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Abstra
t

We prove the following result. Suppose that for every graph G in a 
lass C of graphs, and for every

\highly 
onne
ted 
omponent" of G, there is a de
omposition of G of a 
ertain kind 
entred on the


omponent. Then C is well-quasi-ordered by minors; that is, in any in�nite subset of C there are

two graphs, one a minor of the other. This is another step towards Wagner's 
onje
ture.



1 Introdu
tion

It was shown in an earlier paper [2℄ that if ea
h member G of a 
lass C of �nite graphs has a \linked

tree-de
omposition" into \well-behaved" pie
es, then C is well-quasi-ordered by minors; that is, in

every in�nite subset of C there are two graphs, one a minor of the other. It was also shown, in

another earlier paper [3℄, that for every �nite graph G there is a linked tree-de
omposition into

pie
es 
orresponding to the large order \tangles" in G. (A tangle of order � in G is, more or less, a

�-
onne
ted 
omponent of G.) In the present paper we 
ombine these results into a lemma that if,

for every G 2 C and for every large order tangle of G, there is a de
omposition of G with 
ertain

properties 
entred on the tangle, then C is well-quasi-ordered by minors.

This lemma is 
ru
ial in the proof of Wagner's 
onje
ture, that the 
lass of all �nite graphs is

well-quasi-ordered by minors; indeed, we shall need it twi
e to prove that 
onje
ture, �rst to prove

that the 
lass of �nite hypergraphs with edges of size 2 or 3 drawable on a �xed surfa
e is well-quasi-

ordered, and se
ondly to derive from this that the 
lass of all �nite graphs is well-quasi-ordered. It

will also be needed in later papers, again in a hypergraph form, to prove Nash-Williams' \immersion"


onje
ture [1℄. We shall therefore formulate it 
ompletely in terms of hypergraphs.

The paper is organized as follows. Se
tion 2 
ontains basi
 de�nitions and results about tree-

de
ompositions and tangles. Se
tions 3 and 4 develop the relation between the kinds of de
omposition

relative to a tangle that we need. In se
tion 5 we introdu
e pat
hworks, whi
h enable us to de�ne

minors of hypergraphs, and develop some lemmas about them. The main result is stated and proved

in se
tion 6, and se
tion 7 
ontains a lemma whi
h is often useful in applying the theorem.

Thus this work falls into two parts. Se
tions 2-4 are about how to 
onvert information about

the lo
al stru
ture of a hypergraph relative to ea
h of its high-order tangles, into a linked tree-

de
omposition whose pie
es (the nodes of the tree) 
orrespond to the high-order tangles, and still

have the same lo
al stru
ture (more or less | we may have to grow the pie
es to make them �t

together by adding on subhypergraphs of bounded tree-width). Here the tree-de
ompositions use

unrooted trees; there is no reason to �x a root for the tree, and if we did so the results would

appear most unnatural. The se
ond half, se
tions 5-6, mostly 
on
erns well-quasi-ordering, and in

that topi
 we have to use rooted trees; we have to do 
ompli
ated indu
tions 
on
erning the sizes

of these trees, and it is very important to �x a root of the tree. When we do so, for ea
h pie
e of

the tree-de
omposition, there is not symmetry between its neighbouring pie
es any more; one is in

the dire
tion of the root, and has to be treated di�erently. When we lop o� the arms of the tree-

de
omposition growing out from a given pie
e, and repla
e these arms by new hyperedges marking

where the arms used to atta
h (whi
h is what we mean by the lo
al stru
ture at the node of the

tree), it is 
onvenient to lop o� the \root arm" in a di�erent way; instead of repla
ing it by a new

hyperedge, we simply label the verti
es where it used to atta
h and 
all them roots of the hypergraph.

And also, when we lop o� the \non-root" arms, we need to remember not only the set of verti
es

where the arm used to atta
h, but also whi
h of these verti
es was whi
h; we need to remember an

ordered set. So the new hyperedge repla
ing the arm will have to be equipped with a linear order

of its vertex set. The point is that half-way through the paper, suddenly our trees be
ome rooted

trees or \arbores
en
es", and the hypergraphs develop roots, and their hyperedges be
ome ordered

sets of verti
es. This is most 
onfusing when it happens (parti
ular sin
e we have to rede�ne all our

terms for rooted trees and rooted hypergraphs, and there is not quite an exa
t 
orresponden
e), and

we hope it will help the reader to be warned ahead of time.
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2 Hypergraphs, tangles and tree-de
ompositions

For the purposes of this paper, a hypergraph G 
onsists of a �nite set V (G) of verti
es, a �nite set

E(G) of edges, and an in
iden
e relation between them. The verti
es in
ident with an edge are the

ends of the edge. (A hypergraph is thus a graph if every edge has one or two ends.) A hypergraph

H is a subhypergraph of a hypergraph G (written H � G) if V (H) � V (G), E(H) � E(G), and for

every v 2 V (G) and e 2 E(H), e is in
ident with v in G if and only if v 2 V (H) and e is in
ident

with v in H. If A;B are subhypergraphs of G we denote by A [B, A \B the subhypergraphs with

vertex sets V (A) [ V (B), V (A) \ V (B) and edge sets E(A) [ E(B), E(A) \ E(B) respe
tively. A

separation of G is a pair (A;B) of subhypergraphs with A [ B = G and E(A \ B) = ;; its order is

jV (A \B)j, and its reverse is (B;A).

A 
entral idea in our approa
h is that of a tangle in a hypergraph, whi
h was introdu
ed in [3℄.

Intuitively, a tangle of order � in a hypergraph G may be thought of as a \�-
onne
ted 
omponent"

of G, a highly 
oherent mass in G whi
h resides almost 
ompletely on one side or the other of every

separation of order < �. Formally, let G be a hypergraph and � � 1 an integer. A tangle of order �

in G is a set T of separations of G, ea
h of order < �, su
h that

(T1) for every separation (A;B) of G of order < �;T 
ontains one of (A;B), (B;A)

(T2) if (A

i

; B

i

) 2 T (i = 1; 2; 3) then A

1

[A

2

[A

3

6= G

(T3) if (A;B) 2 T then V (A) 6= V (G).

Let us mention one lemma that we shall need later.

2.1 Let G be a hypergraph, let G

0

� G, and let T

0

be a tangle in G

0

of order �. Let T be the set of

all separations (A;B) of G of order < � su
h that (A \G

0

; B \G

0

) 2 T

0

. Then T is a tangle in G

of order �.

The proof is 
lear.

The se
ond 
on
ept we need is that of tree-de
omposition. A tree is a non-null 
onne
ted graph

without 
ir
uits. A tree-de
omposition of a hypergraph G is a pair (T; �), where T is a tree and �

assigns to ea
h t 2 V (T ) a subhypergraph �(t) of G, su
h that

� [(�(t) : t 2 V (T )) = G

� for distin
t t

1

; t

2

2 V (T ); E(�(t

1

) \ �(t

2

)) = ;

� if t

1

; t

2

; t

3

2 V (T ) and t

2

lies on the path between t

1

and t

3

then �(t

1

) \ �(t

3

) � �(t

2

).

If T

0

is a subtree of T we denote [(�(t) : t 2 V (T

0

)) by � � T

0

. If e 2 E(T ) and T

1

; T

2

are the two


omponents of Tne then (� � T

1

; � � T

2

) and its reverse are the separations made by e under (T; �);

their 
ommon order is the order of e in (T; �). The tree-de
omposition (T; �) has width w if w � 0

is minimum su
h that jV (�(t))j � w + 1 for ea
h t 2 V (T ); and the tree-width of a hypergraph G is

the minimum width of all tree-de
ompositions of G. The following is proved in theorem 5.2 of [3℄.

2.2 Let G be a hypergraph with no tangle of order � �, where � � 1. Then G has tree-width �

3

2

�.

A lo
ation in G is a set L of separations of G su
h that A

1

� B

2

for all distin
t (A

1

; B

1

),

(A

2

; B

2

) 2 L. We de�ne M(G;L) to be \(B : (A;B) 2 L) if L 6= ;, and M(G; ;) = G.
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2.3 Let L = f(A

1

; B

1

); : : : ; (A

n

; B

n

)g be a lo
ation in a hypergraph G. Then

1. A

1

; : : : ; A

n

;M(G;L) are mutually edge-disjoint, and have union G

2. for 1 � i � n, B

i

=M(G;L) [

S

(A

j

: 1 � j � n; j 6= i), and A

i

\M(G;L) = A

i

\B

i

3. for 1 � i < j � n;A

i

\A

j

�M(G;L), and

V (A

i

\A

j

) = V (A

i

\B

i

) \ V (A

j

\B

j

) \ V (M(G;L)):

Proof. For 1 � i � n, M(G;L) � B

i

and A

j

� B

i

for j 6= i; sin
e E(A

i

\B

i

) = ;, the �rst assertion

of 2.3.1 follows. For the se
ond assertion of 2.3.1, we observe that any vertex or edge of G not in

M(G;L) fails to belong to some B

i

, and therefore belongs to the 
orresponding A

i

. Thus 2.3.1 holds.

For 2.3.2, we have already seen that

M(G;L) [

S

(A

j

: 1 � j � n; j 6= i) � B

i

:

Conversely, any vertex or edge of B

i

not in M(G;L) fails to belong to B

j

for some j 6= i, and hen
e

belongs to A

j

. This proves the �rst assertion of 2.3.2, and the se
ond will follow from the �rst and

2.3.3. For 2.3.3, let 1 � i < j � n. By 2.3.1, E(A

i

\ A

j

) = ;; let v 2 V (A

i

\ A

j

). For 1 � k � n,

if k 6= i then v 2 V (A

i

) � V (B

k

), and if k = i then v 2 V (A

j

) � V (B

k

). Thus v 2 V (B

k

) for

all k (1 � k � n), and so v 2 V (M(G;L)). This proves the �rst assertion of 2.3.3. For the se
ond,

A

i

\ A

j

� A

i

\ B

i

sin
e A

j

� B

i

, and similarly A

i

\ A

j

� A

j

\ B

j

, and so the se
ond assertion of

2.3.3 follows. This proves 2.3.

The following is easily seen to be true (
ompare theorem 9.1 of [3℄).

2.4 Let (T; �) be a tree-de
omposition of a hypergraph G, let t

0

2 V (T ) and let e

1

; : : : ; e

k

be the

edges of T in
ident with t

0

. For 1 � i � k let the 
omponents of Tne

i

be T

i

; T

0

i

, where t

0

2 V (T

0

i

).

Then

(� � T

i

; � � T

0

i

) : 1 � i � k

is a lo
ation.

We 
all this the lo
ation of t

0

in (T; �). It is possible that (� � T

i

; � � T

0

i

) = (� � T

j

; � � T

0

j

) for

distin
t i; j, but only if � �T

0

i

= G. We say (T; �) is proper if no edge of T makes a separation (A;B)

with B = G.

2.5 Let (T; �) be a tree-de
omposition of a hypergraph G, and let t 2 V (T ). Let L be the lo
ation

of t in (T; �); then �(t) =M(G;L).

Proof. Certainly �(t) � B for every (A;B) 2 L and so �(t) �M(G;L). For the 
onverse in
lusion,

let x be a vertex or edge of G not in �(t), and 
hoose t

0

2 V (T ) with x in �(t

0

). Let e be the edge

of T in
ident with t su
h that t; t

0

are in di�erent 
omponents of Tne, and let (A;B) 2 L be the


orresponding separation. Then A \B � �(t), and so x is not in A \B; but x is in A, and so is not

in B. Hen
e x is not in M(G;L). This proves 2.5.
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For several purposes it would be 
onvenient if there were at most one smallest order separation

with a given property, and we 
an more or less arrange this by a re�nement in the de�nition of the

order of separation. A tie-breaker in a hypergraph G is a fun
tion � whi
h maps ea
h separation

(A;B) of G to some member �(A;B) of a linearly ordered set (�;�) (we 
all �(A;B) the �-order of

(A;B)) in su
h a way that

� �(A;B) = �(C;D) if and only if (A;B) = (C;D) or (A;B) = (D;C)

� for all separations (A;B), (C;D), either �(A[C;B\D) � �(A;B), or �(A\C;B[D) < �(C;D)

� if jV (A \B)j < jV (C \D)j then �(A;B) < �(C;D).

It was shown in theorem 9.2 of [3℄ that every hypergraph has a tie-breaker.

Let T

1

; T

2

be tangles in a hypergraph G. If (A;B) 2 T

1

and (B;A) 2 T

2

we say that (A;B)

distinguishes T

1

from T

2

. If there is su
h an (A;B), then for a given tie-breaker � in G there is a

unique (A;B) 2 T

1

su
h that (B;A) 2 T

2

of minimum �-order, 
alled the (T

1

;T

2

)-distin
tion; and if

(A;B) is the (T

1

;T

2

)-distin
tion then (B;A) is the (T

2

;T

1

)-distin
tion. By theorem 10.3 of [3℄, we

have

2.6 Let T

1

; : : : ;T

n

be distin
t tangles of order � in a hypergraph G with n � 1, and let � be a tie-

breaker. Then there is a tree-de
omposition (T; �) of G where V (T ) = ft

1

; : : : ; t

n

g, with the following

properties:

1. if e 2 E(T ) and T

1

, T

2

are the 
omponents of Tne and 1 � i � n and t

i

2 V (T

2

) then

(� � T

1

; � � T

2

) 2 T

i

2. for 1 � i < j � n, let e be the edge of the path of T between t

i

; t

j

making separations of

minimum �-order; then these separations are the (T

i

;T

j

)- and (T

j

;T

i

)-distin
tions.

We 
all (T; �) a standard de
omposition of G relative to T

1

; : : : ;T

n

in whi
h t

i

represents T

i

for

i = 1; : : : ; n.

A separation (A;B) of a hypergraph G is robust if for every separation (C;D) of A, one of the

separations (C;B [ D), (D;B [ C) has order at least that of (A;B). A tree-de
omposition (T; �)

of a hypergraph G is rotund if for every two edges f

1

; f

2

2 E(T ), making separations (A

1

; B

1

) and

(A

2

; B

2

) of the same order k, where B

2

� A

1

and B

1

� A

2

, the following holds: if there is a separation

(H

1

;H

2

) of G with B

1

� H

1

and B

2

� H

2

of order < k, then some edge of F makes a separation of

order < k, where F is the path of T with �rst and last edges f

1

; f

2

.

