Graph Minors
 XVIII. Tree-Decompositions and Well-Quasi-Ordering

Neil Robertson ${ }^{1}$
Math Dept, Ohio State University, 231 W 18th Ave, Columbus, OH 43210
Paul Seymour ${ }^{2}$
Telcordia Technologies, 445 South St., Morristown, NJ 07960

February 1988; revised February 24, 2003

[^0]
Abstract

We prove the following result. Suppose that for every graph G in a class C of graphs, and for every "highly connected component" of G, there is a decomposition of G of a certain kind centred on the component. Then C is well-quasi-ordered by minors; that is, in any infinite subset of C there are two graphs, one a minor of the other. This is another step towards Wagner's conjecture.

1 Introduction

It was shown in an earlier paper [2] that if each member G of a class C of finite graphs has a "linked tree-decomposition" into "well-behaved" pieces, then C is well-quasi-ordered by minors; that is, in every infinite subset of C there are two graphs, one a minor of the other. It was also shown, in another earlier paper [3], that for every finite graph G there is a linked tree-decomposition into pieces corresponding to the large order "tangles" in G. (A tangle of order θ in G is, more or less, a θ-connected component of G.) In the present paper we combine these results into a lemma that if, for every $G \in C$ and for every large order tangle of G, there is a decomposition of G with certain properties centred on the tangle, then C is well-quasi-ordered by minors.

This lemma is crucial in the proof of Wagner's conjecture, that the class of all finite graphs is well-quasi-ordered by minors; indeed, we shall need it twice to prove that conjecture, first to prove that the class of finite hypergraphs with edges of size 2 or 3 drawable on a fixed surface is well-quasiordered, and secondly to derive from this that the class of all finite graphs is well-quasi-ordered. It will also be needed in later papers, again in a hypergraph form, to prove Nash-Williams' "immersion" conjecture [1]. We shall therefore formulate it completely in terms of hypergraphs.

The paper is organized as follows. Section 2 contains basic definitions and results about treedecompositions and tangles. Sections 3 and 4 develop the relation between the kinds of decomposition relative to a tangle that we need. In section 5 we introduce patchworks, which enable us to define minors of hypergraphs, and develop some lemmas about them. The main result is stated and proved in section 6 , and section 7 contains a lemma which is often useful in applying the theorem.

Thus this work falls into two parts. Sections 2-4 are about how to convert information about the local structure of a hypergraph relative to each of its high-order tangles, into a linked treedecomposition whose pieces (the nodes of the tree) correspond to the high-order tangles, and still have the same local structure (more or less - we may have to grow the pieces to make them fit together by adding on subhypergraphs of bounded tree-width). Here the tree-decompositions use unrooted trees; there is no reason to fix a root for the tree, and if we did so the results would appear most unnatural. The second half, sections 5-6, mostly concerns well-quasi-ordering, and in that topic we have to use rooted trees; we have to do complicated inductions concerning the sizes of these trees, and it is very important to fix a root of the tree. When we do so, for each piece of the tree-decomposition, there is not symmetry between its neighbouring pieces any more; one is in the direction of the root, and has to be treated differently. When we lop off the arms of the treedecomposition growing out from a given piece, and replace these arms by new hyperedges marking where the arms used to attach (which is what we mean by the local structure at the node of the tree), it is convenient to lop off the "root arm" in a different way; instead of replacing it by a new hyperedge, we simply label the vertices where it used to attach and call them roots of the hypergraph. And also, when we lop off the "non-root" arms, we need to remember not only the set of vertices where the arm used to attach, but also which of these vertices was which; we need to remember an ordered set. So the new hyperedge replacing the arm will have to be equipped with a linear order of its vertex set. The point is that half-way through the paper, suddenly our trees become rooted trees or "arborescences", and the hypergraphs develop roots, and their hyperedges become ordered sets of vertices. This is most confusing when it happens (particular since we have to redefine all our terms for rooted trees and rooted hypergraphs, and there is not quite an exact correspondence), and we hope it will help the reader to be warned ahead of time.

