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Abstrat

We prove the following result. Suppose that for every graph G in a lass C of graphs, and for every

\highly onneted omponent" of G, there is a deomposition of G of a ertain kind entred on the

omponent. Then C is well-quasi-ordered by minors; that is, in any in�nite subset of C there are

two graphs, one a minor of the other. This is another step towards Wagner's onjeture.



1 Introdution

It was shown in an earlier paper [2℄ that if eah member G of a lass C of �nite graphs has a \linked

tree-deomposition" into \well-behaved" piees, then C is well-quasi-ordered by minors; that is, in

every in�nite subset of C there are two graphs, one a minor of the other. It was also shown, in

another earlier paper [3℄, that for every �nite graph G there is a linked tree-deomposition into

piees orresponding to the large order \tangles" in G. (A tangle of order � in G is, more or less, a

�-onneted omponent of G.) In the present paper we ombine these results into a lemma that if,

for every G 2 C and for every large order tangle of G, there is a deomposition of G with ertain

properties entred on the tangle, then C is well-quasi-ordered by minors.

This lemma is ruial in the proof of Wagner's onjeture, that the lass of all �nite graphs is

well-quasi-ordered by minors; indeed, we shall need it twie to prove that onjeture, �rst to prove

that the lass of �nite hypergraphs with edges of size 2 or 3 drawable on a �xed surfae is well-quasi-

ordered, and seondly to derive from this that the lass of all �nite graphs is well-quasi-ordered. It

will also be needed in later papers, again in a hypergraph form, to prove Nash-Williams' \immersion"

onjeture [1℄. We shall therefore formulate it ompletely in terms of hypergraphs.

The paper is organized as follows. Setion 2 ontains basi de�nitions and results about tree-

deompositions and tangles. Setions 3 and 4 develop the relation between the kinds of deomposition

relative to a tangle that we need. In setion 5 we introdue pathworks, whih enable us to de�ne

minors of hypergraphs, and develop some lemmas about them. The main result is stated and proved

in setion 6, and setion 7 ontains a lemma whih is often useful in applying the theorem.

Thus this work falls into two parts. Setions 2-4 are about how to onvert information about

the loal struture of a hypergraph relative to eah of its high-order tangles, into a linked tree-

deomposition whose piees (the nodes of the tree) orrespond to the high-order tangles, and still

have the same loal struture (more or less | we may have to grow the piees to make them �t

together by adding on subhypergraphs of bounded tree-width). Here the tree-deompositions use

unrooted trees; there is no reason to �x a root for the tree, and if we did so the results would

appear most unnatural. The seond half, setions 5-6, mostly onerns well-quasi-ordering, and in

that topi we have to use rooted trees; we have to do ompliated indutions onerning the sizes

of these trees, and it is very important to �x a root of the tree. When we do so, for eah piee of

the tree-deomposition, there is not symmetry between its neighbouring piees any more; one is in

the diretion of the root, and has to be treated di�erently. When we lop o� the arms of the tree-

deomposition growing out from a given piee, and replae these arms by new hyperedges marking

where the arms used to attah (whih is what we mean by the loal struture at the node of the

tree), it is onvenient to lop o� the \root arm" in a di�erent way; instead of replaing it by a new

hyperedge, we simply label the verties where it used to attah and all them roots of the hypergraph.

And also, when we lop o� the \non-root" arms, we need to remember not only the set of verties

where the arm used to attah, but also whih of these verties was whih; we need to remember an

ordered set. So the new hyperedge replaing the arm will have to be equipped with a linear order

of its vertex set. The point is that half-way through the paper, suddenly our trees beome rooted

trees or \arboresenes", and the hypergraphs develop roots, and their hyperedges beome ordered

sets of verties. This is most onfusing when it happens (partiular sine we have to rede�ne all our

terms for rooted trees and rooted hypergraphs, and there is not quite an exat orrespondene), and

we hope it will help the reader to be warned ahead of time.
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2 Hypergraphs, tangles and tree-deompositions

For the purposes of this paper, a hypergraph G onsists of a �nite set V (G) of verties, a �nite set

E(G) of edges, and an inidene relation between them. The verties inident with an edge are the

ends of the edge. (A hypergraph is thus a graph if every edge has one or two ends.) A hypergraph

H is a subhypergraph of a hypergraph G (written H � G) if V (H) � V (G), E(H) � E(G), and for

every v 2 V (G) and e 2 E(H), e is inident with v in G if and only if v 2 V (H) and e is inident

with v in H. If A;B are subhypergraphs of G we denote by A [B, A \B the subhypergraphs with

vertex sets V (A) [ V (B), V (A) \ V (B) and edge sets E(A) [ E(B), E(A) \ E(B) respetively. A

separation of G is a pair (A;B) of subhypergraphs with A [ B = G and E(A \ B) = ;; its order is

jV (A \B)j, and its reverse is (B;A).

A entral idea in our approah is that of a tangle in a hypergraph, whih was introdued in [3℄.

Intuitively, a tangle of order � in a hypergraph G may be thought of as a \�-onneted omponent"

of G, a highly oherent mass in G whih resides almost ompletely on one side or the other of every

separation of order < �. Formally, let G be a hypergraph and � � 1 an integer. A tangle of order �

in G is a set T of separations of G, eah of order < �, suh that

(T1) for every separation (A;B) of G of order < �;T ontains one of (A;B), (B;A)

(T2) if (A

i

; B

i

) 2 T (i = 1; 2; 3) then A

1

[A

2

[A

3

6= G

(T3) if (A;B) 2 T then V (A) 6= V (G).

Let us mention one lemma that we shall need later.

2.1 Let G be a hypergraph, let G

0

� G, and let T

0

be a tangle in G

0

of order �. Let T be the set of

all separations (A;B) of G of order < � suh that (A \G

0

; B \G

0

) 2 T

0

. Then T is a tangle in G

of order �.

The proof is lear.

The seond onept we need is that of tree-deomposition. A tree is a non-null onneted graph

without iruits. A tree-deomposition of a hypergraph G is a pair (T; �), where T is a tree and �

assigns to eah t 2 V (T ) a subhypergraph �(t) of G, suh that

� [(�(t) : t 2 V (T )) = G

� for distint t

1

; t

2

2 V (T ); E(�(t

1

) \ �(t

2

)) = ;

� if t

1

; t

2

; t

3

2 V (T ) and t

2

lies on the path between t

1

and t

3

then �(t

1

) \ �(t

3

) � �(t

2

).

If T

0

is a subtree of T we denote [(�(t) : t 2 V (T

0

)) by � � T

0

. If e 2 E(T ) and T

1

; T

2

are the two

omponents of Tne then (� � T

1

; � � T

2

) and its reverse are the separations made by e under (T; �);

their ommon order is the order of e in (T; �). The tree-deomposition (T; �) has width w if w � 0

is minimum suh that jV (�(t))j � w + 1 for eah t 2 V (T ); and the tree-width of a hypergraph G is

the minimum width of all tree-deompositions of G. The following is proved in theorem 5.2 of [3℄.

2.2 Let G be a hypergraph with no tangle of order � �, where � � 1. Then G has tree-width �

3

2

�.

A loation in G is a set L of separations of G suh that A

1

� B

2

for all distint (A

1

; B

1

),

(A

2

; B

2

) 2 L. We de�ne M(G;L) to be \(B : (A;B) 2 L) if L 6= ;, and M(G; ;) = G.
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2.3 Let L = f(A

1

; B

1

); : : : ; (A

n

; B

n

)g be a loation in a hypergraph G. Then

1. A

1

; : : : ; A

n

;M(G;L) are mutually edge-disjoint, and have union G

2. for 1 � i � n, B

i

=M(G;L) [

S

(A

j

: 1 � j � n; j 6= i), and A

i

\M(G;L) = A

i

\B

i

3. for 1 � i < j � n;A

i

\A

j

�M(G;L), and

V (A

i

\A

j

) = V (A

i

\B

i

) \ V (A

j

\B

j

) \ V (M(G;L)):

Proof. For 1 � i � n, M(G;L) � B

i

and A

j

� B

i

for j 6= i; sine E(A

i

\B

i

) = ;, the �rst assertion

of 2.3.1 follows. For the seond assertion of 2.3.1, we observe that any vertex or edge of G not in

M(G;L) fails to belong to some B

i

, and therefore belongs to the orresponding A

i

. Thus 2.3.1 holds.

For 2.3.2, we have already seen that

M(G;L) [

S

(A

j

: 1 � j � n; j 6= i) � B

i

:

Conversely, any vertex or edge of B

i

not in M(G;L) fails to belong to B

j

for some j 6= i, and hene

belongs to A

j

. This proves the �rst assertion of 2.3.2, and the seond will follow from the �rst and

2.3.3. For 2.3.3, let 1 � i < j � n. By 2.3.1, E(A

i

\ A

j

) = ;; let v 2 V (A

i

\ A

j

). For 1 � k � n,

if k 6= i then v 2 V (A

i

) � V (B

k

), and if k = i then v 2 V (A

j

) � V (B

k

). Thus v 2 V (B

k

) for

all k (1 � k � n), and so v 2 V (M(G;L)). This proves the �rst assertion of 2.3.3. For the seond,

A

i

\ A

j

� A

i

\ B

i

sine A

j

� B

i

, and similarly A

i

\ A

j

� A

j

\ B

j

, and so the seond assertion of

2.3.3 follows. This proves 2.3.

The following is easily seen to be true (ompare theorem 9.1 of [3℄).

2.4 Let (T; �) be a tree-deomposition of a hypergraph G, let t

0

2 V (T ) and let e

1

; : : : ; e

k

be the

edges of T inident with t

0

. For 1 � i � k let the omponents of Tne

i

be T

i

; T

0

i

, where t

0

2 V (T

0

i

).

Then

(� � T

i

; � � T

0

i

) : 1 � i � k

is a loation.

We all this the loation of t

0

in (T; �). It is possible that (� � T

i

; � � T

0

i

) = (� � T

j

; � � T

0

j

) for

distint i; j, but only if � �T

0

i

= G. We say (T; �) is proper if no edge of T makes a separation (A;B)

with B = G.

2.5 Let (T; �) be a tree-deomposition of a hypergraph G, and let t 2 V (T ). Let L be the loation

of t in (T; �); then �(t) =M(G;L).

Proof. Certainly �(t) � B for every (A;B) 2 L and so �(t) �M(G;L). For the onverse inlusion,

let x be a vertex or edge of G not in �(t), and hoose t

0

2 V (T ) with x in �(t

0

). Let e be the edge

of T inident with t suh that t; t

0

are in di�erent omponents of Tne, and let (A;B) 2 L be the

orresponding separation. Then A \B � �(t), and so x is not in A \B; but x is in A, and so is not

in B. Hene x is not in M(G;L). This proves 2.5.

3



For several purposes it would be onvenient if there were at most one smallest order separation

with a given property, and we an more or less arrange this by a re�nement in the de�nition of the

order of separation. A tie-breaker in a hypergraph G is a funtion � whih maps eah separation

(A;B) of G to some member �(A;B) of a linearly ordered set (�;�) (we all �(A;B) the �-order of

(A;B)) in suh a way that

� �(A;B) = �(C;D) if and only if (A;B) = (C;D) or (A;B) = (D;C)

� for all separations (A;B), (C;D), either �(A[C;B\D) � �(A;B), or �(A\C;B[D) < �(C;D)

� if jV (A \B)j < jV (C \D)j then �(A;B) < �(C;D).

It was shown in theorem 9.2 of [3℄ that every hypergraph has a tie-breaker.

Let T

1

; T

2

be tangles in a hypergraph G. If (A;B) 2 T

1

and (B;A) 2 T

2

we say that (A;B)

distinguishes T

1

from T

2

. If there is suh an (A;B), then for a given tie-breaker � in G there is a

unique (A;B) 2 T

1

suh that (B;A) 2 T

2

of minimum �-order, alled the (T

1

;T

2

)-distintion; and if

(A;B) is the (T

1

;T

2

)-distintion then (B;A) is the (T

2

;T

1

)-distintion. By theorem 10.3 of [3℄, we

have

2.6 Let T

1

; : : : ;T

n

be distint tangles of order � in a hypergraph G with n � 1, and let � be a tie-

breaker. Then there is a tree-deomposition (T; �) of G where V (T ) = ft

1

; : : : ; t

n

g, with the following

properties:

1. if e 2 E(T ) and T

1

, T

2

are the omponents of Tne and 1 � i � n and t

i

2 V (T

2

) then

(� � T

1

; � � T

2

) 2 T

i

2. for 1 � i < j � n, let e be the edge of the path of T between t

i

; t

j

making separations of

minimum �-order; then these separations are the (T

i

;T

j

)- and (T

j

;T

i

)-distintions.

We all (T; �) a standard deomposition of G relative to T

1

; : : : ;T

n

in whih t

i

represents T

i

for

i = 1; : : : ; n.

A separation (A;B) of a hypergraph G is robust if for every separation (C;D) of A, one of the

separations (C;B [ D), (D;B [ C) has order at least that of (A;B). A tree-deomposition (T; �)

of a hypergraph G is rotund if for every two edges f

1

; f

2

2 E(T ), making separations (A

1

; B

1

) and

(A

2

; B

2

) of the same order k, where B

2

� A

1

and B

1

� A

2

, the following holds: if there is a separation

(H

1

;H

2

) of G with B

1

� H

1

and B

2

� H

2

of order < k, then some edge of F makes a separation of

order < k, where F is the path of T with �rst and last edges f

1

; f

2

.

2.7 Let T

1

; : : : ;T

n

be distint tangles of order � in a hypergraph G with n � 1, and let � be a

tie-breaker. Let (T; �) be as in 2.6. Then (T; �) is proper and rotund, and every separation made by

an edge of T under (T; �) is robust.