2.7 Let T

1

; : : : ;T

n

be distin
t tangles of order � in a hypergraph G with n � 1, and let � be a

tie-breaker. Let (T; �) be as in 2.6. Then (T; �) is proper and rotund, and every separation made by

an edge of T under (T; �) is robust.

Proof. Let V (T ) = ft

1

; : : : ; t

n

g where t

i

represents T

i

(1 � i � n). Let e 2 E(T ), making separations

(A;B), (B;A). Then (A;B) is the (T

i

;T

j

)-distin
tion where t

i

; t

j

are the ends of e, and so (A;B) 2 T

i

,

and V (A) 6= V (G) by (T3). Thus (T; �) is proper. From theorem 10.2 of [3℄, (A;B) is robust. It

remains to show that (T; �) is rotund.

Thus, let f

1

; f

2

2 E(T ), and let F be the path of T with �rst and last edges f

1

; f

2

. Let f

1

; f

2

make

separations (A

1

; B

1

), (A

2

; B

2

) respe
tively, where B

1

� A

2

and B

2

� A

1

; and suppose that both

4



these separations have order k. Let (H

1

;H

2

) be a separation of G of order k

0

< k with B

1

� H

1

and

B

2

� H

2

, and let the �rst and last verti
es of F be t

1

; t

2

say. Now (A

1

; B

1

) 2 T

1

, and so (H

1

;H

2

) =2 T

1

by (T2), sin
e A

1

[H

1

� A

1

[ B

1

= G; and so (H

2

;H

1

) 2 T

1

by (T1), sin
e k

0

< k < �. Similarly

(H

1

;H

2

) 2 T

2

, and so (H

2

;H

1

) distinguishes T

1

from T

2

. Thus the (T

1

;T

2

)-distin
tion (A;B) has

order � k

0

< k, and by 2.6.2 (A;B) is made by some edge of F . It follows that (T; �) is rotund. This

proves 2.7.

3 Tree-width of a lo
ation

A separation (A;B) of G is titani
 if at least one of the inequalities

jV ((X [ Y ) \ Z)j � jV ((X [ Y ) \B)j

jV ((Y [ Z) \X)j � jV ((Y [ Z) \B)j

jV ((Z [X) \ Y )j � jV ((Z [X) \B)j

holds for every 
hoi
e of X;Y;Z � A su
h that A = X [ Y [Z and E(X); E(Y ); E(Z) are mutually

disjoint. We observe that whether or not (A;B) is titani
 depends only on A and on V (A\B); more

pre
isely,

3.1 Let (A;B) be a separation of a hypergraph G, and let (A;B

0

) be a separation of a hypergraph

G

0

, with A \B = A \B

0

. Then (A;B) is titani
 if and only if (A;B

0

) is titani
.

The proof is 
lear. From theorem 8.3 of [3℄, we have the following.

3.2 Let (C;D) be a separation of a hypergraph G, and let (C

0

;D) be a titani
 separation of a

hypergraph G

0

, with V (C \D) = V (C

0

\D). Let T be a tangle in G of order � � 2 with (C;D) 2 T .

Let T

0

be the set of all separations (A

0

; B

0

) of G

0

of order < � su
h that there exists (A;B) 2 T with

E(A \D) = E(A

0

\D). Then T

0

is a tangle in G

0

of order �.

If T is a tangle in a hypergraph G, we say that (A;B) 2 T is linked to T if there is no (A

0

; B

0

) 2 T

of smaller order with A � A

0

and B

0

� B.

3.3 Let T be a tangle of order � � in a hypergraph G and let (B;A) 2 T be linked to T and have

order �

3

4

�. Then (A;B) is titani
.

Proof. Let us suppose that (A;B) is not titani
. Hen
e we may 
hoose subhypergraphs X

1

;X

2

;X

3

of A su
h that X

1

[X

2

[X

3

= A and E(X

1

); E(X

2

); E(X

3

) are mutually disjoint, and

j(V

1

[ V

2

) \ V

3

j < jW

1

[W

2

j

j(V

2

[ V

3

) \ V

1

j < jW

2

[W

3

j

j(V

3

[ V

1

) \ V

2

j < jW

3

[W

1

j

where V (X

i

) = V

i

and V (X

i

\ B) = W

i

(i = 1; 2; 3). Suppose that (X

1

;X

2

[X

3

[ B) =2 T . Then

either (X

2

[X

3

[B;X

1

) 2 T or (X

1

;X

2

[X

3

[B) has order � �; and in either 
ase, sin
e (B;A) is

linked to T , we dedu
e that (X

1

;X

2

[X

3

[B) has order at least that of (B;A). Hen
e

jV

1

\ (V

2

[ V

3

[ V (B))j � jV (A \B)j;

5



that is,

jV

1

\ (V

2

[ V

3

)j+ jW

1

n (W

2

[W

3

)j � jW

2

[W

3

j+ jW

1

n (W

2

[W

3

)j


ontrary to our assumption. Hen
e (X

1

;X

2

[X

3

[B) 2 T and similarly (X

2

;X

3

[X

1

[B), (X

3

;X

1

[

X

2

[ B) 2 T . It follows that (X

1

[ B;X

2

[X

3

) =2 T by (T2), sin
e (X

1

[ B) [X

2

[X

3

= G; and

(X

2

[X

3

;X

1

[B) =2 T sin
e (X

2

[X

3

)[X

1

[B = G; and so (X

1

[B;X

2

[X

3

) has order � �; that

is,

� � j(V

1

[ V (B)) \ (V

2

[ V

3

)j = j(V

2

[ V

3

) \ V

1

j+ j(W

2

[W

3

) nW

1

j

< jW

2

[W

3

j+ j(W

2

[W

3

) nW

1

j = 2j(W

2

[W

3

) nW

1

j+ j(W

2

[W

3

) \W

1

j:

By summing this and the two similar inequalities, we obtain

3� < 2j(W

2

[W

3

) nW

1

j+ 2j(W

3

[W

1

) nW

2

j+ 2j(W

1

[W

2

) nW

3

j

+ j(W

2

[W

3

) \W

1

j+ j(W

3

[W

1

) \W

2

j+ j(W

1

[W

2

) \W

3

j

= 4jW

1

[W

2

[W

3

j � jW

1

\W

2

\W

3

j

� 4jV (A \B)j:

Hen
e the order of (A;B) is > 3�=4, a 
ontradi
tion, and so our initial assumption that (A;B) is

not titani
 was false. This 
ompletes the proof of 3.3.

Let L be a lo
ation in G. The order of L is the maximum order of the members of L (or 0 if

L = ;). For ea
h (A;B) 2 L let e(A;B) be a new element, and let H be the hypergraph with

V (H) = V (M(G;L))

E(H) = E(M(G;L)) [ fe(A;B) : (A;B) 2 Lg

where for e 2 E(M(L)) its ends are as in G, and for (A;B) 2 L the ends of e(A;B) are the elements

of V (A \B). This is a hypergraph by 2.3.2, and we 
all it the heart of L. We de�ne the tree-width

of L to be the tree-width of H.

3.4 Let L be a lo
ation in a hypergraph G, su
h that ea
h (A;B) 2 L is titani
, and L has order

< �, where � � 2. Then either there is a tangle T in G of order � with L � T , or L has tree-width

�

3

2

�.

Proof. De�ne H as above. If there is no tangle in H of order �, then by 2.2 the tree-width of H is

at most

3

2

�, as required. So we may assume that there is a tangle T

0

in H of order �. Let

L = f(A

1

; B

1

); : : : ; (A

n

; B

n

)g;

and for 1 � i � n let C

i

be the subhypergraph ofH with V (C

i

) = V (A

i

\B

i

) andE(C

i

) = fe(A

i

; B

i

)g.

Thus,

H =M(G;L) [C

1

[ � � � [ C

n

;

and

G =M(G;L) [A

1

[ � � � [A

n

:

For 0 � k � n, let

H

k

=M(G;L) [A

1

[ � � � [A

k

[ C

k+1

[ � � � [ C

n

:

6



Then H

0

= H and H

n

= G. For 1 � j � k, let

B

jk

=M(G;L) [

S

(A

i

: 1 � i � k; i 6= j) [ C

k+1

[ � � � [ C

n

:

Then (A

j

; B

jk

) is a separation of H

k

, and A

j

\B

jk

= A

j

\B

j

. We 
laim that, for 0 � k � n,

(1) There is a tangle T

k

in H

k

of order � su
h that (A

j

; B

jk

) 2 T

k

for 1 � j � k.

Subproof. We pro
eed by indu
tion on k. It holds for k = 0, and we therefore assume that 1 � k � n

and that T

k�1

satis�es (1) with k repla
ed by k � 1. Sin
e (C

k

; B

kk

) has order < � (be
ause L has

order < �) it follows from (T3) that (C

k

; B

kk

) 2 T

k�1

. Now (A

k

; B

k

) is titani
, and hen
e so is

(A

k

; B

kk

) by 3.1. Let T

k

be the set of all separations (A

0

; B

0

) of H

k

of order < � su
h that there

exists (A;B) 2 T

k�1

with E(A \B

kk

) = E(A

0

\B

kk

). By 3.2 (with C;D;G;C

0

; G

0

;T ; �;T

0

repla
ed

by C

k

; B

kk

;H

k�1

; A

k

;H

k

;T

k�1

; �;T

k

) T

k

is a tangle in H

k

of order �. Let 1 � j � k; we must ver-

ify that (A

k

; B

jk

) 2 T

k

. If j < k, then (A

j

; B

j;k�1

) 2 T

k�1

from the indu
tive hypothesis, and so

(A

j

; B

jk

) 2 T

k

from the de�nition of T

k

. We assume then that j = k. But (C

k

; B

kk

) 2 T

k�1

as we

saw above, and E(C

k

\ B

kk

) = ; = E(A

k

\ B

kk

) and so (A

k

; B

kk

) 2 T

k

from the de�nition of T

k

.

Thus T

k

satis�es (1); and so (1) holds, by indu
tion on k.

From (1) with k = n, we dedu
e that (A

j

; B

j

) 2 T

n

for 1 � j � n, sin
e B

j

= B

jn

; and so L � T

n

.

This proves 3.4.

4 Isolating lo
ations

Let T be a tangle in a hypergraph G, and let � be a tie-breaker in G. A lo
ation L is said to �-isolate

T if L � T and has order < �, and for every (C;D) 2 L and every tangle T

0

in G of order � �

with (D;C) 2 T

0

, if (A;B) is the (T ;T

0

)-distin
tion then A � C and D � B. Our obje
tive in this

se
tion is to study the global stru
ture of a hypergraph G given, for every tangle T in G of high

order, a lo
ation �-isolating T .

We shall need the following lemma (our thanks to M. Saks for its proof).

4.1 Let T be a tree and let � be some linear order on E(T ). For ea
h t 2 V (T ), let T

t

be a subtree

of T su
h that

� t 2 V (T

t

)

� if e 2 E(T ) has one end in V (T

t

) and the other end in V (T ) n V (T

t

) and f is an edge of the

path of T with �rst vertex t and last edge e, then e � f .

Then there exists I � V (T ) su
h that the sets V (T

t

) (t 2 I) form a partition of V (T ).

Proof. We pro
eed by indu
tion on jV (T )j. We may assume that E(T ) 6= ;, and may therefore


hoose f 2 E(T ) minimum under �. Let T

1

; T

2

be the two 
omponents of Tnf , and let the ends of

f be u

1

2 V (T

1

), u

2

2 V (T

2

). For ea
h t 2 V (T

i

), de�ne T

i

t

= T

t

\ T

i

(i = 1; 2). These satisfy the

hypotheses of 4.1, so from our indu
tive hypothesis, we may 
hoose I

i

� V (T

i

) su
h that the sets

V (T

i

t

) (t 2 I

i

) form a partition of V (T

i

) (i = 1; 2). Now if for i = 1; 2; T

i

t

= T

t

for every t 2 I

i

then

7



I = I

1

[ I

2

satis�es our requirement. We assume then that there exists s 2 I

1

with T

1

s

6= T

s

. Hen
e

T

s

6� T

1

, and so f 2 E(T

s

), and in parti
ular u

1

2 V (T

1

s

). It follows that T

1

t

= T

t

for all t 2 I

1

n fsg,

sin
e no other V (T

1

t

) 
ontains u

1

. Moreover, we 
laim that T

2

� T

s

. For if not, there is an edge e

of T

2

with one end in V (T

s

) and the other in V (T

2

) n V (T

s

). Then f is in the path of T

s

with �rst

vertex s and last edge e, and so e � f . But f < e from our 
hoi
e of f sin
e e 6= f , a 
ontradi
tion.

Thus T

2

� T

s

, and so the sets V (T

t

) (t 2 I

1

) partition V (T ). This proves 4.1.

4.2 Let T

j

(j 2 J) be distin
t tangles of order � in a hypergraph G, let � be a tie-breaker in G, and

for ea
h j 2 J let L

j

� T

j

be a lo
ation whi
h �-isolates T

j

with respe
t to �. Then there exists I � J

su
h that for every j 2 J there is a unique i 2 I with L

i

� T

j

.

Proof. We may assume that J 6= ;. Let J = f1; : : : ; ng say where n � 1. Let (T; �) be a standard

tree-de
omposition relative to T

1

; : : : ;T

n

in whi
h t

i

represents T

i

for 1 � i � n.

(1) If e; e

0

2 E(T ) are distin
t, and make separations (A;B); (A

0

; B

0

) of G say, then

(A;B); (B;A) 6= (A

0

; B

0

); (B

0

; A

0

):

Subproof. Let e have ends t

i

; t

j

. By 2.6.2, one of (A;B); (B;A) is the (T

i

;T

j

)-distin
tion, and the

other is the (T

j

;T

i

)-distin
tion. Consequently, one of (A;B), (B;A) does not belong to T

i

and the

other does not belong to T

j

. But by 2.6.1, one of (A

0

; B

0

); (B

0

; A

0

) belongs to both T

i

and T

j

. This

proves (1).

For 1 � h � n let T

h

be the restri
tion of T to ft

i

: 1 � i � n; L

h

� T

i

g. For the moment, let us

�x h with 1 � h � n. Let S

h

be the 
omponent of T

h


ontaining t

h

.

