ we may set $x^{\prime}=x_{1}$; for

$$
d\left(e, x_{1}\right) \leq d\left(e, x_{2}\right)+d\left(x_{1}, x_{2}\right) \leq t+24 t=25 t .
$$

This proves our claim. But then the minimality of X_{2} is contradicted. We deduce that the first assertion holds. This proves 12.3 .

A set \mathcal{W} of wheels is a cover $($ for $(\Gamma, \phi, \lambda, \mathcal{T}))$ if

- the members of \mathcal{W} are mutually disjoint
- $b d(W) \subseteq \Sigma_{\chi} \backslash b d\left(\Sigma_{\chi}\right)$ for each $W \in \mathcal{W}$
- for each pole r^{*} there exists $W \in \mathcal{W}$ with $r^{*} \in W$ and hence with $r \subseteq W$
- for every $e \in Z$ there exists $W \in \mathcal{W}$ with $e \subseteq W$
- for each $W \in \mathcal{W},(W \backslash b d(W)) \cap V(\Gamma) \neq \emptyset$.
12.4 There is a cover \mathcal{W} with $|\mathcal{W}| \leq m+c\left(\Sigma_{\chi}\right)$, each member of which has radius $\leq 2 n \cdot 5^{2 m}$.

Proof. Choose X_{2}, t as in 12.3. For each $x \in X_{2}$, let C_{x} be some circuit of Γ^{*} with $\left|E\left(C_{x}\right)\right| \leq 2 t$, with $x \in \operatorname{ins}\left(C_{x}\right) \backslash U\left(C_{x}\right)$, chosen with $\operatorname{ins}\left(C_{x}\right)$ maximal, if there is such a circuit C_{x}, and otherwise let C_{x} be the 1-vertex subgraph of Γ^{*} with vertex x.

Let $y(x)$ be some vertex of C_{x}. If there is a \mathcal{T}-enclave H with $y(x) \in \operatorname{ins}(H) \backslash U(H)$ and with $|E(H)| \leq 8 t+4$, let H_{x} be such a \mathcal{T}-enclave H with ins (H) maximal; and otherwise let H_{x} be the 1 -vertex subgraph of Γ^{*} with vertex $y(x)$. Let W_{x} be a wheel such that H_{x} is a W_{x}-hub of radius $2 t$. (This exists by 12.1.)
(1) For $x \in X_{2}, \operatorname{ins}\left(C_{x}\right) \subseteq W_{x} \backslash b d\left(W_{x}\right)$, and in particular, $W_{x} \backslash b d\left(W_{x}\right)$ contains x and all its neighbours in Γ^{*}.

Subproof. Certainly $y(x) \in W_{x} \backslash b d\left(W_{x}\right)$, and $y(x) \in U\left(C_{x}\right)$, so it suffices for the first claim to show that $C_{x} \cap b d\left(W_{x}\right)$ is null. Suppose that $v \in V\left(C_{x} \cap b d\left(W_{x}\right)\right)$. Then there is a path in Γ^{*} from $y(x)$ to v of length $\leq t$, and hence a path of Γ^{*} from $V\left(H_{x}\right)$ to $b d\left(W_{x}\right) \cap V(\Gamma)$ of length $\leq t+1$, contradicting that W_{x} has radius $2 t$. Hence $\operatorname{ins}\left(C_{x}\right) \subseteq W_{x} \backslash b d\left(W_{x}\right)$. Since $x \in \operatorname{ins}\left(C_{x}\right)$ it follows that $x \in W_{x} \backslash b d\left(W_{x}\right)$. If some neighbour of x is in $b d\left(W_{x}\right)$, then $x \in V\left(C_{x}\right)$ and so $x=y(x)$, and there is a path in Γ^{*} from $V\left(H_{x}\right)$ to $b d\left(W_{x}\right) \cap V(\Gamma)$ of length ≤ 2, contradicting that W_{x} has radius $2 t \geq 6$. This proves (1).
(2) For each $x \in X_{2}$, if $v \in b d\left(W_{x}\right) \cap V\left(\Gamma^{*}\right)$ then $d(x, v) \leq 7 t+3$.

Subproof. There is a path of Γ^{*} from v to $V\left(H_{x}\right)$ with $\leq 2 t+1$ edges. Then $d(v, y(x)) \leq$ $(2 t+1)+(4 t+2)$ since $\frac{1}{2}\left|E\left(H_{x}\right)\right| \leq 4 t+2$; and so $d(v, x) \leq 7 t+3$ since $d(y(x), x) \leq t$. This proves (2).
(3) For each component r of $\hat{\Sigma}_{\chi}=\Sigma_{\chi}, \bar{r} \subseteq W_{r^{*}}$ and $\bar{r} \cap b d\left(W_{x}\right)=\emptyset$ for every $x \in X_{2}$.

Subproof. By (1), $W_{r^{*}} \backslash b d\left(W_{r^{*}}\right)$ contains r^{*} and all its neighbours, and so $\bar{r} \subseteq W_{r^{*}}$. Let $x \in X_{2}$ and suppose that $\bar{r} \cap b d\left(W_{x}\right) \neq \emptyset$. (Consequently $x \neq r^{*}$.) Hence $b d\left(W_{x}\right)$ contains a neighbour v of r^{*}; and therefore $v \in V(\Gamma)$. Since $v \in b d\left(W_{x}\right),(2)$ implies that $d(x, v) \leq 7 t+3$, and since $d\left(r^{*}, v\right) \leq 1$ it follows that $d\left(x, r^{*}\right) \leq 7 t+4$, a contradiction since $x \neq r^{*}$ and $x, r^{*} \in X_{2}$. This proves (3).
(4) For each $e \in Z$ there exists $x \in X_{2}$ with $e \subseteq W_{x}$.

Subproof. Since X_{2} satisfies 12.3 , there exists $x \in X_{2}$ with $d(e, x) \leq t$. Let K be a closed walk of Γ^{*} of length $\leq 2 t$ such that x and e both meet ins (K). Suppose first that $U\left(\Gamma^{*} \mid K\right) \cap \operatorname{ins}\left(C_{x}\right)=\emptyset$. Since $x \in \operatorname{ins}\left(C_{x}\right)$ and $x \in \operatorname{ins}(K)$, there is a circuit C of $\Gamma^{*} \mid K$ with $x \in \operatorname{ins}(C) \backslash U(C)$; and hence $i n s\left(C_{x}\right) \subseteq \operatorname{ins}(C) \backslash U(C)$, since $U(K) \cap i n s\left(C_{x}\right)=\emptyset$. But K has length $\leq 2 t$, and so $|E(C)| \leq 2 t$, contrary to the choice of C_{x}. This proves that $U\left(\Gamma^{*} \mid K\right) \cap \operatorname{ins}\left(C_{x}\right) \neq \emptyset$.

Now suppose that $U\left(\Gamma^{*} \mid K\right) \cap U\left(C_{x}\right)=\emptyset$. Then $U\left(\Gamma^{*} \mid K\right) \subseteq \operatorname{ins}\left(C_{x}\right) \backslash U\left(C_{x}\right)$, and so

$$
e \subseteq i n s(K) \subseteq i n s\left(C_{x}\right) \subseteq W_{x}
$$

by (1), as required. We may therefore assume that K meets $U\left(C_{x}\right)$. Hence K is a subwalk of a closed walk of length $\leq 4 t$ of which $y(x)$ is a vertex. Since W_{x} has radius $2 t$, this subwalk remains within W_{x}; and so $U\left(\Gamma^{*} \mid K\right) \subseteq W_{x}$. Hence $\operatorname{ins}(K) \subseteq W_{x}$, and so $e \in W_{x}$. This proves (4).

In fact we can prove that the wheels $W_{x}\left(x \in X_{2}\right)$ are mutually disjoint, but that step can be avoided. Let us choose $\mathrm{a} \subset \mathcal{W} \subseteq\left\{W_{x}: x \in X_{2}\right\}$ containing just the maximal wheels. We have seen, by (2), that the sets $b d\left(W_{x}\right)\left(x \in X_{2}\right)$ are mutually disjoint, and consequently that if $W_{x_{1}} \cap W_{x_{2}} \neq \emptyset$ then $W_{x_{1}} \subseteq W_{x_{2}}$ or $W_{x_{2}} \subseteq W_{x_{1}}$, and so the members of \mathcal{W} are mutually disjoint; and the theorem is satisfied.

13 The spokes of a wheel

Let $\Gamma, \phi, \mathcal{W}$ etc. be as in 12.4 (and in particular with $\operatorname{rep}(\mathcal{T}) \geq n \cdot 5^{2 m+2}$), and let $W \in \mathcal{W}$. Our next objective is to examine the structure of the interior of W. Let W have radius ρ, and so $1 \leq \rho \leq 2 n \cdot 5^{2 m}$. Let H be a W-hub with radius ρ. We recall that $R^{*}=V\left(\Gamma^{*}\right) \backslash V(\Gamma)$.
13.1 There is no path in Γ^{*} from $R^{*} \cap b d(W)$ to $V(H)$ with $\leq \rho-1$ edges.

Proof. Suppose that there is such a path, and let r^{*} be its end in $R^{*} \cap b d(W)$. From the fourth condition in the definition of a wheel, W contains every neighbour of r^{*} in Γ^{*}. Let e_{1}, e_{2} be the ends of Γ^{*} incident with r^{*} with $e_{1}, e_{2} \subseteq b d(W)$, and let their other ends be v_{1}, v_{2} respectively. Now $v_{1} \neq v_{2}$, and indeed $\left|V\left(\Gamma^{*}\right) \cap b d(W)\right| \geq 6$, because $b d(W) \cap b d\left(\Sigma_{\chi}\right)=\emptyset$ and $(W \backslash b d(W)) \cap V(\Gamma) \neq \emptyset$ and Γ is internally 3 -connected. Since W includes every edge of Γ^{*} incident with r^{*}, it follows that there is an edge e of $\operatorname{sk}(\Gamma)$ with ends v_{1}, v_{2} and with $e \subseteq \bar{r} \backslash W$. If there is a region $r_{1} \neq r$ of Γ in $\hat{\Sigma}$ with $e \subseteq \bar{r}_{1}$, then r_{1}^{*} has two neighbours in $b d(W) \cap V(\Gamma)$ and so $r_{1}^{*} \in W$; but then $b d(W) \cap V\left(\Gamma^{*}\right)=\left\{v_{1}, v_{2}, r^{*}, r_{1}^{*}\right\}$, a contradiction. Thus there is no such r_{1}. Choose $f \in E(\Gamma)$ with $e \subseteq f$. Then $|\tilde{f}|=3$, because of the non-existence of r_{1}. Moreover, $\bar{r} \cap V(\Gamma)=\left\{v_{1}, v_{2}\right\}$, because $v_{1}, v_{2} \notin b d\left(\Sigma_{\chi}\right)$ and Γ fits Φ_{χ} (using the fifth condition in the definition of "fit"). Hence the path of Γ^{*} from r^{*} to $V(H)$ with $\leq \rho-1$ edges passes through one of v_{1}, v_{2}, a contradiction to the fifth condition in the definition of a wheel. Thus there is no such path, as required.

By a spoke of W we mean a path P of Γ^{*} from some $v \in V(\Gamma) \cap b d(W)$ to some $h \in V(H)$, such that

- there is no path of Γ^{*} from v to $V(H)$ with fewer than $|E(P)|$ edges, and
- there is no path P^{\prime} of Γ^{*} from v to $V(H)$ with $|E(P)|$ edges and with $\lambda\left(P^{\prime}\right)<\lambda(P)$.

For each $v \in V(\Gamma) \cap b d(W)$ there is thus a unique spoke ending at v, and we denote it by S_{v}. Clearly no vertex of S_{v} except its end different from v belongs to $V(H)$. From 13.1, no vertex of S_{v} except v belongs to $b d(W)$. We call the end of S_{v} different from v the inner end of S_{v}.
13.2 Let $v_{1}, v_{2} \in V(\Gamma) \cap b d(\Sigma)$. If $S_{v_{1}}$ meets $S_{v_{2}}$ then they have the same inner end, and $S_{v_{1}} \cap S_{v_{2}}$ is a path.

Proof. Let $u \in V\left(S_{v_{1}} \cap S_{v_{2}}\right)$ be the first vertex of $S_{v_{2}}$ in $S_{v_{1}}$ (that is, nearest to v_{1}), and let P_{i}, Q_{i} be the subpaths of $S_{v_{i}}$ from v_{i} to u and from u to the inner end of $S_{v_{i}}$ respectively. Since $S_{v_{1}}$ is a spoke, $E\left(P_{1} \cup Q_{2}\right) \geq E\left(S_{v_{1}}\right)$, that is, $\left|E\left(Q_{2}\right)\right| \geq\left|E\left(Q_{1}\right)\right|$, and similarly $\left|E\left(Q_{1}\right)\right| \geq\left|E\left(Q_{2}\right)\right|$ since $S_{v_{2}}$ is a spoke. Thus $\left|E\left(Q_{1}\right)\right|=\left|E\left(Q_{2}\right)\right|$. Again, since $S_{v_{1}}$ is a spoke, $\lambda\left(P_{1} \cup Q_{2}\right) \geq \lambda\left(S_{v_{1}}\right)$, that is, $\lambda\left(Q_{2}\right) \geq \lambda\left(Q_{1}\right)$, and similarly $\lambda\left(Q_{1}\right) \geq \lambda\left(Q_{2}\right)$. Thus $\lambda\left(Q_{1}\right)=\lambda\left(Q_{2}\right)$, and so $E\left(Q_{1}\right)=E\left(Q_{2}\right)$. Since Q_{1}, Q_{2} both have one end u, it follows that $Q_{1}=Q_{2}$ and hence that $S_{v_{1}}, S_{v_{2}}$ have the same inner end. Since u is the first vertex of $S_{v_{2}}$ in $S_{v_{1}}$ we deduce that $V\left(P_{1} \cap S_{v_{2}}\right)=\{u\}$, and hence $S_{v_{1}} \cap S_{v_{2}}=Q_{1}$. The result follows.
13.3 Let S_{v} be a spoke with inner end h, and let F be a \mathcal{T}-enclave. If $U\left(S_{v}\right) \cap$ ins $(F) \neq \emptyset$ then $S_{v} \cap \operatorname{ins}(F)$ is a path, and if $U\left(S_{v}\right) \cap \operatorname{ins}(F) \nsubseteq U(F)$ then one of $v, h \in \operatorname{ins}(F) \backslash U(F)$.