Proof. Let V (T ) = ft

1

; : : : ; t

n

g where t

i

represents T

i

(1 � i � n). Let e 2 E(T ), making separations

(A;B), (B;A). Then (A;B) is the (T

i

;T

j

)-distintion where t

i

; t

j

are the ends of e, and so (A;B) 2 T

i

,

and V (A) 6= V (G) by (T3). Thus (T; �) is proper. From theorem 10.2 of [3℄, (A;B) is robust. It

remains to show that (T; �) is rotund.

Thus, let f

1

; f

2

2 E(T ), and let F be the path of T with �rst and last edges f

1

; f

2

. Let f

1

; f

2

make

separations (A

1

; B

1

), (A

2

; B

2

) respetively, where B

1

� A

2

and B

2

� A

1

; and suppose that both

4



these separations have order k. Let (H

1

;H

2

) be a separation of G of order k

0

< k with B

1

� H

1

and

B

2

� H

2

, and let the �rst and last verties of F be t

1

; t

2

say. Now (A

1

; B

1

) 2 T

1

, and so (H

1

;H

2

) =2 T

1

by (T2), sine A

1

[H

1

� A

1

[ B

1

= G; and so (H

2

;H

1

) 2 T

1

by (T1), sine k

0

< k < �. Similarly

(H

1

;H

2

) 2 T

2

, and so (H

2

;H

1

) distinguishes T

1

from T

2

. Thus the (T

1

;T

2

)-distintion (A;B) has

order � k

0

< k, and by 2.6.2 (A;B) is made by some edge of F . It follows that (T; �) is rotund. This

proves 2.7.

3 Tree-width of a loation

A separation (A;B) of G is titani if at least one of the inequalities

jV ((X [ Y ) \ Z)j � jV ((X [ Y ) \B)j

jV ((Y [ Z) \X)j � jV ((Y [ Z) \B)j

jV ((Z [X) \ Y )j � jV ((Z [X) \B)j

holds for every hoie of X;Y;Z � A suh that A = X [ Y [Z and E(X); E(Y ); E(Z) are mutually

disjoint. We observe that whether or not (A;B) is titani depends only on A and on V (A\B); more

preisely,

3.1 Let (A;B) be a separation of a hypergraph G, and let (A;B

0

) be a separation of a hypergraph

G

0

, with A \B = A \B

0

. Then (A;B) is titani if and only if (A;B

0

) is titani.

The proof is lear. From theorem 8.3 of [3℄, we have the following.

3.2 Let (C;D) be a separation of a hypergraph G, and let (C

0

;D) be a titani separation of a

hypergraph G

0

, with V (C \D) = V (C

0

\D). Let T be a tangle in G of order � � 2 with (C;D) 2 T .

Let T

0

be the set of all separations (A

0

; B

0

) of G

0

of order < � suh that there exists (A;B) 2 T with

E(A \D) = E(A

0

\D). Then T

0

is a tangle in G

0

of order �.

If T is a tangle in a hypergraph G, we say that (A;B) 2 T is linked to T if there is no (A

0

; B

0

) 2 T

of smaller order with A � A

0

and B

0

� B.

3.3 Let T be a tangle of order � � in a hypergraph G and let (B;A) 2 T be linked to T and have

order �

3

4

�. Then (A;B) is titani.

Proof. Let us suppose that (A;B) is not titani. Hene we may hoose subhypergraphs X

1

;X

2

;X

3

of A suh that X

1

[X

2

[X

3

= A and E(X

1

); E(X

2

); E(X

3

) are mutually disjoint, and

j(V

1

[ V

2

) \ V

3

j < jW

1

[W

2

j

j(V

2

[ V

3

) \ V

1

j < jW

2

[W

3

j

j(V

3

[ V

1

) \ V

2

j < jW

3

[W

1

j

where V (X

i

) = V

i

and V (X

i

\ B) = W

i

(i = 1; 2; 3). Suppose that (X

1

;X

2

[X

3

[ B) =2 T . Then

either (X

2

[X

3

[B;X

1

) 2 T or (X

1

;X

2

[X

3

[B) has order � �; and in either ase, sine (B;A) is

linked to T , we dedue that (X

1

;X

2

[X

3

[B) has order at least that of (B;A). Hene

jV

1

\ (V

2

[ V

3

[ V (B))j � jV (A \B)j;
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that is,

jV

1

\ (V

2

[ V

3

)j+ jW

1

n (W

2

[W

3

)j � jW

2

[W

3

j+ jW

1

n (W

2

[W

3

)j

ontrary to our assumption. Hene (X

1

;X

2

[X

3

[B) 2 T and similarly (X

2

;X

3

[X

1

[B), (X

3

;X

1

[

X

2

[ B) 2 T . It follows that (X

1

[ B;X

2

[X

3

) =2 T by (T2), sine (X

1

[ B) [X

2

[X

3

= G; and

(X

2

[X

3

;X

1

[B) =2 T sine (X

2

[X

3

)[X

1

[B = G; and so (X

1

[B;X

2

[X

3

) has order � �; that

is,

� � j(V

1

[ V (B)) \ (V

2

[ V

3

)j = j(V

2

[ V

3

) \ V

1

j+ j(W

2

[W

3

) nW

1

j

< jW

2

[W

3

j+ j(W

2

[W

3

) nW

1

j = 2j(W

2

[W

3

) nW

1

j+ j(W

2

[W

3

) \W

1

j:

By summing this and the two similar inequalities, we obtain

3� < 2j(W

2

[W

3

) nW

1

j+ 2j(W

3

[W

1

) nW

2

j+ 2j(W

1

[W

2

) nW

3

j

+ j(W

2

[W

3

) \W

1

j+ j(W

3

[W

1

) \W

2

j+ j(W

1

[W

2

) \W

3

j

= 4jW

1

[W

2

[W

3

j � jW

1

\W

2

\W

3

j

� 4jV (A \B)j:

Hene the order of (A;B) is > 3�=4, a ontradition, and so our initial assumption that (A;B) is

not titani was false. This ompletes the proof of 3.3.

Let L be a loation in G. The order of L is the maximum order of the members of L (or 0 if

L = ;). For eah (A;B) 2 L let e(A;B) be a new element, and let H be the hypergraph with

V (H) = V (M(G;L))

E(H) = E(M(G;L)) [ fe(A;B) : (A;B) 2 Lg

where for e 2 E(M(L)) its ends are as in G, and for (A;B) 2 L the ends of e(A;B) are the elements

of V (A \B). This is a hypergraph by 2.3.2, and we all it the heart of L. We de�ne the tree-width

of L to be the tree-width of H.

3.4 Let L be a loation in a hypergraph G, suh that eah (A;B) 2 L is titani, and L has order

< �, where � � 2. Then either there is a tangle T in G of order � with L � T , or L has tree-width

�

3

2

�.

Proof. De�ne H as above. If there is no tangle in H of order �, then by 2.2 the tree-width of H is

at most

3

2

�, as required. So we may assume that there is a tangle T

0

in H of order �. Let

L = f(A

1

; B

1

); : : : ; (A

n

; B

n

)g;

and for 1 � i � n let C

i

be the subhypergraph ofH with V (C

i

) = V (A

i

\B

i

) andE(C

i

) = fe(A

i

; B

i

)g.

Thus,

H =M(G;L) [C

1

[ � � � [ C

n

;

and

G =M(G;L) [A

1

[ � � � [A

n

:

For 0 � k � n, let

H

k

=M(G;L) [A

1

[ � � � [A

k

[ C

k+1

[ � � � [ C

n

:
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Then H

0

= H and H

n

= G. For 1 � j � k, let

B

jk

=M(G;L) [

S

(A

i

: 1 � i � k; i 6= j) [ C

k+1

[ � � � [ C

n

:

Then (A

j

; B

jk

) is a separation of H

k

, and A

j

\B

jk

= A

j

\B

j

. We laim that, for 0 � k � n,

(1) There is a tangle T

k

in H

k

of order � suh that (A

j

; B

jk

) 2 T

k

for 1 � j � k.

Subproof. We proeed by indution on k. It holds for k = 0, and we therefore assume that 1 � k � n

and that T

k�1

satis�es (1) with k replaed by k � 1. Sine (C

k

; B

kk

) has order < � (beause L has

order < �) it follows from (T3) that (C

k

; B

kk

) 2 T

k�1

. Now (A

k

; B

k

) is titani, and hene so is

(A

k

; B

kk

) by 3.1. Let T

k

be the set of all separations (A

0

; B

0

) of H

k

of order < � suh that there

exists (A;B) 2 T

k�1

with E(A \B

kk

) = E(A

0

\B

kk

). By 3.2 (with C;D;G;C

0

; G

0

;T ; �;T

0

replaed

by C

k

; B

kk

;H

k�1

; A

k

;H

k

;T

k�1

; �;T

k

) T

k

is a tangle in H

k

of order �. Let 1 � j � k; we must ver-

ify that (A

k

; B

jk

) 2 T

k

. If j < k, then (A

j

; B

j;k�1

) 2 T

k�1

from the indutive hypothesis, and so

(A

j

; B

jk

) 2 T

k

from the de�nition of T

k

. We assume then that j = k. But (C

k

; B

kk

) 2 T

k�1

as we

saw above, and E(C

k

\ B

kk

) = ; = E(A

k

\ B

kk

) and so (A

k

; B

kk

) 2 T

k

from the de�nition of T

k

.

Thus T

k

satis�es (1); and so (1) holds, by indution on k.

From (1) with k = n, we dedue that (A

j

; B

j

) 2 T

n

for 1 � j � n, sine B

j

= B

jn

; and so L � T

n

.

This proves 3.4.

4 Isolating loations

Let T be a tangle in a hypergraph G, and let � be a tie-breaker in G. A loation L is said to �-isolate

T if L � T and has order < �, and for every (C;D) 2 L and every tangle T

0

in G of order � �

with (D;C) 2 T

0

, if (A;B) is the (T ;T

0

)-distintion then A � C and D � B. Our objetive in this

setion is to study the global struture of a hypergraph G given, for every tangle T in G of high

order, a loation �-isolating T .

We shall need the following lemma (our thanks to M. Saks for its proof).

4.1 Let T be a tree and let � be some linear order on E(T ). For eah t 2 V (T ), let T

t

be a subtree

of T suh that

� t 2 V (T

t

)

� if e 2 E(T ) has one end in V (T

t

) and the other end in V (T ) n V (T

t

) and f is an edge of the

path of T with �rst vertex t and last edge e, then e � f .

Then there exists I � V (T ) suh that the sets V (T

t

) (t 2 I) form a partition of V (T ).

Proof. We proeed by indution on jV (T )j. We may assume that E(T ) 6= ;, and may therefore

hoose f 2 E(T ) minimum under �. Let T

1

; T

2

be the two omponents of Tnf , and let the ends of

f be u

1

2 V (T

1

), u

2

2 V (T

2

). For eah t 2 V (T

i

), de�ne T

i

t

= T

t

\ T

i

(i = 1; 2). These satisfy the

hypotheses of 4.1, so from our indutive hypothesis, we may hoose I

i

� V (T

i

) suh that the sets

V (T

i

t

) (t 2 I

i

) form a partition of V (T

i

) (i = 1; 2). Now if for i = 1; 2; T

i

t

= T

t

for every t 2 I

i

then

7



I = I

1

[ I

2

satis�es our requirement. We assume then that there exists s 2 I

1

with T

1

s

6= T

s

. Hene

T

s

6� T

1

, and so f 2 E(T

s

), and in partiular u

1

2 V (T

1

s

). It follows that T

1

t

= T

t

for all t 2 I

1

n fsg,

sine no other V (T

1

t

) ontains u

1

. Moreover, we laim that T

2

� T

s

. For if not, there is an edge e

of T

2

with one end in V (T

s

) and the other in V (T

2

) n V (T

s

). Then f is in the path of T

s

with �rst

vertex s and last edge e, and so e � f . But f < e from our hoie of f sine e 6= f , a ontradition.

Thus T

2

� T

s

, and so the sets V (T

t

) (t 2 I

1

) partition V (T ). This proves 4.1.

4.2 Let T

j

(j 2 J) be distint tangles of order � in a hypergraph G, let � be a tie-breaker in G, and

for eah j 2 J let L

j

� T

j

be a loation whih �-isolates T

j

with respet to �. Then there exists I � J

suh that for every j 2 J there is a unique i 2 I with L

i

� T

j

.

Proof. We may assume that J 6= ;. Let J = f1; : : : ; ng say where n � 1. Let (T; �) be a standard

tree-deomposition relative to T

1

; : : : ;T

n

in whih t

i

represents T

i

for 1 � i � n.

(1) If e; e

0

2 E(T ) are distint, and make separations (A;B); (A

0

; B

0

) of G say, then

(A;B); (B;A) 6= (A

0

; B

0

); (B

0

; A

0

):

Subproof. Let e have ends t

i

; t

j

. By 2.6.2, one of (A;B); (B;A) is the (T

i

;T

j

)-distintion, and the

other is the (T

j

;T

i

)-distintion. Consequently, one of (A;B), (B;A) does not belong to T

i

and the

other does not belong to T

j

. But by 2.6.1, one of (A

0

; B

0

); (B

0

; A

0

) belongs to both T

i

and T

j

. This

proves (1).

For 1 � h � n let T

h

be the restrition of T to ft

i

: 1 � i � n; L

h

� T

i

g. For the moment, let us

�x h with 1 � h � n. Let S

h

be the omponent of T

h

ontaining t

h

.