2 Hypergraphs, tangles and tree-decompositions

For the purposes of this paper, a hypergraph G consists of a finite set $V(G)$ of vertices, a finite set $E(G)$ of edges, and an incidence relation between them. The vertices incident with an edge are the ends of the edge. (A hypergraph is thus a graph if every edge has one or two ends.) A hypergraph H is a subhypergraph of a hypergraph G (written $H \subseteq G$) if $V(H) \subseteq V(G), E(H) \subseteq E(G)$, and for every $v \in V(G)$ and $e \in E(H)$, e is incident with v in G if and only if $v \in V(H)$ and e is incident with v in H. If A, B are subhypergraphs of G we denote by $A \cup B, A \cap B$ the subhypergraphs with vertex sets $V(A) \cup V(B), V(A) \cap V(B)$ and edge sets $E(A) \cup E(B), E(A) \cap E(B)$ respectively. A separation of G is a pair (A, B) of subhypergraphs with $A \cup B=G$ and $E(A \cap B)=\emptyset$; its order is $|V(A \cap B)|$, and its reverse is (B, A).

A central idea in our approach is that of a tangle in a hypergraph, which was introduced in [3]. Intuitively, a tangle of order θ in a hypergraph G may be thought of as a " θ-connected component" of G, a highly coherent mass in G which resides almost completely on one side or the other of every separation of order $<\theta$. Formally, let G be a hypergraph and $\theta \geq 1$ an integer. A tangle of order θ in G is a set \mathcal{T} of separations of G, each of order $<\theta$, such that
(T1) for every separation (A, B) of G of order $<\theta, \mathcal{T}$ contains one of $(A, B),(B, A)$
(T2) if $\left(A_{i}, B_{i}\right) \in \mathcal{T}(i=1,2,3)$ then $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) if $(A, B) \in \mathcal{T}$ then $V(A) \neq V(G)$.
Let us mention one lemma that we shall need later.
2.1 Let G be a hypergraph, let $G^{\prime} \subseteq G$, and let \mathcal{T}^{\prime} be a tangle in G^{\prime} of order θ. Let \mathcal{T} be the set of all separations (A, B) of G of order $<\theta$ such that $\left(A \cap G^{\prime}, B \cap G^{\prime}\right) \in \mathcal{T}^{\prime}$. Then \mathcal{T} is a tangle in G of order θ.

The proof is clear.
The second concept we need is that of tree-decomposition. A tree is a non-null connected graph without circuits. A tree-decomposition of a hypergraph G is a pair (T, τ), where T is a tree and τ assigns to each $t \in V(T)$ a subhypergraph $\tau(t)$ of G, such that

- $\cup(\tau(t): t \in V(T))=G$
- for distinct $t_{1}, t_{2} \in V(T), E\left(\tau\left(t_{1}\right) \cap \tau\left(t_{2}\right)\right)=\emptyset$
- if $t_{1}, t_{2}, t_{3} \in V(T)$ and t_{2} lies on the path between t_{1} and t_{3} then $\tau\left(t_{1}\right) \cap \tau\left(t_{3}\right) \subseteq \tau\left(t_{2}\right)$.

If T^{\prime} is a subtree of T we denote $\cup\left(\tau(t): t \in V\left(T^{\prime}\right)\right)$ by $\tau \times T^{\prime}$. If $e \in E(T)$ and T_{1}, T_{2} are the two components of $T \backslash e$ then $\left(\tau \times T_{1}, \tau \times T_{2}\right)$ and its reverse are the separations made by e under (T, τ); their common order is the order of e in (T, τ). The tree-decomposition (T, τ) has width w if $w \geq 0$ is minimum such that $|V(\tau(t))| \leq w+1$ for each $t \in V(T)$; and the tree-width of a hypergraph G is the minimum width of all tree-decompositions of G. The following is proved in theorem 5.2 of [3].
2.2 Let G be a hypergraph with no tangle of order $\geq \theta$, where $\theta \geq 1$. Then G has tree-width $\leq \frac{3}{2} \theta$.

A location in G is a set \mathcal{L} of separations of G such that $A_{1} \subseteq B_{2}$ for all distinct $\left(A_{1}, B_{1}\right)$, $\left(A_{2}, B_{2}\right) \in \mathcal{L}$. We define $M(G, \mathcal{L})$ to be $\cap(B:(A, B) \in \mathcal{L})$ if $\mathcal{L} \neq \emptyset$, and $M(G, \emptyset)=G$.
2.3 Let $\mathcal{L}=\left\{\left(A_{1}, B_{1}\right), \ldots,\left(A_{n}, B_{n}\right)\right\}$ be a location in a hypergraph G. Then