Proof. Let \mathcal{T}^{\prime} be a tangle in Γ with $\mathcal{T} \nsubseteq \mathcal{T}^{\prime} \nsubseteq \mathcal{T}$ such that $(\Gamma \cap \operatorname{ins}(F), \Gamma \cap \operatorname{out}(F))$ is the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$ distinction. Suppose that $U\left(S_{v}\right) \cap i n s(F) \neq \emptyset$, and $S_{v} \cap i n s(F)$ is not a path. Then there are distinct vertices a, b of S_{v}, both in $V(F)$, such that no internal vertex or edge of the subpath of S_{v} between a, b belong to $\operatorname{ins}(F)$. Let this subpath be P, and let F_{1}, F_{2} be the two subpaths of F between a and b. Since $P \neq F_{1}, F_{2}$ it follows (since S_{v} is a spoke) that $|E(P)| \leq\left|E\left(F_{i}\right)\right|$, and if equality holds then $\lambda(P)<\lambda\left(F_{i}\right)(i=1,2)$. But this contradicts 8.5.

Thus $S_{v} \cap \operatorname{ins}(F)$ is a path. Suppose that $v, h \notin \operatorname{ins}(F) \backslash U(F)$ and $U\left(S_{v}\right) \cap i n s(F) \nsubseteq U(F)$. Then there are distinct vertices a, b of S_{v}, both in $U(F)$, such that every internal vertex and edge of the subpath P of S_{v} joining a, b lies in $\operatorname{ins}(F) \backslash U(F)$. Let F_{1}, F_{2} be the two subpaths of F between a and b. As before, $|E(P)| \leq\left|E\left(F_{i}\right)\right|$ and if equality holds then $\lambda(P)<\lambda\left(F_{i}\right)(i=1,2)$. Again, this contradicts 8.5. Thus one of $v, h \in \operatorname{ins}(F) \backslash U(F)$, as required.

A W-hub H is said to be optimal if

- H has the same radius as W, that is, H has radius minimum over all W-hubs, and
- either $|V(H)|=1$, or there is no 1-vertex W-hub with the same radius as W.

For every wheel W there is an optimal W-hub. For the remainder of this section we assume that H is optimal.
13.4 Let $r^{*} \in R^{*} \cap b d(W)$ with neighbours v_{1}, v_{2} in $\Gamma^{*} \cap b d(W)$. Let $S_{v_{1}}$ meet $S_{v_{2}}$, and let $S_{v_{1}} \cap S_{v_{2}}$ have ends u, h where $h \in V(H)$. Let $\Delta \subseteq W$ be the disc bounded by

$$
\left(U\left(S_{v_{1}} \cup S_{v_{2}}\right) \backslash U\left(S_{v_{1}} \cap S_{v_{2}}\right)\right) \cup\{u\} \cup \bar{f}_{1} \cup \bar{f}_{2}
$$

where f_{i} is the edge of $\Gamma^{*} \cap b d(W)$ with ends $r^{*}, v_{i}(i=1,2)$. Then $\Delta \cap U(H)=\emptyset$ unless $u=h$, in which case $\Delta \cap U(H)=\{h\} ;$ and $\Delta \cap U\left(S_{v}\right) \subseteq b d(\Delta)$ for every $v \in V(\Gamma) \cap b d(W)$.

Proof. Suppose that either $u \neq h$ and $\Delta \cap U(H) \neq \emptyset$, or $u=h$ and $\Delta \cap U(H) \neq\{h\}$. In either case it follows that $U(H) \subseteq \Delta$ and $V(H) \neq\{u\}$. For if $u \neq h$ then $b d(\Delta) \cap U(H)=\emptyset$ and so $U(H) \subseteq \Delta$ and clearly $V(H) \neq\{u\}$; while if $u=h$ then $|V(H)| \neq 1$, and H is a circuit with $U(H) \cap b d(\Delta)=\{h\}$, and so again $U(H) \subseteq \Delta$ and $V(H) \neq\{u\}$. Now u is a vertex of every spoke; for every spoke meets $b d(\Delta)$ since it meets $U(H)$, and hence contains u by 13.2.

Suppose that there is a \mathcal{T}-enclave F with $|E(F)| \leq 4 \rho+4$ and with $u \in \operatorname{ins}(F) \backslash U(F)$. Since H is a W-hub, it follows that $U(H) \nsubseteq \operatorname{ins}(F)$, because $H \neq F$ since $u \in \operatorname{ins}(F) \backslash U(F)$. By 8.6 it follows that $U(H) \cap \operatorname{ins}(F) \subseteq U(F)$, and in particular $h \notin \operatorname{ins}(F) \backslash U(F)$. Thus by 13.3, since $u \in \operatorname{ins}(F) \backslash U(F)$, it follows that $v_{1}, v_{2} \in \operatorname{ins}(F) \backslash U(F)$, and hence $b d(\Delta) \subseteq \operatorname{ins}(F)$. Since the circuit C of Γ^{*} with $U(C)=b d(\Delta)$ satisfies $|E(C)| \leq 2 \rho+2$, it follows that $\Delta=$ ins (C) because W is a wheel, and $\operatorname{ins}(C) \subseteq \operatorname{ins}(F)$ since $U(C) \subseteq \operatorname{ins}(F)$. Thus $\Delta \subseteq \operatorname{ins}(F)$ and in particular, $U(H) \subseteq \operatorname{ins}(F)$, a contradiction. Thus there is no such \mathcal{T}-enclave F.

Let H^{\prime} be the 1-vertex graph with vertex u. We claim that H^{\prime} is a W-hub with radius $\rho-$ $\left|E\left(S_{v_{1}} \cap S_{v_{2}}\right)\right|$. For if $v \in V(\Gamma) \cap b d(W)$ then $S_{v_{1}} \cap S_{v_{2}}$ is a path of S_{v} as we have seen, and so the subpath of S_{v} from v to u has $\left|E\left(S_{v}\right)\right|-\left|E\left(S_{v_{1}} \cap S_{v_{2}}\right)\right|$ edges, and hence either $\rho-\left|E\left(S_{v_{1}} \cap S_{v_{2}}\right)\right|$ or one fewer. For a similar reason, there is no shorter path in Γ^{*} from v to u, for we could augment it by $S_{v_{1}} \cap S_{v_{2}}$ and obtain a path from v to $V(H)$ shorter than S_{v}. It follows that H^{\prime} is a W-hub with radius $\rho-\left|E\left(S_{v_{1}} \cap S_{v_{2}}\right)\right|$. Since H is an optimal W-hub, we deduce that $E\left(S_{v_{1}} \cap S_{v_{2}}\right)=\emptyset$, and that
$|V(H)|=1$. But then $V(H)=\{h\}=\{u\}$, contrary to our supposition. This proves the first claim of the theorem, that $\Delta \cap U(H)=\emptyset$ unless $u=h$, when $\Delta \cap U(H)=\{h\}$. The second claim follows from the first claim and 13.2.

Let $v \in R^{*} \cap b d(W)$, with neighbours v_{1}, v_{2} in $\Gamma^{*} \cap b d(W)$. Let f_{i} be the edge of $\Gamma^{*} \cap b d(W)$ with ends $v, v_{i}(i=1,2)$. If $S_{v_{1}}$ meets $S_{v_{2}}$ we define Δ_{v} to be the disc in W bounded by the closure of

$$
\left(U\left(S_{v_{1}} \cup S_{v_{2}}\right) \backslash U\left(S_{v_{1}} \cap S_{v_{2}}\right)\right) \cup f_{1} \cup f_{2} .
$$

If $S_{v_{1}}$ does not meet $S_{v_{2}}$, let their inner ends be h_{1}, h_{2} respectively, let P be the path of H joining h_{1}, h_{2} such that the disc in W bounded by

$$
U\left(S_{v_{1}} \cup S_{v_{2}} \cup P\right) \cup \bar{f}_{1} \cup \bar{f}_{2}
$$

does not include $\operatorname{ins}(H)$, and let Δ_{v} be this disc. In either case, let D_{v} be the circuit of Γ^{*} with $U\left(D_{v}\right)=b d\left(\Delta_{v}\right)$.
13.5 With notation as above, $\left|E\left(D_{v}\right)\right| \leq 4 \rho+4$, and ins $\left(D_{v}\right)=\Delta_{v}$.

Proof. Suppose that $\left|E\left(D_{v}\right)\right|>4 \rho+4$. Since $\left|E\left(S_{v_{1}}\right)\right|,\left|E\left(S_{v_{2}}\right)\right| \leq \rho$, it follows that $S_{v_{1}} \cap S_{v_{2}}$ is null. Let P, Q, R be three paths of Γ^{*} from h_{1} to h_{2}, where $P \cup Q=D_{v}$ and $Q \cup R=H$. Now $|E(P)| \leq 2 \rho+2$, and so $|E(Q)|>|E(P)|$. Since $H=Q \cup R$ is a \mathcal{T}-enclave, the second assertion of 8.5 implies that $\operatorname{ins}(Q \cup R) \cap \operatorname{ins}(P \cup R)=U(R)$, which is false. Thus $\left|E\left(D_{v}\right)\right| \leq 4 \rho+4$. The second claim of the theorem follows since W is a wheel of radius ρ.
13.6 With notation as above, let \mathcal{T}^{\prime} be a tangle with $\left(\Gamma \cap \operatorname{out}\left(D_{v}\right), \Gamma \cap \operatorname{ins}\left(D_{v}\right)\right) \in \mathcal{T}^{\prime}$, and let F be a \mathcal{T}-enclave around \mathcal{T}^{\prime}. Then ins $(F) \subseteq \Delta_{v}$.

Proof. The proof requires several steps. Let the inner end of $S_{v_{i}}$ be $h_{i}(i=1,2)$.
(1) $|E(F)| \leq\left|E\left(D_{v}\right)\right| \leq 4 \rho+4$.

Subproof. Since $\left(\Gamma \cap \operatorname{ins}\left(D_{v}\right), \Gamma \cap \operatorname{out}\left(D_{v}\right)\right) \in \mathcal{T} \backslash \mathcal{T}^{\prime}$, it follows that $|E(F)| \leq\left|E\left(D_{v}\right)\right|$, and by $13.5,\left|E\left(D_{v}\right)\right| \leq 4 \rho+4$.
(2) There is an edge of Γ included in $\operatorname{ins}(F) \cap \operatorname{ins}\left(D_{v}\right)$.

Subproof. $(\Gamma \cap \operatorname{out}(F), \Gamma \cap \operatorname{ins}(F)),\left(\Gamma \cap \operatorname{out}\left(D_{v}\right), \Gamma \cap \operatorname{ins}\left(D_{v}\right)\right) \in \mathcal{T}^{\prime}$, and so not every edge belongs to out $(F) \cup \operatorname{out}\left(D_{v}\right)$ by theorem 2.3 of [5]. This proves (2).
(3) ins $(F) \cap \operatorname{ins}(H)=U(F) \cap U(H)$.

Subproof. Otherwise either $|V(H)|=1$ and $V(H) \subseteq \operatorname{ins}(F) \backslash F$, or H is a circuit and $\operatorname{ins}(H) \subseteq$ $\operatorname{ins}(F)$, or H is a circuit and $\operatorname{ins}(F) \subseteq \operatorname{ins}(H)$, by 8.6. The first and second contradict that H is a W-hub (since $H \neq F$ by (2)), and the third contradicts (2). This proves (3).
(4) There is a closed disc $\Delta_{0} \subseteq \hat{\Sigma}$ with $W \cup \operatorname{ins}(F) \subseteq \Delta_{0}$, such that Δ_{0} includes ins (C) for every circuit C of Γ^{*} with $|E(C)| \leq 4 \rho+4$ and $U(C) \subseteq \Delta_{0}$.

Subproof. If $\operatorname{ins}(F) \subseteq W$ we may take $\Delta_{0}=W$. Otherwise, since $U(H) \nsubseteq \operatorname{ins}(F) \backslash U(F)$, it follows that $V(F) \cap b d(W) \neq \emptyset$. Choose $z^{*} \in V(F) \cap b d(W)$, and let $z \in A(\Gamma)$ with $z^{*} \in z$. By 7.1 (with $\kappa=4 \rho+6$), since $\operatorname{rep}(\mathcal{T}) \geq 6 \rho+14$, there is a circuit of $\operatorname{sk}(\Gamma)$ bounding an open disc $\Lambda \subseteq \hat{\Sigma}_{\chi}$ with $z \subseteq \Lambda$, such that

- $x \subseteq \Lambda$ for every $x \in A(\Gamma)$ with $d(z, x) \leq 4 \rho+4$, where d is the metric of \mathcal{T}, and
- ins $\left(C^{*}\right) \subseteq \bar{\Lambda}$ for every circuit C^{*} of Γ^{*} with $U\left(C^{*}\right) \subseteq \bar{\Lambda}$ and $\left|E\left(C^{*}\right)\right|<4 \rho+4$.

Now if T is a path of Γ^{*} with $\leq 4 \rho+4$ edges and with one end z^{*}, then $d(z, x) \leq 4 \rho+4$ for every $x \in A(\Gamma)$ with $x \cap U(T) \neq \emptyset$, and so every such x is a subset of Λ; and hence $U(T) \subseteq \Lambda$. But every edge of H or of $\Gamma^{*} \cap b d(W)$ or of any spoke of W belongs to some such path T, and hence $U(H) \subseteq \Lambda, b d(W) \subseteq \Lambda$ and $U(S) \subseteq \Lambda$ for every spoke S of W. Let $\Delta_{0}=\bar{\Lambda}$. Since H and each $D_{v^{\prime}}$ have at most $4 \rho+4$ edges, it follows that $\operatorname{ins}(H), \operatorname{ins}\left(D_{v^{\prime}}\right) \subseteq \Delta_{0}$ for each v^{\prime}, and so $W \subseteq \Delta_{0}$. This proves (4).