(2) Let t

i

2 V (S

h

) be adjaent in T to t

j

2 V (T ) n V (S

h

), and let (A;B) be the (T

h

;T

j

)-distintion;

then (A;B) 2 T

k

for every t

k

2 V (T

h

), and (A;B) is the (T

i

;T

j

)-distintion.

Subproof. Sine t

j

=2 V (S

h

) it follows that t

j

=2 V (T

h

) and so L

h

6� T

j

. Choose (C;D) 2 L

h

with (C;D) =2 T

j

. Then (C;D) has order < � sine (C;D) 2 L

h

, and so (D;C) 2 T

j

by (T1). Sine

L

h

�-isolates T

h

it follows that A � C and D � B. For eah t

k

2 V (T

h

), (C;D) 2 L

h

� T

k

, and so

(B;A) =2 T

k

by (T2) sine B[C = G; and hene (A;B) 2 T

k

by (T1) sine T

k

has order �. In parti-

ular, (A;B) 2 T

i

, and therefore has �-order at least that of the (T

i

;T

j

)-distintion (A

0

; B

0

). On the

other hand, (A

0

; B

0

) distinguishes T

h

from T

j

(by 2.6.1, sine t

i

lies on the path of T between t

h

and

t

j

) and therefore has �-order at least that of (A;B). Hene equality ours, and (A;B) = (A

0

; B

0

)

by the �rst tie-breaker axiom. This proves (2).

(3) T

h

is a tree.

Subproof. Let t

k

=2 V (S

h

), and let P be the path of T from t

h

to t

k

. Let t

i

be the last vertex

of P in V (S

h

) and t

j

the next vertex of P , and de�ne (A;B) as in (2). Then (A;B) =2 T

k

by 2.6.1

and 2.6.2, sine (A;B) is the (T

i

;T

j

)-distintion; and so t

k

=2 V (T

h

) by (2). Hene S

h

= T

h

and T

h

is a tree. This proves (3).
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For eah e 2 E(T ) with ends t

i

; t

j

say, let �(e) be the �-order of the (T

i

;T

j

)-distintion. By (1),

�(e) 6= �(e

0

) for all distint e; e

0

2 E(T ).

(4) If e 2 E(T ) has one end in V (T

h

) and the other in V (T ) n V (T

h

), and f is an edge of the

path of T with �rst vertex t and last edge e, then �(e) < �(f) unless e = f .

Subproof. Let e have ends t

i

2 V (T

h

) and t

j

2 V (T )nV (T

h

), and let (A;B) be the (T

i

;T

j

)-distintion.

By (2) and (3), (A;B) is the (T

h

;T

j

)-distintion, and so its �-order is at most the �-order of the

separation made by f , with strit inequality unless e = f by (1). This proves (4).

In view of (3), (4) and 4.1, this proves 4.2.

Let L;L

�

be loations in a hypergraph G, and let L = f(C

1

;D

1

); : : : ; (C

k

;D

k

)g. We say that L

�

is an enlargement of L if there exist L

1

; : : : ;L

k

� L

�

, mutually disjoint (possibly empty) and with

union L

�

, suh that for 1 � h � k, every (A;B) 2 L

h

satis�es A � C

h

and D

h

� B. If in addition

w � 0 and L

h

[ f(D

h

; C

h

)g has tree-width � w for 1 � h � k, we say that L

�

is an enlargement of

L by tree-width � w.

4.3 Let � be a tie-breaker in a hypergraph G, let � � 2, and let T

1

; : : : ;T

n

be distint tangles in

G, eah of order �, where n � 1. For 1 � i � n let L

i

� T

i

be a loation of order �

3

4

� whih

�-isolates T

i

; and suppose that for every tangle T in G of order �, there is a unique i with 1 � i � n

suh that L

i

� T . Let (T; �) be a standard tree-deomposition of G relative to T

1

; : : : ;T

n

, where

V (T ) = ft

1

; : : : ; t

n

g and t

i

represents T

i

for 1 � i � n. Then for 1 � i � n, the loation of t

i

in

(T; �) is an enlargement of L

i

by tree-width �

9

4

�.

Proof. Let 1 � i � n, and let L

i

= f(C

1

;D

1

); : : : ; (C

k

;D

k

)g. Let L

�

be the loation of t

i

in (T; �).

(1) If (A;B) 2 L

�

then (A;B) has order �

3

4

� and there exists h with 1 � h � k suh that

A � C

h

and D

h

� B.

Subproof. Sine (A;B) 2 L

�

, there exists j 6= i with 1 � j � n suh that t

i

; t

j

are adjaent in

T and (A;B) is the (T

i

;T

j

)-distintion. Sine L

j

� T

j

and j 6= i it follows that L

6

� T

j

, and so

there exists h with 1 � h � k suh that (C

h

;D

h

) =2 T

j

. Sine (C

h

;D

h

) has order �

3

4

� < �, and

T

j

has order �, it follows that (D

h

; C

h

) 2 T

j

. Sine L

i

�-isolates T

i

, we dedue that A � C

h

and

D

h

� B. Moreover, sine (C

h

;D

h

) distinguishes T

i

from T

j

and has order �

3

4

�, it follows that the

(T

i

;T

j

)-distintion (A;B) also has order �

3

4

�. This proves (1).

(2) Eah member of L

�

is titani.

Subproof. Let (A;B) 2 L

�

, and hoose j as above. We laim that (B;A) is linked to T

j

. For

suppose that there exists (B

0

; A

0

) 2 T

j

of smaller order than (A;B), and with B � B

0

and A

0

� A.

Sine (A;B) 2 T

i

and A

0

� A it follows that (A

0

; B

0

) 2 T

i

, and so (A

0

; B

0

) distinguishes T

i

from T

j

;

and hene has order at least that of (A;B), a ontradition. Thus there is no suh (B

0

; A

0

), and so

(B;A) is linked to T

j

. Sine (B;A) has order �

3

4

� by (1), it follows that (A;B) is titani, by 3.3.

This proves (2).
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By (1), there exist L

�

1

; : : : ;L

�

k

� L

�

, mutually disjoint and with union L

�

, suh that for 1 � g � k,

every (A;B) 2 L

�

g

satis�es A � C

g

and D

g

� B. Fix h with 1 � h � k.

(3) There is no tangle T of order � in G with L

�

h

[ f(D

h

; C

h

)g � T .

Subproof. Suppose that T is suh a tangle. From the hypothesis, there exists j with 1 � j � n

suh that L

j

� T . Sine (D

h

; C

h

) 2 T and (C

h

;D

h

) 2 L

i

, it follows that i 6= j. Let (A;B) be

the (T

i

;T

j

)-distintion. Sine L

j

6� T

i

, there exists (C;D) 2 L

j

suh that (C;D) =2 T

i

. Therefore

(D;C) 2 T

i

, sine L

j

has order < �, and hene D � A sine (B;A) is the (T

j

;T

i

)-distintion and

L

j

�-isolates T

j

. Sine L

j

� T it follows that (C;D) 2 T , and hene (B;A) 2 T sine (B;A) has

order < � and D � A. Let t

j

0

be the seond vertex of the path of T from t

i

to t

j

, and let (A

0

; B

0

) be

the (T

i

;T

j

0

)-distintion; then, sine one of the edges of this path makes the separation (A;B) under

(T ; �) (by 2.6.2), it follows that A � A

0

and B

0

� B. Hene (B

0

; A

0

) 2 T , sine (B;A) 2 T . Choose

g with 1 � g � k suh that (A

0

; B

0

) 2 L

�

g

. Then A

0

� C

g

sine L

�

g

[ f(D

g

; C

g

)g is a loation, and

so (C

g

;D

g

) =2 T by (T2), sine (B

0

; A

0

) 2 T and B

0

[ C

g

= G. But (C

g

;D

g

) has order < �, and so

(D

g

; C

g

) 2 T by (T1). Now (D

h

; C

h

) 2 T by our assumption, and so D

g

[ D

h

6= G by (T2), and

hene g = h sine L

i

is a loation. But (A

0

; B

0

) =2 T and

(A

0

; B

0

) 2 L

�

g

= L

�

h

� T ;

a ontradition. Thus there is no suh T . This proves (3).

Let L

0

= f(A;B \ C

h

) : (A;B) 2 L

�

h

g. Then L

0

is a loation in C

h

, of order < �.

(4) There is no tangle in C

h

of order � inluding L

0

.

Subproof. Suppose that T

0

is suh a tangle. Let T be the set of all separations (A;B) of G of

order < � suh that (A\C

h

; B\C

h

) 2 T

0

. By 2.1, T is a tangle in G, of order �. Sine (D

h

; C

h

) has

order < � and (D

h

\ C

h

; C

h

\ C

h

) 2 T

0

by (T1) and (T3), it follows that (D

h

; C

h

) 2 T . Similarly,

if (A;B) 2 L

�

h

, then (A;B) has order < �, and (A \ C

h

; B \ C

h

) = (A;B \ C

h

) 2 L

0

� T

0

, and so

(A;B) 2 T . Hene, L

�

h

[ f(D

h

; C

h

)g � T , ontrary to (3). This proves (4).

Now every member of L

0

is titani by (2) and 3.1, and so from (4) and 3.4, L

0

has tree-width

�

3

2

�. Let L = L

�

h

[ f(D

h

; C

h

)g. The heart of L may be obtained from the heart of L

0

(taking

the latter to be C

h

if L

0

= ;) by adding one new edge whose set of ends is V (C

h

\D

h

), and sine

jV (C

h

\D

h

)j �

3

4

�, we dedue that L has tree-width �

3

2

� +

3

4

� =

9

4

�. This proves 4.3.

Now we dedue the main result of this setion, by ombining 2.7, 4.2 and 4.3.

4.4 Let � be a tie-breaker in a hypergraph G, and let � � 1 be an integer. For eah tangle T in G

of order � � let L(T ) � T be a loation whih �-isolates T , and let G have a tangle of order �

4

3

�.

Then there is a tree-deomposition (T; �) of G with the following properties:

� (T; �) is proper and rotund

� for eah e 2 E(T ), the separations made by e under (T; �) are robust
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� for eah t 2 V (T ), let L be the loation of t in (T; �); then there is a tangle T in G of order

�

4

3

� with L � T , suh that L is an enlargement of L(T ) by tree-width � 3 � + 1.

Proof. Let �

0

be the least integer with �

0

�

4

3

�. Then �

0

� 2. Let T

j

(j 2 J) be all the tangles of

order �

0

in G. Then J 6= ;, by hypothesis. For eah j 2 J;L(T

j

) �

0

-isolates T

j

sine it �-isolates T

j

.

By 4.2, there exists I � J suh that for every j 2 J there is a unique i 2 I with L(T

i

) � T

j

. Let

I = f1; : : : ; ng say. Now n � 1 sine J 6= ;. Let (T; �) be a standard deomposition of G relative to

T

1

; : : : ;T

n

in whih t

i

represents T

i

for 1 � i � n. By 2.7, the �rst two statements of the theorem

hold. Let us verify the third. Let 1 � i � n, and let L be the loation of t

i

in (T; �). From 4.3

(with � replaed by �

0

) L is an enlargement of L(T

i

) by tree-width �

9

4

�

0

. Sine �

0

�

4

3

� +

2

3

and

9

4

�

4

3

� +

2

3

�

< 3 � + 2 we dedue that the third statement holds. This proves 4.4.

5 Pathworks

Our appliation of 4.4 will be to prove that ertain lasses of \pathworks" in the sense of [2℄ are

well-quasi-ordered by our pathwork ontainment relation, \simulation", and now we need to de�ne

these things. A marh in a set V is a �nite sequene of distint elements of V ; and if � is the marh

v

1

; : : : ; v

k

, we denote the set fv

1

; : : : ; v

k

g by ��. A rooted hypergraph G is a pair (G

�

; �(G)) where G

�

is a hypergraph and �(G) is a marh in V (G

�

). We de�ne V (G) = V (G

�

); E(G) = E(G

�

). If G;H

are rooted hypergraphs and G

�

� H

�

we write G � H and say that G is a rooted subhypergraph of

H..

If V is a �nite set we denote by K

V

the omplete graph on V , that is, the graph with vertex

set V and edge set the set of all subsets of V of ardinality 2, with the natural inidene relation.

A grouping in V is a subgraph of K

V

every omponent of whih is omplete. A pairing in V is a

grouping in V every omponent of whih has at most two verties. If K is a pairing in V , we say

that K pairs X;Y if X;Y � V are disjoint and

� every 2-vertex omponent of K has one vertex in X and the other in Y , and

� every vertex of X [ Y belongs to some 2-vertex omponent of K.

A path � in V is a subset V (�) of V , together with a olletion of groupings in V , eah with vertex

set V (�). (We shall use the same symbol � to denote the olletion of groupings.) A path � is

free if � ontains every grouping in V with vertex set V (�); and it is robust if for every hoie of

X;Y � V (�) with jXj = jY j and X \ Y = ;, there is a pairing in � whih pairs X;Y .

A pathwork is a triple P = (G;�;�), where

� G is a rooted hypergraph

� � is a funtion with domain dom(�) � E(G); and for eah e 2 dom(�) �(e) is a marh with

��(e) the set of ends of e in G

� � is a funtion with domain E(G), suh that for eah e 2 E(G) �(e) is a path with V (�(e))

the set of ends of e; and for eah e 2 E(G) n dom(�);�(e) is free.
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The pathwork is robust if eah �(e) (e 2 E(G)) is robust. (This is automati for e =2 dom(�), sine

free pathes are robust.)