1. $A_{1}, \ldots, A_{n}, M(G, \mathcal{L})$ are mutually edge-disjoint, and have union G
2. for $1 \leq i \leq n, B_{i}=M(G, \mathcal{L}) \cup \bigcup\left(A_{j}: 1 \leq j \leq n, j \neq i\right)$, and $A_{i} \cap M(G, \mathcal{L})=A_{i} \cap B_{i}$
3. for $1 \leq i<j \leq n, A_{i} \cap A_{j} \subseteq M(G, \mathcal{L})$, and
$V\left(A_{i} \cap A_{j}\right)=V\left(A_{i} \cap B_{i}\right) \cap V\left(A_{j} \cap B_{j}\right) \cap V(M(G, \mathcal{L}))$.
Proof. For $1 \leq i \leq n, M(G, \mathcal{L}) \subseteq B_{i}$ and $A_{j} \subseteq B_{i}$ for $j \neq i$; since $E\left(A_{i} \cap B_{i}\right)=\emptyset$, the first assertion of 2.3.1 follows. For the second assertion of 2.3.1, we observe that any vertex or edge of G not in $M(G, \mathcal{L})$ fails to belong to some B_{i}, and therefore belongs to the corresponding A_{i}. Thus 2.3.1 holds. For 2.3.2, we have already seen that

$$
M(G, \mathcal{L}) \cup \bigcup\left(A_{j}: 1 \leq j \leq n, j \neq i\right) \subseteq B_{i}
$$

Conversely, any vertex or edge of B_{i} not in $M(G, \mathcal{L})$ fails to belong to B_{j} for some $j \neq i$, and hence belongs to A_{j}. This proves the first assertion of 2.3 .2 , and the second will follow from the first and 2.3.3. For 2.3.3, let $1 \leq i<j \leq n$. By 2.3.1, $E\left(A_{i} \cap A_{j}\right)=\emptyset$; let $v \in V\left(A_{i} \cap A_{j}\right)$. For $1 \leq k \leq n$, if $k \neq i$ then $v \in V\left(A_{i}\right) \subseteq V\left(B_{k}\right)$, and if $k=i$ then $v \in V\left(A_{j}\right) \subseteq V\left(B_{k}\right)$. Thus $v \in V\left(B_{k}\right)$ for all $k(1 \leq k \leq n)$, and so $v \in V(M(G, \mathcal{L}))$. This proves the first assertion of 2.3.3. For the second, $A_{i} \cap A_{j} \subseteq A_{i} \cap B_{i}$ since $A_{j} \subseteq B_{i}$, and similarly $A_{i} \cap A_{j} \subseteq A_{j} \cap B_{j}$, and so the second assertion of 2.3.3 follows. This proves 2.3.

The following is easily seen to be true (compare theorem 9.1 of [3]).
2.4 Let (T, τ) be a tree-decomposition of a hypergraph G, let $t_{0} \in V(T)$ and let e_{1}, \ldots, e_{k} be the edges of T incident with t_{0}. For $1 \leq i \leq k$ let the components of $T \backslash e_{i}$ be T_{i}, T_{i}^{\prime}, where $t_{0} \in V\left(T_{i}^{\prime}\right)$. Then

$$
\left(\tau \times T_{i}, \tau \times T_{i}^{\prime}\right): 1 \leq i \leq k
$$

is a location.
We call this the location of t_{0} in (T, τ). It is possible that $\left(\tau \times T_{i}, \tau \times T_{i}^{\prime}\right)=\left(\tau \times T_{j}, \tau \times T_{j}^{\prime}\right)$ for distinct i, j, but only if $\tau \times T_{i}^{\prime}=G$. We say (T, τ) is proper if no edge of T makes a separation (A, B) with $B=G$.
2.5 Let (T, τ) be a tree-decomposition of a hypergraph G, and let $t \in V(T)$. Let \mathcal{L} be the location of t in (T, τ); then $\tau(t)=M(G, \mathcal{L})$.

Proof. Certainly $\tau(t) \subseteq B$ for every $(A, B) \in \mathcal{L}$ and so $\tau(t) \subseteq M(G, \mathcal{L})$. For the converse inclusion, let x be a vertex or edge of G not in $\tau(t)$, and choose $t^{\prime} \in V(T)$ with x in $\tau\left(t^{\prime}\right)$. Let e be the edge of T incident with t such that t, t^{\prime} are in different components of $T \backslash e$, and let $(A, B) \in \mathcal{L}$ be the corresponding separation. Then $A \cap B \subseteq \tau(t)$, and so x is not in $A \cap B$; but x is in A, and so is not in B. Hence x is not in $M(G, \mathcal{L})$. This proves 2.5.