(2) Let t

i

2 V (S

h

) be adja
ent in T to t

j

2 V (T ) n V (S

h

), and let (A;B) be the (T

h

;T

j

)-distin
tion;

then (A;B) 2 T

k

for every t

k

2 V (T

h

), and (A;B) is the (T

i

;T

j

)-distin
tion.

Subproof. Sin
e t

j

=2 V (S

h

) it follows that t

j

=2 V (T

h

) and so L

h

6� T

j

. Choose (C;D) 2 L

h

with (C;D) =2 T

j

. Then (C;D) has order < � sin
e (C;D) 2 L

h

, and so (D;C) 2 T

j

by (T1). Sin
e

L

h

�-isolates T

h

it follows that A � C and D � B. For ea
h t

k

2 V (T

h

), (C;D) 2 L

h

� T

k

, and so

(B;A) =2 T

k

by (T2) sin
e B[C = G; and hen
e (A;B) 2 T

k

by (T1) sin
e T

k

has order �. In parti
-

ular, (A;B) 2 T

i

, and therefore has �-order at least that of the (T

i

;T

j

)-distin
tion (A

0

; B

0

). On the

other hand, (A

0

; B

0

) distinguishes T

h

from T

j

(by 2.6.1, sin
e t

i

lies on the path of T between t

h

and

t

j

) and therefore has �-order at least that of (A;B). Hen
e equality o

urs, and (A;B) = (A

0

; B

0

)

by the �rst tie-breaker axiom. This proves (2).

(3) T

h

is a tree.

Subproof. Let t

k

=2 V (S

h

), and let P be the path of T from t

h

to t

k

. Let t

i

be the last vertex

of P in V (S

h

) and t

j

the next vertex of P , and de�ne (A;B) as in (2). Then (A;B) =2 T

k

by 2.6.1

and 2.6.2, sin
e (A;B) is the (T

i

;T

j

)-distin
tion; and so t

k

=2 V (T

h

) by (2). Hen
e S

h

= T

h

and T

h

is a tree. This proves (3).
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For ea
h e 2 E(T ) with ends t

i

; t

j

say, let �(e) be the �-order of the (T

i

;T

j

)-distin
tion. By (1),

�(e) 6= �(e

0

) for all distin
t e; e

0

2 E(T ).

(4) If e 2 E(T ) has one end in V (T

h

) and the other in V (T ) n V (T

h

), and f is an edge of the

path of T with �rst vertex t and last edge e, then �(e) < �(f) unless e = f .

Subproof. Let e have ends t

i

2 V (T

h

) and t

j

2 V (T )nV (T

h

), and let (A;B) be the (T

i

;T

j

)-distin
tion.

By (2) and (3), (A;B) is the (T

h

;T

j

)-distin
tion, and so its �-order is at most the �-order of the

separation made by f , with stri
t inequality unless e = f by (1). This proves (4).

In view of (3), (4) and 4.1, this proves 4.2.

Let L;L

�

be lo
ations in a hypergraph G, and let L = f(C

1

;D

1

); : : : ; (C

k

;D

k

)g. We say that L

�

is an enlargement of L if there exist L

1

; : : : ;L

k

� L

�

, mutually disjoint (possibly empty) and with

union L

�

, su
h that for 1 � h � k, every (A;B) 2 L

h

satis�es A � C

h

and D

h

� B. If in addition

w � 0 and L

h

[ f(D

h

; C

h

)g has tree-width � w for 1 � h � k, we say that L

�

is an enlargement of

L by tree-width � w.

4.3 Let � be a tie-breaker in a hypergraph G, let � � 2, and let T

1

; : : : ;T

n

be distin
t tangles in

G, ea
h of order �, where n � 1. For 1 � i � n let L

i

� T

i

be a lo
ation of order �

3

4

� whi
h

�-isolates T

i

; and suppose that for every tangle T in G of order �, there is a unique i with 1 � i � n

su
h that L

i

� T . Let (T; �) be a standard tree-de
omposition of G relative to T

1

; : : : ;T

n

, where

V (T ) = ft

1

; : : : ; t

n

g and t

i

represents T

i

for 1 � i � n. Then for 1 � i � n, the lo
ation of t

i

in

(T; �) is an enlargement of L

i

by tree-width �

9

4

�.

Proof. Let 1 � i � n, and let L

i

= f(C

1

;D

1

); : : : ; (C

k

;D

k

)g. Let L

�

be the lo
ation of t

i

in (T; �).

(1) If (A;B) 2 L

�

then (A;B) has order �

3

4

� and there exists h with 1 � h � k su
h that

A � C

h

and D

h

� B.

Subproof. Sin
e (A;B) 2 L

�

, there exists j 6= i with 1 � j � n su
h that t

i

; t

j

are adja
ent in

T and (A;B) is the (T

i

;T

j

)-distin
tion. Sin
e L

j

� T

j

and j 6= i it follows that L

6

� T

j

, and so

there exists h with 1 � h � k su
h that (C

h

;D

h

) =2 T

j

. Sin
e (C

h

;D

h

) has order �

3

4

� < �, and

T

j

has order �, it follows that (D

h

; C

h

) 2 T

j

. Sin
e L

i

�-isolates T

i

, we dedu
e that A � C

h

and

D

h

� B. Moreover, sin
e (C

h

;D

h

) distinguishes T

i

from T

j

and has order �

3

4

�, it follows that the

(T

i

;T

j

)-distin
tion (A;B) also has order �

3

4

�. This proves (1).

(2) Ea
h member of L

�

is titani
.

Subproof. Let (A;B) 2 L

�

, and 
hoose j as above. We 
laim that (B;A) is linked to T

j

. For

suppose that there exists (B

0

; A

0

) 2 T

j

of smaller order than (A;B), and with B � B

0

and A

0

� A.

Sin
e (A;B) 2 T

i

and A

0

� A it follows that (A

0

; B

0

) 2 T

i

, and so (A

0

; B

0

) distinguishes T

i

from T

j

;

and hen
e has order at least that of (A;B), a 
ontradi
tion. Thus there is no su
h (B

0

; A

0

), and so

(B;A) is linked to T

j

. Sin
e (B;A) has order �

3

4

� by (1), it follows that (A;B) is titani
, by 3.3.

This proves (2).
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By (1), there exist L

�

1

; : : : ;L

�

k

� L

�

, mutually disjoint and with union L

�

, su
h that for 1 � g � k,

every (A;B) 2 L

�

g

satis�es A � C

g

and D

g

� B. Fix h with 1 � h � k.

(3) There is no tangle T of order � in G with L

�

h

[ f(D

h

; C

h

)g � T .

Subproof. Suppose that T is su
h a tangle. From the hypothesis, there exists j with 1 � j � n

su
h that L

j

� T . Sin
e (D

h

; C

h

) 2 T and (C

h

;D

h

) 2 L

i

, it follows that i 6= j. Let (A;B) be

the (T

i

;T

j

)-distin
tion. Sin
e L

j

6� T

i

, there exists (C;D) 2 L

j

su
h that (C;D) =2 T

i

. Therefore

(D;C) 2 T

i

, sin
e L

j

has order < �, and hen
e D � A sin
e (B;A) is the (T

j

;T

i

)-distin
tion and

L

j

�-isolates T

j

. Sin
e L

j

� T it follows that (C;D) 2 T , and hen
e (B;A) 2 T sin
e (B;A) has

order < � and D � A. Let t

j

0

be the se
ond vertex of the path of T from t

i

to t

j

, and let (A

0

; B

0

) be

the (T

i

;T

j

0

)-distin
tion; then, sin
e one of the edges of this path makes the separation (A;B) under

(T ; �) (by 2.6.2), it follows that A � A

0

and B

0

� B. Hen
e (B

0

; A

0

) 2 T , sin
e (B;A) 2 T . Choose

g with 1 � g � k su
h that (A

0

; B

0

) 2 L

�

g

. Then A

0

� C

g

sin
e L

�

g

[ f(D

g

; C

g

)g is a lo
ation, and

so (C

g

;D

g

) =2 T by (T2), sin
e (B

0

; A

0

) 2 T and B

0

[ C

g

= G. But (C

g

;D

g

) has order < �, and so

(D

g

; C

g

) 2 T by (T1). Now (D

h

; C

h

) 2 T by our assumption, and so D

g

[ D

h

6= G by (T2), and

hen
e g = h sin
e L

i

is a lo
ation. But (A

0

; B

0

) =2 T and

(A

0

; B

0

) 2 L

�

g

= L

�

h

� T ;

a 
ontradi
tion. Thus there is no su
h T . This proves (3).

Let L

0

= f(A;B \ C

h

) : (A;B) 2 L

�

h

g. Then L

0

is a lo
ation in C

h

, of order < �.

(4) There is no tangle in C

h

of order � in
luding L

0

.

Subproof. Suppose that T

0

is su
h a tangle. Let T be the set of all separations (A;B) of G of

order < � su
h that (A\C

h

; B\C

h

) 2 T

0

. By 2.1, T is a tangle in G, of order �. Sin
e (D

h

; C

h

) has

order < � and (D

h

\ C

h

; C

h

\ C

h

) 2 T

0

by (T1) and (T3), it follows that (D

h

; C

h

) 2 T . Similarly,

if (A;B) 2 L

�

h

, then (A;B) has order < �, and (A \ C

h

; B \ C

h

) = (A;B \ C

h

) 2 L

0

� T

0

, and so

(A;B) 2 T . Hen
e, L

�

h

[ f(D

h

; C

h

)g � T , 
ontrary to (3). This proves (4).

Now every member of L

0

is titani
 by (2) and 3.1, and so from (4) and 3.4, L

0

has tree-width

�

3

2

�. Let L = L

�

h

[ f(D

h

; C

h

)g. The heart of L may be obtained from the heart of L

0

(taking

the latter to be C

h

if L

0

= ;) by adding one new edge whose set of ends is V (C

h

\D

h

), and sin
e

jV (C

h

\D

h

)j �

3

4

�, we dedu
e that L has tree-width �

3

2

� +

3

4

� =

9

4

�. This proves 4.3.

Now we dedu
e the main result of this se
tion, by 
ombining 2.7, 4.2 and 4.3.

4.4 Let � be a tie-breaker in a hypergraph G, and let � � 1 be an integer. For ea
h tangle T in G

of order � � let L(T ) � T be a lo
ation whi
h �-isolates T , and let G have a tangle of order �

4

3

�.

Then there is a tree-de
omposition (T; �) of G with the following properties:

� (T; �) is proper and rotund

� for ea
h e 2 E(T ), the separations made by e under (T; �) are robust
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� for ea
h t 2 V (T ), let L be the lo
ation of t in (T; �); then there is a tangle T in G of order

�

4

3

� with L � T , su
h that L is an enlargement of L(T ) by tree-width � 3 � + 1.

Proof. Let �

0

be the least integer with �

0

�

4

3

�. Then �

0

� 2. Let T

j

(j 2 J) be all the tangles of

order �

0

in G. Then J 6= ;, by hypothesis. For ea
h j 2 J;L(T

j

) �

0

-isolates T

j

sin
e it �-isolates T

j

.

By 4.2, there exists I � J su
h that for every j 2 J there is a unique i 2 I with L(T

i

) � T

j

. Let

I = f1; : : : ; ng say. Now n � 1 sin
e J 6= ;. Let (T; �) be a standard de
omposition of G relative to

T

1

; : : : ;T

n

in whi
h t

i

represents T

i

for 1 � i � n. By 2.7, the �rst two statements of the theorem

hold. Let us verify the third. Let 1 � i � n, and let L be the lo
ation of t

i

in (T; �). From 4.3

(with � repla
ed by �

0

) L is an enlargement of L(T

i

) by tree-width �

9

4

�

0

. Sin
e �

0

�

4

3

� +

2

3

and

9

4

�

4

3

� +

2

3

�

< 3 � + 2 we dedu
e that the third statement holds. This proves 4.4.

5 Pat
hworks

Our appli
ation of 4.4 will be to prove that 
ertain 
lasses of \pat
hworks" in the sense of [2℄ are

well-quasi-ordered by our pat
hwork 
ontainment relation, \simulation", and now we need to de�ne

these things. A mar
h in a set V is a �nite sequen
e of distin
t elements of V ; and if � is the mar
h

v

1

; : : : ; v

k

, we denote the set fv

1

; : : : ; v

k

g by ��. A rooted hypergraph G is a pair (G

�

; �(G)) where G

�

is a hypergraph and �(G) is a mar
h in V (G

�

). We de�ne V (G) = V (G

�

); E(G) = E(G

�

). If G;H

are rooted hypergraphs and G

�

� H

�

we write G � H and say that G is a rooted subhypergraph of

H..

If V is a �nite set we denote by K

V

the 
omplete graph on V , that is, the graph with vertex

set V and edge set the set of all subsets of V of 
ardinality 2, with the natural in
iden
e relation.

A grouping in V is a subgraph of K

V

every 
omponent of whi
h is 
omplete. A pairing in V is a

grouping in V every 
omponent of whi
h has at most two verti
es. If K is a pairing in V , we say

that K pairs X;Y if X;Y � V are disjoint and

� every 2-vertex 
omponent of K has one vertex in X and the other in Y , and

� every vertex of X [ Y belongs to some 2-vertex 
omponent of K.

A pat
h � in V is a subset V (�) of V , together with a 
olle
tion of groupings in V , ea
h with vertex

set V (�). (We shall use the same symbol � to denote the 
olle
tion of groupings.) A pat
h � is

free if � 
ontains every grouping in V with vertex set V (�); and it is robust if for every 
hoi
e of

X;Y � V (�) with jXj = jY j and X \ Y = ;, there is a pairing in � whi
h pairs X;Y .

A pat
hwork is a triple P = (G;�;�), where

� G is a rooted hypergraph

� � is a fun
tion with domain dom(�) � E(G); and for ea
h e 2 dom(�) �(e) is a mar
h with

��(e) the set of ends of e in G

� � is a fun
tion with domain E(G), su
h that for ea
h e 2 E(G) �(e) is a pat
h with V (�(e))

the set of ends of e; and for ea
h e 2 E(G) n dom(�);�(e) is free.
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The pat
hwork is robust if ea
h �(e) (e 2 E(G)) is robust. (This is automati
 for e =2 dom(�), sin
e

free pat
hes are robust.)