A quasi-order 
 is a pair (E(
);�), where E(
) is a lass and � is a reexive transitive relation

on E(
). It is a well-quasi-order if for every ountable sequene x

i

(i = 1; 2 : : :) of elements of E(
)

there exist j > i � 1 suh that x

i

� x

j

. If 


1

;


2

are quasi-orders with E(


1

) \ E(


2

) = ; we

denote by 


1

[ 


2

the quasi-order 
 with E(
) = E(


1

) [ E(


2

) in whih x � y if and only if

for some i 2 f1; 2g; x; y 2 E(


i

) and x � y in 


i

. If 


1

;


2

are quasi-orders we write 


1

� 


2

if

E(


1

) � E(


2

) and for all x; y 2 E(


1

); x � y in 


1

if and only if x � y in 


2

.

If 
 is a quasi-order, a partial 
-pathwork is a quadruple (G;�;�; �), where (G;�;�) is a

pathwork and � is a funtion from a subset dom(�) of E(G) into E(
). It is an 
-pathwork if

dom(�) = E(G). It is robust if (G;�;�) is robust. The underlying rooted hypergraph G of a partial


-pathwork P = (G;�;�; �) will be denoted by jjP jj.

If V is a �nite set, N

V

denotes the graph with vertex set V and no edges. A realization of a

pathwork (G;�;�) is a subgraph of K

V (G)

expressible in the form

N

V (G)

[

S

(Æ

e

: e 2 E(G))

where Æ

e

2 �(e) for eah e 2 E(G). A realization of a partial 
-pathwork (G;�;�; �) is a realization

of (G;�;�). If �

1

; �

2

are marhes with the same length, we denote the bijetion of ��

1

onto ��

2

mapping

�

1

to �

2

by �

1

! �

2

. Let P = (G;�;�); P

0

= (G

0

; �

0

;�

0

) be pathworks. An expansion of P in P

0

is a funtion � with domain V (G) [E(G) suh that

� for eah v 2 V (G); �(v) is a non-empty subset of V (G

0

), and for eah e 2 E(G), �(e) 2 E(G

0

)

� for distint v

1

; v

2

2 V (G); �(v

1

) \ �(v

2

) = ;

� for distint e

1

; e

2

2 E(G); �(e

1

) 6= �(e

2

)

� for eah e 2 E(G); e 2 dom(�) if and only if �(e) 2 dom(�

0

)

� for eah e 2 E(G) n dom(�), if v is an end of e in G then �(v) ontains an end of �(e) in G

0

� for eah e 2 dom(�); �(e) and �

0

(�(e)) have the same length, k say, and for 1 � i � k; �(v)

ontains the i

th

term of �

0

(�(e)) where v is the i

th

term of �(e)

� �(G) and �(G

0

) have the same length, k say, and for 1 � i � k �(v) ontains the i

th

term of

�(G

0

) where v is the i

th

term of �(G)

� for eah e 2 dom(�); �(e) ! �

0

(�(e)) maps �(e) to �

0

(�(e)).

If P = (G;�;�; �), P

0

= (G

0

; �

0

;�

0

; �

0

) are partial 
-pathworks, an expansion of P in P

0

is

an expansion � of (G;�;�) in (G

0

; �

0

;�

0

) suh that �(e) 2 dom(�

0

) and �(e) � �

0

(�(e)) for eah

e 2 dom(�).

If G is a hypergraph and F � E(G), GnF denotes the subhypergraph with the same vertex set

and edge set E(G) nF . If G is a rooted hypergraph, GnF denotes (G

�

nF; �(G)). If P = (G;�;�; �)

is an 
-pathwork and F � E(G), PnF denotes the 
-pathwork (GnF; �

0

;�

0

; �

0

) where �

0

;�

0

; �

0

are the restritions of �;�; � to dom(�) \ E(GnF ), E(GnF ), E(GnF ) respetively. Similarly, if

P = (G;�;�) is a pathwork and F � E(G), PnF denotes the pathwork (GnF; �

0

;�

0

), with
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�

0

;�

0

as before. We often write Pne for Pnfeg, et. Let � be an expansion of P = (G;�;�) in

P

0

= (G

0

; �

0

;�

0

), or of P = (G;�;�; �) in P

0

= (G

0

; �

0

;�

0

; �

0

). A realization H of P

0

n�(E(G)) is

said to realize � if for every v 2 V (G), �(v) is the vertex set of some omponent of H; and if there

is suh a realization, � is said to be realizable. Let us say that P is simulated in P

0

if there is a

realizable expansion of P in P

0

.

If P = (G;�;�) is a pathwork and A � G, we denote by P jA the pathwork (A;�

0

;�

0

), where

�

0

;�

0

are the restritions of �;� to E(A)\dom(�), E(A) respetively. If P = (G;�;�; �) is a partial


-pathwork, P jA is the partial 
-pathwork (A;�

0

;�

0

; �

0

) where �

0

;�

0

are as before and �

0

is the

restrition of � to E(A) \ dom(�).

A separation of a rooted hypergraph G is a pair (A;B) of rooted hypergraphs suh that (A

�

; B

�

)

is a separation of G

�

; ��(A) = V (A\B), and �(B) = �(G). Two verties of a graph H are onneted

in H if they belong to the same omponent of H. We begin with the following lemma.

5.1 For i = 1; 2 let P

i

= (G

i

; �

i

;�

i

) be a pathwork, and let (G

0

i

; G

0

) be a separation of G

i

. Let

�(G

0

1

) = �(G

0

2

), and let P

1

jG

0

= P

2

jG

0

. For i = 1; 2 let H

0

i

be a realization of P

i

jG

0

i

, suh that for

x; y 2 ��(G

0

1

) = ��(G

0

2

), x and y are onneted in H

0

1

if and only if they are onneted in H

0

2

. Let

H

0

be a realization of P

1

jG

0

= P

2

jG

0

, and let H

i

= H

0

[ H

0

i

(i = 1; 2). Then for i = 1; 2; H

i

is a

realization of P

i

, and for x; y 2 V (G

0

) x and y are onneted in H

1

if and only if they are onneted

in H

2

.

Proof. Let x; y 2 V (G

0

) be onneted in H

1

say; we shall prove that they are onneted in H

2

.

Choose a sequene

x = v

0

; e

1

; v

1

; e

2

; : : : ; e

t

; v

t

= y

suh that v

0

; : : : ; v

t

2 V (H

1

); e

1

; : : : ; e

t

2 E(H

1

) and for 1 � i � t; e

i

is inident with v

i�1

and v

i

in

H

1

. Let

I = fi : 0 � i � t; v

i

2 V (G

0

)g:

Then 0, t 2 I; let I = fs(1); s(2); : : : ; s(r)g say, in order, where s(1) = 0 and s(r) = t.

(1) For 1 � j � r � 1, v

s(j)

and v

s(j+1)

are onneted in H

2

.

Subproof. If e

k

2 E(H

0

) for some k with s(j) + 1 � k � s(j + 1) then v

k�1

; v

k

2 V (G

0

) sine

they are both inident with e

k

; hene k � 1; k 2 I, and so from the de�nition of I; k � 1 = s(j),

k = s(j+1) and v

s(j)

, v

s(j+1)

are onneted inH

2

, as laimed. If e

k

=2 E(H

0

) for s(j)+1 � k � s(j+1)

then v

s(j)

, v

s(j+1)

are verties of H

0

1

and are onneted in H

0

1

; but v

s(j)

, v

s(j+1)

2 V (G

0

) and so both

belong to ��(G

0

1

). Sine v

s(j)

, v

s(j+1)

are onneted in H

0

1

it follows from our hypothesis that they are

onneted in H

0

2

and hene in H

2

, as laimed. This proves (1).

From (1) it follows that x; y are onneted in H

2

. This proves 5.1.

Let P = (G;�;�) be a pathwork. A grouping K is feasible in P if V (K) = ��(G) and there is

a realization H of P suh that for distint x, y 2 V (K), x and y are onneted in H if and only if

they are adjaent in K. A grouping is feasible in a partial 
-pathwork (G;�;�; �) if it is feasible

in (G;�;�). The set of all groupings feasible in P will be denoted by gr(P ).
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5.2 For i = 1; 2 let P

i

= (G

i

; �

i

;�

i

) be a pathwork, and let (G

0

i

; G

0

) be a separation of G

i

, suh

that �(G

0

1

) = �(G

0

2

), P

1

jG

0

= P

2

jG

0

, and gr(P

1

jG

0

1

) � gr(P

2

jG

0

2

): Then for every realization H

1

of

P

1

there is a realization H

2

of P

2

suh that for x, y 2 V (G

0

), x and y are onneted in H

1

if and

only if they are onneted in H

2

.

Proof. Let H

1

be a realization of P

1

; then H

1

= H

0

[H

0

1

, where H

0

is a realization of P

1

jG

0

and H

0

1

is a realization of P

1

jG

0

1

. Let H

0

2

be a realization of P

2

jG

0

2

suh that for x, y 2 ��(G

0

1

), x and y are

onneted inH

0

1

if and only if they are onneted inH

0

2

. (This exists beause gr(P

1

jG

0

1

) � gr(P

2

jG

0

2

).

Then H

2

= H

0

[H

0

2

is a realization of P

2

satisfying the theorem, by 5.1. This proves 5.2.

5.3 For i = 1; 2 let P

i

= (G

i

; �

i

;�

i

) be a pathwork, and let (G

0

i

; G

0

) be a separation of G

i

, suh that

�(G

0

1

) = �(G

0

2

), P

1

jG

0

= P

2

jG

0

, and gr(P

1

jG

0

1

) � gr(P

2

jG

0

2

): Let �

1

be a realizable expansion of some

pathwork P = (G;�;�) in P

1

suh that �

1

(e) 2 E(G

0

) for every e 2 E(G) and �

1

(v) \ V (G

0

) 6= ;

for eah v 2 V (G). Then there is a realizable expansion �

2

of P in P

2

suh that �

2

(e) = �

1

(e) for

eah e 2 E(G), and �

2

(v) \ V (G

0

) = �

1

(v) \ V (G

0

) for eah v 2 V (G).

Proof. Let H

1

be a realization of P

1

n�

1

(E(G)) whih realizes �

1

. By 5.2 applied to P

1

n�

1

(E(G))

and P

2

n�

1

(E(G)), there is a realization H

2

of P

2

n�

1

(E(G)) suh that for x, y 2 V (G

0

), x and y are

onneted in H

1

if and only if they are onneted in H

2

. For e 2 E(G) let �

2

(e) = �

1

(e). For eah

v 2 V (G) there is a omponent C

1

of H

1

with V (C

1

) = �

1

(v), and hene a (unique) omponent C

2

of H

2

with

V (C

2

) \ V (G

0

) = V (C

1

) \ V (G

0

) = �

1

(v) \ V (G

0

);

sine �

1

(v) \ V (G

0

) 6= ;. Let �

2

(v) be V (C

2

). Then �

2

is the required expansion. This proves 5.3.

If f; g are funtions with domains dom(f); dom(g) respetively and x is any objet, the statement

f(x) � g(x) will mean \either x 2 dom(f) \ dom(g) and f(x) = g(x), or x =2 dom(f) [ dom(g)."

Let G be a rooted hypergraph. We say that A � G is omplemented if ��(A) ontains every vertex

v 2 V (A) suh that either v 2 ��(G) or some edge e 2 E(G) n E(A) is inident with v. If A is

omplemented, we de�ne G n A � G to be the rooted hypergraph with

V (G n A) = (V (G) n V (A)) [ ��(A);

E(G n A) = E(G) n E(A);

�(G n A) = �(G):

Then (A;GnA) is a separation of G, sine (A

�

; (GnA)

�

) is a separation of G

�

; ��(A) = V (A)\V (Gn

A), and �(G nA) = �(G). A rooted loation L in a rooted hypergraph G is a set L of omplemented

rooted hypergraphs A with A � G suh that A

1

� G nA

2

for all distint A

1

; A

2

2 L. If L is a rooted

loation in G then f(A

�

; (G n A)

�

) : A 2 Lg is a loation in G

�

whih we denote by L

�

. (It is

possible that (A

�

; (G nA)

�

) = (A

0�

; (G nA

0

)

�

) for distint A;A

0

2 L, but only if E(A) = E(A

0

) = ;

and V (A) = V (A

0

) = ��(A) = ��(A

0

).) We de�ne M(G;L) =M(G

�

;L

�

).

Let P = (G;�;�) be a pathwork and let L be a rooted loation in G. For eah A 2 L let e(A)

be a new element, and let G

0

be the rooted hypergraph with

V (G

0

) = V (M(G;L))

E(G

0

) = E(M(G;L)) [ fe(A) : A 2 Lg

�(G

0

) = �(G)

14



where for e 2 E(M(G;L)) its ends are as in G

�

, and for A 2 L the ends of e(A) are the verties in

��(A). We de�ne the heart P jL of (P;L) to be the pathwork (G

0

; �

0

;�

0

) suh that �

0

(e(A)) = �(A)

and �

0

(e(A)) = gr(P jA) for all A 2 L and �

0

(e) � �(e) and �

0

(e) = �(e) for all e 2 E(M(G;L)).

(It is unique up to the hoie of the new elements e(A).)

5.4 Let P = (G;�;�) be a pathwork, let L be a rooted loation in G, and let P

0

= (G

0

; �

0

;�

0

) be

the heart of (P;L). Then

V (G) n ��(G) = (V (G

0

) n ��(G

0

)) [

[

A2L

(V (A) n ��(A));

and gr(P ) = gr(P

0

).