For several purposes it would be convenient if there were at most one smallest order separation with a given property, and we can more or less arrange this by a refinement in the definition of the order of separation. A tie-breaker in a hypergraph G is a function λ which maps each separation (A, B) of G to some member $\lambda(A, B)$ of a linearly ordered set (Λ, \leq) (we call $\lambda(A, B)$ the λ-order of $(A, B))$ in such a way that

- $\lambda(A, B)=\lambda(C, D)$ if and only if $(A, B)=(C, D)$ or $(A, B)=(D, C)$
- for all separations $(A, B),(C, D)$, either $\lambda(A \cup C, B \cap D) \leq \lambda(A, B)$, or $\lambda(A \cap C, B \cup D)<\lambda(C, D)$
- if $|V(A \cap B)|<|V(C \cap D)|$ then $\lambda(A, B)<\lambda(C, D)$.

It was shown in theorem 9.2 of [3] that every hypergraph has a tie-breaker.
Let $\mathcal{T}_{1}, \mathcal{T}_{2}$ be tangles in a hypergraph G. If $(A, B) \in \mathcal{T}_{1}$ and $(B, A) \in \mathcal{T}_{2}$ we say that (A, B) distinguishes \mathcal{T}_{1} from \mathcal{T}_{2}. If there is such an (A, B), then for a given tie-breaker λ in G there is a unique $(A, B) \in \mathcal{T}_{1}$ such that $(B, A) \in \mathcal{T}_{2}$ of minimum λ-order, called the $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$-distinction; and if (A, B) is the $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$-distinction then (B, A) is the $\left(\mathcal{T}_{2}, \mathcal{T}_{1}\right)$-distinction. By theorem 10.3 of [3], we have
2.6 Let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ be distinct tangles of order θ in a hypergraph G with $n \geq 1$, and let λ be a tiebreaker. Then there is a tree-decomposition (T, τ) of G where $V(T)=\left\{t_{1}, \ldots, t_{n}\right\}$, with the following properties:

1. if $e \in E(T)$ and T_{1}, T_{2} are the components of $T \backslash e$ and $1 \leq i \leq n$ and $t_{i} \in V\left(T_{2}\right)$ then $\left(\tau \times T_{1}, \tau \times T_{2}\right) \in \mathcal{T}_{i}$
2. for $1 \leq i<j \leq n$, let e be the edge of the path of T between t_{i}, t_{j} making separations of minimum λ-order; then these separations are the $\left(\mathcal{T}_{i}, \mathcal{T}_{j}\right)$ - and $\left(\mathcal{T}_{j}, \mathcal{T}_{i}\right)$-distinctions.

We call (T, τ) a standard decomposition of G relative to $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ in which t_{i} represents \mathcal{T}_{i} for $i=1, \ldots, n$.

A separation (A, B) of a hypergraph G is robust if for every separation (C, D) of A, one of the separations $(C, B \cup D),(D, B \cup C)$ has order at least that of (A, B). A tree-decomposition (T, τ) of a hypergraph G is rotund if for every two edges $f_{1}, f_{2} \in E(T)$, making separations $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ of the same order k, where $B_{2} \subseteq A_{1}$ and $B_{1} \subseteq A_{2}$, the following holds: if there is a separation $\left(H_{1}, H_{2}\right)$ of G with $B_{1} \subseteq H_{1}$ and $B_{2} \subseteq H_{2}$ of order $<k$, then some edge of F makes a separation of order $<k$, where F is the path of T with first and last edges f_{1}, f_{2}.
2.7 Let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ be distinct tangles of order θ in a hypergraph G with $n \geq 1$, and let λ be a tie-breaker. Let (T, τ) be as in 2.6. Then (T, τ) is proper and rotund, and every separation made by an edge of T under (T, τ) is robust.

Proof. Let $V(T)=\left\{t_{1}, \ldots, t_{n}\right\}$ where t_{i} represents $\mathcal{T}_{i}(1 \leq i \leq n)$. Let $e \in E(T)$, making separations $(A, B),(B, A)$. Then (A, B) is the $\left(\mathcal{T}_{i}, \mathcal{T}_{j}\right)$-distinction where t_{i}, t_{j} are the ends of e, and so $(A, B) \in \mathcal{T}_{i}$, and $V(A) \neq V(G)$ by (T3). Thus (T, τ) is proper. From theorem 10.2 of $[3],(A, B)$ is robust. It remains to show that (T, τ) is rotund.