A quasi-order 
 is a pair (E(
);�), where E(
) is a 
lass and � is a re
exive transitive relation

on E(
). It is a well-quasi-order if for every 
ountable sequen
e x

i

(i = 1; 2 : : :) of elements of E(
)

there exist j > i � 1 su
h that x

i

� x

j

. If 


1

;


2

are quasi-orders with E(


1

) \ E(


2

) = ; we

denote by 


1

[ 


2

the quasi-order 
 with E(
) = E(


1

) [ E(


2

) in whi
h x � y if and only if

for some i 2 f1; 2g; x; y 2 E(


i

) and x � y in 


i

. If 


1

;


2

are quasi-orders we write 


1

� 


2

if

E(


1

) � E(


2

) and for all x; y 2 E(


1

); x � y in 


1

if and only if x � y in 


2

.

If 
 is a quasi-order, a partial 
-pat
hwork is a quadruple (G;�;�; �), where (G;�;�) is a

pat
hwork and � is a fun
tion from a subset dom(�) of E(G) into E(
). It is an 
-pat
hwork if

dom(�) = E(G). It is robust if (G;�;�) is robust. The underlying rooted hypergraph G of a partial


-pat
hwork P = (G;�;�; �) will be denoted by jjP jj.

If V is a �nite set, N

V

denotes the graph with vertex set V and no edges. A realization of a

pat
hwork (G;�;�) is a subgraph of K

V (G)

expressible in the form

N

V (G)

[

S

(Æ

e

: e 2 E(G))

where Æ

e

2 �(e) for ea
h e 2 E(G). A realization of a partial 
-pat
hwork (G;�;�; �) is a realization

of (G;�;�). If �

1

; �

2

are mar
hes with the same length, we denote the bije
tion of ��

1

onto ��

2

mapping

�

1

to �

2

by �

1

! �

2

. Let P = (G;�;�); P

0

= (G

0

; �

0

;�

0

) be pat
hworks. An expansion of P in P

0

is a fun
tion � with domain V (G) [E(G) su
h that

� for ea
h v 2 V (G); �(v) is a non-empty subset of V (G

0

), and for ea
h e 2 E(G), �(e) 2 E(G

0

)

� for distin
t v

1

; v

2

2 V (G); �(v

1

) \ �(v

2

) = ;

� for distin
t e

1

; e

2

2 E(G); �(e

1

) 6= �(e

2

)

� for ea
h e 2 E(G); e 2 dom(�) if and only if �(e) 2 dom(�

0

)

� for ea
h e 2 E(G) n dom(�), if v is an end of e in G then �(v) 
ontains an end of �(e) in G

0

� for ea
h e 2 dom(�); �(e) and �

0

(�(e)) have the same length, k say, and for 1 � i � k; �(v)


ontains the i

th

term of �

0

(�(e)) where v is the i

th

term of �(e)

� �(G) and �(G

0

) have the same length, k say, and for 1 � i � k �(v) 
ontains the i

th

term of

�(G

0

) where v is the i

th

term of �(G)

� for ea
h e 2 dom(�); �(e) ! �

0

(�(e)) maps �(e) to �

0

(�(e)).

If P = (G;�;�; �), P

0

= (G

0

; �

0

;�

0

; �

0

) are partial 
-pat
hworks, an expansion of P in P

0

is

an expansion � of (G;�;�) in (G

0

; �

0

;�

0

) su
h that �(e) 2 dom(�

0

) and �(e) � �

0

(�(e)) for ea
h

e 2 dom(�).

If G is a hypergraph and F � E(G), GnF denotes the subhypergraph with the same vertex set

and edge set E(G) nF . If G is a rooted hypergraph, GnF denotes (G

�

nF; �(G)). If P = (G;�;�; �)

is an 
-pat
hwork and F � E(G), PnF denotes the 
-pat
hwork (GnF; �

0

;�

0

; �

0

) where �

0

;�

0

; �

0

are the restri
tions of �;�; � to dom(�) \ E(GnF ), E(GnF ), E(GnF ) respe
tively. Similarly, if

P = (G;�;�) is a pat
hwork and F � E(G), PnF denotes the pat
hwork (GnF; �

0

;�

0

), with
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�

0

;�

0

as before. We often write Pne for Pnfeg, et
. Let � be an expansion of P = (G;�;�) in

P

0

= (G

0

; �

0

;�

0

), or of P = (G;�;�; �) in P

0

= (G

0

; �

0

;�

0

; �

0

). A realization H of P

0

n�(E(G)) is

said to realize � if for every v 2 V (G), �(v) is the vertex set of some 
omponent of H; and if there

is su
h a realization, � is said to be realizable. Let us say that P is simulated in P

0

if there is a

realizable expansion of P in P

0

.

If P = (G;�;�) is a pat
hwork and A � G, we denote by P jA the pat
hwork (A;�

0

;�

0

), where

�

0

;�

0

are the restri
tions of �;� to E(A)\dom(�), E(A) respe
tively. If P = (G;�;�; �) is a partial


-pat
hwork, P jA is the partial 
-pat
hwork (A;�

0

;�

0

; �

0

) where �

0

;�

0

are as before and �

0

is the

restri
tion of � to E(A) \ dom(�).

A separation of a rooted hypergraph G is a pair (A;B) of rooted hypergraphs su
h that (A

�

; B

�

)

is a separation of G

�

; ��(A) = V (A\B), and �(B) = �(G). Two verti
es of a graph H are 
onne
ted

in H if they belong to the same 
omponent of H. We begin with the following lemma.

5.1 For i = 1; 2 let P

i

= (G

i

; �

i

;�

i

) be a pat
hwork, and let (G

0

i

; G

0

) be a separation of G

i

. Let

�(G

0

1

) = �(G

0

2

), and let P

1

jG

0

= P

2

jG

0

. For i = 1; 2 let H

0

i

be a realization of P

i

jG

0

i

, su
h that for

x; y 2 ��(G

0

1

) = ��(G

0

2

), x and y are 
onne
ted in H

0

1

if and only if they are 
onne
ted in H

0

2

. Let

H

0

be a realization of P

1

jG

0

= P

2

jG

0

, and let H

i

= H

0

[ H

0

i

(i = 1; 2). Then for i = 1; 2; H

i

is a

realization of P

i

, and for x; y 2 V (G

0

) x and y are 
onne
ted in H

1

if and only if they are 
onne
ted

in H

2

.

Proof. Let x; y 2 V (G

0

) be 
onne
ted in H

1

say; we shall prove that they are 
onne
ted in H

2

.

Choose a sequen
e

x = v

0

; e

1

; v

1

; e

2

; : : : ; e

t

; v

t

= y

su
h that v

0

; : : : ; v

t

2 V (H

1

); e

1

; : : : ; e

t

2 E(H

1

) and for 1 � i � t; e

i

is in
ident with v

i�1

and v

i

in

H

1

. Let

I = fi : 0 � i � t; v

i

2 V (G

0

)g:

Then 0, t 2 I; let I = fs(1); s(2); : : : ; s(r)g say, in order, where s(1) = 0 and s(r) = t.

(1) For 1 � j � r � 1, v

s(j)

and v

s(j+1)

are 
onne
ted in H

2

.

Subproof. If e

k

2 E(H

0

) for some k with s(j) + 1 � k � s(j + 1) then v

k�1

; v

k

2 V (G

0

) sin
e

they are both in
ident with e

k

; hen
e k � 1; k 2 I, and so from the de�nition of I; k � 1 = s(j),

k = s(j+1) and v

s(j)

, v

s(j+1)

are 
onne
ted inH

2

, as 
laimed. If e

k

=2 E(H

0

) for s(j)+1 � k � s(j+1)

then v

s(j)

, v

s(j+1)

are verti
es of H

0

1

and are 
onne
ted in H

0

1

; but v

s(j)

, v

s(j+1)

2 V (G

0

) and so both

belong to ��(G

0

1

). Sin
e v

s(j)

, v

s(j+1)

are 
onne
ted in H

0

1

it follows from our hypothesis that they are


onne
ted in H

0

2

and hen
e in H

2

, as 
laimed. This proves (1).

From (1) it follows that x; y are 
onne
ted in H

2

. This proves 5.1.

Let P = (G;�;�) be a pat
hwork. A grouping K is feasible in P if V (K) = ��(G) and there is

a realization H of P su
h that for distin
t x, y 2 V (K), x and y are 
onne
ted in H if and only if

they are adja
ent in K. A grouping is feasible in a partial 
-pat
hwork (G;�;�; �) if it is feasible

in (G;�;�). The set of all groupings feasible in P will be denoted by gr(P ).
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5.2 For i = 1; 2 let P

i

= (G

i

; �

i

;�

i

) be a pat
hwork, and let (G

0

i

; G

0

) be a separation of G

i

, su
h

that �(G

0

1

) = �(G

0

2

), P

1

jG

0

= P

2

jG

0

, and gr(P

1

jG

0

1

) � gr(P

2

jG

0

2

): Then for every realization H

1

of

P

1

there is a realization H

2

of P

2

su
h that for x, y 2 V (G

0

), x and y are 
onne
ted in H

1

if and

only if they are 
onne
ted in H

2

.

Proof. Let H

1

be a realization of P

1

; then H

1

= H

0

[H

0

1

, where H

0

is a realization of P

1

jG

0

and H

0

1

is a realization of P

1

jG

0

1

. Let H

0

2

be a realization of P

2

jG

0

2

su
h that for x, y 2 ��(G

0

1

), x and y are


onne
ted inH

0

1

if and only if they are 
onne
ted inH

0

2

. (This exists be
ause gr(P

1

jG

0

1

) � gr(P

2

jG

0

2

).

Then H

2

= H

0

[H

0

2

is a realization of P

2

satisfying the theorem, by 5.1. This proves 5.2.

5.3 For i = 1; 2 let P

i

= (G

i

; �

i

;�

i

) be a pat
hwork, and let (G

0

i

; G

0

) be a separation of G

i

, su
h that

�(G

0

1

) = �(G

0

2

), P

1

jG

0

= P

2

jG

0

, and gr(P

1

jG

0

1

) � gr(P

2

jG

0

2

): Let �

1

be a realizable expansion of some

pat
hwork P = (G;�;�) in P

1

su
h that �

1

(e) 2 E(G

0

) for every e 2 E(G) and �

1

(v) \ V (G

0

) 6= ;

for ea
h v 2 V (G). Then there is a realizable expansion �

2

of P in P

2

su
h that �

2

(e) = �

1

(e) for

ea
h e 2 E(G), and �

2

(v) \ V (G

0

) = �

1

(v) \ V (G

0

) for ea
h v 2 V (G).

Proof. Let H

1

be a realization of P

1

n�

1

(E(G)) whi
h realizes �

1

. By 5.2 applied to P

1

n�

1

(E(G))

and P

2

n�

1

(E(G)), there is a realization H

2

of P

2

n�

1

(E(G)) su
h that for x, y 2 V (G

0

), x and y are


onne
ted in H

1

if and only if they are 
onne
ted in H

2

. For e 2 E(G) let �

2

(e) = �

1

(e). For ea
h

v 2 V (G) there is a 
omponent C

1

of H

1

with V (C

1

) = �

1

(v), and hen
e a (unique) 
omponent C

2

of H

2

with

V (C

2

) \ V (G

0

) = V (C

1

) \ V (G

0

) = �

1

(v) \ V (G

0

);

sin
e �

1

(v) \ V (G

0

) 6= ;. Let �

2

(v) be V (C

2

). Then �

2

is the required expansion. This proves 5.3.

If f; g are fun
tions with domains dom(f); dom(g) respe
tively and x is any obje
t, the statement

f(x) � g(x) will mean \either x 2 dom(f) \ dom(g) and f(x) = g(x), or x =2 dom(f) [ dom(g)."

Let G be a rooted hypergraph. We say that A � G is 
omplemented if ��(A) 
ontains every vertex

v 2 V (A) su
h that either v 2 ��(G) or some edge e 2 E(G) n E(A) is in
ident with v. If A is


omplemented, we de�ne G n A � G to be the rooted hypergraph with

V (G n A) = (V (G) n V (A)) [ ��(A);

E(G n A) = E(G) n E(A);

�(G n A) = �(G):

Then (A;GnA) is a separation of G, sin
e (A

�

; (GnA)

�

) is a separation of G

�

; ��(A) = V (A)\V (Gn

A), and �(G nA) = �(G). A rooted lo
ation L in a rooted hypergraph G is a set L of 
omplemented

rooted hypergraphs A with A � G su
h that A

1

� G nA

2

for all distin
t A

1

; A

2

2 L. If L is a rooted

lo
ation in G then f(A

�

; (G n A)

�

) : A 2 Lg is a lo
ation in G

�

whi
h we denote by L

�

. (It is

possible that (A

�

; (G nA)

�

) = (A

0�

; (G nA

0

)

�

) for distin
t A;A

0

2 L, but only if E(A) = E(A

0

) = ;

and V (A) = V (A

0

) = ��(A) = ��(A

0

).) We de�ne M(G;L) =M(G

�

;L

�

).

Let P = (G;�;�) be a pat
hwork and let L be a rooted lo
ation in G. For ea
h A 2 L let e(A)

be a new element, and let G

0

be the rooted hypergraph with

V (G

0

) = V (M(G;L))

E(G

0

) = E(M(G;L)) [ fe(A) : A 2 Lg

�(G

0

) = �(G)
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where for e 2 E(M(G;L)) its ends are as in G

�

, and for A 2 L the ends of e(A) are the verti
es in

��(A). We de�ne the heart P jL of (P;L) to be the pat
hwork (G

0

; �

0

;�

0

) su
h that �

0

(e(A)) = �(A)

and �

0

(e(A)) = gr(P jA) for all A 2 L and �

0

(e) � �(e) and �

0

(e) = �(e) for all e 2 E(M(G;L)).

(It is unique up to the 
hoi
e of the new elements e(A).)

5.4 Let P = (G;�;�) be a pat
hwork, let L be a rooted lo
ation in G, and let P

0

= (G

0

; �

0

;�

0

) be

the heart of (P;L). Then

V (G) n ��(G) = (V (G

0

) n ��(G

0

)) [

[

A2L

(V (A) n ��(A));

and gr(P ) = gr(P

0

).