Proof. For the �rst assertion, let v 2 V (G) n ��(G). By the de�nition of M(G;L), either v 2

V (M(G;L)) or there exists A 2 L with v =2 V (G n A). In the �rst ase, v 2 V (G

0

), and sine

�(G) = �(G

0

) it follows that v 2 V (G

0

)n ��(G

0

). In the seond ase v 2 V (A), and therefore v =2 ��(A)

sine ��(A) � V (G n A). So in either ase

v 2 (V (G

0

) n ��(G

0

)) [

[

A2L

(V (A) n ��(A));

and therefore V (G) n ��(G) is a subset of this set.

To prove the reverse inlusion, we observe that ��(G) \ V (G

0

) � ��(G

0

) and for eah A 2 L,

��(G) \ V (A) � ��(A) sine A is omplemented. It follows that no vertex of

(V (G

0

) n ��(G

0

)) [

[

A2L

(V (A) n ��(A))

belongs to ��(G), so this set is a subset of V (G)n ��(G). This proves the �rst assertion of the theorem.

For the seond assertion, let L = fA

1

; : : : ; A

k

g, and for 1 � i � k let e(A

i

) 2 E(G

0

) be the new

element of P

0

orresponding to A

i

. Sine �(G

0

) = �(G), we must show that a grouping K with

V (K) = ��(G) is feasible in P if and only if K is feasible in P

0

. Thus, let K be a grouping with

V (K) = ��(G).

For 0 � j � k, let G

j

be the rooted hypergraph with

V (G

j

) = V (M(G;L)) [

S

(V (A

i

) : j < i � k)

E(G

j

) = E(M(G;L)) [ fe(A

i

) : 1 � i � jg [

S

(E(A

j

) : j < i � k)

�(G

j

) = �(G)

where for e 2 E(M(G;L)) its ends are as in G

�

, for 1 � i � j the ends of e(A

i

) are the verties in

��(A

i

), and for e 2 E(A

i

) where j < i � k its ends are as in A

�

i

. For

e 2 dom(�) \ (E(M(G;L)) [E(A

j+1

) [ � � � [E(A

k

))

let �

j

(e) = �(e), and for 1 � i � j let �

j

(e(A

i

)) = �(A

i

). For

e 2 E(M(G;L)) [E(A

j+1

) [ � � � [E(A

k

)
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let �

j

(e) = �(e), and for 1 � i � j let �

j

(e(A

i

)) = gr(P jA

i

), with V (�

j

(e(A

i

))) = ��(A

i

). Then

P

j

= (G

j

; �

j

;�

j

) is a pathwork for 0 � j � k, and P

0

= P , and P

k

= P

0

. It therefore suÆes to

show that for 1 � j � k, K is feasible in P

j�1

if and only if K is feasible in P

j

, sine �(G

j

) = �(G).

Let B be G

j

ne(A

j

), and let A

0

j

be the rooted hypergraph with E(A

0

j

) = fe(A

j

)g, V (A

0

j

) = ��(A

j

)

(where the ends of e(A

j

) are the verties in ��(A

j

)), and �(A

0

j

) = �(A

j

). Sine

V (A

0

j

) = ��(A

j

) � V (B);

it follows that ��(A

j

) = V (A

j

\ B) and �(A

0

j

) = V (A

0

j

) \ B, and so (A

j

; B) is a separation of G

j�1

,

and (A

0

j

; B) is a separation of G

j

.

(1) A grouping is feasible in P

j�1

jA

j

if and only if it is feasible in P

j

jA

0

j

.

Subproof. P

j�1

jA

j

= P jA

j

, and a grouping with vertex set ��(A

j

) is feasible in P

j

jA

0

j

if and only if

it belongs to �

j

(E(A

j

)); that is, it is feasible in P jA

j

= P

j�1

jA

j

. This proves (1).

Suppose that K is feasible in one of P

j�1

, P

j

(say Q

1

), and let H

1

be the orresponding realization

of Q

1

suh that for distint x; y 2 V (K), x; y are onneted in H

1

if and only if they are adjaent in

K. By (1) and 5.2 there is a realizationH

2

of Q

2

(where fP

j�1

; P

j

g = fQ

1

; Q

2

g) suh that for distint

x; y 2 V (B), x; y are onneted in H

1

if and only if they are onneted in H

2

. But V (K) � V (B),

and so for distint x; y 2 V (K), x; y are onneted in H

2

if and only if they are adjaent in K. Thus

K is feasible in Q

2

. This proves 5.4.

Now let P = (G;�;�; �) be a partial 
-pathwork, and let L be a rooted loation in G. We all

(P;L) a partial 
-plae. If dom(�) = E(G) we all (P;L) an 
-plae. For e 2 E(M(G;L)) \ dom(�)

let �

0

(e) = �(e), and let (G

0

; �

0

;�

0

) be the heart of ((G;�;�);L); then (G

0

; �

0

;�

0

; �

0

) is a partial


-pathwork whih we all the heart (again denoted by P jL) of (P;L).

A partial 
-pathwork (G;�;�; �) has tree-width � w, where w � 0, if there is a tree-deomposition

(T; �) of G

�

of width � w suh that ��(G) � V (�(t)) for some t 2 V (T ). If (P;L) is a partial 
-plae,

and P jA has tree-width � w for all A 2 L, we say that P is an enlargement of P jL by tree-width

� w.

5.5 Let P = (G;�;�; �) be an 
-pathwork, let w � 0, and let L;L

�

be rooted loations in G,

suh that L

��

is an enlargement of L

�

by tree-width � w. Then P jL

�

is an enlargement of P jL by

tree-width � w.

Proof. Let L = fC

1

; : : : ; C

k

g where C

1

; : : : ; C

k

are distint, and for 1 � i � k let D

i

= (G n C

i

)

�

.

Then L

�

= f(C

�

1

;D

1

); : : : ; (C

�

k

;D

k

)g. (However, (C

�

1

;D

1

); : : : ; (C

�

k

;D

k

) may not all be distint.)

Let P jL

�

= (G

�

; �

�

;�

�

; �

�

) (= P

�

say), using new elements e(A) (A 2 L

�

). Choose L

1

; : : : ;L

k

� L

�

,

mutually disjoint and with union L

�

, suh that for 1 � i � k, every (A;B) 2 L

�

i

satis�es A � C

�

i

and D

i

� B, and L

�

i

[ f(D

i

; C

�

i

)g is a loation in G

�

of tree-width � w. We laim that for

1 � i � k and all A 2 L

i

, A is omplemented in C

i

. For ertainly A

�

� C

�

i

and D

i

� (G nA)

�

sine

L

�

i

[ f(D

i

; C

�

i

)g is a loation in G

�

. Moreover,

��(C

i

) \ V (A) � V (D

i

) \ V (A) � V (G n A) \ V (A) = ��(A);

and if v 2 V (A) is an end of some e 2 E(C

i

) n E(A), then e 2 E(G) n E(A) and so v 2 ��(A). This

proves that A is omplemented in C

i

. Consequently, for 1 � i � k, L

i

is a rooted loation in C

i

, and
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so (P jC

i

;L

i

) is an 
-plae; let P

i

= (G

i

; �

i

;�

i

; �

i

) be its heart (with \new" elements e(A) (A 2 L

i

),

some of the new elements of P

�

).

(1) P

i

has tree-width � w.

Subproof. Let H be the heart of L

�

i

[ f(D

i

; C

�

i

)g. Then H is the hypergraph obtained from

M(G

�

;L

�

i

[ f(D

i

; C

�

i

)g) = C

�

i

\

T

((G n A)

�

: A 2 L

i

)

by adding a new edge with set of ends V (A \B) for eah (A;B) 2 L

�

i

, and adding one further new

edge with set of ends V (D

i

\ C

�

i

) (unless (D

i

; C

�

i

) 2 L

i

). Also, G

�

i

is obtained from

M(C

i

;L

i

) = C

�

i

\

T

((C

i

nA)

�

: A 2 L

i

)

by adding a new edge with set of ends ��(A) for eah A 2 L

i

. But

C

�

i

\

T

((G n A)

�

: A 2 L

i

) = C

�

i

\

T

(C

�

i

\ (G nA)

�

: A 2 L

i

) = C

�

i

\

T

((C

i

n A)

�

: A 2 L

i

);

and there is a surjetion from L

i

onto L

�

i

suh that if A 2 L

i

is mapped to (A

0

; B

0

) 2 L

�

i

then

A

0

= A

�

and V (A

0

\ B

0

) = ��(A). Consequently, a hypergraph isomorphi to G

�

i

may be obtained

from H by deleting an edge with set of ends ��(C

i

) = V (D

i

\ C

�

i

) (unless (D

i

; C

�

i

) 2 L

i

) and

adding some new edges, eah with the same ends as some edge of H. (The latter arise when distint

members of L

i

orrespond to the same member of L

�

i

). Sine H has tree-width � w, there is a tree-

deomposition (T; �) of G

�

i

suh that ��(C

i

) � V (�(t)) for some t 2 V (T ); that is, P

i

has tree-width

� w. This proves (1).

(2) For 1 � i � k, G

i

is a omplemented rooted subhypergraph of G

�

.

Subproof. G

�

i

is obtained from C

�

i

\

T

((C

i

n A)

�

: A 2 L

i

) by adding a new edge with set of

ends ��(A) for eah A 2 L

i

, and G

��

is obtained from M(G;L

�

) = G

�

\

T

((G n A)

�

: A 2 L

�

)

by adding a new edge with set of ends ��(A) for eah A 2 L

�

. Sine C

i

n A � G n A for eah

A 2 L

i

and C

i

� G n A for all A 2 L

�

� L

i

, it follows that C

�

i

\

T

((C

i

n A)

�

: A 2 L

i

) is a

subhypergraph of G

�

\

T

((G n A)

�

: A 2 L

�

), and so G

�

i

is a subhypergraph of G

��

. Hene G

i

is

a rooted subhypergraph of G

�

. To see that it is omplemented, let v 2 V (G

i

) be suh that either

v 2 ��(G

�

) or some e 2 E(G

�

) n E(G

i

) is inident with v; we laim that v 2 V (D

i

). If v 2 ��(G

�

),

then v 2 ��(G) sine �(G

�

) = �(G), and so v 2 V (G n C

i

) = V (D

i

), as laimed. We assume then

that some e 2 E(G

�

) n E(G

i

) is inident with v. If e 2 E(G), then e 2 E(D

i

) and so v 2 V (D

i

) as

laimed. If e =2 E(G), then e = e(A) for some A 2 L

�

. Sine e =2 E(G

i

) it follows that A =2 L

i

, and

so A 2 L

j

for some j 6= i. In partiular, A

�

� C

�

j

� D

i

, and so v 2 V (D

i

), as laimed. Thus in

eah ase v 2 V (D

i

), and so

v 2 V (G

i

) \ V (D

i

) � V (C

�

i

\D

i

) = ��(C

i

) = ��(G

i

):

Hene G

i

is omplemented in G

�

. This proves (2).

(3) P

i

= P

�

jG

i

for 1 � i � k.
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Subproof. By (2), P

�

jG

i

is well-de�ned, and has the same underlying rooted hypergraph as P

i

,

namely G

i

. Let e 2 E(G

i

); we must show that �

i

(e) � �

�

(e), �

i

(e) � �

�

(e), and �

i

(e) = �

�

(e).

Now

E(G

i

) = E(M(C

i

;L

i

)) [ fe(a) : A 2 L

i

g:

We reall that P

i

is the heart of (P jC

i

;L

i

) and P

�

is the heart of (P;L

�

). If e 2 E(M(C

i

;L

i

)), then

�

i

(e) � �

�

(e) (beause �

i

(e) � �(e) and �

�

(e) � �(e)), and the other two relations follow similarly.

We assume then that e = e(A) for some A 2 L

i

. Sine A belongs to both L

i

and L

�

, it follows from

the de�nition of \heart" that

� �

i

(e) = �

�

(e) (for they are both equal to �(A)),

� e does not belong to dom(�) [ dom(�

�

), and

� �

i

(e) = �

�

(e) (for they are both equal to gr(P jA)).

This proves (3).

(4) G

1

; : : : ; G

k

are all distint, and fG

1

; : : : ; G

k

g is a rooted loation in G

�

.

Subproof. Let 1 � i, j � k with i 6= j; we laim that G

i

� G

�

n G

j

; in other words, that

V (G

i

)\V (G

j

) � ��(G

j

) and E(G

i

)\E(G

j

) = ;. First, let v 2 V (G

i

)\V (G

j

). Sine V (G

i

) � V (C

i

)

and V (G

j

) � V (C

j

), it follows that v 2 V (C

i

) \ V (C

j

) � ��(C

j

) sine L is a rooted loation. Sine

��(C

j

) = ��(G

j

) we dedue that V (G

i

)\V (G

j

) � ��(G

j

) as required. Seondly, let e 2 E(G

i

)\E(G

j

).

If e 2 E(G) then e 2 E(C

i

) \ E(C

j

) = ;, whih is impossible. Thus e = e(A) for some A 2 L

�

.

Sine e 2 E(G

i

) it follows that A 2 L

i

, and similarly A 2 L

j

; but L

i

\ L

j

= ;, a ontradition.

Thus E(G

i

) \ E(G

j

) = ;, as required. This proves that G

i

� G

�

� G

j

. Suppose that G

i

= G

j

.

Then E(G

i

) = ;, and so L

i

= ; and G

i

= C

i

; and similarly G

j

= C

j

. Consequently C

i

= C

j

, a

ontradition. Thus G

i

6= G

j

, and (4) follows.

Let L

0

= fG

1

; : : : ; G

k

g.

(5) M(G;L) = M(G

�

;L

0

).

Subproof. If k = 0 then L = ; and L

0

= ;; and L

�

= ;, sine L

��

is an enlargement of L

�

.