Thus, let $f_{1}, f_{2} \in E(T)$, and let F be the path of T with first and last edges f_{1}, f_{2}. Let f_{1}, f_{2} make separations $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)$ respectively, where $B_{1} \subseteq A_{2}$ and $B_{2} \subseteq A_{1}$; and suppose that both
these separations have order k. Let $\left(H_{1}, H_{2}\right)$ be a separation of G of order $k^{\prime}<k$ with $B_{1} \subseteq H_{1}$ and $B_{2} \subseteq H_{2}$, and let the first and last vertices of F be t_{1}, t_{2} say. Now $\left(A_{1}, B_{1}\right) \in \mathcal{T}_{1}$, and so $\left(H_{1}, H_{2}\right) \notin \mathcal{T}_{1}$ by (T2), since $A_{1} \cup H_{1} \supseteq A_{1} \cup B_{1}=G$; and so $\left(H_{2}, H_{1}\right) \in \mathcal{T}_{1}$ by (T1), since $k^{\prime}<k<\theta$. Similarly $\left(H_{1}, H_{2}\right) \in \mathcal{T}_{2}$, and so $\left(H_{2}, H_{1}\right)$ distinguishes \mathcal{T}_{1} from \mathcal{T}_{2}. Thus the $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$-distinction (A, B) has order $\leq k^{\prime}<k$, and by $2.6 .2(A, B)$ is made by some edge of F. It follows that (T, τ) is rotund. This proves 2.7.

3 Tree-width of a location

A separation (A, B) of G is titanic if at least one of the inequalities

$$
\begin{aligned}
& |V((X \cup Y) \cap Z)| \geq|V((X \cup Y) \cap B)| \\
& |V((Y \cup Z) \cap X)| \geq|V((Y \cup Z) \cap B)| \\
& |V((Z \cup X) \cap Y)| \geq|V((Z \cup X) \cap B)|
\end{aligned}
$$

holds for every choice of $X, Y, Z \subseteq A$ such that $A=X \cup Y \cup Z$ and $E(X), E(Y), E(Z)$ are mutually disjoint. We observe that whether or not (A, B) is titanic depends only on A and on $V(A \cap B)$; more precisely,
3.1 Let (A, B) be a separation of a hypergraph G, and let $\left(A, B^{\prime}\right)$ be a separation of a hypergraph G^{\prime}, with $A \cap B=A \cap B^{\prime}$. Then (A, B) is titanic if and only if $\left(A, B^{\prime}\right)$ is titanic.

The proof is clear. From theorem 8.3 of [3], we have the following.
3.2 Let (C, D) be a separation of a hypergraph G, and let $\left(C^{\prime}, D\right)$ be a titanic separation of a hypergraph G^{\prime}, with $V(C \cap D)=V\left(C^{\prime} \cap D\right)$. Let \mathcal{T} be a tangle in G of order $\theta \geq 2$ with $(C, D) \in \mathcal{T}$. Let \mathcal{T}^{\prime} be the set of all separations $\left(A^{\prime}, B^{\prime}\right)$ of G^{\prime} of order $<\theta$ such that there exists $(A, B) \in \mathcal{T}$ with $E(A \cap D)=E\left(A^{\prime} \cap D\right)$. Then \mathcal{T}^{\prime} is a tangle in G^{\prime} of order θ.

If \mathcal{T} is a tangle in a hypergraph G, we say that $(A, B) \in \mathcal{T}$ is linked to \mathcal{T} if there is no $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}$ of smaller order with $A \subseteq A^{\prime}$ and $B^{\prime} \subseteq B$.
3.3 Let \mathcal{T} be a tangle of order $\geq \theta$ in a hypergraph G and $\operatorname{let}(B, A) \in \mathcal{T}$ be linked to \mathcal{T} and have order $\leq \frac{3}{4} \theta$. Then (A, B) is titanic.

Proof. Let us suppose that (A, B) is not titanic. Hence we may choose subhypergraphs X_{1}, X_{2}, X_{3} of A such that $X_{1} \cup X_{2} \cup X_{3}=A$ and $E\left(X_{1}\right), E\left(X_{2}\right), E\left(X_{3}\right)$ are mutually disjoint, and

$$
\begin{aligned}
& \left|\left(V_{1} \cup V_{2}\right) \cap V_{3}\right|<\left|W_{1} \cup W_{2}\right| \\
& \left|\left(V_{2} \cup V_{3}\right) \cap V_{1}\right|<\left|W_{2} \cup W_{3}\right| \\
& \left|\left(V_{3} \cup V_{1}\right) \cap V_{2}\right|<\left|W_{3} \cup W_{1}\right|
\end{aligned}
$$