Proof. For the �rst assertion, let v 2 V (G) n ��(G). By the de�nition of M(G;L), either v 2

V (M(G;L)) or there exists A 2 L with v =2 V (G n A). In the �rst 
ase, v 2 V (G

0

), and sin
e

�(G) = �(G

0

) it follows that v 2 V (G

0

)n ��(G

0

). In the se
ond 
ase v 2 V (A), and therefore v =2 ��(A)

sin
e ��(A) � V (G n A). So in either 
ase

v 2 (V (G

0

) n ��(G

0

)) [

[

A2L

(V (A) n ��(A));

and therefore V (G) n ��(G) is a subset of this set.

To prove the reverse in
lusion, we observe that ��(G) \ V (G

0

) � ��(G

0

) and for ea
h A 2 L,

��(G) \ V (A) � ��(A) sin
e A is 
omplemented. It follows that no vertex of

(V (G

0

) n ��(G

0

)) [

[

A2L

(V (A) n ��(A))

belongs to ��(G), so this set is a subset of V (G)n ��(G). This proves the �rst assertion of the theorem.

For the se
ond assertion, let L = fA

1

; : : : ; A

k

g, and for 1 � i � k let e(A

i

) 2 E(G

0

) be the new

element of P

0


orresponding to A

i

. Sin
e �(G

0

) = �(G), we must show that a grouping K with

V (K) = ��(G) is feasible in P if and only if K is feasible in P

0

. Thus, let K be a grouping with

V (K) = ��(G).

For 0 � j � k, let G

j

be the rooted hypergraph with

V (G

j

) = V (M(G;L)) [

S

(V (A

i

) : j < i � k)

E(G

j

) = E(M(G;L)) [ fe(A

i

) : 1 � i � jg [

S

(E(A

j

) : j < i � k)

�(G

j

) = �(G)

where for e 2 E(M(G;L)) its ends are as in G

�

, for 1 � i � j the ends of e(A

i

) are the verti
es in

��(A

i

), and for e 2 E(A

i

) where j < i � k its ends are as in A

�

i

. For

e 2 dom(�) \ (E(M(G;L)) [E(A

j+1

) [ � � � [E(A

k

))

let �

j

(e) = �(e), and for 1 � i � j let �

j

(e(A

i

)) = �(A

i

). For

e 2 E(M(G;L)) [E(A

j+1

) [ � � � [E(A

k

)
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let �

j

(e) = �(e), and for 1 � i � j let �

j

(e(A

i

)) = gr(P jA

i

), with V (�

j

(e(A

i

))) = ��(A

i

). Then

P

j

= (G

j

; �

j

;�

j

) is a pat
hwork for 0 � j � k, and P

0

= P , and P

k

= P

0

. It therefore suÆ
es to

show that for 1 � j � k, K is feasible in P

j�1

if and only if K is feasible in P

j

, sin
e �(G

j

) = �(G).

Let B be G

j

ne(A

j

), and let A

0

j

be the rooted hypergraph with E(A

0

j

) = fe(A

j

)g, V (A

0

j

) = ��(A

j

)

(where the ends of e(A

j

) are the verti
es in ��(A

j

)), and �(A

0

j

) = �(A

j

). Sin
e

V (A

0

j

) = ��(A

j

) � V (B);

it follows that ��(A

j

) = V (A

j

\ B) and �(A

0

j

) = V (A

0

j

) \ B, and so (A

j

; B) is a separation of G

j�1

,

and (A

0

j

; B) is a separation of G

j

.

(1) A grouping is feasible in P

j�1

jA

j

if and only if it is feasible in P

j

jA

0

j

.

Subproof. P

j�1

jA

j

= P jA

j

, and a grouping with vertex set ��(A

j

) is feasible in P

j

jA

0

j

if and only if

it belongs to �

j

(E(A

j

)); that is, it is feasible in P jA

j

= P

j�1

jA

j

. This proves (1).

Suppose that K is feasible in one of P

j�1

, P

j

(say Q

1

), and let H

1

be the 
orresponding realization

of Q

1

su
h that for distin
t x; y 2 V (K), x; y are 
onne
ted in H

1

if and only if they are adja
ent in

K. By (1) and 5.2 there is a realizationH

2

of Q

2

(where fP

j�1

; P

j

g = fQ

1

; Q

2

g) su
h that for distin
t

x; y 2 V (B), x; y are 
onne
ted in H

1

if and only if they are 
onne
ted in H

2

. But V (K) � V (B),

and so for distin
t x; y 2 V (K), x; y are 
onne
ted in H

2

if and only if they are adja
ent in K. Thus

K is feasible in Q

2

. This proves 5.4.

Now let P = (G;�;�; �) be a partial 
-pat
hwork, and let L be a rooted lo
ation in G. We 
all

(P;L) a partial 
-pla
e. If dom(�) = E(G) we 
all (P;L) an 
-pla
e. For e 2 E(M(G;L)) \ dom(�)

let �

0

(e) = �(e), and let (G

0

; �

0

;�

0

) be the heart of ((G;�;�);L); then (G

0

; �

0

;�

0

; �

0

) is a partial


-pat
hwork whi
h we 
all the heart (again denoted by P jL) of (P;L).

A partial 
-pat
hwork (G;�;�; �) has tree-width � w, where w � 0, if there is a tree-de
omposition

(T; �) of G

�

of width � w su
h that ��(G) � V (�(t)) for some t 2 V (T ). If (P;L) is a partial 
-pla
e,

and P jA has tree-width � w for all A 2 L, we say that P is an enlargement of P jL by tree-width

� w.

5.5 Let P = (G;�;�; �) be an 
-pat
hwork, let w � 0, and let L;L

�

be rooted lo
ations in G,

su
h that L

��

is an enlargement of L

�

by tree-width � w. Then P jL

�

is an enlargement of P jL by

tree-width � w.

Proof. Let L = fC

1

; : : : ; C

k

g where C

1

; : : : ; C

k

are distin
t, and for 1 � i � k let D

i

= (G n C

i

)

�

.

Then L

�

= f(C

�

1

;D

1

); : : : ; (C

�

k

;D

k

)g. (However, (C

�

1

;D

1

); : : : ; (C

�

k

;D

k

) may not all be distin
t.)

Let P jL

�

= (G

�

; �

�

;�

�

; �

�

) (= P

�

say), using new elements e(A) (A 2 L

�

). Choose L

1

; : : : ;L

k

� L

�

,

mutually disjoint and with union L

�

, su
h that for 1 � i � k, every (A;B) 2 L

�

i

satis�es A � C

�

i

and D

i

� B, and L

�

i

[ f(D

i

; C

�

i

)g is a lo
ation in G

�

of tree-width � w. We 
laim that for

1 � i � k and all A 2 L

i

, A is 
omplemented in C

i

. For 
ertainly A

�

� C

�

i

and D

i

� (G nA)

�

sin
e

L

�

i

[ f(D

i

; C

�

i

)g is a lo
ation in G

�

. Moreover,

��(C

i

) \ V (A) � V (D

i

) \ V (A) � V (G n A) \ V (A) = ��(A);

and if v 2 V (A) is an end of some e 2 E(C

i

) n E(A), then e 2 E(G) n E(A) and so v 2 ��(A). This

proves that A is 
omplemented in C

i

. Consequently, for 1 � i � k, L

i

is a rooted lo
ation in C

i

, and
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so (P jC

i

;L

i

) is an 
-pla
e; let P

i

= (G

i

; �

i

;�

i

; �

i

) be its heart (with \new" elements e(A) (A 2 L

i

),

some of the new elements of P

�

).

(1) P

i

has tree-width � w.

Subproof. Let H be the heart of L

�

i

[ f(D

i

; C

�

i

)g. Then H is the hypergraph obtained from

M(G

�

;L

�

i

[ f(D

i

; C

�

i

)g) = C

�

i

\

T

((G n A)

�

: A 2 L

i

)

by adding a new edge with set of ends V (A \B) for ea
h (A;B) 2 L

�

i

, and adding one further new

edge with set of ends V (D

i

\ C

�

i

) (unless (D

i

; C

�

i

) 2 L

i

). Also, G

�

i

is obtained from

M(C

i

;L

i

) = C

�

i

\

T

((C

i

nA)

�

: A 2 L

i

)

by adding a new edge with set of ends ��(A) for ea
h A 2 L

i

. But

C

�

i

\

T

((G n A)

�

: A 2 L

i

) = C

�

i

\

T

(C

�

i

\ (G nA)

�

: A 2 L

i

) = C

�

i

\

T

((C

i

n A)

�

: A 2 L

i

);

and there is a surje
tion from L

i

onto L

�

i

su
h that if A 2 L

i

is mapped to (A

0

; B

0

) 2 L

�

i

then

A

0

= A

�

and V (A

0

\ B

0

) = ��(A). Consequently, a hypergraph isomorphi
 to G

�

i

may be obtained

from H by deleting an edge with set of ends ��(C

i

) = V (D

i

\ C

�

i

) (unless (D

i

; C

�

i

) 2 L

i

) and

adding some new edges, ea
h with the same ends as some edge of H. (The latter arise when distin
t

members of L

i


orrespond to the same member of L

�

i

). Sin
e H has tree-width � w, there is a tree-

de
omposition (T; �) of G

�

i

su
h that ��(C

i

) � V (�(t)) for some t 2 V (T ); that is, P

i

has tree-width

� w. This proves (1).

(2) For 1 � i � k, G

i

is a 
omplemented rooted subhypergraph of G

�

.

Subproof. G

�

i

is obtained from C

�

i

\

T

((C

i

n A)

�

: A 2 L

i

) by adding a new edge with set of

ends ��(A) for ea
h A 2 L

i

, and G

��

is obtained from M(G;L

�

) = G

�

\

T

((G n A)

�

: A 2 L

�

)

by adding a new edge with set of ends ��(A) for ea
h A 2 L

�

. Sin
e C

i

n A � G n A for ea
h

A 2 L

i

and C

i

� G n A for all A 2 L

�

� L

i

, it follows that C

�

i

\

T

((C

i

n A)

�

: A 2 L

i

) is a

subhypergraph of G

�

\

T

((G n A)

�

: A 2 L

�

), and so G

�

i

is a subhypergraph of G

��

. Hen
e G

i

is

a rooted subhypergraph of G

�

. To see that it is 
omplemented, let v 2 V (G

i

) be su
h that either

v 2 ��(G

�

) or some e 2 E(G

�

) n E(G

i

) is in
ident with v; we 
laim that v 2 V (D

i

). If v 2 ��(G

�

),

then v 2 ��(G) sin
e �(G

�

) = �(G), and so v 2 V (G n C

i

) = V (D

i

), as 
laimed. We assume then

that some e 2 E(G

�

) n E(G

i

) is in
ident with v. If e 2 E(G), then e 2 E(D

i

) and so v 2 V (D

i

) as


laimed. If e =2 E(G), then e = e(A) for some A 2 L

�

. Sin
e e =2 E(G

i

) it follows that A =2 L

i

, and

so A 2 L

j

for some j 6= i. In parti
ular, A

�

� C

�

j

� D

i

, and so v 2 V (D

i

), as 
laimed. Thus in

ea
h 
ase v 2 V (D

i

), and so

v 2 V (G

i

) \ V (D

i

) � V (C

�

i

\D

i

) = ��(C

i

) = ��(G

i

):

Hen
e G

i

is 
omplemented in G

�

. This proves (2).

(3) P

i

= P

�

jG

i

for 1 � i � k.
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Subproof. By (2), P

�

jG

i

is well-de�ned, and has the same underlying rooted hypergraph as P

i

,

namely G

i

. Let e 2 E(G

i

); we must show that �

i

(e) � �

�

(e), �

i

(e) � �

�

(e), and �

i

(e) = �

�

(e).

Now

E(G

i

) = E(M(C

i

;L

i

)) [ fe(a) : A 2 L

i

g:

We re
all that P

i

is the heart of (P jC

i

;L

i

) and P

�

is the heart of (P;L

�

). If e 2 E(M(C

i

;L

i

)), then

�

i

(e) � �

�

(e) (be
ause �

i

(e) � �(e) and �

�

(e) � �(e)), and the other two relations follow similarly.

We assume then that e = e(A) for some A 2 L

i

. Sin
e A belongs to both L

i

and L

�

, it follows from

the de�nition of \heart" that

� �

i

(e) = �

�

(e) (for they are both equal to �(A)),

� e does not belong to dom(�) [ dom(�

�

), and

� �

i

(e) = �

�

(e) (for they are both equal to gr(P jA)).

This proves (3).

(4) G

1

; : : : ; G

k

are all distin
t, and fG

1

; : : : ; G

k

g is a rooted lo
ation in G

�

.

Subproof. Let 1 � i, j � k with i 6= j; we 
laim that G

i

� G

�

n G

j

; in other words, that

V (G

i

)\V (G

j

) � ��(G

j

) and E(G

i

)\E(G

j

) = ;. First, let v 2 V (G

i

)\V (G

j

). Sin
e V (G

i

) � V (C

i

)

and V (G

j

) � V (C

j

), it follows that v 2 V (C

i

) \ V (C

j

) � ��(C

j

) sin
e L is a rooted lo
ation. Sin
e

��(C

j

) = ��(G

j

) we dedu
e that V (G

i

)\V (G

j

) � ��(G

j

) as required. Se
ondly, let e 2 E(G

i

)\E(G

j

).

If e 2 E(G) then e 2 E(C

i

) \ E(C

j

) = ;, whi
h is impossible. Thus e = e(A) for some A 2 L

�

.

Sin
e e 2 E(G

i

) it follows that A 2 L

i

, and similarly A 2 L

j

; but L

i

\ L

j

= ;, a 
ontradi
tion.

Thus E(G

i

) \ E(G

j

) = ;, as required. This proves that G

i

� G

�

� G

j

. Suppose that G

i

= G

j

.

Then E(G

i

) = ;, and so L

i

= ; and G

i

= C

i

; and similarly G

j

= C

j

. Consequently C

i

= C

j

, a


ontradi
tion. Thus G

i

6= G

j

, and (4) follows.

Let L

0

= fG

1

; : : : ; G

k

g.

(5) M(G;L) = M(G

�

;L

0

).

Subproof. If k = 0 then L = ; and L

0

= ;; and L

�

= ;, sin
e L

��

is an enlargement of L

�

.