Since $\operatorname{ins}(F), \Delta_{v}$ are both discs in Δ_{0} and their interiors intersect by (2), it follows from (4) that there is a circuit C of Γ^{*} with $C \subseteq F \cup D_{v}$, such that $U(C)$ bounds a closed disc in Δ_{0} including $\operatorname{ins}(F) \cup \Delta_{v}$.
(5) $|E(C)| \leq\left|E\left(D_{v}\right)\right|$, and if equality holds then $\lambda(C) \leq \lambda\left(D_{v}\right)$.

Subproof. Let $(A, B)=(\Gamma \cap \operatorname{out}(F), \Gamma \cap \operatorname{ins}(F))$, and $\left(A^{\prime}, B^{\prime}\right)=\left(\Gamma \cap \operatorname{out}\left(D_{v}\right), \Gamma \cap \operatorname{ins}\left(D_{v}\right)\right)$. Since $(A, B),\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}^{\prime}$ it follows from the second tangle axiom that $\left(B \cap B^{\prime}, A \cup A^{\prime}\right) \notin \mathcal{T}^{\prime}$. But the latter has order at most the sum of the orders of (A, B) and $\left(A^{\prime}, B^{\prime}\right)$, and hence at most $4 \rho+4$ by (1), and so $\left(B \cap B^{\prime}, A \cup A^{\prime}\right) \in \mathcal{T}$ since $(B, A) \in \mathcal{T}$. Thus $\left(B \cap B^{\prime}, A \cup A^{\prime}\right) \in \mathcal{T} \backslash \mathcal{T}^{\prime}$, and it follows that $\left(A \cup A^{\prime}, B \cap B^{\prime}\right)$ does not have smaller λ-order than (A, B). By $8.3,\left(A \cap A^{\prime}, B \cup B^{\prime}\right)$ has λ-order at most that of $\left(A^{\prime}, B^{\prime}\right)$. In particular, since every edge of C is split by $\left(A \cap A^{\prime}, B \cup B^{\prime}\right)$ and only edges of D_{v} are split by $\left(A^{\prime}, B^{\prime}\right)$,

$$
\frac{1}{2}|E(C)| \leq\left|V\left(\left(A \cap A^{\prime}\right) \cap\left(B \cup B^{\prime}\right)\right)\right| \leq\left|V\left(A^{\prime} \cap B^{\prime}\right)\right|=\frac{1}{2}\left|E\left(D_{v}\right)\right| .
$$

If equality occurs, then since ($A \cap A^{\prime}, B \cup B^{\prime}$) has λ-order at most that of (A^{\prime}, B^{\prime}), it follows that $\lambda(C) \leq \lambda\left(D_{v}\right)$. This proves (5).

Let Δ be the closed disc in Δ_{0} bounded by $U(C)$.
(6) If ins $(H) \cap \Delta \subseteq U(C)$ then the theorem holds, that is, ins $(F) \subseteq \Delta_{v}$.

Subproof. Suppose that $\operatorname{ins}(H) \cap \Delta \subseteq U(C)$. If $h_{1} \neq h_{2}$, let $K=D_{v} \cap H$, and if $h_{1}=h_{2}$ let K be the null graph. Then $K \subseteq C$, because

$$
U(K) \subseteq \operatorname{ins}(H) \cap \Delta_{v} \subseteq \operatorname{ins}(H) \cap \Delta \subseteq U(C)
$$

If $h_{1}=h_{2}$, note that $U(H)$ may not meet $U\left(\Delta_{v}\right)$, and indeed may not meet $U(C)$; let L be a minimal subpath of $S_{v_{1}} \cap S_{v_{2}}$ from $V(C)$ to $h_{1}=h_{2}$ (this exists, because $h_{1} \notin \Delta \backslash U(C)$ and $\Delta_{v} \subseteq \Delta$). If $h_{1} \neq h_{2}$, let L be the null graph.

Since $V(K \cup L) \subseteq W \backslash b d(W)$ and some vertex of $K \cup L$ belongs to C, it follows that some vertex of C is in $W \backslash b d(W)$. If $U(C) \nsubseteq W$ let M be a maximal path of C with at least one edge, with no edge in W; and if $U(C) \subseteq W$ let M be the path formed by the two edges f_{1}, f_{2}. In either case $|E(M)| \geq 2$, since W is a wheel; and we may number the ends of M as $v_{1}^{\prime}, v_{2}^{\prime}$ such that there are two paths P_{1}, P_{2} of C, with P_{1}, P_{2}, M, K mutually edge-disjoint and $P_{1} \cup P_{2} \cup M \cup K=C$, such that $P_{i} \cup L$ is a path of Γ^{*} from v_{i}^{\prime} to $h_{i}(i=1,2)$.

We claim that $\left|E\left(P_{i} \cup L\right)\right| \geq\left|E\left(S_{v_{i}}\right)\right|(i=1,2)$. For certainly $\left|E\left(P_{i} \cup L\right)\right| \geq \rho-1$ and $\left|E\left(S_{v_{i}}\right)\right| \leq \rho$, and if equality holds in both then since Γ^{*} is bipartite it follows that $v_{i}^{\prime} \in R^{*}$, contrary to 13.1. Thus $\left|E\left(P_{i} \cup L\right)\right| \geq\left|E\left(S_{v_{i}}\right)\right|(i=1,2)$. From (5),

$$
\begin{aligned}
\left|E\left(D_{v}\right)\right| \geq|E(C)| & =\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right|+|E(K)|+|E(M)| \\
& \geq\left|E\left(S_{v_{1}}\right)\right|+\left|E\left(S_{v_{2}}\right)\right|-2|E(L)|+|E(K)|+|E(M)| \\
& =\left|E\left(D_{v}\right)\right|-2+2\left|E\left(S_{v_{1}} \cap S_{v_{2}}\right)\right|-2|E(L)|+|E(M)| .
\end{aligned}
$$

Thus $2\left|E\left(S_{v_{1}} \cap S_{v_{2}}\right)\right|+|E(M)| \leq 2|E(L)|+2$. Since $L \subseteq S_{v_{1}} \cap S_{v_{2}}$ and $|E(M)| \geq 2$, we have equality throughout. In particular, $\left|E\left(D_{v}\right)\right|=|E(C)|, L=S_{v_{1}} \cap S_{v_{2}},|E(M)|=2$, and $\left|E\left(P_{i} \cup L\right)\right|=$ $\left|E\left(S_{v_{i}}\right)\right|(i=1,2)$. Hence $v_{1}^{\prime}, v_{2}^{\prime} \in V(\Gamma)$, since Γ^{*} is bipartite. Let v^{\prime} be the middle vertex of M. Since v^{\prime} has two neighbours $v_{1}^{\prime}, v_{2}^{\prime}$ both in $V(\Gamma) \cap b d(W)$, it follows that $v^{\prime} \in W$ since W is a wheel. Consequently both edges of M belong to W, and so, from the choice of $M, U(C) \subseteq W, v^{\prime}=v$, $\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}=\left\{v_{1}, v_{2}\right\}$, and $E(M)=\left\{f_{1}, f_{2}\right\}$. Since $\Delta \subseteq \Delta_{0}$ and $b d(\Delta) \subseteq W$ it follows that $\Delta \subseteq W$. Since $S_{v_{1}}, S_{v_{2}}$ are spokes and $\left|E\left(P_{i} \cup L\right)\right|=\left|E\left(S_{v_{i}}\right)\right|$, it follows that $\lambda\left(P_{i}\right)+\lambda(L)=\lambda\left(S_{v_{i}}\right)(i=1,2)$. From (5),

$$
\begin{aligned}
\lambda\left(D_{v}\right) \geq \lambda(C) & =\lambda\left(P_{1}\right)+\lambda\left(P_{2}\right)+\lambda(K)+\lambda(M) \\
& =\lambda\left(S_{v_{1}}\right)+\lambda\left(S_{v_{2}}\right)-2 \lambda(L)+\lambda(K)+\lambda(M) \\
& \geq \lambda\left(S_{v_{1}}\right)+\lambda\left(S_{v_{2}}\right)-2 \lambda\left(S_{v_{1}} \cap S_{v_{2}}\right)+\lambda(K)+\lambda(M)=\lambda\left(D_{v}\right)
\end{aligned}
$$

and so again we have equality throughout. In particular, $\lambda\left(P_{i} \cup L\right)=\lambda\left(S_{v_{i}}\right)(i=1,2)$. Since $E\left(S_{v_{i}}\right) \neq \emptyset$, it follows that $P_{i} \cup L=S_{v_{i}}(i=1,2)$, and so

$$
E\left(D_{v}\right)=\left(E\left(S_{v_{1}} \cup S_{v_{2}}\right) \backslash E\left(S_{v_{1}} \cap S_{v_{2}}\right)\right) \cup E(K) \cup E(M) \subseteq E(C)
$$

Hence $C=D_{v}$, and so $\operatorname{ins}(F) \subseteq D_{v}$, as required. This proves (6).
Henceforth, then, we suppose, for a contradiction, that ins $(H) \cap \Delta \nsubseteq U(C)$. In particular, $F \neq C$, by (3). Let $h \in(\Delta \backslash U(C)) \cap \operatorname{ins}(H)$, choosing $h \notin U(H)$ if H is a circuit. (h is a point of the surface, but not necessarily a vertex of Γ^{*}.)

If P is a path and $u, v \in V(P)$, we denote by $P[u, v]$ the subpath of P with ends u, v. An arc is a path of F with distinct ends both in $V\left(D_{v}\right)$, and with no internal vertex in $V\left(D_{v}\right)$ and no edge in $E\left(D_{v}\right)$. For every arc P, either $U(P) \subseteq \Delta_{v}$ or $U(P) \cap \Delta_{v}$ consists of the ends of P; we call these inner and outer arcs respectively. Since $F \neq C$ and hence $\Delta_{v} \nsubseteq i n s(F)$, there is an inner arc; and since $D_{v} \neq C$ (because $\left.h \in \Delta \backslash U(C)\right)$ there is an outer arc.
(7) $h \notin \operatorname{ins}(F)$.

Subproof. Suppose that $h \in \operatorname{ins}(F)$. By (3), $h \in U(F) \cap U(H)$, and so $V(H)=\{h\}$ and $h \in V(F)$, and $h_{1}=h_{2}=h$. We claim that every arc has one end v. For let P be an arc with ends a, b say. Since $a \neq b$, we may assume that $a \neq v_{1}$ and $a \in V\left(S_{v_{1}}\right)$ without loss of generality. Since $a, h \in V(F)$, it follows from 13.3 that $S_{v_{1}}[a, h] \subseteq F$. Since there are ≥ 2 arcs, a and b do not belong to the same component of $F \cap D_{v}$, and hence nor do h, b. By 13.3, it follows that $b \notin V\left(S_{v_{1}}\right) \cup V\left(S_{v_{2}}\right)$, and so $b=v$. This proves our claim that every arc has one end v. Hence there is exactly one outer arc, say P_{1}, and exactly one inner arc, say P_{2}.

Let P_{i} have ends $v, a_{i}(i=1,2)$. Since $h \in V(F)$, if $E\left(S_{v_{1}} \cap S_{v_{2}}\right) \neq \emptyset$ then $a_{1}=h$, and if $E\left(S_{v_{1}} \cap S_{v_{2}}\right)=\emptyset$ then both $V\left(S_{v_{1}}\right)$ and $V\left(S_{v_{2}}\right)$ meet $\left\{a_{1}, a_{2}\right\}$. Thus in either case we may assume that $a_{1} \in V\left(S_{v_{1}}\right)$ and $a_{2} \in V\left(S_{v_{2}}\right)$.

Let S_{i} be the path consisting of $S_{v_{i}}$ and the vertex v and the edge $f_{i}(i=1,2)$. Let v^{\prime} be the first vertex of P_{1} (that is, closest to v) different from v that belongs to W. Since W is a wheel and the edge of P_{1} incident with v is not in W, it follows that $\left|E\left(P_{1}\left[v, v^{\prime}\right]\right)\right| \geq 2$, and since G^{*} is bipartite, either $\left|E\left(P_{1}\left[v, v^{\prime}\right]\right)\right| \geq 3$ or $v^{\prime} \in R^{*}$. But

$$
P_{1}\left[v^{\prime}, a_{1}\right] \cup S_{1}\left[a_{1}, h\right]
$$

is a path from a vertex of $b d(W)$ (namely, v^{\prime}) to h, and so it has $\geq \rho-1$ edges, and at least ρ if $v^{\prime} \in R^{*}$, by 13.1. By combining these two paths we deduce that $P_{1} \cup S_{1}\left[a_{1}, h\right]$ has $\geq \rho+2$ edges, and consequently has strictly more edges than both S_{1} and S_{2}.

Let $S_{v_{1}} \cap S_{v_{2}}$ have ends h, h^{\prime}. Let

$$
\begin{aligned}
& C_{1}=P_{2} \cup S_{1}\left[v, h^{\prime}\right] \cup S_{2}\left[h^{\prime}, a_{2}\right] \\
& C_{2}=P_{2} \cup S_{2}\left[v, a_{2}\right] .
\end{aligned}
$$

Then C_{1}, C_{2} are both circuits, bounding the two discs into which Δ_{v} is divided by P_{2}. Since $\left|E\left(S_{1}\right)\right|<$ $\left|E\left(P_{1} \cup S_{1}\left[a_{1}, h\right]\right)\right|$ and since $P_{1} \cup S_{1}\left[a_{1}, h\right], P_{2} \cup S_{2}\left[h^{\prime}, a_{2}\right]$ are edge-disjoint paths of F, it follows that $\left|E\left(C_{1}\right)\right|<|E(F)|$. Since $\left|E\left(S_{2}\right)\right|<\left|E\left(P_{1} \cup S_{1}\left[a_{1}, h\right]\right)\right|$ and $P_{1} \cup S_{1}\left[a_{1}, h\right], P_{2}$ are edge-disjoint paths of F, it follows that $\left|E\left(C_{2}\right)\right|<|E(F)|$. Since

$$
\left(\Gamma \mid \text { out }\left(D_{v}\right), \Gamma \mid \text { ins }\left(D_{v}\right)\right) \in \mathcal{T}^{\prime}
$$

and $\operatorname{ins}\left(C_{1}\right) \cup \operatorname{ins}\left(C_{2}\right)=\operatorname{ins}\left(D_{v}\right)$, one of

$$
\begin{aligned}
& \left(\Gamma \mid \text { out }\left(C_{1}\right), \Gamma \mid \operatorname{ins}\left(C_{1}\right)\right) \\
& \left(\Gamma \mid \text { out }\left(C_{2}\right), \Gamma \mid \operatorname{ins}\left(C_{2}\right)\right)
\end{aligned}
$$

belongs to \mathcal{T}^{\prime}, contradicting that $(\Gamma|\operatorname{ins}(F), \Gamma| \operatorname{out}(F))$ is the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$ - distinction. This proves (7).
(8) Let P be an outer arc with ends a, b. Then $a, b \in V\left(S_{v_{1}}\right) \cup V\left(S_{v_{2}}\right) \cup\{v\}$, and $V\left(S_{v_{1}}\right), V\left(S_{v_{2}}\right)$ each contain at most one of a, b.