where $V\left(X_{i}\right)=V_{i}$ and $V\left(X_{i} \cap B\right)=W_{i}(i=1,2,3)$. Suppose that $\left(X_{1}, X_{2} \cup X_{3} \cup B\right) \notin \mathcal{T}$. Then either $\left(X_{2} \cup X_{3} \cup B, X_{1}\right) \in \mathcal{T}$ or $\left(X_{1}, X_{2} \cup X_{3} \cup B\right)$ has order $\geq \theta$; and in either case, since (B, A) is linked to \mathcal{T}, we deduce that $\left(X_{1}, X_{2} \cup X_{3} \cup B\right)$ has order at least that of (B, A). Hence

$$
\left|V_{1} \cap\left(V_{2} \cup V_{3} \cup V(B)\right)\right| \geq|V(A \cap B)|
$$

that is,

$$
\left|V_{1} \cap\left(V_{2} \cup V_{3}\right)\right|+\left|W_{1} \backslash\left(W_{2} \cup W_{3}\right)\right| \geq\left|W_{2} \cup W_{3}\right|+\left|W_{1} \backslash\left(W_{2} \cup W_{3}\right)\right|
$$

contrary to our assumption. Hence $\left(X_{1}, X_{2} \cup X_{3} \cup B\right) \in \mathcal{T}$ and similarly $\left(X_{2}, X_{3} \cup X_{1} \cup B\right),\left(X_{3}, X_{1} \cup\right.$ $\left.X_{2} \cup B\right) \in \mathcal{T}$. It follows that $\left(X_{1} \cup B, X_{2} \cup X_{3}\right) \notin \mathcal{T}$ by (T2), since $\left(X_{1} \cup B\right) \cup X_{2} \cup X_{3}=G$; and $\left(X_{2} \cup X_{3}, X_{1} \cup B\right) \notin \mathcal{T}$ since $\left(X_{2} \cup X_{3}\right) \cup X_{1} \cup B=G$; and so $\left(X_{1} \cup B, X_{2} \cup X_{3}\right)$ has order $\geq \theta$; that is,

$$
\begin{gathered}
\theta \leq\left|\left(V_{1} \cup V(B)\right) \cap\left(V_{2} \cup V_{3}\right)\right|=\left|\left(V_{2} \cup V_{3}\right) \cap V_{1}\right|+\left|\left(W_{2} \cup W_{3}\right) \backslash W_{1}\right| \\
<\left|W_{2} \cup W_{3}\right|+\left|\left(W_{2} \cup W_{3}\right) \backslash W_{1}\right|=2\left|\left(W_{2} \cup W_{3}\right) \backslash W_{1}\right|+\left|\left(W_{2} \cup W_{3}\right) \cap W_{1}\right| .
\end{gathered}
$$

By summing this and the two similar inequalities, we obtain

$$
\begin{aligned}
3 \theta & <2\left|\left(W_{2} \cup W_{3}\right) \backslash W_{1}\right|+2\left|\left(W_{3} \cup W_{1}\right) \backslash W_{2}\right|+2\left|\left(W_{1} \cup W_{2}\right) \backslash W_{3}\right| \\
& +\left|\left(W_{2} \cup W_{3}\right) \cap W_{1}\right|+\left|\left(W_{3} \cup W_{1}\right) \cap W_{2}\right|+\left|\left(W_{1} \cup W_{2}\right) \cap W_{3}\right| \\
& =4\left|W_{1} \cup W_{2} \cup W_{3}\right|-\left|W_{1} \cap W_{2} \cap W_{3}\right| \\
& \leq 4|V(A \cap B)| .
\end{aligned}
$$

Hence the order of (A, B) is $>3 \theta / 4$, a contradiction, and so our initial assumption that (A, B) is not titanic was false. This completes the proof of 3.3.

Let \mathcal{L} be a location in G. The order of \mathcal{L} is the maximum order of the members of \mathcal{L} (or 0 if $\mathcal{L}=\emptyset)$. For each $(A, B) \in \mathcal{L}$ let $e(A, B)$ be a new element, and let H be the hypergraph with

$$
\begin{gathered}
V(H)=V(M(G, \mathcal{L})) \\
E(H)=E(M(G, \mathcal{L})) \cup\{e(A, B):(A, B) \in \mathcal{L}\}
\end{gathered}
$$

where for $e \in E(M(\mathcal{L}))$ its ends are as in G, and for $(A, B) \in \mathcal{L}$ the ends of $e(A, B)$ are the elements of $V(A \cap B)$. This is a hypergraph by 2.3.2, and we call it the heart of \mathcal{L}. We define the tree-width of \mathcal{L} to be the tree-width of H.
3.4 Let \mathcal{L} be a location in a hypergraph G, such that each $(A, B) \in \mathcal{L}$ is titanic, and \mathcal{L} has order $<\theta$, where $\theta \geq 2$. Then either there is a tangle \mathcal{T} in G of order θ with $\mathcal{L} \subseteq \mathcal{T}$, or \mathcal{L} has tree-width $\leq \frac{3}{2} \theta$.