Hen
e G

�

= G, and M(G;L) = G

�

= G

��

= M(G

�

;L

0

) as 
laimed. We may assume then

that k 6= 0. Hen
e M(G;L) = D

1

\ � � � \ D

k

and M(G

�

;L

0

) = \((G

�

n G

i

)

�

: 1 � i � k). If

A 2 L

�

, then e(A) =2 E(M(G

�

;L

0

)), be
ause e(A) 2 E(G

i

) and hen
e e(A) =2 E(G

�

n G

i

) for some

i (1 � i � k), namely, the value of i su
h that A 2 L

i

. Sin
e M(G

�

;L

0

) is a subhypergraph of G

��

and e(A) =2 E(M(G

�

;L

0

)) for ea
h A 2 L

�

, it follows that M(G

�

;L

0

) is a subhypergraph of G

�

. But

also M(G;L) is a subhypergraph of G

�

, and therefore to show that M(G;L) =M(G

�

;L

0

) it suÆ
es

to show that M(G;L) and M(G

�

;L

0

) have the same vertex- and edge-sets. Let v 2 V (G). Then
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from 5.4 applied to (P jC

i

;L

i

), we have:

v 2 V (M(G;L)) , v =2 V (C

i

) n ��(C

i

) for 1 � i � k

, v =2 V (G

i

) n ��(G

i

) and v =2 V (A) n ��(A) for 1 � i � k

and for all A 2 L

i

, v =2 V (A) n �� for all A 2 L

�

and v =2 V (G

i

) n ��(G

i

) for 1 � i � k

, v 2 V (G

�

) and v =2 V (G

i

) n ��(G

i

) for 1 � i � k

, v 2 V (M(G

�

;L

0

)):

Thus V (M(G;L))=V (M(G

�

;L

0

)), and a similar (somewhat easier) proof shows that E(M(G;L)) =

E(M(G

�

;L

0

)). This proves (5).

Let P

0

= (G

0

; �

0

;�

0

; �

0

) be the heart of the partial 
-pla
e (P

�

;L

0

).

(6) P

0

is the heart of (P;L).

Subproof. Sin
e �(G

h

) = �(C

h

) for 1 � h � k, it follows from (5) that (P;L) has heart (G

0

; �

00

;�

00

; �

00

)

for some �

00

;�

00

; �

00

. We 
laim that �

0

= �

00

; �

0

= �

00

, and �

0

= �

00

. Let the edges of G

0

whi
h are

not edges of G be e

1

; : : : ; e

k

, numbered in the natural way. (Here we use the fa
t that G

1

; : : : ; G

k

are distin
t, from (4).) Let e 2 E(G

0

), and assume �rst that e 6= e

1

; : : : ; e

k

. Then �

0

(e) � �

�

(e)

sin
e P

0

is the heart of (P

�

;L

0

); �

�

(e) � �(e) sin
e P

�

is the heart of (P;L

�

); and �

00

(e) � �(e) sin
e

(G

0

; �

00

;�

00

; �

00

) is the heart of (P;L). Consequently �

0

(e) � �

00

(e); and similarly �

0

(e) = �

00

(e) and

�

0

(e) = �

00

(e) as required. Now we assume that e = e

i

for some i with 1 � i � k. Then

�

0

(e

i

) = �(G

i

) = �(C

i

) = �

00

(e

i

);

and e

i

=2 dom(�

0

) [ dom(�

00

). Moreover, �

0

(e

i

) = gr(P

�

jG

i

), and and �

00

(e

i

) = gr(P jC

i

). But

P

�

jG

i

= P

i

by (3), and P

i

is the heart of (P jC

i

;L

i

), and so �

0

(e

i

) = �

00

(e

i

) from 5.4. This proves

(6).

Sin
e P

�

is by (1) and (3) an enlargement of P

0

by tree-width � w, it follows from (6) that the

heart of (P;L

�

) is an enlargement of the heart of (P;L) by tree-width � w. This proves 5.5.

5.6 Let P

1

; P

2

be partial 
-pat
hworks, and let (A

1

; B

1

), (A

2

; B

2

) be separations of jjP

1

jj; jjP

2

jj

respe
tively. Let �

0

be a realizable expansion of P

1

jA

1

in P

2

jA

2

(when
e j��(A

1

)j = j��(A

2

)j = k, say)

and let �

00

be a realizable expansion of P

1

jB

1

in P

2

jB

2

su
h that for 1 � i � k, �

00

(v) 
ontains the i

th

term of �(A

2

), where v is the i

th

term of �(A

1

). De�ne � by:

�(v) =

8

<

:

�

0

(v) : v 2 V (A

1

) n V (B

1

)

�

00

(v) : v 2 V (B

1

) n V (A

1

)

�

0

(v) [ �

00

(v) : v 2 V (A

1

\B

1

)

�(e) =

�

�

0

(e) : e 2 E(A

1

)

�

00

(e) : e 2 E(B

1

):
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Then � is a realizable expansion of P

1

in P

2

.

Proof. Let � be a new element and let 


0

be the well-quasi-order with 
 � 


0

and E(


0

) = E(
)[f�g,

in whi
h � < x for all x 2 E(
). For i = 1; 2, let P

i

= (G

i

; �

i

;�

i

; �

i

); and for all e 2 E(G

i

), de�ne

�

0

i

(e) = �

i

(e) if e 2 dom(�

i

), and otherwise �

0

i

(e) = �. Let P

0

i

= (G

i

; �

i

;�

i

; �

0

i

); then P

0

i

is an 


0

-

pat
hwork. Sin
e �

0

is a realizable expansion of P

1

jA

1

in P

2

jA

2

, it follows that it is also a realizable

expansion of P

0

1

jA

1

in P

0

2

jA

2

. (Here we use that � � x for all x 2 E(
).) Similarly, �

00

is a realizable

expansion of P

0

1

jB

1

in P

0

2

jB

2

.

By theorem 8.1 of [2℄ applied to these two 


0

-pat
hworks, we dedu
e that � is a realizable

expansion of P

0

1

in P

0

2

. For ea
h e 2 dom(�

1

), it follows that �

2

(�(e)) 6= �, and therefore �(e) 2

dom(�

2

); and 
onsequently � is a realizable expansion of P

1

in P

2

. This proves 5.6.

If P = (G;�;�; �) is an 
-pat
hwork, we write V (P ) = V (G); E(P ) = E(G).

5.7 For i = 1; 2 let (P

i

;L

i

) be an 
-pla
e with heart Q

i

, using new elements e

i

(A) (A 2 L

i

). Suppose

that � is a realizable expansion of Q

1

in Q

2

su
h that

� if e 2 E(Q

1

) and �(e) = e

2

(A

2

) for some A

2

2 L

2

then e = e

1

(A

1

) for some A

1

2 L

1

,

� for ea
h A

1

2 L

1

there exists A

2

2 L

2

su
h that �(e

1

(A

1

)) = e

2

(A

2

) and P

1

jA

1

is simulated in

P

2

jA

2

.

Then P

1

is simulated in P

2

.

Proof. We pro
eed by indu
tion on jL

2

j. If L

2

= ; then by (ii), L

1

= ;, and so Q

1

= P

1

and Q

2

= P

2

,

and � is a realizable expansion of P

1

in P

2

, as required. We assume then that L

2

6= ;. Choose A

2

2 L

2

.

There are two 
ases, depending on whether or not e

2

(A

2

) = �(e) for some e 2 E(Q

1

).

First, we assume that e

2

(A

2

) 6= �(e) for all e 2 E(Q

1

). Let L

0

2

= L

2

n fA

2

g, and let Q

0

2

be

the heart of the 
-pla
e (P

2

;L

0

2

), using new elements e

2

(A)(A 2 L

0

2

). Let Q

2

= (G;�;�; �), and

Q

0

2

= (G

0

; �

0

;�

0

; �

0

); then e

2

(A

2

) 2 E(G), and (A

2

; Gne

2

(A

2

)) is a separation of G

0

. Let K be the

rooted subhypergraph of G formed by e

2

(A

2

) and its ends, with �(K) = �(A

2

); then (K;Gne

2

(A

2

))

is a separation of G. Now �(K) = �(A

2

) and Q

2

j(Gne

2

(A

2

)) = Q

0

2

j(Gne

2

(A

2

)), and every grouping

feasible in Q

2

jK is also feasible in P

2

jA

2

= Q

0

2

jA

2

(by de�nition of �(e

2

(A

2

))). Moreover, � is a real-

izable expansion of Q

1

in Q

2

, and �(e) 2 E(Gne

2

(A

2

)) for all e 2 E(Q

1

), and �(v)\V (Gne

2

(A

2

)) 6= ;

for ea
h v 2 V (Q

1

) (be
ause V (Gne

2

(A

2

)) = V (G)). From 5.3 with P

1

; G

1

; �

1

;�

1

, P

2

; G

2

; �

2

;�

2

; G

0

1

,

G

0

2

; G

0

; �

1

repla
ed by (G;�;�), G;�;�, (G

0

; �

0

;�

0

), G

0

; �

0

;�

0

;K;A

2

, Gne

2

(A

2

), � respe
tively, and

with P repla
ed by the pat
hwork formed by the �rst three 
omponents of the quadruple Q

1

, we

dedu
e that there is a realizable expansion �

0

of Q

1

in Q

0

2

su
h that �

0

(e) = �(e) for all e 2 E(Q

1

).

In parti
ular, if e 2 E(Q

1

) and �

0

(e) = e

2

(A

0

2

) for some A

0

2

2 L

0

2

then e = e

1

(A

1

) for some A

1

2 L

1

;

and for ea
h A

1

2 L

1

, �

0

(e

1

(A

1

)) = e

2

(A

0

2

) and P

1

jA

1

is simulated in P

2

jA

0

2

for some A

0

2

2 L

0

2

. From

the indu
tive hypothesis we dedu
e that P

1

is simulated in P

2

, as required.

In the se
ond 
ase, we assume that e

2

(A

2

) = �(e

1

(A

1

)) for some A

1

2 L

1

. For i = 1; 2, let

L

0

i

= L

i

n fA

i

g, let Q

0

i

= (G

0

i

; �

0

i

;�

0

i

; �

0

i

) be the heart of (P

i

;L

0

i

) using new elements e

i

(A) (A 2 L

0

i

),

and let B

i

= G

0

i

nA

i

. We 
laim that for i = 1; 2, Q

i

ne

i

(A

i

) = Q

0

i

jB

i

. For let P

i

= (G

i

; �

i

;�

i

; �

i

) say.

Then

M(G

i

;L

i

) =M(G

i

;L

0

i

) \ (G

i

n A

i

)

�

=M(G

i

;L

0

i

) \ (G

0

i

n A

i

)

�

20



sin
e M(G

i

;L

0

i

) � G

0�

i

and M(G

i

;L

0

i

) � G

�

i

. Hen
e

Q

i

nfe

i

(A) : A 2 L

i

g = (Q

0

i

jB

i

)nfe

i

(A) : A 2 L

0

i

g;

and so Q

i

ne

i

(A

i

) = Q

0

i

jB

i

, as 
laimed.

Sin
e e

2

(A

2

) = �(e

1

(A

1

)), the se
ond hypothesis of the theorem implies that there is a realizable

expansion �

0

of P

1

jA

1

in P

2

jA

2

, and hen
e of Q

0

1

jA

1

in Q

0

2

jA

2

, sin
e P

i

jA

i

= Q

0

i

jA

i

(i = 1; 2). Let �

00

be the restri
tion of � to V (Q

0

1

)[E(Q

0

1

); then �

00

is a realizable expansion of Q

1

ne

1

(A

1

) in Q

2

ne

2

(A

2

);

that is, of Q

0

1

jB

1

in Q

0

2

jB

2

. Let j��(A

1

)j = j��(A

2

)j = k say. For 1 � i � k, let v be the i

th

term of

�(A

1

); we 
laim that �

00

(v) 
ontains the i

th

term of �(A

2

). For � is a realizable expansion of Q

1

in

Q

2

, and sin
e �(e

1

(A

1

)) = e

2

(A

2

) and v is the i

th

end of e

1

(A

1

), it follows that �(v) 
ontains the i

th

end of e

2

(A

2

); that is, the i

th

term of �(A

2

). From 5.6 with P

1

; P

2

repla
ed by Q

0

1

; Q

0

2

respe
tively,

there is a realizable expansion �

0

of Q

0

1

in Q

0

2

su
h that �

0

(e) = �(e) for all e 2 E(Q

1

) n fe

1

(A

1

)g.

In parti
ular, if e 2 E(Q

0

1

) and �

0

(e) = e

2

(A

0

2

) for some A

0

2

2 L

0

2

then e = e

1

(A

0

1

) for some A

0

1

2 L

0

1

;

and for ea
h A

0

1

2 L

0

1

, �

0

(e

1

(A

0

1

)) = e

2

(A

0

2

) and P

1

jA

0

1

is simulated in P

2

jA

0

2

for some A

0

2

2 L

0

2

. From

the indu
tive hypothesis applied to L

0

1

and L

0

2

, we dedu
e that P

1

is simulated in P

2

. This proves

5.7.

6 Well-behavedness

Let P = (G;�;�; �) be a partial 
-pat
hwork, and let 


0

be a quasi-order with 
 � 


0

. By an 


0

-


ompletion of P we mean an 


0

-pat
hwork (G;�;�; �

0

) su
h that �

0

(e) = �(e) for ea
h e 2 dom(�).

If 
 is a well-quasi-order, a 
lass C of partial 
-pat
hworks is well-behaved if for every well-quasi-order




0

with 
 � 


0

and every 
ountable sequen
e P

0

i

(i = 1; 2; : : :) of 


0

-
ompletions of members of C

there exist j > i � 1 su
h that P

0

i

is simulated in P

0

j

. (We remark that whether C is well-behaved

depends prima fa
ie not only on C, but also on 
; we leave this dependen
e impli
it. In fa
t, it is

an easy exer
ise to show that there is no dependen
e on 
.)

A partial 
-pat
hwork P = (G;�;�; �) is rootless if ��(G) = ;. Let P = (G;�;�; �) be a rootless

partial 
-pat
hwork, let e 2 dom(�)ndom(�), and let P

0

= (G

0

; �

0

;�

0

; �

0

) be the partial 
-pat
hwork

with G

0�

= G

�

ne; �(G

0

) = �(e), and P

0

= P jG

0

. We 
all P

0

a rooting of P .