Subproof. If say $a \notin V\left(S_{v_{1}}\right) \cup V\left(S_{v_{2}}\right) \cup\{v\}$ then a is an internal vertex of the path $D_{v} \cap H$
(and in particular, H is a circuit and $h_{1} \neq h_{2}$). Thus the edge of P incident with a is included in $\operatorname{ins}(H) \backslash H$ (since it is not in Δ_{v}) contrary to (3). Thus, $a, b \in V\left(S_{v_{1}}\right) \cup V\left(S_{v_{2}}\right) \cup\{v\}$. If say $a, b \in V\left(S_{v_{1}}\right)$ then by $13.3, S_{v_{1}}[a, b] \subseteq F$, and so F has a proper subgraph which is a circuit, a contradiction. This proves (8).

Define $\Delta_{v}^{\prime}=\Delta_{v}$ if $h \notin \Delta_{v}$, and $\Delta_{v}^{\prime}=\Delta_{v} \backslash\{h\}$ if $h \in \Delta_{v}$. If $h \in \Delta_{v}$ then $V(H)=\{h\}$ and $h \in V\left(D_{v}\right)$, and so in both cases Δ_{v}^{\prime} is simply-connected. Since $h \in \Delta \backslash U(C), U(C)$ is non-nullhomotopic in $\Delta_{0} \backslash\{h\}$ (as a closed curve), and hence is not homotopic in $\Delta_{0} \backslash\{h\}$ to any closed curve in Δ_{v}^{\prime}. But C is the union of some outer arcs and some paths of D_{v}, and hence there is at least one outer arc that is not homotopic (as a curve with fixed endpoints) in $\Delta_{0} \backslash\{h\}$ to any curve in Δ_{v}^{\prime} with the same end-points. But by $(7), U(F)$ is null-homotopic in $\Delta_{0} \backslash\{h\}$, and so there cannot be exactly one such outer arc, since all outer arcs belong to F. Hence there are at least two outer arcs with this property. Let F_{0}, F_{1} be distinct outer arcs, with ends $a_{i}, b_{i}(i=0,1)$ respectively, such that for $i=0,1, F_{i}$ is not homotopic (as a curve with fixed end-points) in $\Delta_{0} \backslash\{h\}$ to any curve in Δ_{v}^{\prime} with end-points a_{i}, b_{i}.
(9) $\left\{a_{0}, b_{0}, a_{1}, b_{1}\right\} \nsubseteq V\left(S_{v_{1}}\right) \cup V\left(S_{v_{2}}\right)$.

Subproof. Otherwise, by (8), we may assume that $a_{0}, a_{1} \in V\left(S_{v_{1}}\right) \backslash V\left(S_{v_{2}}\right)$ and $b_{0}, b_{1} \in V\left(S_{v_{2}}\right) \backslash$ $V\left(S_{v_{1}}\right)$. By 13.3 $F=F_{1} \cup F_{2} \cup S_{v_{1}}\left[a_{0}, a_{1}\right] \cup S_{v_{2}}\left[b_{0}, b_{1}\right]$, contradicting that there is an inner arc. This proves (9).
(10) $F \cap S_{v_{1}} \cap S_{v_{2}}$ is null.

Subproof. We may assume that $a_{0}, b_{0}, a_{1}, b_{1} \notin V\left(S_{v_{1}} \cap S_{v_{2}}\right)$. Also we may assume that $b_{0}, b_{1} \neq v$ and hence $b_{0}, b_{1} \in V\left(S_{v_{1}} \cup S_{v_{2}}\right) \backslash V\left(S_{v_{1}} \cap S_{v_{2}}\right)$, by (8). If b_{0}, b_{1} both lie in $V\left(S_{v_{1}}\right)$ then $F \cap S_{v_{1}}$ is the subpath of $S_{v_{1}}$ between b_{0}, b_{1} by 13.3 and so $F \cap S_{v_{1}} \cap S_{v_{2}}$ is null. Thus we may assume without loss of generality that $b_{1} \in V\left(S_{v_{1}}\right) \backslash V\left(S_{v_{2}}\right)$ and $b_{0} \in V\left(S_{v_{2}}\right) \backslash V\left(S_{v_{1}}\right)$. Suppose that $u \in V\left(F \cap S_{v_{1}} \cap S_{v_{2}}\right)$. Then by 13.3, F includes the path of $S_{v_{1}}$ between b_{1} and u, and the path of $S_{v_{2}}$ between b_{0} and u, and so since there is an inner arc, it is not the case that $a_{0}=a_{1}=v$. Without loss of generality we assume that $a_{0} \neq v$. By (8), $a_{0} \in V\left(S_{v_{1}}\right) \backslash V\left(S_{v_{2}}\right)$, and by $13.3 F \cap S_{v_{1}}$ is the path of $S_{v_{1}}$ between a_{0} and b_{1}, contrary to $u \in F \cap S_{v_{1}} \cap S_{v_{2}}$. This proves (10).

From (8), (9) and (10) we may assume that $a_{1}=v$ and $b_{1} \in V\left(S_{v_{1}}\right) \backslash V\left(S_{v_{2}}\right)$, and $b_{0} \neq v$. If $a_{0}, b_{0} \notin V\left(S_{v_{2}}\right) \backslash V\left(S_{v_{1}}\right)$, then by (8) $a_{0}=v$ and $b_{0} \in V\left(S_{v_{1}}\right) \backslash V\left(S_{v_{2}}\right)$, and by $13.3 F$ consists of the union of F_{0}, F_{1} and the path of $S_{v_{1}}$ between b_{0} and b_{1}, contradicting that there is an inner arc. Thus we may assume without loss of generality that $b_{0} \in V\left(S_{v_{2}}\right) \backslash V\left(S_{v_{1}}\right)$.

Let P_{1} be the path from v to b_{1} consisting of f_{1} and the path of $S_{v_{1}}$ from v_{1} to b_{1}.
(11) $C=P_{1} \cup F_{1}$.

Subproof. Let Δ^{\prime} be the disc in Δ_{0} bounded by $P_{1} \cup F_{1}$. Since $\Delta^{\prime} \nsubseteq \Delta_{0} \backslash\{h\}$ from the choice of F_{1}, it follows that $h \in \Delta^{\prime}$, and so $\operatorname{ins}(H) \cap\left(\Delta^{\prime} \backslash b d\left(\Delta^{\prime}\right)\right) \neq \emptyset$. Since no point of $b d\left(\Delta^{\prime}\right)$ lies in $\operatorname{ins}(H) \backslash U(H)$, we deduce that $\operatorname{ins}(H) \subseteq \Delta^{\prime}$. We claim that $\Delta_{v} \cap\left(\Delta^{\prime} \backslash b d\left(\Delta^{\prime}\right)\right) \neq \emptyset$; for if $S_{v_{1}} \cap S_{v_{2}}$ is non-null then $U\left(S_{v_{1}} \cap S_{v_{2}}\right)$ is a subset of $\Delta^{\prime} \backslash b d\left(\Delta^{\prime}\right)$ meeting Δ_{v} (because it is connected and meets
$U(H)$ and not $b d\left(\Delta^{\prime}\right)$ by (10)), and if $S_{v_{1}} \cap S_{v_{2}}$ is null then any point of $U\left(D_{v} \cap H\right) \backslash\left\{h_{1}, h_{2}\right\}$ belongs to $\Delta_{v} \cap\left(\Delta^{\prime} \backslash b d\left(\Delta^{\prime}\right)\right)$ (for it belongs to Δ_{v} and to $i n s(H)$ and not to $b d\left(\Delta^{\prime}\right)$). This proves our claim that $\Delta_{v} \cap\left(\Delta^{\prime} \backslash b d\left(\Delta^{\prime}\right)\right) \neq \emptyset$. Since $b d\left(\Delta^{\prime}\right) \cap\left(\Delta_{v} \backslash b d\left(\Delta_{v}\right)\right)=\emptyset$, it follows that $\Delta_{v} \subseteq \Delta^{\prime}$. We claim that $\operatorname{ins}(F) \subseteq \Delta^{\prime}$. For otherwise, there is a path F^{\prime} of F with both ends in $V\left(P_{1}\right)$ and with no edge or internal vertex in Δ^{\prime}. Let the ends of F^{\prime} be a^{\prime}, b^{\prime}, where a^{\prime} is closer than b^{\prime} to a_{1} on the path P_{1}. Then $b^{\prime} \in V\left(S_{v_{1}}\right)$, and so by $13.3 F$ includes $S_{v_{1}}\left[b^{\prime}, b_{1}\right]$, and so $a^{\prime} \neq a_{1}$ (because otherwise F has a proper subgraph which is a circuit). Hence $a^{\prime} \in V\left(S_{v_{1}}\right)$, and by $13.3 F$ includes the path of $S_{v_{1}}$ from a^{\prime} to b^{\prime}, again a contradiction. This proves that $\operatorname{ins}(F) \subseteq \Delta^{\prime}$, and hence $C=P_{1} \cup F_{1}$. This proves (11).
(12) $a_{0} \in V\left(S_{v_{1}}\right) \backslash V\left(S_{v_{2}}\right)$.

Subproof. If $a_{0}=v$ then $F_{0} \subseteq C$, from (11) and the symmetry between F_{0} and F_{1}. But then $F_{0} \subseteq P_{1} \cup F_{1}$ from (11), a contradiction. Thus $a_{0} \neq v$, and the claim follows from (8). This proves (12).

Let F_{2} be a minimal path of F from v to $V\left(S_{v_{2}}\right)$, edge-disjoint from F_{1}. Let the end of F_{2} in $S_{v_{2}}$ be b_{2}. From (10), $b_{2} \in V\left(S_{v_{2}}\right) \backslash V\left(S_{v_{1}}\right)$. From 13.3,

$$
F=F_{0} \cup F_{1} \cup F_{2} \cup S_{v_{1}}\left[a_{0}, b_{1}\right] \cup S_{v_{2}}\left[b_{0}, b_{2}\right] .
$$

By 13.3, F_{2} is disjoint from $S_{v_{1}}$, and so F_{2} is an arc. Since there is an inner arc, and F_{0}, F_{1}, F_{2} are the only arcs, F_{2} must be an inner arc. Let P_{2} be the path from v to b_{2} consisting of f_{2} and $S_{v_{2}}\left[v_{1}, b_{2}\right]$.
(13) $\left|E\left(P_{i}\right)\right| \geq|E(F)|-\left|E\left(F_{i}\right)\right|$ for $(i=1,2)$.

Subproof. We may assume that $\left|E\left(P_{i} \cup F_{i}\right)\right| \leq 4 \rho+4$, since $|E(F)| \leq 4 \rho+4$. Hence $\operatorname{ins}\left(P_{i} \cup F_{i}\right)$ is the disc in Δ_{0} bounded by $U\left(P_{i} \cup F_{i}\right)$. Now $\Delta_{v} \subseteq \operatorname{ins}\left(P_{1} \cup F_{1}\right)=\Delta$ by (11), and so

$$
\left(\Gamma \cap \operatorname{ins}\left(P_{1} \cup F_{1}\right), \Gamma \cap \operatorname{out}\left(P_{1} \cup F_{1}\right)\right) \in \mathcal{T} \backslash \mathcal{T}^{\prime}
$$

and $\left|E\left(P_{1} \cup F_{1}\right)\right| \geq|E(F)|$ from the properties of F. Moreover,

$$
\left(\Gamma \cap \operatorname{ins}\left(P_{2} \cup F_{2}\right), \Gamma \cap \operatorname{out}\left(P_{2} \cup F_{2}\right)\right) \in \mathcal{T} \backslash \mathcal{T}^{\prime}
$$

for it does not belong to \mathcal{T}^{\prime} by the second tangle axiom, since

$$
(\Gamma \cap \operatorname{out}(F), \Gamma \cap \operatorname{ins}(F)),\left(\Gamma \cap \operatorname{out}\left(D_{v}\right), \Gamma \cap \operatorname{ins}\left(D_{v}\right)\right) \in \mathcal{T}^{\prime}
$$

and

$$
\operatorname{ins}\left(P_{2} \cup F_{2}\right) \cup \operatorname{out}(F) \cup \operatorname{out}\left(D_{v_{2}}\right)=\hat{\Sigma}_{\chi} .
$$

Again, $\left|E\left(P_{2} \cup F_{2}\right)\right| \geq|E(F)|$ from the properties of F. This proves (13).

$$
\begin{equation*}
\left|E\left(F_{i}\right)\right| \geq\left|E\left(P_{i}\right)\right|(i=1,2) \tag{14}
\end{equation*}
$$

Subproof. Let Q_{i} be the union of F_{i} with the path of $S_{v_{i}}$ from b_{i} to h_{i}. Then $\left|E\left(Q_{i}\right)\right| \geq \rho$ by 13.1, and hence $\left|E\left(Q_{i}\right)\right| \geq\left|E\left(S_{v_{i}}\right)\right|$. But $\left|E\left(Q_{i}\right)\right|-\left|E\left(S_{v_{i}}\right)\right|$ is odd, since Γ^{*} is bipartite and v, v_{i} are adjacent, and so $\left|E\left(Q_{i}\right)\right| \geq\left|E\left(S_{v_{i}}\right)\right|+1$. Hence $\left|E\left(F_{i}\right)\right| \geq\left|E\left(P_{i}\right)\right|$. This proves (14).