Proof. Define H as above. If there is no tangle in H of order θ, then by 2.2 the tree-width of H is at most $\frac{3}{2} \theta$, as required. So we may assume that there is a tangle \mathcal{T}_{0} in H of order θ. Let

$$
\mathcal{L}=\left\{\left(A_{1}, B_{1}\right), \ldots,\left(A_{n}, B_{n}\right)\right\},
$$

and for $1 \leq i \leq n$ let C_{i} be the subhypergraph of H with $V\left(C_{i}\right)=V\left(A_{i} \cap B_{i}\right)$ and $E\left(C_{i}\right)=\left\{e\left(A_{i}, B_{i}\right)\right\}$. Thus,

$$
H=M(G, \mathcal{L}) \cup C_{1} \cup \cdots \cup C_{n}
$$

and

$$
G=M(G, \mathcal{L}) \cup A_{1} \cup \cdots \cup A_{n} .
$$

For $0 \leq k \leq n$, let

$$
H_{k}=M(G, \mathcal{L}) \cup A_{1} \cup \cdots \cup A_{k} \cup C_{k+1} \cup \cdots \cup C_{n}
$$

Then $H_{0}=H$ and $H_{n}=G$. For $1 \leq j \leq k$, let

$$
B_{j k}=M(G, \mathcal{L}) \cup \bigcup\left(A_{i}: 1 \leq i \leq k, i \neq j\right) \cup C_{k+1} \cup \cdots \cup C_{n} .
$$

Then $\left(A_{j}, B_{j k}\right)$ is a separation of H_{k}, and $A_{j} \cap B_{j k}=A_{j} \cap B_{j}$. We claim that, for $0 \leq k \leq n$,
(1) There is a tangle \mathcal{T}_{k} in H_{k} of order θ such that $\left(A_{j}, B_{j k}\right) \in \mathcal{T}_{k}$ for $1 \leq j \leq k$.

Subproof. We proceed by induction on k. It holds for $k=0$, and we therefore assume that $1 \leq k \leq n$ and that \mathcal{T}_{k-1} satisfies (1) with k replaced by $k-1$. Since $\left(C_{k}, B_{k k}\right)$ has order $<\theta$ (because \mathcal{L} has order $<\theta$) it follows from (T3) that $\left(C_{k}, B_{k k}\right) \in \mathcal{T}_{k-1}$. Now $\left(A_{k}, B_{k}\right)$ is titanic, and hence so is $\left(A_{k}, B_{k k}\right)$ by 3.1. Let \mathcal{T}_{k} be the set of all separations $\left(A^{\prime}, B^{\prime}\right)$ of H_{k} of order $<\theta$ such that there exists $(A, B) \in \mathcal{T}_{k-1}$ with $E\left(A \cap B_{k k}\right)=E\left(A^{\prime} \cap B_{k k}\right)$. By 3.2 (with $C, D, G, C^{\prime}, G^{\prime}, \mathcal{T}, \theta, \mathcal{T}^{\prime}$ replaced by $\left.C_{k}, B_{k k}, H_{k-1}, A_{k}, H_{k}, \mathcal{T}_{k-1}, \theta, \mathcal{T}_{k}\right) \mathcal{T}_{k}$ is a tangle in H_{k} of order θ. Let $1 \leq j \leq k$; we must verify that $\left(A_{k}, B_{j k}\right) \in \mathcal{T}_{k}$. If $j<k$, then $\left(A_{j}, B_{j, k-1}\right) \in \mathcal{T}_{k-1}$ from the inductive hypothesis, and so $\left(A_{j}, B_{j k}\right) \in \mathcal{T}_{k}$ from the definition of \mathcal{T}_{k}. We assume then that $j=k$. But $\left(C_{k}, B_{k k}\right) \in \mathcal{T}_{k-1}$ as we saw above, and $E\left(C_{k} \cap B_{k k}\right)=\emptyset=E\left(A_{k} \cap B_{k k}\right)$ and so $\left(A_{k}, B_{k k}\right) \in \mathcal{T}_{k}$ from the definition of \mathcal{T}_{k}. Thus \mathcal{T}_{k} satisfies (1); and so (1) holds, by induction on k.