Hene G

�

= G, and M(G;L) = G

�

= G

��

= M(G

�

;L

0

) as laimed. We may assume then

that k 6= 0. Hene M(G;L) = D

1

\ � � � \ D

k

and M(G

�

;L

0

) = \((G

�

n G

i

)

�

: 1 � i � k). If

A 2 L

�

, then e(A) =2 E(M(G

�

;L

0

)), beause e(A) 2 E(G

i

) and hene e(A) =2 E(G

�

n G

i

) for some

i (1 � i � k), namely, the value of i suh that A 2 L

i

. Sine M(G

�

;L

0

) is a subhypergraph of G

��

and e(A) =2 E(M(G

�

;L

0

)) for eah A 2 L

�

, it follows that M(G

�

;L

0

) is a subhypergraph of G

�

. But

also M(G;L) is a subhypergraph of G

�

, and therefore to show that M(G;L) =M(G

�

;L

0

) it suÆes

to show that M(G;L) and M(G

�

;L

0

) have the same vertex- and edge-sets. Let v 2 V (G). Then
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from 5.4 applied to (P jC

i

;L

i

), we have:

v 2 V (M(G;L)) , v =2 V (C

i

) n ��(C

i

) for 1 � i � k

, v =2 V (G

i

) n ��(G

i

) and v =2 V (A) n ��(A) for 1 � i � k

and for all A 2 L

i

, v =2 V (A) n �� for all A 2 L

�

and v =2 V (G

i

) n ��(G

i

) for 1 � i � k

, v 2 V (G

�

) and v =2 V (G

i

) n ��(G

i

) for 1 � i � k

, v 2 V (M(G

�

;L

0

)):

Thus V (M(G;L))=V (M(G

�

;L

0

)), and a similar (somewhat easier) proof shows that E(M(G;L)) =

E(M(G

�

;L

0

)). This proves (5).

Let P

0

= (G

0

; �

0

;�

0

; �

0

) be the heart of the partial 
-plae (P

�

;L

0

).

(6) P

0

is the heart of (P;L).

Subproof. Sine �(G

h

) = �(C

h

) for 1 � h � k, it follows from (5) that (P;L) has heart (G

0

; �

00

;�

00

; �

00

)

for some �

00

;�

00

; �

00

. We laim that �

0

= �

00

; �

0

= �

00

, and �

0

= �

00

. Let the edges of G

0

whih are

not edges of G be e

1

; : : : ; e

k

, numbered in the natural way. (Here we use the fat that G

1

; : : : ; G

k

are distint, from (4).) Let e 2 E(G

0

), and assume �rst that e 6= e

1

; : : : ; e

k

. Then �

0

(e) � �

�

(e)

sine P

0

is the heart of (P

�

;L

0

); �

�

(e) � �(e) sine P

�

is the heart of (P;L

�

); and �

00

(e) � �(e) sine

(G

0

; �

00

;�

00

; �

00

) is the heart of (P;L). Consequently �

0

(e) � �

00

(e); and similarly �

0

(e) = �

00

(e) and

�

0

(e) = �

00

(e) as required. Now we assume that e = e

i

for some i with 1 � i � k. Then

�

0

(e

i

) = �(G

i

) = �(C

i

) = �

00

(e

i

);

and e

i

=2 dom(�

0

) [ dom(�

00

). Moreover, �

0

(e

i

) = gr(P

�

jG

i

), and and �

00

(e

i

) = gr(P jC

i

). But

P

�

jG

i

= P

i

by (3), and P

i

is the heart of (P jC

i

;L

i

), and so �

0

(e

i

) = �

00

(e

i

) from 5.4. This proves

(6).

Sine P

�

is by (1) and (3) an enlargement of P

0

by tree-width � w, it follows from (6) that the

heart of (P;L

�

) is an enlargement of the heart of (P;L) by tree-width � w. This proves 5.5.

5.6 Let P

1

; P

2

be partial 
-pathworks, and let (A

1

; B

1

), (A

2

; B

2

) be separations of jjP

1

jj; jjP

2

jj

respetively. Let �

0

be a realizable expansion of P

1

jA

1

in P

2

jA

2

(whene j��(A

1

)j = j��(A

2

)j = k, say)

and let �

00

be a realizable expansion of P

1

jB

1

in P

2

jB

2

suh that for 1 � i � k, �

00

(v) ontains the i

th

term of �(A

2

), where v is the i

th

term of �(A

1

). De�ne � by:

�(v) =

8

<

:

�

0

(v) : v 2 V (A

1

) n V (B

1

)

�

00

(v) : v 2 V (B

1

) n V (A

1

)

�

0

(v) [ �

00

(v) : v 2 V (A

1

\B

1

)

�(e) =

�

�

0

(e) : e 2 E(A

1

)

�

00

(e) : e 2 E(B

1

):

19



Then � is a realizable expansion of P

1

in P

2

.

Proof. Let � be a new element and let 


0

be the well-quasi-order with 
 � 


0

and E(


0

) = E(
)[f�g,

in whih � < x for all x 2 E(
). For i = 1; 2, let P

i

= (G

i

; �

i

;�

i

; �

i

); and for all e 2 E(G

i

), de�ne

�

0

i

(e) = �

i

(e) if e 2 dom(�

i

), and otherwise �

0

i

(e) = �. Let P

0

i

= (G

i

; �

i

;�

i

; �

0

i

); then P

0

i

is an 


0

-

pathwork. Sine �

0

is a realizable expansion of P

1

jA

1

in P

2

jA

2

, it follows that it is also a realizable

expansion of P

0

1

jA

1

in P

0

2

jA

2

. (Here we use that � � x for all x 2 E(
).) Similarly, �

00

is a realizable

expansion of P

0

1

jB

1

in P

0

2

jB

2

.

By theorem 8.1 of [2℄ applied to these two 


0

-pathworks, we dedue that � is a realizable

expansion of P

0

1

in P

0

2

. For eah e 2 dom(�

1

), it follows that �

2

(�(e)) 6= �, and therefore �(e) 2

dom(�

2

); and onsequently � is a realizable expansion of P

1

in P

2

. This proves 5.6.

If P = (G;�;�; �) is an 
-pathwork, we write V (P ) = V (G); E(P ) = E(G).

5.7 For i = 1; 2 let (P

i

;L

i

) be an 
-plae with heart Q

i

, using new elements e

i

(A) (A 2 L

i

). Suppose

that � is a realizable expansion of Q

1

in Q

2

suh that

� if e 2 E(Q

1

) and �(e) = e

2

(A

2

) for some A

2

2 L

2

then e = e

1

(A

1

) for some A

1

2 L

1

,

� for eah A

1

2 L

1

there exists A

2

2 L

2

suh that �(e

1

(A

1

)) = e

2

(A

2

) and P

1

jA

1

is simulated in

P

2

jA

2

.

Then P

1

is simulated in P

2

.

Proof. We proeed by indution on jL

2

j. If L

2

= ; then by (ii), L

1

= ;, and so Q

1

= P

1

and Q

2

= P

2

,

and � is a realizable expansion of P

1

in P

2

, as required. We assume then that L

2

6= ;. Choose A

2

2 L

2

.

There are two ases, depending on whether or not e

2

(A

2

) = �(e) for some e 2 E(Q

1

).

First, we assume that e

2

(A

2

) 6= �(e) for all e 2 E(Q

1

). Let L

0

2

= L

2

n fA

2

g, and let Q

0

2

be

the heart of the 
-plae (P

2

;L

0

2

), using new elements e

2

(A)(A 2 L

0

2

). Let Q

2

= (G;�;�; �), and

Q

0

2

= (G

0

; �

0

;�

0

; �

0

); then e

2

(A

2

) 2 E(G), and (A

2

; Gne

2

(A

2

)) is a separation of G

0

. Let K be the

rooted subhypergraph of G formed by e

2

(A

2

) and its ends, with �(K) = �(A

2

); then (K;Gne

2

(A

2

))

is a separation of G. Now �(K) = �(A

2

) and Q

2

j(Gne

2

(A

2

)) = Q

0

2

j(Gne

2

(A

2

)), and every grouping

feasible in Q

2

jK is also feasible in P

2

jA

2

= Q

0

2

jA

2

(by de�nition of �(e

2

(A

2

))). Moreover, � is a real-

izable expansion of Q

1

in Q

2

, and �(e) 2 E(Gne

2

(A

2

)) for all e 2 E(Q

1

), and �(v)\V (Gne

2

(A

2

)) 6= ;

for eah v 2 V (Q

1

) (beause V (Gne

2

(A

2

)) = V (G)). From 5.3 with P

1

; G

1

; �

1

;�

1

, P

2

; G

2

; �

2

;�

2

; G

0

1

,

G

0

2

; G

0

; �

1

replaed by (G;�;�), G;�;�, (G

0

; �

0

;�

0

), G

0

; �

0

;�

0

;K;A

2

, Gne

2

(A

2

), � respetively, and

with P replaed by the pathwork formed by the �rst three omponents of the quadruple Q

1

, we

dedue that there is a realizable expansion �

0

of Q

1

in Q

0

2

suh that �

0

(e) = �(e) for all e 2 E(Q

1

).

In partiular, if e 2 E(Q

1

) and �

0

(e) = e

2

(A

0

2

) for some A

0

2

2 L

0

2

then e = e

1

(A

1

) for some A

1

2 L

1

;

and for eah A

1

2 L

1

, �

0

(e

1

(A

1

)) = e

2

(A

0

2

) and P

1

jA

1

is simulated in P

2

jA

0

2

for some A

0

2

2 L

0

2

. From

the indutive hypothesis we dedue that P

1

is simulated in P

2

, as required.

In the seond ase, we assume that e

2

(A

2

) = �(e

1

(A

1

)) for some A

1

2 L

1

. For i = 1; 2, let

L

0

i

= L

i

n fA

i

g, let Q

0

i

= (G

0

i

; �

0

i

;�

0

i

; �

0

i

) be the heart of (P

i

;L

0

i

) using new elements e

i

(A) (A 2 L

0

i

),

and let B

i

= G

0

i

nA

i

. We laim that for i = 1; 2, Q

i

ne

i

(A

i

) = Q

0

i

jB

i

. For let P

i

= (G

i

; �

i

;�

i

; �

i

) say.

Then

M(G

i

;L

i

) =M(G

i

;L

0

i

) \ (G

i

n A

i

)

�

=M(G

i

;L

0

i

) \ (G

0

i

n A

i

)

�
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sine M(G

i

;L

0

i

) � G

0�

i

and M(G

i

;L

0

i

) � G

�

i

. Hene

Q

i

nfe

i

(A) : A 2 L

i

g = (Q

0

i

jB

i

)nfe

i

(A) : A 2 L

0

i

g;

and so Q

i

ne

i

(A

i

) = Q

0

i

jB

i

, as laimed.

Sine e

2

(A

2

) = �(e

1

(A

1

)), the seond hypothesis of the theorem implies that there is a realizable

expansion �

0

of P

1

jA

1

in P

2

jA

2

, and hene of Q

0

1

jA

1

in Q

0

2

jA

2

, sine P

i

jA

i

= Q

0

i

jA

i

(i = 1; 2). Let �

00

be the restrition of � to V (Q

0

1

)[E(Q

0

1

); then �

00

is a realizable expansion of Q

1

ne

1

(A

1

) in Q

2

ne

2

(A

2

);

that is, of Q

0

1

jB

1

in Q

0

2

jB

2

. Let j��(A

1

)j = j��(A

2

)j = k say. For 1 � i � k, let v be the i

th

term of

�(A

1

); we laim that �

00

(v) ontains the i

th

term of �(A

2

). For � is a realizable expansion of Q

1

in

Q

2

, and sine �(e

1

(A

1

)) = e

2

(A

2

) and v is the i

th

end of e

1

(A

1

), it follows that �(v) ontains the i

th

end of e

2

(A

2

); that is, the i

th

term of �(A

2

). From 5.6 with P

1

; P

2

replaed by Q

0

1

; Q

0

2

respetively,

there is a realizable expansion �

0

of Q

0

1

in Q

0

2

suh that �

0

(e) = �(e) for all e 2 E(Q

1

) n fe

1

(A

1

)g.

In partiular, if e 2 E(Q

0

1

) and �

0

(e) = e

2

(A

0

2

) for some A

0

2

2 L

0

2

then e = e

1

(A

0

1

) for some A

0

1

2 L

0

1

;

and for eah A

0

1

2 L

0

1

, �

0

(e

1

(A

0

1

)) = e

2

(A

0

2

) and P

1

jA

0

1

is simulated in P

2

jA

0

2

for some A

0

2

2 L

0

2

. From

the indutive hypothesis applied to L

0

1

and L

0

2

, we dedue that P

1

is simulated in P

2

. This proves

5.7.

6 Well-behavedness

Let P = (G;�;�; �) be a partial 
-pathwork, and let 


0

be a quasi-order with 
 � 


0

. By an 


0

-

ompletion of P we mean an 


0

-pathwork (G;�;�; �

0

) suh that �

0

(e) = �(e) for eah e 2 dom(�).

If 
 is a well-quasi-order, a lass C of partial 
-pathworks is well-behaved if for every well-quasi-order




0

with 
 � 


0

and every ountable sequene P

0

i

(i = 1; 2; : : :) of 


0

-ompletions of members of C

there exist j > i � 1 suh that P

0

i

is simulated in P

0

j

. (We remark that whether C is well-behaved

depends prima faie not only on C, but also on 
; we leave this dependene impliit. In fat, it is

an easy exerise to show that there is no dependene on 
.)

A partial 
-pathwork P = (G;�;�; �) is rootless if ��(G) = ;. Let P = (G;�;�; �) be a rootless

partial 
-pathwork, let e 2 dom(�)ndom(�), and let P

0

= (G

0

; �

0

;�

0

; �

0

) be the partial 
-pathwork

with G

0�

= G

�

ne; �(G

0

) = �(e), and P

0

= P jG

0

. We all P

0

a rooting of P .