From (13) and (14), $\left|E\left(F_{i}\right)\right| \geq|E(F)|-\left|E\left(F_{i}\right)\right|(i=1,2)$, and so $\left|E\left(F_{1}\right)\right|+\left|E\left(F_{2}\right)\right| \geq|E(F)|$. But $\left|E\left(F_{0}\right)\right|+\left|E\left(F_{1}\right)\right|+\left|E\left(F_{2}\right)\right| \leq|E(F)|$, and so $E\left(F_{0}\right)=\emptyset$, a contradiction. This completes the proof of 13.6 .

We shall also need the following lemma.
13.7 With notation as in 13.6, let $S_{v_{1}}, S_{v_{2}}$ have the same inner end. Let the vertices of $S_{v_{i}}$ in $V(\Gamma)$ be $v_{i}^{1}, \ldots, v_{i}^{k}$ in order, where $v_{i}^{1}=v_{i}(i=1,2)$. Then there are k paths P_{1}, \ldots, P_{k} of $s k(\Gamma)$, mutually vertex-disjoint, such that P_{j} has ends v_{1}^{j} and $v_{2}^{j}(1 \leq j \leq k)$, and such that for $1 \leq j \leq k$, either

- $v_{1}^{j}=v_{2}^{j} \in V\left(S_{v_{1}} \cap S_{v_{2}}\right)$ and $V\left(P_{j}\right)=\left\{v_{1}^{j}\right\}$, or
- $v_{1}^{j}, v_{2}^{j} \notin V\left(S_{v_{1}} \cap S_{v_{2}}\right)$ and $U\left(P_{j}\right) \subseteq \Delta_{v}$.

Proof. Choose t maximum such that $v_{1}^{1}, \ldots, v_{1}^{t} \in \Delta_{v}$ (and hence $v_{2}^{1}, \ldots, v_{2}^{t} \in \Delta_{v}$). Let the path $S_{v_{1}} \cap S_{v_{2}}$ have ends $u \in \Delta_{v}$ and $h \in V(H)$. It suffices to show that there are t mutually disjoint paths of $s k\left(\Gamma \cap \Delta_{v}\right)$ between $\left\{v_{1}^{1}, \ldots, v_{1}^{t}\right\}$ and $\left\{v_{2}^{1}, \ldots, v_{2}^{t}\right\}$. Suppose not; then by a form of Menger's theorem for planar graphs (see [2], for example), there exists a path Q in Γ^{*} with $U(Q) \subseteq \Delta_{v}$ from v to u, such that $|V(Q) \cap V(\Gamma)|<t$. But then $|E(Q)| \leq 2 t-1$, with equality only if $u \in V(\Gamma)$. Let P_{1} be the path of $S_{v_{1}}$ between v_{1} and u. Then $\left|E\left(P_{1}\right)\right| \geq 2 t-1$, with equality only if $u \notin V(\Gamma)$; and so $\left|E\left(P_{1}\right)\right| \geq|E(Q)|+1$. Since $\left|E\left(S_{v_{1}}\right)\right| \leq \rho$, it follows that $\left|E\left(Q \cup\left(S_{v_{1}} \cap S_{v_{2}}\right)\right)\right| \leq \rho-1$, contrary to 13.1.

14 Removing wheel covers

The object of this section is to prove the following.
14.1 Let $\chi, \mathcal{S}, \mathcal{D}$ be as in section 10 , and let χ satisfy $\mathbf{S}_{\mathbf{2}}$; let $\omega_{0} \in E\left(\Omega_{\chi}(2)\right) \cup E\left(\Omega_{\chi}(3)\right)$, and let $m \geq 1, n \geq 4$. Then there is a well-behaved set $\mathcal{C}_{5}\left(m, n, q_{0}\right)$ of χ-places with the following property. Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ be (m, n, ω_{0})-flawed internally. Then there is a rooted location \mathcal{L} which $\left(4 n \cdot 5^{2 m}+3\right)$-isolates \mathcal{T}, and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}_{5}\left(m, n, \omega_{0}\right)$.

Proof. Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$ be $\left(m, n, \omega_{0}\right)$-flawed internally. By 12.4 there is a cover \mathcal{W} with $|\mathcal{W}| \leq m+c\left(\Sigma_{\chi}\right)$, each member of which has radius $\leq 2 n \cdot 5^{2 m}$. For each $W \in \mathcal{W}$, let $H(W)$ be an optimal W-hub. If $|V(H(W))|=1$, designate some vertex of $R^{*} \cap b d(W)$ as singular, and the other vertices of $R^{*} \cap b d(W)$ as regular. If $|V(H(W))|>1$, we say $r^{*} \in R^{*} \cap b d(W)$ is singular if $S_{v_{1}}, S_{v_{2}}$ have distinct inner ends, where v_{1}, v_{2} are the neighbours of r^{*} in $\Gamma^{*} \cap b d(W)$, and $S_{v_{1}}, S_{v_{2}}$ are the corresponding spokes; and r^{*} is regular otherwise. We observe that for each $W \in \mathcal{W}$, there are most $|V(H(W))|$ singular members of $R^{*} \cap b d(W)$; and there is at least one (for since $H(W)$ is optimal, it follows that if $H(W)$ is a circuit then not all spokes have the same inner end.) Let $S(W)$ be the set of singular vertices in $R^{*} \cap b d(W)$.

For each $W \in \mathcal{W}$, let $N(W)$ be the set of all $v \in V(\Gamma) \cap b d(W)$ with a singular neighbour in $\Gamma^{*} \cap b d(W)$. Thus $|N(W)| \leq 2|V(H(W))|$. Let $G(W)$ be the drawing with

$$
\begin{aligned}
& U(G(W))=b d(W) \cup U(H(W)) \cup \bigcup\left(U\left(S_{v}\right): v \in N(W)\right) \\
& V(G(W))=S(W) \cup N(W) \cup V(H(W)) \cup \bigcup\left(V\left(S_{v}\right): v \in N(W)\right)
\end{aligned}
$$

where again S_{v} is the spoke corresponding to v. We see that

$$
\begin{aligned}
|V(G(W))| & \leq|V(H(W))|+|S(W)|+2|S(W)|\left(2 n \cdot 5^{2 m}\right) \\
& \leq\left(8 n \cdot 5^{2 m}+4\right)\left(4 n \cdot 5^{2 m}+2\right)
\end{aligned}
$$

and $E(G(W))$ is similarly bounded. We call $(\bigcup(G(W): W \in \mathcal{W}), \mathcal{W})$ a ω_{0}-flaw in $(\Gamma, \phi, \lambda, \mathcal{T})$.
By 5.2 , to prove the theorem it suffices to show the following.
(1) Let $\mathcal{D}^{\prime} \subseteq \mathcal{D}$, such that each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$ is $\left(m, n, \omega_{0}\right)$-flawed internally and they all have the same ω_{0}-flaw. Then there is a well-behaved set \mathcal{C} of χ-places such that for each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$ there is a rooted location \mathcal{L} which $\left(4 n \cdot 5^{2 m}+3\right)$-isolates \mathcal{T} and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}$.

Since each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$ has the same ω_{0}-flaw, it follows that there is a \mathcal{W} such that \mathcal{W} is a cover for each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$; and for each $W \in \mathcal{W}$ there exists $H(W)$ and $\rho(W)$ such that $H(W)$ is a W-hub of radius $\rho(W)$ for each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$ (they have the same radius in each Γ because the common ω_{0}-flaw includes a spoke). Moreover, for each $W \in \mathcal{W}$ the sets $S(W), N(W)$ are the same for each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$, and the spokes $S_{v}(v \in N(W))$ are also the same for each $(\Gamma, \phi, \lambda, \mathcal{T})$.

Thus we may speak of $S(W), N(W), S_{v}(v \in N(W))$ and $\Delta_{v}(v \in S(W))$ without specifying a particular member of \mathcal{D}^{\prime}. (This does not hold for general spokes, of course; they will differ for different members of \mathcal{D}^{\prime}, as indeed will the sets $V(\Gamma) \cap b d(W)$.) For each $W \in \mathcal{W}$, fix a march $\pi(H(W))$ with $\bar{\pi}(H(W))=V(\Gamma) \cap V(H(W))$ for each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$, and for each $r^{*} \in S(W)$ fix a march $\pi\left(r^{*}\right)$ with $\bar{\pi}\left(r^{*}\right)=V(\Gamma) \cap V\left(S_{v_{1}} \cup S_{v_{2}}\right)$ for each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$, where v_{1}, v_{2} are the neighbours of r^{*} in $\Gamma^{*} \cap b d(W)$ (and hence $v_{1}, v_{2} \in N(W)$).

Let Σ^{\prime} be obtained from Σ_{χ} by deleting $\Sigma_{\chi} \cap(W \backslash b d(W))$ for each $W \in \mathcal{W}$. Then Σ^{\prime} is a surface since $b d(W) \cap b d\left(\Sigma_{\chi}\right)=\emptyset$ for each $W \in \mathcal{W}$; and $\hat{\Sigma}^{\prime} \cong \hat{\Sigma}_{\chi}$. Let Φ^{\prime} be the frame in Σ^{\prime} with

$$
\begin{aligned}
& U\left(\Phi^{\prime}\right)=b d\left(\Sigma^{\prime}\right) \\
& V\left(\Phi^{\prime}\right)=\bigcup(N(W): W \in \mathcal{W})
\end{aligned}
$$

where the edges of Φ^{\prime} are directed arbitrarily, and an edge of Φ^{\prime} is designated as short if it includes a member of $S(W)$ for some $W \in \mathcal{W}$, and long otherwise.

Let $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$, and let $W \in \mathcal{W}$. For $v \in V(\Gamma) \cap b d(W)$, let the spoke S_{v} and disc Δ_{v} be defined as in 13.5. If $|V(H(W))|>1$, we define the hub sector (of $(\Gamma, \phi, \lambda, \mathcal{T})$ at W) to be the rooted hypergraph $(\Gamma \cap \operatorname{ins}(H(W)), \pi(W))$. If $|V(H(W))|=1$ then there is no hub sector. For each $r^{*} \in\left(V\left(\Gamma^{*}\right) \backslash V(\Gamma)\right) \cap b d(W)$, let r^{*} have neighbours v_{1}, v_{2} in $\Gamma^{*} \cap b d(W)$ and let A^{-}be the union of $\Gamma \cap \Delta_{r^{*}}$ and the hypergraph with vertex set $V\left(S_{v_{1}} \cap S_{v_{2}}\right) \cap V(\Gamma)$ and edge set empty. Let A be the rooted hypergraph $\left(A^{-}, \pi\right)$, where $\pi=\pi\left(r^{*}\right)$ if $r^{*} \in S(W)$, and otherwise π is an arbitrary march with $\bar{\pi}=V\left(S_{v_{1}} \cup S_{v_{2}}\right) \cap V(\Gamma)$. We call A the r^{*} - sector (at $\left.W\right)$. Let $\mathcal{L}(W)$ be the set containing the hub sector at W if there is one and each r^{*}-sector at W, for all $r^{*} \in\left(V\left(\Gamma^{*}\right) \backslash V(\Gamma)\right) \cap b d(W)$; and let $\mathcal{L}=\bigcup(\mathcal{L}(W): W \in \mathcal{W})$.
(2) $\mathcal{L}\left(4 n \cdot 5^{2 m}+3\right)$-isolates \mathcal{T}.

Subproof. We claim first, that each \in of \mathcal{L} has order at most $4 n \cdot 5^{2 m}+2$. For each $|E(H(W))| \leq$
$4 \rho(W)+4$ and so hub sectors have order $\leq 2 \rho(W)+2$; for r^{*} singular, each r^{*}-sector has order

$$
\frac{1}{2}\left|b d\left(\Delta_{r^{*}}\right) \cap V(\Gamma)\right| \leq \frac{1}{2}(4 \rho(W)+4)
$$

by 13.5; and for r^{*} regular, each r^{*}-sector has order $\left|V\left(S_{v_{1}} \cup S_{v_{2}}\right) \cap V(\Gamma)\right| \leq \rho(W)+1$ where v_{1}, v_{2} are the neighbours of r^{*} in $\Gamma^{*} \cap b d(W)$. Since each $\rho(W) \leq 2 n \cdot 5^{2 m}$, this proves our claim. Moreover, $\mathcal{L}^{-} \subseteq \mathcal{T}$ by 13.5. Let \mathcal{T}^{\prime} be a tangle in Γ of order $\geq 4 n \cdot 5^{2 m}+23$ such that $(B, A) \in \mathcal{T}^{\prime}$ for some $(A, B) \in \mathcal{L}^{-}$where $(A, B) \in(\mathcal{L}(W))^{-}$say; and let (C, D) be the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction. Let F be a \mathcal{T}-enclave around \mathcal{T}^{\prime}. Then $|E(F)| \leq 4 \rho(W)+4$. If (A, B) is the hub sector at W, then some edge of A is included in $\operatorname{ins}(F)$, and so by 8.6, either $\operatorname{ins}(H(W)) \subseteq \operatorname{ins}(F)$ or $\operatorname{ins}(F) \subseteq \operatorname{ins}(H(W))$. Now since $|E(F)| \leq 4 \rho(W)+4$ and $H(W)$ is a W-hub, we deduce that if $\operatorname{ins}(H(W)) \subseteq \operatorname{ins}(F)$ then $F=H(W)$. Thus if (A, B) is the hub sector then $\operatorname{ins}(F) \subseteq \operatorname{ins}(H(W))$ and so $C \subseteq A$ and $B \subseteq D$ as required. On the other hand, if (A, B) is an r^{*}-sector for some $r^{*} \in\left(V\left(\Gamma^{*}\right) \backslash V(\Gamma)\right) \cap b d(W)$, then by $13.6 \operatorname{ins}(F) \subseteq \Delta_{r^{*}}$, and again $C \subseteq A$ and $B \subseteq D$. Thus $\mathcal{L}\left(4 n \cdot 5^{2 m}+3\right)$-isolates \mathcal{T}. This proves (2).