6.1 Let 
 be a well-quasi-order, and let C be a well-behaved 
lass of partial 
-pat
hworks. Let C

0

be

the 
lass of all rootings of rootless members of C. Then C

0

is well-behaved.

Proof. Let 


0

be a well-quasi-order with 
 � 


0

, and let Q

0

i

(i = 1; 2; : : :) be a 
ountable sequen
e

of 


0

-
ompletions of members of C

0

. Let � be a new element and let 


00

be the well-quasi-order with




0

� 


00

and E(


00

) = E(


0

) [ f�g, in whi
h if x � � or � � x then x = �. For ea
h i, let Q

0

i

=

(G

0

i

; �

0

i

;�

0

i

;  

0

i

) be an 


0

-
ompletion of P

0

i

= (G

0

i

; �

0

i

;�

0

i

; �

0

i

) 2 C

0

and 
hoose P

i

= (G

i

; �

i

;�

i

; �

i

) 2 C

and e

i

2 dom(�

i

) n dom(�

i

) su
h that ��(G

i

) = ;, �(G

0

i

) = �

i

(e

i

), G

�

i

ne

i

= G

0�

i

and P

0

i

= P

i

jG

0

i

. Let

Q

i

= (G

i

; �

i

;�

i

;  

i

) be the 


00

-
ompletion of P

i

where

 

i

(e) =  

0

i

(e) (e 2 E(G

0

i

))

 

i

(e

i

) = �:

Sin
e C is well-behaved, there exist j > i � 1 su
h that Q

i

is simulated in Q

j

; let � be a realizable

expansion of Q

i

in Q

j

. Then �(e

i

) = e

j

sin
e e

j

is the only edge e of G

j

with  

j

(e) = �; and hen
e

there is a realizable expansion of Q

i

jG

0

i

in Q

j

jG

0

j

; that is, of Q

0

i

in Q

0

j

. This proves 6.1.
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The following is a 
onsequen
e of theorem 9.1 of [2℄.

6.2 If 
 is a well-quasi-order and w � 0, the 
lass of all robust partial 
-pat
hworks of tree-width

� w is well-behaved.

Let C be a 
lass of partial 
-pat
hworks, and let (P;L) be a partial 
-pla
e. If P jA 2 C for all

A 2 L we say that P is an enlargement of P jL by C.

6.3 Let 
 be a well-quasi-order, and let C

1

, C

2

be well-behaved 
lasses of partial 
-pat
hworks. Then

the 
lass of all enlargements of members of C

1

by C

2

is well-behaved.

Proof. Let C be the 
lass of all enlargements of members of C

1

by C

2

. Let 


0

be a well-quasi-order

with 
 � 


0

. Let 


00

be the 
lass of all 


0

-
ompletions of members of C

2

, ordered by simulation; then




00

is a well-quasi-order, sin
e C

2

is well-behaved. By repla
ing 
;


0

by isomorphi
 well-quasi-orders

we may assume that E(


0

) \E(


00

) = ;. Let 


�

= 


0

[ 


00

.

Let P

1

be an 


0

-
ompletion of a member of C. We 
onstru
t an 


�

-pat
hwork en
(P

1

) as follows.

(Throughout, for i = 1; 2; 3; 4; P

i

= (G

i

; �

i

;�

i

; �

i

):) Choose P

2

2 C so that P

1

is an 


0

-
ompletion of

P

2

. Choose P

3

2 C

1

so that P

2

is an enlargement of P

3

by C

2

and let L be the 
orresponding rooted

lo
ation in G

2

, so that (P

2

;L) has heart P

3

. Let the new elements of P

3

be fe(A) : A 2 Lg. Sin
e

G

2

= G

1

, L is also a rooted lo
ation in G

1

, and so (P

1

;L) is an 


0

-pla
e; let its heart be Q (using

the same new elements as for P

3

). Let (G

4

; �

4

;�

4

) = (G

3

; �

3

;�

3

) and de�ne �

4

: E(G

4

) ! E(


�

)

by

�

4

(e) =

8

<

:

�

3

(e) if e 2 dom(�

3

)

�

1

(e) if e 2 E(G

3

) n dom(�

3

) and e 6= e(A) for allA 2 L

P

1

jA if e = e(A) for some A 2 L:

Let P

4

= (G

4

; �

4

;�

4

; �

4

). Thus, P

4

is an 


�

-
ompletion of both P

3

and Q. We de�ne en
(P

1

) = P

4

.

Now let P

0

1

be another 


0

-
ompletion of a member of C, and suppose that en
(P

1

) is simulated in

en
(P

0

1

). We 
laim that P

1

is simulated in P

0

1

. For let P

2

; P

3

;L, Q;P

4

and (G

i

; �

i

;�

i

; �

i

)(i = 1; : : : ; 4)

be as above for P

1

, and de�ne P

0

2

; P

0

3

;L

0

, Q

0

; P

0

4

and (G

0

i

; �

0

i

;�

0

i

; �

0

i

) (i = 1; : : : ; 4) similarly for P

0

1

.

Let � be a realizable expansion of en
(P

1

) = P

4

in en
(P

0

1

) = P

0

4

. Then � is a realizable expansion

of Q in Q

0

(sin
e P

4

; P

0

4

are 


�

-
ompletions of Q;Q

0

respe
tively). Moreover, for ea
h e 2 E(Q),

�

4

(e) � �

0

4

(�(e)), and so �

4

(e) 2 E(


00

) if and only if �

0

4

(�(e)) 2 E(


00

); that is, e is one of the

new elements of Q if and only if �(e) is one of the new elements of Q

0

. Moreover, if e = e(A) say

for some A 2 L, and �(e) = e

0

(A

0

) say for some A

0

2 L

0

, then P

1

jA is simulated in P

0

1

jA

0

sin
e

�

4

(e) � �

0

4

(�(e)). Consequently the hypotheses of 5.7 are satis�ed (with P

1

;L

1

, Q

1

; P

2

;L

2

; Q

2

;


repla
ed by P

1

;L, Q;P

0

1

;L

0

, Q

0

;


0

respe
tively) and so by 5.7, P

1

is simulated in P

0

1

.

Let P

1

; P

2

; : : : be a 
ountable sequen
e of 


0

-
ompletions of members of C. Sin
e 


�

is a well-

quasi-order and C

1

is well-behaved, there exist j > i � 1 su
h that en
(P

i

) is simulated in en
(P

j

).

It follows that P

i

is simulated in P

j

. Hen
e C is well-behaved. This proves 6.3.

An arbores
en
e is a dire
ted graph T , whose underlying graph is a tree (denoted by T

�

), su
h

that every vertex is the head of at most one edge. It follows that there is a unique vertex of T that is

the head of no edge of T , and we 
all it the root of T and denote it by o(T ). If T is an arbores
en
e

and t 2 V (T ), T

t

denotes the maximal subarbores
en
e with root t. If f 2 E(T ), then T

f

; T

f

denote

the two 
omponents of Tnf , where the head of f belongs to T

f

(and hen
e o(T ) belongs to T

f

).

Let P = (G;�;�; �) be a partial 
-pat
hwork. A rooted de
omposition of P is a pair (T; �),

where
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� T is an arbores
en
e, and for ea
h t 2 V (T ), �(t) � G is a rooted hypergraph

� (T

�

; �

�

) is a tree-de
omposition of G

�

, where �

�

(t) = �(t)

�

for ea
h t 2 V (T )

� �(�(o(T ))) = �(G)

� for every subarbores
en
e S of T , let ��S denote the rooted hypergraphH withH

�

= �

�

�S

�

and �(H) = �(�(o(S))); then for every edge f 2 E(T ) with head t,

��(�(t)) = V (� � T

f

) \ V (� � T

f

)

� for every dire
ted path F of T with �rst edge f

1

and last edge f

2

su
h that f

1

; f

2

make

separations under (T

�

; �

�

) of the same order and no edge of F makes a separation of smaller

order, P j� � T

f

2

is simulated in P j� � T

f

1

.

If (T; �) is a rooted de
omposition of a partial 
-pat
hwork (G;�;�; �) and f 2 E(T ), we de�ne

� � (T; f) to be the rooted hypergraph ((� � T

f

)

�

; �(� � T

f

)). (This makes sense be
ause of the

fourth 
ondition above.)

We need the following, an immediate 
onsequen
e of a result of [2℄.

6.4 Let P = (G;�;�; �) be a rootless, robust 
-pat
hwork, and let (S; �) be a rotund tree-de
omposition

of G

�

. Let T be an arbores
en
e with T

�

= S. Then there is a rooted de
omposition (T; �) of P

su
h that �(t)

�

= �(t) for ea
h t 2 V (T ).

Proof. For ea
h t 2 V (T ) let �

+

(t) be a rooted hypergraph 
hosen so that (�

+

(t))

�

= �(t) and

� if t = o(T ) then ��(�

+

(T )) = ;

� if t is the head of an edge f 2 E(T ) then ��(�

+

(t)) = V (� � T

f

) \ V (� � T

f

):

Sin
e (S; �) is rotund (in the sense de�ned in se
tion 2 above), it follows that (T; �

+

) is a \rotund

tree-de
omposition" in the sense of [2℄ (whi
h is di�erent from the sense in the present paper). Let

R be the set of all rooted hypergraphs H with H

�

� G

�

; and let us say that H

1

2 R is simulated

in H

2

2 R if P jH

1

is simulated in P jH

2

. Then, as in se
tion 9 of [2℄, Axioms 1-3 of [2℄ are satis�ed,

and so we 
an apply theorem 4.1 of [2℄ (with T; �;R; F repla
ed by T; �

+

;R; E(T )). We dedu
e that

there is a rooted de
omposition (T; �) of P su
h that �(t)

�

= �(t) for ea
h t 2 V (T ). This proves

6.4.

We need another lemma about rooted de
ompositions.

6.5 Let (T; �) be a rooted de
omposition of a rootless 
-pat
hwork P = (G;�;�; �).

1. If f 2 E(T ), then � � T

f

is 
omplemented in G, and G n � � T

f

= � � T

f

.

2. If f 2 E(T ) then � � (T; f) is 
omplemented in G and G n � � (T; f) is the rooted hypergraph

H with H

�

= (� � T

f

)

�

and ��(H) = ;.

3. If f

0

2 E(T ) has head t and f

1

; : : : ; f

n

are the edges of T with tail t, then

L = f� � T

f

1

; : : : ; � � T

f

n

g

is a rooted lo
ation in � � T

t

and L

�

= L [ f� � (T; f

0

)g is a rooted lo
ation in G and

M(� � T

t

;L) =M(G;L

�

):
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Proof. For 6.5.1, we observe that ��(��T

f

) = V (��T

f

)\V (��T

f

), from the fourth 
ondition in the

de�nition of a rooted de
omposition; and also, that ((� � T

f

)

�

; (� � T

f

)

�

) is one of the separations

made by f under the tree-de
omposition (T

�

; �

�

). From these two fa
ts it follows that � � T

f

is


omplemented in G, and 
onsequently � � T

f

= G n � � T

f

sin
e � � T

f

and G are both rootless.

For 6.5.2, let G

0

= � � (T; f). Sin
e ((� � T

f

)

�

; (� � T

f

)

�

) is one of the separations made by f

under (T

�

; �

�

), and sin
e G

�

0

= (� � T

f

)

�

and

��(G

0

) = V (� � T

f

) \ V (� � T

f

)

it follows that G

0

is 
omplemented; and sin
e G and H are rootless and H

�

= (� �T

f

)

�

, we dedu
e

that H = G nG

0

.

For 6.5.3, we observe �rst that

(1) If f 2 E(T ) has tail t then � � T

f

is 
omplemented in � � T

t

, and

(� � T

t

n � � T

f

)

�

= (� � T

f

)

�

\ (� � T

t

)

�

:

Subproof. We have

��(� � T

t

) = ��(�(t)) � V (� � T

f

);

and by 6.5.1, G n � � T

f

= � � T

f

. Sin
e � � T

f

� � � T

t

, it follows that � � T

f

is 
omplemented in

� � T

t

, and the equation of (1) holds. This proves (1).

(2) If distin
t f

1

; f

2

2 E(T ) have a 
ommon tail t, then � � T

f

1

� � � T

t

n � � T

f

2

.

Subproof. � � T

f

1

and � � T

f

2

have no edges in 
ommon, and any vertex in them both lies in

V (�(t)), from the third 
ondition in the de�nition of a tree-de
omposition. Hen
e

V (� � T

f

1

) \ V (� � T

f

2

) � V (�(t)) \ V (� � T

f

2

) � ��(� � T

f

2

);

and so � � T

f

1

� � � T

t

n � � T

f

2

. This proves (2).

(3) If f

0

; f

1

2 E(T ) and the head of f

0

equals the tail of f

1

, let G

0

= ��(T; f); then ��T

f

1

� GnG

0

and G

0

� G n � � T

f

1

.

The proof of (3) is very similar to that of (2) and we leave it to the reader.

Now we 
omplete the proof of 6.5.3. By (1) and (2), L is a rooted lo
ation in � � T

t

. By 6.5.1

and 6.5.2, all members of L

�

are 
omplemented in G. If i; j 2 f1; : : : ; ng and i 6= j then

� � T

f

i

� � � T

f

j

= G n � � T

f

j

by 6.5.1. If i 2 f1; : : : ; ng then � � (T; f

0

) � G n � � T

f

i

by (3), and

(� � T

f

i

)

�

� (� � T

f

0

)

�

= (G n � � T

f

0

)

�

by 6.5.2. Hen
e L

�

is a rooted lo
ation in G.
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To prove that M(� � T

t

;L) =M(G;L

�

), we observe �rst that by 6.5.1, G n � � T

f

i

= � � T

f

i

for

1 � i � n, and by 6.5.2, (G n � � (T; f))

�

= (� � T

t

)

�

, and so

M(G;L

�

) = (� � T

t

)

�

\

n

\

i=1

(� � T

f

i

)

�

:

By (1), this is equal to M(� � T

t

;L). This proves 6.5.3, and hen
e 
ompletes the proof of 6.5.