6.1 Let 
 be a well-quasi-order, and let C be a well-behaved lass of partial 
-pathworks. Let C

0

be

the lass of all rootings of rootless members of C. Then C

0

is well-behaved.

Proof. Let 


0

be a well-quasi-order with 
 � 


0

, and let Q

0

i

(i = 1; 2; : : :) be a ountable sequene

of 


0

-ompletions of members of C

0

. Let � be a new element and let 


00

be the well-quasi-order with




0

� 


00

and E(


00

) = E(


0

) [ f�g, in whih if x � � or � � x then x = �. For eah i, let Q

0

i

=

(G

0

i

; �

0

i

;�

0

i

;  

0

i

) be an 


0

-ompletion of P

0

i

= (G

0

i

; �

0

i

;�

0

i

; �

0

i

) 2 C

0

and hoose P

i

= (G

i

; �

i

;�

i

; �

i

) 2 C

and e

i

2 dom(�

i

) n dom(�

i

) suh that ��(G

i

) = ;, �(G

0

i

) = �

i

(e

i

), G

�

i

ne

i

= G

0�

i

and P

0

i

= P

i

jG

0

i

. Let

Q

i

= (G

i

; �

i

;�

i

;  

i

) be the 


00

-ompletion of P

i

where

 

i

(e) =  

0

i

(e) (e 2 E(G

0

i

))

 

i

(e

i

) = �:

Sine C is well-behaved, there exist j > i � 1 suh that Q

i

is simulated in Q

j

; let � be a realizable

expansion of Q

i

in Q

j

. Then �(e

i

) = e

j

sine e

j

is the only edge e of G

j

with  

j

(e) = �; and hene

there is a realizable expansion of Q

i

jG

0

i

in Q

j

jG

0

j

; that is, of Q

0

i

in Q

0

j

. This proves 6.1.
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The following is a onsequene of theorem 9.1 of [2℄.

6.2 If 
 is a well-quasi-order and w � 0, the lass of all robust partial 
-pathworks of tree-width

� w is well-behaved.

Let C be a lass of partial 
-pathworks, and let (P;L) be a partial 
-plae. If P jA 2 C for all

A 2 L we say that P is an enlargement of P jL by C.

6.3 Let 
 be a well-quasi-order, and let C

1

, C

2

be well-behaved lasses of partial 
-pathworks. Then

the lass of all enlargements of members of C

1

by C

2

is well-behaved.

Proof. Let C be the lass of all enlargements of members of C

1

by C

2

. Let 


0

be a well-quasi-order

with 
 � 


0

. Let 


00

be the lass of all 


0

-ompletions of members of C

2

, ordered by simulation; then




00

is a well-quasi-order, sine C

2

is well-behaved. By replaing 
;


0

by isomorphi well-quasi-orders

we may assume that E(


0

) \E(


00

) = ;. Let 


�

= 


0

[ 


00

.

Let P

1

be an 


0

-ompletion of a member of C. We onstrut an 


�

-pathwork en(P

1

) as follows.

(Throughout, for i = 1; 2; 3; 4; P

i

= (G

i

; �

i

;�

i

; �

i

):) Choose P

2

2 C so that P

1

is an 


0

-ompletion of

P

2

. Choose P

3

2 C

1

so that P

2

is an enlargement of P

3

by C

2

and let L be the orresponding rooted

loation in G

2

, so that (P

2

;L) has heart P

3

. Let the new elements of P

3

be fe(A) : A 2 Lg. Sine

G

2

= G

1

, L is also a rooted loation in G

1

, and so (P

1

;L) is an 


0

-plae; let its heart be Q (using

the same new elements as for P

3

). Let (G

4

; �

4

;�

4

) = (G

3

; �

3

;�

3

) and de�ne �

4

: E(G

4

) ! E(


�

)

by

�

4

(e) =

8

<

:

�

3

(e) if e 2 dom(�

3

)

�

1

(e) if e 2 E(G

3

) n dom(�

3

) and e 6= e(A) for allA 2 L

P

1

jA if e = e(A) for some A 2 L:

Let P

4

= (G

4

; �

4

;�

4

; �

4

). Thus, P

4

is an 


�

-ompletion of both P

3

and Q. We de�ne en(P

1

) = P

4

.

Now let P

0

1

be another 


0

-ompletion of a member of C, and suppose that en(P

1

) is simulated in

en(P

0

1

). We laim that P

1

is simulated in P

0

1

. For let P

2

; P

3

;L, Q;P

4

and (G

i

; �

i

;�

i

; �

i

)(i = 1; : : : ; 4)

be as above for P

1

, and de�ne P

0

2

; P

0

3

;L

0

, Q

0

; P

0

4

and (G

0

i

; �

0

i

;�

0

i

; �

0

i

) (i = 1; : : : ; 4) similarly for P

0

1

.

Let � be a realizable expansion of en(P

1

) = P

4

in en(P

0

1

) = P

0

4

. Then � is a realizable expansion

of Q in Q

0

(sine P

4

; P

0

4

are 


�

-ompletions of Q;Q

0

respetively). Moreover, for eah e 2 E(Q),

�

4

(e) � �

0

4

(�(e)), and so �

4

(e) 2 E(


00

) if and only if �

0

4

(�(e)) 2 E(


00

); that is, e is one of the

new elements of Q if and only if �(e) is one of the new elements of Q

0

. Moreover, if e = e(A) say

for some A 2 L, and �(e) = e

0

(A

0

) say for some A

0

2 L

0

, then P

1

jA is simulated in P

0

1

jA

0

sine

�

4

(e) � �

0

4

(�(e)). Consequently the hypotheses of 5.7 are satis�ed (with P

1

;L

1

, Q

1

; P

2

;L

2

; Q

2

;


replaed by P

1

;L, Q;P

0

1

;L

0

, Q

0

;


0

respetively) and so by 5.7, P

1

is simulated in P

0

1

.

Let P

1

; P

2

; : : : be a ountable sequene of 


0

-ompletions of members of C. Sine 


�

is a well-

quasi-order and C

1

is well-behaved, there exist j > i � 1 suh that en(P

i

) is simulated in en(P

j

).

It follows that P

i

is simulated in P

j

. Hene C is well-behaved. This proves 6.3.

An arboresene is a direted graph T , whose underlying graph is a tree (denoted by T

�

), suh

that every vertex is the head of at most one edge. It follows that there is a unique vertex of T that is

the head of no edge of T , and we all it the root of T and denote it by o(T ). If T is an arboresene

and t 2 V (T ), T

t

denotes the maximal subarboresene with root t. If f 2 E(T ), then T

f

; T

f

denote

the two omponents of Tnf , where the head of f belongs to T

f

(and hene o(T ) belongs to T

f

).

Let P = (G;�;�; �) be a partial 
-pathwork. A rooted deomposition of P is a pair (T; �),

where
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� T is an arboresene, and for eah t 2 V (T ), �(t) � G is a rooted hypergraph

� (T

�

; �

�

) is a tree-deomposition of G

�

, where �

�

(t) = �(t)

�

for eah t 2 V (T )

� �(�(o(T ))) = �(G)

� for every subarboresene S of T , let ��S denote the rooted hypergraphH withH

�

= �

�

�S

�

and �(H) = �(�(o(S))); then for every edge f 2 E(T ) with head t,

��(�(t)) = V (� � T

f

) \ V (� � T

f

)

� for every direted path F of T with �rst edge f

1

and last edge f

2

suh that f

1

; f

2

make

separations under (T

�

; �

�

) of the same order and no edge of F makes a separation of smaller

order, P j� � T

f

2

is simulated in P j� � T

f

1

.

If (T; �) is a rooted deomposition of a partial 
-pathwork (G;�;�; �) and f 2 E(T ), we de�ne

� � (T; f) to be the rooted hypergraph ((� � T

f

)

�

; �(� � T

f

)). (This makes sense beause of the

fourth ondition above.)

We need the following, an immediate onsequene of a result of [2℄.

6.4 Let P = (G;�;�; �) be a rootless, robust 
-pathwork, and let (S; �) be a rotund tree-deomposition

of G

�

. Let T be an arboresene with T

�

= S. Then there is a rooted deomposition (T; �) of P

suh that �(t)

�

= �(t) for eah t 2 V (T ).

Proof. For eah t 2 V (T ) let �

+

(t) be a rooted hypergraph hosen so that (�

+

(t))

�

= �(t) and

� if t = o(T ) then ��(�

+

(T )) = ;

� if t is the head of an edge f 2 E(T ) then ��(�

+

(t)) = V (� � T

f

) \ V (� � T

f

):

Sine (S; �) is rotund (in the sense de�ned in setion 2 above), it follows that (T; �

+

) is a \rotund

tree-deomposition" in the sense of [2℄ (whih is di�erent from the sense in the present paper). Let

R be the set of all rooted hypergraphs H with H

�

� G

�

; and let us say that H

1

2 R is simulated

in H

2

2 R if P jH

1

is simulated in P jH

2

. Then, as in setion 9 of [2℄, Axioms 1-3 of [2℄ are satis�ed,

and so we an apply theorem 4.1 of [2℄ (with T; �;R; F replaed by T; �

+

;R; E(T )). We dedue that

there is a rooted deomposition (T; �) of P suh that �(t)

�

= �(t) for eah t 2 V (T ). This proves

6.4.

We need another lemma about rooted deompositions.

6.5 Let (T; �) be a rooted deomposition of a rootless 
-pathwork P = (G;�;�; �).

1. If f 2 E(T ), then � � T

f

is omplemented in G, and G n � � T

f

= � � T

f

.

2. If f 2 E(T ) then � � (T; f) is omplemented in G and G n � � (T; f) is the rooted hypergraph

H with H

�

= (� � T

f

)

�

and ��(H) = ;.

3. If f

0

2 E(T ) has head t and f

1

; : : : ; f

n

are the edges of T with tail t, then

L = f� � T

f

1

; : : : ; � � T

f

n

g

is a rooted loation in � � T

t

and L

�

= L [ f� � (T; f

0

)g is a rooted loation in G and

M(� � T

t

;L) =M(G;L

�

):
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Proof. For 6.5.1, we observe that ��(��T

f

) = V (��T

f

)\V (��T

f

), from the fourth ondition in the

de�nition of a rooted deomposition; and also, that ((� � T

f

)

�

; (� � T

f

)

�

) is one of the separations

made by f under the tree-deomposition (T

�

; �

�

). From these two fats it follows that � � T

f

is

omplemented in G, and onsequently � � T

f

= G n � � T

f

sine � � T

f

and G are both rootless.

For 6.5.2, let G

0

= � � (T; f). Sine ((� � T

f

)

�

; (� � T

f

)

�

) is one of the separations made by f

under (T

�

; �

�

), and sine G

�

0

= (� � T

f

)

�

and

��(G

0

) = V (� � T

f

) \ V (� � T

f

)

it follows that G

0

is omplemented; and sine G and H are rootless and H

�

= (� �T

f

)

�

, we dedue

that H = G nG

0

.

For 6.5.3, we observe �rst that

(1) If f 2 E(T ) has tail t then � � T

f

is omplemented in � � T

t

, and

(� � T

t

n � � T

f

)

�

= (� � T

f

)

�

\ (� � T

t

)

�

:

Subproof. We have

��(� � T

t

) = ��(�(t)) � V (� � T

f

);

and by 6.5.1, G n � � T

f

= � � T

f

. Sine � � T

f

� � � T

t

, it follows that � � T

f

is omplemented in

� � T

t

, and the equation of (1) holds. This proves (1).

(2) If distint f

1

; f

2

2 E(T ) have a ommon tail t, then � � T

f

1

� � � T

t

n � � T

f

2

.

Subproof. � � T

f

1

and � � T

f

2

have no edges in ommon, and any vertex in them both lies in

V (�(t)), from the third ondition in the de�nition of a tree-deomposition. Hene

V (� � T

f

1

) \ V (� � T

f

2

) � V (�(t)) \ V (� � T

f

2

) � ��(� � T

f

2

);

and so � � T

f

1

� � � T

t

n � � T

f

2

. This proves (2).

(3) If f

0

; f

1

2 E(T ) and the head of f

0

equals the tail of f

1

, let G

0

= ��(T; f); then ��T

f

1

� GnG

0

and G

0

� G n � � T

f

1

.

The proof of (3) is very similar to that of (2) and we leave it to the reader.

Now we omplete the proof of 6.5.3. By (1) and (2), L is a rooted loation in � � T

t

. By 6.5.1

and 6.5.2, all members of L

�

are omplemented in G. If i; j 2 f1; : : : ; ng and i 6= j then

� � T

f

i

� � � T

f

j

= G n � � T

f

j

by 6.5.1. If i 2 f1; : : : ; ng then � � (T; f

0

) � G n � � T

f

i

by (3), and

(� � T

f

i

)

�

� (� � T

f

0

)

�

= (G n � � T

f

0

)

�

by 6.5.2. Hene L

�

is a rooted loation in G.
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To prove that M(� � T

t

;L) =M(G;L

�

), we observe �rst that by 6.5.1, G n � � T

f

i

= � � T

f

i

for

1 � i � n, and by 6.5.2, (G n � � (T; f))

�

= (� � T

t

)

�

, and so

M(G;L

�

) = (� � T

t

)

�

\

n

\

i=1

(� � T

f

i

)

�

:

By (1), this is equal to M(� � T

t

;L). This proves 6.5.3, and hene ompletes the proof of 6.5.