Let \mathcal{C} be the set of all $(\Gamma, \phi, \mathcal{L})$ as above such that $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}^{\prime}$ for some λ, \mathcal{T}. It remains to show that \mathcal{C} is well-behaved. Thus, let Ω be a well-quasi-order, and let $\left(\Gamma_{i}, \phi_{i}, \mathcal{L}_{i}\right)(i=1,2)$ be a countable sequence of members of \mathcal{C}. For each $i \geq 1$, let $\xi_{i}: \mathcal{L}_{i} \rightarrow E(\Omega)$ be some function. We must show that there exist $j>i \geq 1$ and an outline $\tau: \mathcal{L}_{i} \rightarrow \mathcal{L}_{j}$ such that $\xi_{i}(A) \leq \xi_{j}(\tau(A))$ for all $A \in \mathcal{L}_{i}$. Let $\left(\Gamma_{i}, \phi_{i}, \lambda_{i}, \mathcal{T}_{i}\right) \in \mathcal{D}^{\prime}$ for each $i \geq 1$.

For each W, if $|V(H(W))| \neq 1$, let $A_{i}(W)$ be the hub sector of $\left(\Gamma_{i}, \phi_{i}, \lambda_{i}, \mathcal{T}_{i}\right)$ at W. There is an infinite set $I \subseteq\{1,2, \ldots\}$ such that for all $i, j \in I$ with $j>i, \xi_{i}\left(A_{i}(W)\right) \leq \xi_{j}\left(A_{j}(W)\right)$ because Ω is a well-quasi-order. To simplify notation, let us replace our initial sequence by this subsequence. We may therefore assume that
(3) For each $W \in \mathcal{W}$ with $|V(H(W))| \neq 1, \xi_{1}\left(A_{1}(W) \leq \xi_{2}\left(A_{2}(W)\right) \leq \ldots\right.$

For each $r^{*} \in\left(V\left(\Gamma_{i}^{*}\right) \backslash V\left(\Gamma_{i}\right)\right) \cap b d(W)$, let $A_{i}\left(r^{*}\right)$ be the sector of $\left(\Gamma_{i}, \phi_{i}, \lambda_{i}, \mathcal{T}_{i}\right)$ at r^{*}. We may similarly assume that
(4) For each $W \in \mathcal{W}$ and each $r^{*} \in S(W), \xi_{1}\left(A_{1}\left(r^{*}\right)\right) \leq \xi_{2}\left(A_{2}\left(r^{*}\right)\right) \leq \ldots$

Let R be the well-quasi-order with element set all triples $\left(\pi, \pi_{1}, \pi_{2}\right)$, where π is a march in Σ_{χ} with $|\bar{\pi}| \leq 4 n \cdot 5^{2 m}+2$, and π_{1}, π_{2} are marches with $\bar{\pi}_{1}, \bar{\pi}_{2} \subseteq \bar{\pi}$. We order R by isomorphism; that is, $\left(\pi, \pi_{1}, \pi_{2}\right) \leq\left(\pi^{\prime}, \pi_{1}^{\prime}, \pi_{2}^{\prime}\right)$ if there is a bijection of $\bar{\pi}$ to $\bar{\pi}^{\prime}$ mapping π to π^{\prime}, π_{1} to π_{1}^{\prime} and π_{2} to π_{2}^{\prime}. For each $i \geq 1$, each $W \in \mathcal{W}$, and each regular $r^{*} \in\left(V\left(\Gamma_{i}^{*}\right) \backslash V\left(\Gamma_{i}\right)\right) \cap b d(W)$, let $e_{r^{*}}$ be the component of $b d(W) \backslash\left\{v_{1}, v_{2}\right\}$ containing r^{*}, where v_{1}, v_{2} are the neighbours of r^{*} in $\Gamma_{i}^{*} \cap b d(W)$. Let

$$
\phi_{i}^{\prime}\left(e_{r^{*}}\right)=\left(\xi\left(A_{i}\left(r^{*}\right)\right),\left(\pi\left(A_{i}\left(r^{*}\right)\right), \mu_{i}\left(v_{1}\right), \mu_{i}\left(v_{2}\right)\right),\right.
$$

where $\mu_{i}\left(v_{1}\right), \mu_{i}\left(v_{2}\right)$ are the marches given by enumerating the vertices of $V\left(S_{v_{1}}\right) \cap V\left(\Gamma_{i}\right), V\left(S_{v_{2}}\right) \cap$ $V\left(\Gamma_{i}\right)$ (respectively) in order, starting with v_{1} and v_{2}. Then $\phi_{i}^{\prime}\left(e_{r^{*}}\right) \in \Omega \times R$.

Let Σ^{\prime} be obtained from Σ_{χ} by deleting $\Sigma_{\chi} \cap(W \backslash b d(W))$ for each $W \in \mathcal{W}$. Then Σ^{\prime} is a surface since the W 's are disjoint and each $b d(W)$ is disjoint from $b d\left(\Sigma_{\chi}\right)$. Moreover, $b d\left(\Sigma^{\prime}\right) \cap b d\left(\Sigma_{\chi}\right)=\emptyset$, and $\hat{\Sigma} \cong \hat{\Sigma}_{\chi}$. Let Φ^{\prime} be the frame with $U\left(\Phi^{\prime}\right)=b d\left(\Sigma^{\prime}\right), V\left(\Phi^{\prime}\right)=\bigcup(N(W): W \in \mathcal{W})$, where the
edges of Φ^{\prime} are directed arbitrarily, and an edge of Φ^{\prime} is short if it contains a vertex of $S(W)$ for some $W \in \mathcal{W}$, and long otherwise. Let χ^{\prime} be the colour scheme where $\Sigma_{\chi^{\prime}}=\Sigma^{\prime}, \Phi_{\chi^{\prime}}=\Phi^{\prime}, \Omega_{\chi^{\prime}}(k)$ is an ideal of $\Omega_{\chi}(k)$ defined by

$$
E\left(\Omega_{\chi^{\prime}}(k)\right)=\left\{x \in E\left(\Omega_{\chi}(k)\right): x \nsupseteq \omega_{0}\right\}(k=2,3),
$$

and for each long side S of $\Phi^{\prime}, \Omega_{\chi^{\prime}}(S)=\Omega \times R$.
(5) χ^{\prime} is not orientedly bad.

Subproof. Since $\omega_{0} \in E\left(\Omega_{\chi}(2)\right) \cup E\left(\Omega_{\chi}(3)\right)$, it follows that either $\Omega_{\chi^{\prime}}(2) \prec \Omega_{\chi}(2)$ or $\Omega_{\chi^{\prime}}(3) \prec \Omega_{\chi}(3)$. Since χ satisfies $\mathbf{S}_{\mathbf{2}}$, this proves (5).

For each $i \geq 1$, let Γ_{i}^{\prime} be the painting in Σ^{\prime} defined by

$$
\begin{aligned}
& U\left(\Gamma_{i}^{\prime}\right)=\left(U\left(\Gamma_{i}\right) \cap \Sigma^{\prime}\right) \cup b d\left(\Sigma^{\prime}\right) \\
& V\left(\Gamma_{i}^{\prime}\right)=V\left(\Gamma_{i}\right) \cap \Sigma^{\prime}
\end{aligned}
$$

and for each edge e of $\Gamma_{i}^{\prime}, \gamma_{\Gamma_{i}^{\prime}}(e)$ equals $\gamma_{\Gamma_{i}}(e)$ if $e \in \Gamma_{i}$, and $\gamma_{\Gamma_{i}}(e)$ agrees with the direction of the short side of Φ^{\prime} containing e^{i} otherwise. For each $e \in E\left(\Gamma_{i}^{\prime}\right)$, if $e \in E\left(\Gamma_{i}\right)$ let $\phi_{i}^{\prime}(e)=\phi_{i}(e)$; if e is a short side let $\phi_{i}^{\prime}(e)=e$; and otherwise $\phi_{i}^{\prime}(e)$ has already been defined. We see that
(6) For each $i \geq 1,\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ is a χ^{\prime} - coloured painting, and the set $\left\{\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right): i \geq 1\right\}$ is similarly oriented.

By (5), we deduce
(7) There exist $j>i \geq 1$ and a linear inflation σ^{\prime} of $\left(\Gamma_{i}^{\prime}, \phi_{i}^{\prime}\right)$ in $\left(\Gamma_{j}^{\prime}, \phi_{j}^{\prime}\right)$.

For each $A \in \mathcal{L}_{i}$, if A is a hub sector or an r^{*}-sector for some singular r^{*}, let $\tau(A)$ be the corresponding sector of \mathcal{L}_{j}. If A is an r^{*}-sector of some $W \in \mathcal{W}$ for some regular r^{*}, let e be the border edge of Γ_{i}^{\prime} with $r^{*} \in e$, and let $s^{*} \in\left(V\left(\Gamma_{j}^{*}\right) \backslash V\left(\Gamma_{j}\right)\right) \cap \sigma^{\prime}(e)$. Let $\tau(A)$ be the s^{*}-sector of $\left(\Gamma_{j}, \phi_{j}, \lambda_{j}, \mathcal{T}_{j}\right)$ at W. We claim that $\tau: \mathcal{L}_{i} \rightarrow \mathcal{L}_{j}$ is an outline, satisfying $\xi_{i}(A) \leq \xi_{j}(\tau(A))$ for all $A \in \mathcal{L}_{i}$.
(8) For every $A \in \mathcal{L}_{i}, \xi_{i}(A) \leq \xi_{j}(\tau(A))$.

Subproof. If A is a hub sector or an r^{*}-sector for some singular r^{*}, this follows from (3) and (4). If A is an r^{*}-sector for some regular r^{*}, then $\tau(A)$ is an s^{*}-sector for some regular s^{*}, and $\xi_{i}(A) \leq \xi_{j}(\tau(A))$ since $\phi_{i}^{\prime}(e) \leq \phi_{j}^{\prime}\left(\sigma^{\prime}(e)\right)$, where e is the border edge of Γ_{i}^{\prime} with $r^{*} \in e$. This proves (8).

Let $G^{\prime}=\bigcup\left(\sigma^{\prime}(v): v \in V\left(\Gamma_{i}^{\prime}\right)\right)$. Now G^{\prime} is not necessarily a subgraph of $s k\left(\Gamma_{j}\right)$, because some of its edges are included in $b d\left(\Sigma^{\prime}\right)$. Let $E^{\prime}=\left\{e \in E\left(G^{\prime}\right): e \subseteq b d\left(\Sigma^{\prime}\right)\right\}$. For each $e \in E^{\prime}$, choose $v \in V\left(\Gamma_{j}^{*}\right) \backslash V\left(\Gamma_{j}\right)$ with $v \in e$. Then v is regular, because e is not a short side of Φ^{\prime}. Let $P(e)$ be the union of the paths given by 13.6. Let G be the union of

$$
\left(G^{\prime} \cap s k\left(\Gamma_{j}\right)\right) \cup \bigcup\left(P(e): e \in E^{\prime}\right)
$$

with the graph with vertex set $V\left(M\left(\Gamma_{j}, \mathcal{L}_{j}\right)\right)$ and no edges.
For each $v \in V\left(\Gamma_{i}^{\prime}\right)$ there is a component K of G with $V\left(\sigma^{\prime}(v)\right) \subseteq V(K)$; because for each $e \in E(\sigma(v)) \backslash E\left(s k\left(\Gamma_{j}\right)\right) \subseteq E^{\prime}$, there is a path of $P(e)$ joining the ends of e. Let $\sigma^{\prime \prime}(v)=K$. For $v \in V\left(M\left(\Gamma_{i}, \mathcal{L}_{i}\right)\right) \backslash V\left(\Gamma_{i}^{\prime}\right)$, if $v \in V(H(W)) \cap V\left(\Gamma_{i}\right)$ for some $W \in \mathcal{W}$, let $\sigma^{\prime \prime}(v)$ be the component of G with $v \in V\left(\sigma^{\prime \prime}(v)\right)$. If v is the k th term of $\mu_{i}(u)$ for some $u \in V(\Gamma) \cap b d(W)$, let $\sigma^{\prime \prime}(v)$ be the component of G containing the k th term of $\mu_{j}\left(u^{\prime}\right)$, where if e is the border edge of Γ_{i}^{\prime} with tail u then u^{\prime} is the tail of $\sigma^{\prime}(e)$. For each v, let $\sigma(v)$ be the induced subgraph of $s k(\Gamma)$ with vertex set $V\left(\sigma^{\prime \prime}(v)\right)$. For each edge e of $M\left(\Gamma_{i}, \mathcal{L}_{i}\right)$, let $\sigma(e)=\sigma^{\prime}(e)$. We claim that σ is an inflation of $M\left(\Gamma_{i}, \mathcal{L}_{i}\right)$ in Γ_{j}, as in the definition of outline. We omit the verification, because it is lengthy and almost identical with (but easier than) the major part of the proof of theorem 9.1 of [11].

Thus $\tau: \mathcal{L}_{i} \rightarrow \mathcal{L}_{j}$ is an outline and by (8) the proof is complete.

15 Conclusion

The proof will be completed by using one further result. To prove it we need the following lemma.
15.1 Let Γ be a 2-cell drawing with $E(\Gamma) \neq \emptyset$ in a surface Σ with $b d(\Sigma)=\emptyset$, and let \mathcal{T} be a tangle in Γ with $\operatorname{rep}(\mathcal{T}) \geq \theta$. Let r be a region of Γ, and let $X \subseteq V(\Gamma) \cap \bar{r}$ with $|X| \leq \theta$. Then the following are equivalent:

- there exists $(A, B) \in \mathcal{T}$ of order $<|X|$ with $X \subseteq V(A)$
- there is a circuit C of Γ^{*} of length $<2 \theta$, such that $|X \cap \operatorname{ins}(C)|>\frac{1}{2}|E(C)|$ and $r^{*} \in$ ins (C).

Proof. That the second statement implies the first is easy, for if C is as in the second statement, let

$$
\begin{aligned}
V(A) & =V(\Gamma \cap \operatorname{ins}(C)) \cup X \\
E(A) & =E(\Gamma \cap \operatorname{ins}(C)) \\
B & =\Gamma \cap \operatorname{out}(C) .
\end{aligned}
$$

Then $(A, B) \in \mathcal{T},(A, B)$ has order $\frac{1}{2}|E(C)|+|X \backslash \operatorname{ins}(C)|<|X|$, and $X \subseteq V(A)$; and so the first statement holds.