Let P = (G;�;�; �) be a rootless 
-pat
hwork, and let (T; �) be a tree-de
omposition of G

�

. If

(P;L) is an 
-pla
e su
h that L

�

is the lo
ation of t

0

in (T; �) for some t

0

2 V (T ), we 
all the heart

of (P;L) a pie
e of P (at t

0

, under (T; �)). For ea
h t

0

2 V (T ), there is at least one pie
e of P at

t

0

, and in general there are many, be
ause of the arbitrary 
hoi
es of the mar
hes �(A)(A 2 L).

6.6 Let 
 be a well-quasi-order, and let C be a well-behaved 
lass of rootless partial 
-pat
hworks.

Let C

0

be the 
lass of all rootless, robust 
-pat
hworks P su
h that there is a rotund, proper tree-

de
omposition of jjP jj under whi
h all pie
es of P belong to C. Then C

0

is well-quasi-ordered by

simulation.

Proof. Let P = (G;�;�; �) 2 C

0

. From the de�nition of C

0

there exist an arbores
en
e T and a

rotund, proper tree-de
omposition (T

�

; �) of G

�

su
h that all pie
es of P under (T

�

; �) belong to C.

By 6.4 we may 
hoose a rooted de
omposition (T; �) of P su
h that �(t)

�

= �(t) for ea
h t 2 V (T )

and 
onsequently � = �

�

. Let C

�

be the union of C and the 
lass of all rootings of members of C.

(1) Let t 2 V (T ) and let N(t) be the set of all y 2 V (T ) su
h that there is an edge of T with

head y and tail t. Then P j� � T

t

is an enlargement of a member of C

�

by the set of 
-pat
hworks

C

t

= fP j� � T

y

: y 2 N(t)g.

Subproof. Let B = P j� � T

t

= (G

�

; �

�

;�

�

; �

�

). Let N(t) = ft

1

; : : : ; t

n

g, and let F be the path

of T between t and o(T ). For 1 � i � n, let P

i

= P j� � T

t

i

, and let P

i

= (G

i

; �

i

;�

i

; �

i

). Sin
e

(T

�

; �

�

) is proper, G

1

; : : : ; G

n

are distin
t; and L = fG

1

; : : : ; G

n

g is a rooted lo
ation in G

�

by

6.5.3. Thus (B;L) is an 
-pla
e. If t = o(T ), then by 6.5.1 L

�

is the lo
ation of t in (T

�

; �

�

), and

so BjL is a pie
e of P under (T

�

; �

�

), and 
onsequently belongs to C. But for ea
h A 2 L,

P jA = P

i

= P j� � T

t

i

2 C

t

for some i, and so B is an enlargement of a member of C � C

�

by C

t

. We may assume then that

t 6= o(T ). Let t

0

be the neighbour of t in V (F ) and let f

0

2 E(T ) have ends t; t

0

. Let G

0

= ��(T; f

0

).

Then G

0

; G

1

; : : : ; G

n

are all distin
t sin
e (T

�

; �

�

) is proper; and L

�

= fG

0

; G

1

; : : : ; G

n

g is a rooted

lo
ation in G, by 6.5.3; and L

��

is the lo
ation of t in (T

�

; �

�

), by 6.5.1 and 6.5.2. Consequently,

P jL

�

) is a pie
e of P under (T

�

; �

�

), and hen
e belongs to C. Now BjL is a rooting of P jL

�

, be
ause

L = L

�

n fG

0

g, and M(G

�

;L) = M(G;L

�

) by 6.5.3, and �(B) = �(G

0

). Consequently, BjL 2 C

�

,

and sin
e

BjG

i

= (P j� � T

t

)j� � T

t

i

= P j� � T

t

i

for 1 � i � n, we dedu
e that B is an enlargement of a member of C

�

by C

t

. This proves (1).
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Now let P

1

; P

2

; : : : be a 
ountable sequen
e of members of C

0

. For all i � 1, let (T

i

; �

i

) be the


orresponding rooted de
omposition of P

i

; that is, su
h that (T

�

i

; �

�

i

) is a rotund, proper tree-

de
omposition of jjP

i

jj

�

su
h that all pie
es of P

i

under this de
omposition belong to C. We may

assume that T

1

; T

2

; : : : are mutually disjoint; let their union be M . For X � V (M), let N(X) be the

set of all y 2 V (M) su
h that for some x 2 X, there is an edge xy of M with head y. Let B(X) be

the set of all P

i

j�

i

� T

�

i

, for i � 1 and x 2 X \ V (T

i

).

(2) If X � V (M) and B(N(X)) is well-quasi-ordered by simulation, then so is B(X).

Subproof. By (1), ea
h member of B(X) is an enlargement of a member of C

�

by B(N(X)). Sin
e

C

�

is well-behaved by 6.1 (for the union of two well-behaved 
lasses is well-behaved) and B(N(X))

is well-behaved by hypothesis, the 
laim follows from 6.3. This proves (2).

We may assume that for 1 � i < j, (V (P

i

) [E(P

i

)) \ (V (P

j

) [E(P

j

)) = ;. Let R be the set of

all rooted hypergraphs G su
h that G � jjP

i

jj for some i > 0; then R satis�es axioms 1 and 2 of [2℄

(as is explained at the start of se
tion 9 of [2℄). Let i > 0 and let s 2 V (T

i

). Let S be the subtree of

T

i

indu
ed on fsg [N(s); that is, the star formed by s and its outneighbours. De�ne �(s) = �

i

(s),

and for ea
h t 2 N(s) de�ne �(t) = �

i

� T

t

i

. Let S be the set of all su
h pairs (S; �) (for all i > 0

and all s 2 V (T

i

)). We see that S is a set of \star-de
ompositions", in the sense of se
tion 3 of [2℄.

We 
laim that S is \good", in the sense of that paper. We have to 
he
k that:

� � � S 2 R for ea
h (S; �) 2 S; this is 
lear.

� There exists k � 0 su
h that j��(t)j � k for every (S; �) 2 S and every t 2 V (S). To see

this, observe that sin
e C is well-behaved, there exists k � 0 su
h that j��(G)j � k for every

(G;�;�; �) 2 C; and sin
e all pie
es of ea
h P

i

under (T

�

i

; �

i

) belong to C, it follows that

j��(t)j � k for all i > 0 and all t 2 V (T

i

), and so the 
laim follows.

� The third 
ondition to be veri�ed is just (2) above, in di�erent language.

Hen
e we may apply theorem 3.3 of [2℄. We dedu
e that there exist j > i � 1 su
h that P

i

is

simulated in P

j

. Hen
e C

0

is well-quasi-ordered by simulation, as required.

Now we 
an prove our main result, the following.

6.7 Let 
 be a well-quasi-order, let C be a well-behaved 
lass of rootless partial 
-pat
hworks, and

let � � 1 be an integer. Let D be a 
lass of rootless, robust 
-pat
hworks and suppose that for ea
h

P 2 D there is a tie-breaker � in jjP jj

�

su
h that for every tangle T in G

�

of order � �, there is an


-pla
e (P;L) with heart in C su
h that L

�

�-isolates T . Then D is well-quasi-ordered by simulation.

Proof. Let C

0

be the 
lass of all robust partial 
-pat
hworks of tree-width � 3� + 1. By 6.2, C

0

is

well-behaved. Let C

�

be the 
lass of all enlargements of members of C by C

0

. By 6.3 it follows that

(1) C

�

is well-behaved.

Now let P = (G;�;�; �) 2 D be su
h that G

�

has a tangle of order �

4

3

�. Let � be a tie-

breaker in G

�

, as in the theorem. By 4.4 we dedu
e that
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(2) There is a tree-de
omposition (T; �) of G

�

su
h that

(a) (T; �) is proper and rotund

(b) for ea
h e 2 E(T ), the separations made by e under (T; �) are robust, and

(
) for ea
h t 2 V (T ), if L

t

is the lo
ation of t in (T; �), then there is an 
-pla
e (P;L) with heart

in C, su
h that L

t

is an enlargement of L

�

by tree-width � 3 � + 1.

(3) Let (T; �) be as in (2) and let t 2 V (T ). Then every pie
e of P at t under (T; �) is in C

�

.

Subproof. Let L

t

, L be as in (2)(
), and let Q be a pie
e of P at t. Then Q = P jL

�

for some

rooted lo
ation L

�

in G with L

��

= L

t

. By (2)(
), L

��

is an enlargement of L

�

by tree-width

� 3� + 1. By 5.5, Q = P jL

�

is an enlargement of P jL by tree-width � 3� + 1; and sin
e P jL 2 C

by hypothesis, it follows that Q is an enlargement of a member of C by the 
lass of all partial 
-

pat
hworks of tree-width � 3�+1. However, the latter di�ers from C

0

, be
ause the members of C

0

are

robust. To show that Q (= (G

0

; �

0

;�

0

; �

0

) say) is an enlargement of a member of C by C

0

, we must

show that �

0

(e) is a robust pat
h for every e 2 E(Q) whi
h is not an edge of P jL. A
tually, we shall

prove more, that �

0

(e) is robust for every e 2 E(Q). Let e 2 E(Q). If e 2 E(P ) then �

0

(e) = �(e)

and hen
e is robust sin
e P is robust, as required. We assume then that e =2 E(P ). Sin
e Q = P jL

�

,

it follows that G

0

is obtained from M(G;L

�

) by adding a new edge e(A) for ea
h A 2 L

�

, where

e(A) has set of ends ��(A); and �

0

(e(A)) is the set of all groupings feasible in P jA. Sin
e e =2 E(P )

and hen
e e =2 E(M(G;L

�

)), it follows that e = e(A) for some A 2 L

�

. Let B = G n A; then

(A

�

; B

�

) 2 L

��

= L

t

. Hen
e (A

�

; B

�

) is robust by (2)(b). Let X

1

;X

2

� ��(A) = V (�

0

(e)) with

jX

1

j = jX

2

j say, and X

1

\X

2

= ;. De�ne k = j��(A)j � jX

1

j. Let (H

1

;H

2

) be any separation of A

�

su
h that ��(A) nX

i

� V (H

i

) for i = 1; 2. Sin
e (A

�

; B

�

) is robust, there exists i 2 f1; 2g su
h that

jV (H

i

)\V (H

j

[B

�

)j � jV (A

�

\B

�

)j, where j = 3� i. Subtra
ting jV (H

i

\B) nV (H

j

)j from both

sides gives

jV (H

1

\H

2

)j � jV (B

�

\H

j

)j � j��(A) nX

j

j = k;

sin
e ��(A) n X

j

� V (B

�

\ H

j

). From theorem 6.1 of [2℄, applied to P jA, there is a realization of

P jA su
h that k of its 
omponents have nonempty interse
tion with both ��(A) nX

1

and ��(A) nX

2

.

Therefore there is a pairing with vertex set ��(A), feasible in P jA, whi
h pairs X

1

;X

2

. Sin
e �

0

(e)

is the set of all groupings feasible in P jA, it follows that �

0

(e) is robust, as required. This proves

(3).

Let D

0

be the 
lass of all members (G;�;�; �) 2 D su
h that G has a tangle of order �

4

3

�. We

have shown then that

(4) For all P = (G;�;�; �) 2 D

0

, there is a rotund, proper tree-de
omposition (T; �) of G

�

su
h

that all pie
es of P under (T; �) belong to C

�

.

By (1), (4) and 6.6, D

0

is well-quasi-ordered by simulation. If P = (G;�;�; �) 2 D nD

0

then G

�

has

tree-width � 2� by 2.2, and hen
e so does P sin
e P is rootless. By 6.2, D nD

0

is well-quasi-ordered

by simulation, and hen
e so is D = D

0

[ (D n D

0

). This proves 6.7.
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7 More on isolation

Here is a useful way to prove that lo
ations �-isolate tangles. Let � be a tie-breaker in a hypergraph

G, let T be a tangle in G, and let (A;B) 2 T . We say that (A;B) is �-linked to T if there is no

(A

0

; B

0

) 2 T with smaller �-order with A � A

0

and B

0

� B.

7.1 Let T be a tangle of order � � � 1 in a hypergraph G with a tie-breaker �, and let L � T be a

lo
ation of order < �, every member of whi
h is �-linked to T . Then L �-isolates T .

Proof. Let T

0

be a tangle of order � �, and let (D;C) 2 T

0

for some (C;D) 2 L. Let (A;B) be the

(T ;T

0

)-distin
tion.

(1) (A [ C;B \D) has �-order at least that of (C;D) .

Subproof. Suppose not. Sin
e C � A [ C and B \ D � D, and (C;D) is �-linked to T , it fol-

lows that (A[C;B\D) =2 T . But its order is at most that of (C;D) (by the third tie-breaker axiom)

and hen
e less than the order of T , and so (B \D;A [C) 2 T . Yet (A;B); (C;D) 2 T , 
ontrary to

(T2), sin
e (B \D) [A [ C = G. This proves (1).

(2) (A \ C;B [D) has �-order at least that of (A;B).

Subproof. Suppose not. As before, the order of (A \C;B [D) is at most that of (A;B), and hen
e

less than the orders of T and T

0

. Sin
e (A;B) 2 T and A\C � A it follows that (A\C;B[D) 2 T .

Sin
e (B;A); (D;C) 2 T

0

and B [D [ (A \ C) = G it follows that (A \ C;B [D) =2 T

0

from (T2),

and so (B [D;A\C) 2 T

0

. Thus (A\C;B [D) distinguishes T from T

0

, and yet its �-order is less

than that of the (T ;T

0

)-distin
tion, a 
ontradi
tion. This proves (2).

From (1), (2) and the se
ond tie-breaker axiom, we dedu
e that (A [ C;B \ D) has the same

�-order as (C;D), and hen
e (A [ C;B \ D) = (C;D) or (D;C), from the �rst tie-breaker axiom.

Sin
e (B \D;A [ C) has the same order as (C;D) and hen
e belongs to T

0

(be
ause (B;A) 2 T

0

)

and (C;D) =2 T

0

, it follows that (B \D;A [ C) 6= (C;D). Hen
e (A [ C;B \D) = (C;D), and so

A � C and D � B. Thus L �-isolates T . This proves 7.1.
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Symbols

Greek: �; �; �; �; �; �; �; �; 


S
ript: B; C; D; L; T

Math: [; \; n;

S

;

T

(
up, 
ap, union, interse
tion),

P

(summation), d e; b 
 (rounding), ; (null set),

�; A

�

; P jA; GnF; G=F; � � T; ��; �

+

.
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