Let P = (G;�;�; �) be a rootless 
-pathwork, and let (T; �) be a tree-deomposition of G

�

. If

(P;L) is an 
-plae suh that L

�

is the loation of t

0

in (T; �) for some t

0

2 V (T ), we all the heart

of (P;L) a piee of P (at t

0

, under (T; �)). For eah t

0

2 V (T ), there is at least one piee of P at

t

0

, and in general there are many, beause of the arbitrary hoies of the marhes �(A)(A 2 L).

6.6 Let 
 be a well-quasi-order, and let C be a well-behaved lass of rootless partial 
-pathworks.

Let C

0

be the lass of all rootless, robust 
-pathworks P suh that there is a rotund, proper tree-

deomposition of jjP jj under whih all piees of P belong to C. Then C

0

is well-quasi-ordered by

simulation.

Proof. Let P = (G;�;�; �) 2 C

0

. From the de�nition of C

0

there exist an arboresene T and a

rotund, proper tree-deomposition (T

�

; �) of G

�

suh that all piees of P under (T

�

; �) belong to C.

By 6.4 we may hoose a rooted deomposition (T; �) of P suh that �(t)

�

= �(t) for eah t 2 V (T )

and onsequently � = �

�

. Let C

�

be the union of C and the lass of all rootings of members of C.

(1) Let t 2 V (T ) and let N(t) be the set of all y 2 V (T ) suh that there is an edge of T with

head y and tail t. Then P j� � T

t

is an enlargement of a member of C

�

by the set of 
-pathworks

C

t

= fP j� � T

y

: y 2 N(t)g.

Subproof. Let B = P j� � T

t

= (G

�

; �

�

;�

�

; �

�

). Let N(t) = ft

1

; : : : ; t

n

g, and let F be the path

of T between t and o(T ). For 1 � i � n, let P

i

= P j� � T

t

i

, and let P

i

= (G

i

; �

i

;�

i

; �

i

). Sine

(T

�

; �

�

) is proper, G

1

; : : : ; G

n

are distint; and L = fG

1

; : : : ; G

n

g is a rooted loation in G

�

by

6.5.3. Thus (B;L) is an 
-plae. If t = o(T ), then by 6.5.1 L

�

is the loation of t in (T

�

; �

�

), and

so BjL is a piee of P under (T

�

; �

�

), and onsequently belongs to C. But for eah A 2 L,

P jA = P

i

= P j� � T

t

i

2 C

t

for some i, and so B is an enlargement of a member of C � C

�

by C

t

. We may assume then that

t 6= o(T ). Let t

0

be the neighbour of t in V (F ) and let f

0

2 E(T ) have ends t; t

0

. Let G

0

= ��(T; f

0

).

Then G

0

; G

1

; : : : ; G

n

are all distint sine (T

�

; �

�

) is proper; and L

�

= fG

0

; G

1

; : : : ; G

n

g is a rooted

loation in G, by 6.5.3; and L

��

is the loation of t in (T

�

; �

�

), by 6.5.1 and 6.5.2. Consequently,

P jL

�

) is a piee of P under (T

�

; �

�

), and hene belongs to C. Now BjL is a rooting of P jL

�

, beause

L = L

�

n fG

0

g, and M(G

�

;L) = M(G;L

�

) by 6.5.3, and �(B) = �(G

0

). Consequently, BjL 2 C

�

,

and sine

BjG

i

= (P j� � T

t

)j� � T

t

i

= P j� � T

t

i

for 1 � i � n, we dedue that B is an enlargement of a member of C

�

by C

t

. This proves (1).
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Now let P

1

; P

2

; : : : be a ountable sequene of members of C

0

. For all i � 1, let (T

i

; �

i

) be the

orresponding rooted deomposition of P

i

; that is, suh that (T

�

i

; �

�

i

) is a rotund, proper tree-

deomposition of jjP

i

jj

�

suh that all piees of P

i

under this deomposition belong to C. We may

assume that T

1

; T

2

; : : : are mutually disjoint; let their union be M . For X � V (M), let N(X) be the

set of all y 2 V (M) suh that for some x 2 X, there is an edge xy of M with head y. Let B(X) be

the set of all P

i

j�

i

� T

�

i

, for i � 1 and x 2 X \ V (T

i

).

(2) If X � V (M) and B(N(X)) is well-quasi-ordered by simulation, then so is B(X).

Subproof. By (1), eah member of B(X) is an enlargement of a member of C

�

by B(N(X)). Sine

C

�

is well-behaved by 6.1 (for the union of two well-behaved lasses is well-behaved) and B(N(X))

is well-behaved by hypothesis, the laim follows from 6.3. This proves (2).

We may assume that for 1 � i < j, (V (P

i

) [E(P

i

)) \ (V (P

j

) [E(P

j

)) = ;. Let R be the set of

all rooted hypergraphs G suh that G � jjP

i

jj for some i > 0; then R satis�es axioms 1 and 2 of [2℄

(as is explained at the start of setion 9 of [2℄). Let i > 0 and let s 2 V (T

i

). Let S be the subtree of

T

i

indued on fsg [N(s); that is, the star formed by s and its outneighbours. De�ne �(s) = �

i

(s),

and for eah t 2 N(s) de�ne �(t) = �

i

� T

t

i

. Let S be the set of all suh pairs (S; �) (for all i > 0

and all s 2 V (T

i

)). We see that S is a set of \star-deompositions", in the sense of setion 3 of [2℄.

We laim that S is \good", in the sense of that paper. We have to hek that:

� � � S 2 R for eah (S; �) 2 S; this is lear.

� There exists k � 0 suh that j��(t)j � k for every (S; �) 2 S and every t 2 V (S). To see

this, observe that sine C is well-behaved, there exists k � 0 suh that j��(G)j � k for every

(G;�;�; �) 2 C; and sine all piees of eah P

i

under (T

�

i

; �

i

) belong to C, it follows that

j��(t)j � k for all i > 0 and all t 2 V (T

i

), and so the laim follows.

� The third ondition to be veri�ed is just (2) above, in di�erent language.

Hene we may apply theorem 3.3 of [2℄. We dedue that there exist j > i � 1 suh that P

i

is

simulated in P

j

. Hene C

0

is well-quasi-ordered by simulation, as required.

Now we an prove our main result, the following.

6.7 Let 
 be a well-quasi-order, let C be a well-behaved lass of rootless partial 
-pathworks, and

let � � 1 be an integer. Let D be a lass of rootless, robust 
-pathworks and suppose that for eah

P 2 D there is a tie-breaker � in jjP jj

�

suh that for every tangle T in G

�

of order � �, there is an


-plae (P;L) with heart in C suh that L

�

�-isolates T . Then D is well-quasi-ordered by simulation.

Proof. Let C

0

be the lass of all robust partial 
-pathworks of tree-width � 3� + 1. By 6.2, C

0

is

well-behaved. Let C

�

be the lass of all enlargements of members of C by C

0

. By 6.3 it follows that

(1) C

�

is well-behaved.

Now let P = (G;�;�; �) 2 D be suh that G

�

has a tangle of order �

4

3

�. Let � be a tie-

breaker in G

�

, as in the theorem. By 4.4 we dedue that
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(2) There is a tree-deomposition (T; �) of G

�

suh that

(a) (T; �) is proper and rotund

(b) for eah e 2 E(T ), the separations made by e under (T; �) are robust, and

() for eah t 2 V (T ), if L

t

is the loation of t in (T; �), then there is an 
-plae (P;L) with heart

in C, suh that L

t

is an enlargement of L

�

by tree-width � 3 � + 1.

(3) Let (T; �) be as in (2) and let t 2 V (T ). Then every piee of P at t under (T; �) is in C

�

.

Subproof. Let L

t

, L be as in (2)(), and let Q be a piee of P at t. Then Q = P jL

�

for some

rooted loation L

�

in G with L

��

= L

t

. By (2)(), L

��

is an enlargement of L

�

by tree-width

� 3� + 1. By 5.5, Q = P jL

�

is an enlargement of P jL by tree-width � 3� + 1; and sine P jL 2 C

by hypothesis, it follows that Q is an enlargement of a member of C by the lass of all partial 
-

pathworks of tree-width � 3�+1. However, the latter di�ers from C

0

, beause the members of C

0

are

robust. To show that Q (= (G

0

; �

0

;�

0

; �

0

) say) is an enlargement of a member of C by C

0

, we must

show that �

0

(e) is a robust path for every e 2 E(Q) whih is not an edge of P jL. Atually, we shall

prove more, that �

0

(e) is robust for every e 2 E(Q). Let e 2 E(Q). If e 2 E(P ) then �

0

(e) = �(e)

and hene is robust sine P is robust, as required. We assume then that e =2 E(P ). Sine Q = P jL

�

,

it follows that G

0

is obtained from M(G;L

�

) by adding a new edge e(A) for eah A 2 L

�

, where

e(A) has set of ends ��(A); and �

0

(e(A)) is the set of all groupings feasible in P jA. Sine e =2 E(P )

and hene e =2 E(M(G;L

�

)), it follows that e = e(A) for some A 2 L

�

. Let B = G n A; then

(A

�

; B

�

) 2 L

��

= L

t

. Hene (A

�

; B

�

) is robust by (2)(b). Let X

1

;X

2

� ��(A) = V (�

0

(e)) with

jX

1

j = jX

2

j say, and X

1

\X

2

= ;. De�ne k = j��(A)j � jX

1

j. Let (H

1

;H

2

) be any separation of A

�

suh that ��(A) nX

i

� V (H

i

) for i = 1; 2. Sine (A

�

; B

�

) is robust, there exists i 2 f1; 2g suh that

jV (H

i

)\V (H

j

[B

�

)j � jV (A

�

\B

�

)j, where j = 3� i. Subtrating jV (H

i

\B) nV (H

j

)j from both

sides gives

jV (H

1

\H

2

)j � jV (B

�

\H

j

)j � j��(A) nX

j

j = k;

sine ��(A) n X

j

� V (B

�

\ H

j

). From theorem 6.1 of [2℄, applied to P jA, there is a realization of

P jA suh that k of its omponents have nonempty intersetion with both ��(A) nX

1

and ��(A) nX

2

.

Therefore there is a pairing with vertex set ��(A), feasible in P jA, whih pairs X

1

;X

2

. Sine �

0

(e)

is the set of all groupings feasible in P jA, it follows that �

0

(e) is robust, as required. This proves

(3).

Let D

0

be the lass of all members (G;�;�; �) 2 D suh that G has a tangle of order �

4

3

�. We

have shown then that

(4) For all P = (G;�;�; �) 2 D

0

, there is a rotund, proper tree-deomposition (T; �) of G

�

suh

that all piees of P under (T; �) belong to C

�

.

By (1), (4) and 6.6, D

0

is well-quasi-ordered by simulation. If P = (G;�;�; �) 2 D nD

0

then G

�

has

tree-width � 2� by 2.2, and hene so does P sine P is rootless. By 6.2, D nD

0

is well-quasi-ordered

by simulation, and hene so is D = D

0

[ (D n D

0

). This proves 6.7.
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7 More on isolation

Here is a useful way to prove that loations �-isolate tangles. Let � be a tie-breaker in a hypergraph

G, let T be a tangle in G, and let (A;B) 2 T . We say that (A;B) is �-linked to T if there is no

(A

0

; B

0

) 2 T with smaller �-order with A � A

0

and B

0

� B.

7.1 Let T be a tangle of order � � � 1 in a hypergraph G with a tie-breaker �, and let L � T be a

loation of order < �, every member of whih is �-linked to T . Then L �-isolates T .

Proof. Let T

0

be a tangle of order � �, and let (D;C) 2 T

0

for some (C;D) 2 L. Let (A;B) be the

(T ;T

0

)-distintion.

(1) (A [ C;B \D) has �-order at least that of (C;D) .

Subproof. Suppose not. Sine C � A [ C and B \ D � D, and (C;D) is �-linked to T , it fol-

lows that (A[C;B\D) =2 T . But its order is at most that of (C;D) (by the third tie-breaker axiom)

and hene less than the order of T , and so (B \D;A [C) 2 T . Yet (A;B); (C;D) 2 T , ontrary to

(T2), sine (B \D) [A [ C = G. This proves (1).

(2) (A \ C;B [D) has �-order at least that of (A;B).

Subproof. Suppose not. As before, the order of (A \C;B [D) is at most that of (A;B), and hene

less than the orders of T and T

0

. Sine (A;B) 2 T and A\C � A it follows that (A\C;B[D) 2 T .

Sine (B;A); (D;C) 2 T

0

and B [D [ (A \ C) = G it follows that (A \ C;B [D) =2 T

0

from (T2),

and so (B [D;A\C) 2 T

0

. Thus (A\C;B [D) distinguishes T from T

0

, and yet its �-order is less

than that of the (T ;T

0

)-distintion, a ontradition. This proves (2).

From (1), (2) and the seond tie-breaker axiom, we dedue that (A [ C;B \ D) has the same

�-order as (C;D), and hene (A [ C;B \ D) = (C;D) or (D;C), from the �rst tie-breaker axiom.

Sine (B \D;A [ C) has the same order as (C;D) and hene belongs to T

0

(beause (B;A) 2 T

0

)

and (C;D) =2 T

0

, it follows that (B \D;A [ C) 6= (C;D). Hene (A [ C;B \D) = (C;D), and so

A � C and D � B. Thus L �-isolates T . This proves 7.1.
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Symbols

Greek: �; �; �; �; �; �; �; �; 


Sript: B; C; D; L; T

Math: [; \; n;

S

;

T

(up, ap, union, intersetion),

P

(summation), d e; b  (rounding), ; (null set),

�; A

�

; P jA; GnF; G=F; � � T; ��; �

+

.
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