For the converse, let (A, B) satisfy the first statement. Let $G \subseteq \Gamma^{*}$ be the subdrawing consisting of all edges of Γ^{*} split by (A, B), and their ends. Let C_{1}, \ldots, C_{k} be all the circuits C of G with $\operatorname{ins}(C)$ maximal. By theorem 6.3 of [6], every edge of A is a subset of $\operatorname{ins}\left(C_{i}\right)$ for some i and hence so is every edge of G; and by theorem 4.3 of [6], for $1 \leq i \leq k$ every path P of G with distinct ends both in $V\left(C_{i}\right)$ satisfies $U(P) \subseteq \operatorname{ins}\left(C_{i}\right)$. Suppose that $r^{*} \in \operatorname{ins}\left(C_{i}\right) \backslash U\left(C_{i}\right)$ for some i. Then $X \subseteq \operatorname{ins}\left(C_{i}\right)$, and C_{i} satisfies the second statement of the theorem as required. We assume therefore that there is no such i.

Now r^{*} may belong to some of the C_{i} 's, say to C_{1}, \ldots, C_{b}. Consequently C_{1}, \ldots, C_{b} pairwise meet in precisely $\left\{r^{*}\right\}$. For $1 \leq i \leq b$, let $X_{i}=X \cap i n s\left(C_{i}\right)$, and let $X_{0}=X \backslash X_{1} \cup \ldots \cup X_{b}$. Suppose that some $x \in X_{0}$ is not in $V(A \cap B)$. Certainly $x \in V(A)$, and so every edge of Γ incident with x is in $E(A)$. Since Γ is 2-cell and has an edge, x is incident with at least one edge, and so there exists $e \in E(A)$ incident with x. Hence there exists i with $1 \leq i \leq k$ and $e \in \operatorname{ins}\left(C_{i}\right)$, and so $x \in \operatorname{ins}\left(C_{i}\right)$.

Since $x \in X_{0}$ it follows that $r^{*} \notin V\left(C_{i}\right)$, and since x is adjacent to r^{*} in Γ^{*} it follows that $x \in V\left(C_{i}\right)$. Consequently $x \in V\left(C_{i}\right) \cap V(\Gamma) \subseteq V(A \cap B)$, a contradiction. This proves that $X_{0} \subseteq V(A \cap B)$.

Consequently,

$$
\sum_{1 \leq i \leq b} \frac{1}{2}\left|E\left(C_{i}\right)\right|+\left|X_{0}\right| \leq|V(A \cap B)|<|X|
$$

and so

$$
\sum_{1 \leq i \leq b} \frac{1}{2}\left|E\left(C_{i}\right)\right|<\left|X \backslash X_{0}\right|=\sum_{1 \leq i \leq b}\left|X_{i}\right|
$$

Hence there exists i with $1 \leq i \leq b$ and $\frac{1}{2}\left|E\left(C_{i}\right)\right|<\left|X_{i}\right|$, and then C_{i} satisfies the second statement of the theorem, as required.

We recall that the function $l\left(e_{1}, e_{2}\right)$ was defined in the start of section 11 .
15.2 Let χ be a colour scheme, and let $\left(\Gamma_{0}, \phi_{0}\right)$ be a χ-coloured painting. Then there exist $n \geq 0$ with the following property. Let (Γ, ϕ) be a χ-coloured painting, such that $\left(\Gamma_{0}, \phi_{0}\right)$ and (Γ, ϕ) are similarly oriented, and there is no inflation of $\left(\Gamma_{0}, \phi_{0}\right)$ in (Γ, ϕ). Let \mathcal{T} be a tangle in Γ with metric d, with $\operatorname{rep}(\mathcal{T})>\frac{3}{2} n$. Then either

- $d\left(r_{1}^{*}, r_{2}^{*}\right) \leq n$ for two distinct poles r_{1}^{*}, r_{2}^{*}, or
- there is a circuit F of Γ^{*} with $\frac{1}{2}|E(F)| \leq n$ such that ins (F) includes a long side or more than $\frac{1}{2}|E(F)|$ vertices of Φ_{χ}, or
- for some long side S, let the edges of Γ_{0} bordering S be f_{1}, \ldots, f_{k}, in order; then there do not exist $e_{1}, \ldots, e_{k} \in E(\Gamma)$, bordering S in order, such that $\phi_{0}\left(f_{i}\right) \leq \phi\left(e_{i}\right)(1 \leq i \leq k)$, $l\left(e_{i}, e_{j}\right)>\frac{1}{2} n(1 \leq i<j \leq k)$ and $l\left(e_{i}, s\right)>\frac{1}{2} n(1 \leq i \leq k)$ for every short side s in the same cuff as S, or
- let $k=\left|E\left(\Gamma_{0}\right)\right|$; then for some internal edge f of Γ_{0}, there do not exist $e_{1}, \ldots, e_{k} \in E(\Gamma)$ such that $\left|\tilde{e}_{i}\right|=|\tilde{f}|$ and $\phi_{0}(f) \leq \phi\left(e_{i}\right)(1 \leq i \leq k), d\left(e_{i}, e_{j}\right)>n(1 \leq i<j \leq k)$ and $d\left(e_{i}, r^{*}\right)>n(1 \leq i \leq k)$ for every pole r^{*}.

Proof. Given $\chi, \Gamma_{0}, \phi_{0}$, choose $n \geq 4\left|V\left(\Gamma_{0}\right)\right|+8$ and also satisfying another condition in terms of Γ_{0} which we shall describe later. Now let $(\Gamma, \phi), \mathcal{T}$ be as in the theorem, and suppose for a contradiction that none of the four outcomes hold.

Let f_{1}, \ldots, f_{m} be the internal edges of Γ_{0}. Choose t maximum with $t \leq m$ such that there exist edges e_{1}, \ldots, e_{t} of Γ with the properties that

- $\left|\tilde{e}_{i}\right|=\left|\tilde{f}_{i}\right|$ and $\phi\left(e_{i}\right) \geq \phi_{0}\left(f_{i}\right)(1 \leq i \leq t)$
- $d\left(e_{i}, e_{j}\right)>\frac{1}{2} n(1 \leq i<j \leq t)$
- $d\left(e_{i}, r^{*}\right)>n(1 \leq i \leq t)$ for every pole r^{*}.

We claim that $t=m$. For suppose that $t<m$. Since the fourth outcome of the theorem does not hold, there are $\left|E\left(\Gamma_{0}\right)\right|$ internal edges c_{1}, \ldots, c_{k} say of Γ, where $k=\left|E\left(\Gamma_{0}\right)\right|$, such that $\left|\tilde{c}_{j}\right|=\left|\tilde{f}_{t+1}\right|$ and $\phi\left(c_{j}\right) \geq \phi_{0}\left(f_{t+1}\right)(1 \leq j \leq k)$, and $d\left(c_{i}, c_{j}\right)>n(1 \leq i<j \leq k)$, and $d\left(c_{i}, r^{*}\right)>n(1 \leq i \leq k)$
for every pole r^{*}. From the maximality of t, for $1 \leq j \leq k$ there exist i_{j} with $1 \leq i_{j} \leq t$ such that $d\left(e_{i_{j}}, c_{j}\right) \leq \frac{1}{2} n$. Since

$$
k=\left|E\left(\Gamma_{0}\right)\right| \geq m>t,
$$

it follows that $i_{j}=i_{j^{\prime}}$ for some $j \neq j^{\prime}$; say $i_{1}=i_{2}$, and $e_{i_{1}}=e$. Then $d\left(e, c_{1}\right), d\left(e, c_{2}\right) \leq \frac{1}{2} n$, and so $d\left(c_{1}, c_{2}\right) \leq n$, a contradiction. This proves that $t=m$.

It follows, since the third outcome of the theorem does not hold, that
(1) There is an injection $\beta: E\left(\Gamma_{0}\right) \rightarrow E(\Gamma)$ with the following properties:

- $\beta(s)=s$ for every short side s of Φ_{χ}
- $\beta(e)$ and e have the same size, and $\phi(\beta(e)) \geq \phi_{0}(e)$, for all $e \in E\left(\Gamma_{0}\right)$
- for each long side S, if the edges of Γ_{0} bordering S are f_{1}, \ldots, f_{k} in order, then $\beta\left(f_{1}\right), \ldots, \beta\left(f_{k}\right)$ also border S in order, and $l\left(\beta\left(f_{i}\right), \beta\left(f_{j}\right)\right)>\frac{1}{2} n$ for $1 \leq i<j \leq k$, and $l\left(\beta\left(f_{i}\right), s\right)>\frac{1}{2} n$ for $1 \leq i \leq k$ and every short side s bordering the same cuff as S
- for every internal $e \in E\left(\Gamma_{0}\right), d\left(\beta(e), r^{*}\right)>n$ for every pole r^{*}, and for all distinct internal $e_{1}, e_{2} \in E\left(\Gamma_{0}\right), d\left(\beta\left(e_{1}\right), \beta\left(e_{2}\right)\right)>\frac{1}{2} n$.

If F is a line, we denote the set of ends of F by $b d(F)$.
(2) There is a Φ_{χ}-preserving homeomorphism $\alpha: \Sigma_{\chi} \rightarrow \Sigma_{\chi}$ such that for every $e \in E\left(\Gamma_{0}\right)$ except short sides, $\alpha(\beta(e)) \subseteq e \backslash b d(\bar{e})$, and the orientation of $\alpha(\beta(e))$ defined by $\alpha\left(\gamma_{\Gamma}(\beta(e))\right)$ agrees with the orientation of e defined by $\gamma_{\Gamma_{0}}(e)$.

Subproof. There is clearly an α satisfying these conditions for all border edges e; for if e_{1}, e_{2} are distinct border edges and not short sides, then $\beta\left(e_{1}\right), \beta\left(e_{2}\right)$ have no common ends and have no end in common with any short side (by the third property of β in (1), since $n>6$); and if they border the same long side then so do $\beta\left(e_{1}\right), \beta\left(e_{2}\right)$, and the latter are in the proper order. Now for any internal $e \in E\left(\Gamma_{0}\right), \beta(e)$ has no end in common with $\beta\left(e^{\prime}\right)$ for any $e^{\prime} \in E\left(\Gamma_{0}\right) \backslash\{e\}$, and it is easy to arrange that $\alpha(\beta(e)) \subseteq e \backslash b d(\bar{e})$, and that if $|\tilde{e}|=2$ the orientation given by $\alpha\left(\gamma_{\Gamma}(\beta(e))\right)$ and by $\gamma_{\Gamma_{0}}(e)$ agree. It remains to arrange this orientation condition when $|\tilde{e}|=3$. Now if Σ_{χ} is orientable, this last condition is automatically satisfied, for $\left(\Gamma_{0}, \phi_{0}\right)$ and (Γ, ϕ) are similarly oriented, and so we may assume that Σ_{χ} is not orientable. Since Σ_{χ} is connected, there is, for each internal $e \in E\left(\Gamma_{0}\right)$ with $|\tilde{e}|=3$, a Φ_{χ}-preserving homeomorphism $\alpha_{e}: \Sigma_{\chi} \rightarrow \Sigma_{\chi}$ which maps $\beta(e)$ onto itself with reversed orientation, and fixes $b d(\Sigma)$ and every $\beta(f)\left(f \in E\left(\Gamma_{0}\right) \backslash\{e\}\right)$ pointwise. By an appropriate combination of the α_{e} 's we may correct every $e \in E\left(\Gamma_{0}\right)$ with $|\tilde{e}|=3$ for which $\alpha\left(\gamma_{\Gamma}(\beta(e))\right)$ and $\gamma_{\Gamma_{0}}(e)$ give opposite orientation of $\beta(e)$. This proves (2).
(3) For each $v \in V\left(\Gamma_{0}\right)$ there is a tree T_{v} in Σ_{χ} such that

- for distinct $v, v^{\prime} \in V\left(\Gamma_{0}\right), U\left(T_{v}\right) \cap U\left(T_{v^{\prime}}\right)=\emptyset$
- for each $v \in V\left(\Gamma_{0}\right), e \in E\left(\Gamma_{0}\right)$ and $1 \leq i \leq|\tilde{e}|, U\left(T_{v}\right)$ contains the ith term of $\gamma_{\Gamma}(\beta(e))$ if and only if v is the i th term of $\gamma_{\Gamma_{0}}(e)$, and
- for each $v \in V\left(\Gamma_{0}\right)$ and $e \in E\left(\Gamma_{0}\right), U\left(T_{v}\right) \cap \beta(e)=\emptyset$.

Subproof. Let S_{v} be a tree in Σ_{χ} for each $v \in V\left(\Gamma_{0}\right)$, such that

- for distinct $v, v^{\prime} \in V\left(\Gamma_{0}\right), U\left(S_{v}\right) \cap U\left(S_{v^{\prime}}\right)=\emptyset$
- for each $v \in V\left(\Gamma_{0}\right), e \in E\left(\Gamma_{0}\right)$ and $1 \leq i \leq|\tilde{e}|, U\left(S_{v}\right)$ contains the i th term of $\alpha\left(\gamma_{\Gamma}(\beta(e))\right)$ if and only if v is the i th term of $\gamma_{\Gamma_{0}}(e)$, and
- for each $v \in V\left(\Gamma_{0}\right)$ and $e \in E\left(\Gamma_{0}\right), U\left(S_{v}\right) \cap \alpha(\beta(e))=\emptyset$.

These S_{v} 's clearly exist (let each S_{v} be a star centered at v, with edges entering all those $e \in E\left(\Gamma_{0}\right)$ with $v \in \tilde{e}$ except short sides). Let $T_{v}=\alpha^{-1}\left(S_{v}\right)$ for each $v \in V\left(\Gamma_{0}\right)$; then (3) is satisfied. This proves (3).
(4) Let r^{*} be a pole, and let $N\left(r^{*}\right)=\bigcup\left(\tilde{\beta}(e): e \in E\left(\Gamma_{0}\right), e \subseteq \bar{r} \backslash r\right)$. There is no circuit F of Γ^{*} with $\frac{1}{2}|E(F)|<\operatorname{rep}(\mathcal{T})$ and with $r^{*} \in \operatorname{ins}(F)$ and $\frac{1}{2}|E(F)|<\left|\operatorname{ins}(F) \cap N\left(r^{*}\right)\right|$.

Subproof. Suppose that F is such a circuit. Now $\left|N\left(r^{*}\right)\right| \leq 2\left|V\left(\Gamma_{0}\right)\right|$, and so

$$
\frac{1}{2}|E(F)|<2\left|V\left(\Gamma_{0}\right)\right| \leq \frac{1}{2} n-2
$$

Suppose first that $r^{*} \in \operatorname{ins}(F) \backslash U(F)$. Since $\frac{1}{2}|E(F)| \leq n$, and $\bar{r} \subseteq i n s(F)$, it follows that \bar{r} includes no long side of Φ_{χ}, because the second outcome of the theorem does not hold. Hence $N\left(r^{*}\right)=V\left(\Phi_{\chi}\right) \cap(\bar{r} \backslash r)$, and so $\operatorname{ins}(F)$ contains more than $\frac{1}{2}|E(F)|$ vertices of Φ_{χ}, and the third outcome of the theorem holds, a contradiction.

Thus $r^{*} \notin \operatorname{ins}(F) \backslash U(F)$, and so $r^{*} \in V(F)$. Hence F is a bite at r^{*}. We may assume that $\operatorname{ins}(F) \cap(\bar{r} \backslash r)$ is a line, for otherwise there is a circuit F^{\prime} with $\left|E\left(F^{\prime}\right)\right|<E(F)$ and $\operatorname{ins}(F) \subseteq \operatorname{ins}\left(F^{\prime}\right)$. Suppose that $\beta(e) \subseteq \operatorname{ins}(F)$ for some $e \in E\left(\Gamma_{0}\right)$ bordering $\bar{r} \backslash r$ which is not a short side. Let S be the long side with $e \subseteq S$, and let s_{1}, s_{2} be the short sides with common ends with S. (Possibly $s_{1}=s_{2}$.) Let v_{1}, v_{2} be the corresponding ends of S. If $v_{1} \in \operatorname{ins}(F)$ then $l\left(\beta(e), s_{1}\right) \leq \frac{1}{2}|E(F)|+2 \leq \frac{1}{2} n$, a contradiction to the third assertion of (1). Thus $v_{1}, v_{2} \notin \operatorname{ins}(F)$. Since $\operatorname{ins}(F) \cap(\bar{r} \backslash r)$ is a line, it follows that $\operatorname{ins}(F) \cap(\bar{r} \backslash r) \subseteq S$. By (1) again, $\beta(f) \nsubseteq \operatorname{ins}(F)$ for any $f \in E\left(\Gamma_{0}\right) \backslash\{e\}$ which borders S, and so $\left|\operatorname{ins}(F) \cap N\left(r^{*}\right)\right|=2$. Hence $\frac{1}{2}|E(F)| \leq 1$, which is impossible.

Thus there is no $e \in E\left(\Gamma_{0}\right)$ bordering $\bar{r} \backslash r$, not a short side, with $\beta(e) \subseteq \operatorname{ins}(F)$, and so

$$
N\left(r^{*}\right) \cap i n s(F)=V\left(\Phi_{\chi}\right) \cap \operatorname{ins}(F)
$$

But then the second outcome of the theorem holds, a contradiction. This proves (4).
Let \mathcal{T}^{\prime} be the set of all separations $\left(A^{\prime}, B^{\prime}\right)$ of $s k(\Gamma)$ of order $\leq n$ such that there exists $(A, B) \in \mathcal{T}$ with $V(A)=V\left(A^{\prime}\right)$ and $V(B)=V\left(B^{\prime}\right)$. By theorem 14.1 of $[9], \mathcal{T}^{\prime}$ is a tangle in $s k(\Gamma)$ of order $n+1$ and $\operatorname{rep}\left(\mathcal{T}^{\prime}\right)=n+1$, since $\operatorname{ord}(\mathcal{T})>\frac{3}{2} n$ and $\operatorname{rep}(\mathcal{T}) \geq n+1$.
(5) Let $r^{*}, N\left(r^{*}\right)$ be as in (4). There is no $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}^{\prime}$ with $N\left(r^{*}\right) \subseteq V\left(A^{\prime}\right)$ and $\left|N\left(r^{*}\right)\right|>$ $\left|V\left(A^{\prime} \cap B^{\prime}\right)\right|$.

Subproof. Choose $(s k(\Gamma))^{*}$ such that $\Gamma^{*} \subseteq(s k(\Gamma))^{*}$. Suppose there is such an $\left(A^{\prime}, B^{\prime}\right)$. Then by 15.1, there is a circuit F of $(s k(\Gamma))^{*}$ of length $\leq 2 n$, bounding a closed disc Δ with $r^{*} \in \Delta$, such that

$$
\left(s k(\Gamma) \cap \Delta, s k(\Gamma) \cap \Delta^{\prime}\right) \in \mathcal{T}^{\prime}
$$

where Δ^{\prime} is the closure of $\hat{\Sigma}_{\chi} \backslash \Delta$, and

$$
\left|N\left(r^{*}\right) \cap \Delta\right|>\frac{1}{2}|E(F)|
$$

For every vertex v of F which lies in the interior of an edge of Γ, there is a vertex v^{\prime} of Γ^{*} adjacent in $(s k(\Gamma))^{*}$ to both neighbours of v in F; and by replacing v by v^{\prime}, and repeating, we may assume that $F \subseteq \Gamma^{*}$. But this contradicts (4). This proves (5).
(6) Let $e \in E\left(\Gamma_{0}\right)$ be internal. There is no disc $\Delta \subseteq \hat{\Sigma}_{\chi}$ with bd (Δ) sk (Γ)-normal, such that $|\tilde{\beta}(e) \cap \Delta|>|V(\Gamma) \cap b d(\Delta)|$ and $\left(\Gamma \cap \Delta, \Gamma \cap \Delta^{\prime}\right) \in \mathcal{T}^{\prime}$, where Δ^{\prime} is the closure of $\hat{\Sigma}_{\chi} \backslash \Delta$.

Subproof. Suppose that Δ is such a disc. Then $|V(\Gamma) \cap b d(\Delta)| \leq 2$, since $|\tilde{\beta}(e) \cap \Delta| \leq 3$. Since $d\left(\beta(e), r^{*}\right)>n$ for every pole r^{*}, it follows that $\Delta \subseteq \Sigma_{\chi} \backslash b d\left(\Sigma_{\chi}\right)$. Now

$$
|V(\Gamma) \cap \Delta| \geq|\tilde{\beta}(e) \cap \Delta|>|V(\Gamma) \cap b d(\Delta)|
$$

and so $\Delta \cap V(\Gamma) \nsubseteq b d(\Delta)$. Since Γ is internally 3 -connected and hence so is $s k(\Gamma)$, we deduce that Δ^{\prime} is a disc and $\Delta^{\prime} \cap V(\Gamma) \subseteq b d\left(\Delta^{\prime}\right)$. But then the third tangle axiom is violated, because $V(\Gamma \cap \Delta)=V(\Gamma)$. This proves (6).

Let n be so large (in terms of $\hat{\Sigma} \times$ and Γ_{0}) that theorem 3.2 of [7] applies (as applied below). From (1), (3), (4), (6), and theorem 3.2 of [7] applied to \mathcal{T}^{\prime} and $s k(\Gamma)$, the trees T_{v} in (3) may be chosen to be subgraphs of $s k(\Gamma)$. For each $v \in V\left(\Gamma_{0}\right)$, let $\sigma(v)$ be the induced subgraph of $s k(\Gamma)$ with vertex set $V\left(T_{v}\right)$, and for each $e \in E\left(\Gamma_{0}\right)$ let $\sigma(e)=\beta(e)$. Then σ is an inflation of $\left(\Gamma_{0}, \phi_{0}\right)$ in (Γ, ϕ), a contradiction, as required.

Proof of 4.1.

Suppose that some χ satisfying $\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{4}}$ is orientedly bad. Then (by replacing the $\Omega_{\chi}(k)$'s and $\Omega_{\chi}(S)$'s by isomorphic well-quasi-orders) we may choose χ to be disjoint. Let (Γ_{0}, ϕ_{0}), (Γ_{1}, ϕ_{1}), \ldots be a similarly oriented bad sequence for χ. By 6.1 we may assume that for all $j>i \geq 0$ there is no inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$. Choose $n \geq 4$ and even such that 15.2 holds (for $\left(\Gamma_{0}, \phi_{0}\right)$). By 5.4 and 5.5 , we may assume (by replacing the sequence ($\left.\Gamma_{i}, \phi_{i}\right)(i \geq 1)$ by a subsequence) that $\operatorname{dist}\left(\Gamma_{i}\right), \operatorname{rep}\left(\Gamma_{i}\right)>25 n \cdot 5^{2\left|E\left(\Gamma_{0}\right)\right|}$ for all $i \geq 1$. From 15.2 we obtain
(1) For each $i \geq 1$, and for every tangle \mathcal{T} in Γ_{i}, and every tie-breaker λ in Γ_{i}, either

- $\operatorname{rep}(\mathcal{T}) \leq 25 n \cdot 5^{2\left|E\left(\Gamma_{0}\right)\right|}$, or
- $(\Gamma, \phi, \lambda, \mathcal{T})$ is $25 n \cdot 5^{2\left|E\left(\Gamma_{0}\right)\right|}$-flawed in distance, or
- $(\Gamma, \phi, \lambda, \mathcal{T})$ is $\frac{1}{2} n\left(\left|E\left(\Gamma_{0}\right)\right|+1\right)$-flawed in freedom, or
- for some long side S of Φ_{χ}, let f_{1}, \ldots, f_{k} be the edges of Γ_{0} bordering S in order; then $(\Gamma, \phi, \lambda, \mathcal{T})$ is $\left(\frac{1}{2} n,\left(\phi_{0}\left(f_{1}\right), \phi_{0}\left(f_{2}\right), \ldots, \phi_{0}\left(f_{k}\right)\right)\right)$-flawed on S, or
- for some internal $e \in E\left(\Gamma_{0}\right),(\Gamma, \phi, \lambda, \mathcal{T})$ is $\left(\left|E\left(\Gamma_{0}\right)\right|, n, \phi_{0}(e)\right)$-flawed internally.

Let \mathcal{S} be a similarly oriented set of χ-coloured paintings containing $\left(\Gamma_{i}, \phi_{i}\right)$ for each $i \geq 0$, and closed under Φ_{χ}-preserving homeomorphisms of Σ_{χ}. This exists since $\left\{\left(\Gamma_{i}, \phi_{i}\right): i \geq 0\right\}$ is similarly oriented and so are all images of each (Γ_{i}, ϕ_{i}) under Φ_{χ}-preserving homeomorphisms. Let \mathcal{D} be the set of all $(\Gamma, \phi, \lambda, \mathcal{T})$ such that $(\Gamma, \phi) \in \mathcal{S}, \lambda$ is a tie-breaker in Γ, and \mathcal{T} is a tangle in Γ.

By $10.3,10.4,10.5,11.1$ and 14.1 , there is a well-behaved set \mathcal{C} of χ-places such that for each $(\Gamma, \phi, \lambda, \mathcal{T}) \in \mathcal{D}$, if $\operatorname{ord}(\mathcal{T})>25 n \cdot 5^{2\left|E\left(\Gamma_{0}\right)\right|}$ then there is a rooted location \mathcal{L} which $\left(25 n \cdot 5^{2\left|E\left(\Gamma_{0}\right)\right|}+1\right)-$ isolates \mathcal{T} and for which $(\Gamma, \phi, \mathcal{L}) \in \mathcal{C}$. By 9.2 there exist $j>i \geq 1$ such that there is an inflation of $\left(\Gamma_{i}, \phi_{i}\right)$ in $\left(\Gamma_{j}, \phi_{j}\right)$. This is a contradiction, and completes the proof.

References

[1] Neil Robertson and P. D. Seymour, "Graph Minors IV. Tree-width and well-quasi-ordering", J. Combinatorial Theory, Ser. B, 48 (1990), 227-254.
[2] Neil Robertson and P. D. Seymour, "Graph Minors. VI. Disjoint paths across a disc", J. Combinatorial Theory, Ser. B, 41 (1986), 115-138.
[3] Neil Robertson and P. D. Seymour, "Graph Minors. VII. Disjoint paths on a surface", J. Combinatorial Theory, Ser. B, 45 (1988), 212-254.
[4] Neil Robertson and P. D. Seymour, "Graph Minors. VIII. A Kuratowski theorem for general surfaces", J. Combinatorial Theory, Ser. B, 48 (1990), 255-288.
[5] Neil Robertson and P. D. Seymour, "Graph Minors. X. Obstructions to tree-decomposition", J. Combinatorial Theory, Ser. B, 52 (1991), 153-190.
[6] Neil Robertson and P. D. Seymour, "Graph Minors. XI. Circuits on a surface", J. Combinatorial Theory, Ser. B, 60 (1994), 72-106.
[7] Neil Robertson and P. D. Seymour, "Graph Minors. XII. Distance on a surface", J. Combinatorial Theory, Ser. B, 64 (1995), 240-272.
[8] Neil Robertson and P. D. Seymour, "Graph Minors. XIV. Extending an embedding", J. Combinatorial Theory, Ser. B, 65 (1995), 23-50.
[9] Neil Robertson and P. D. Seymour, "Graph Minors. XVII. Taming a vortex", J. Combinatorial Theory, Ser. B, 77 (1999), 162-210.
[10] Neil Robertson and P. D. Seymour, "Graph Minors. XVIII. Tree-decompositions and well-quasiordering", J. Combinatorial Theory, Ser. B, 89 (2003), 77-108.
[11] Neil Robertson and P. D. Seymour, "Graph Minors. XX. Wagner's conjecture", submitted for publication.

[^0]: ${ }^{1}$ This research was partially supported by N.S.F. grant DMS 8504054.
 ${ }^{2}$ Present address: Mathematics Department, Princeton University, Princeton NJ 08544, USA