From (1) with $k=n$, we deduce that $\left(A_{j}, B_{j}\right) \in \mathcal{T}_{n}$ for $1 \leq j \leq n$, since $B_{j}=B_{j n}$; and so $\mathcal{L} \subseteq \mathcal{T}_{n}$. This proves 3.4.

4 Isolating locations

Let \mathcal{T} be a tangle in a hypergraph G, and let λ be a tie-breaker in G. A location \mathcal{L} is said to θ-isolate \mathcal{T} if $\mathcal{L} \subseteq \mathcal{T}$ and has order $<\theta$, and for every $(C, D) \in \mathcal{L}$ and every tangle \mathcal{T}^{\prime} in G of order $\geq \theta$ with $(D, C) \in \mathcal{T}^{\prime}$, if (A, B) is the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction then $A \subseteq C$ and $D \subseteq B$. Our objective in this section is to study the global structure of a hypergraph G given, for every tangle \mathcal{T} in G of high order, a location θ-isolating \mathcal{T}.

We shall need the following lemma (our thanks to M. Saks for its proof).
4.1 Let T be a tree and let \leq be some linear order on $E(T)$. For each $t \in V(T)$, let T_{t} be a subtree of T such that

- $t \in V\left(T_{t}\right)$
- if $e \in E(T)$ has one end in $V\left(T_{t}\right)$ and the other end in $V(T) \backslash V\left(T_{t}\right)$ and f is an edge of the path of T with first vertex t and last edge e, then $e \leq f$.

Then there exists $I \subseteq V(T)$ such that the sets $V\left(T_{t}\right)(t \in I)$ form a partition of $V(T)$.
Proof. We proceed by induction on $|V(T)|$. We may assume that $E(T) \neq \emptyset$, and may therefore choose $f \in E(T)$ minimum under \leq. Let T^{1}, T^{2} be the two components of $T \backslash f$, and let the ends of f be $u^{1} \in V\left(T^{1}\right), u^{2} \in V\left(T^{2}\right)$. For each $t \in V\left(T^{i}\right)$, define $T_{t}^{i}=T_{t} \cap T^{i}(i=1,2)$. These satisfy the hypotheses of 4.1, so from our inductive hypothesis, we may choose $I^{i} \subseteq V\left(T^{i}\right)$ such that the sets $V\left(T_{t}^{i}\right)\left(t \in I^{i}\right)$ form a partition of $V\left(T^{i}\right)(i=1,2)$. Now if for $i=1,2, T_{t}^{i}=T_{t}$ for every $t \in I^{i}$ then
$I=I^{1} \cup I^{2}$ satisfies our requirement. We assume then that there exists $s \in I^{1}$ with $T_{s}^{1} \neq T_{s}$. Hence $T_{s} \nsubseteq T^{1}$, and so $f \in E\left(T_{s}\right)$, and in particular $u^{1} \in V\left(T_{s}^{1}\right)$. It follows that $T_{t}^{1}=T_{t}$ for all $t \in I^{1} \backslash\{s\}$, since no other $V\left(T_{t}^{1}\right)$ contains u^{1}. Moreover, we claim that $T^{2} \subseteq T_{s}$. For if not, there is an edge e of T^{2} with one end in $V\left(T_{s}\right)$ and the other in $V\left(T^{2}\right) \backslash V\left(T_{s}\right)$. Then f is in the path of T_{s} with first vertex s and last edge e, and so $e \leq f$. But $f<e$ from our choice of f since $e \neq f$, a contradiction. Thus $T^{2} \subseteq T_{s}$, and so the sets $V\left(T_{t}\right)\left(t \in I^{1}\right)$ partition $V(T)$. This proves 4.1.
4.2 Let $\mathcal{T}_{j}(j \in J)$ be distinct tangles of order θ in a hypergraph G, let λ be a tie-breaker in G, and for each $j \in J$ let $\mathcal{L}_{j} \subseteq \mathcal{T}_{j}$ be a location which θ-isolates \mathcal{T}_{j} with respect to λ. Then there exists $I \subseteq J$ such that for every $j \in J$ there is a unique $i \in I$ with $\mathcal{L}_{i} \subseteq \mathcal{T}_{j}$.

Proof. We may assume that $J \neq \emptyset$. Let $J=\{1, \ldots, n\}$ say where $n \geq 1$. Let (T, τ) be a standard tree-decomposition relative to $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ in which t_{i} represents \mathcal{T}_{i} for $1 \leq i \leq n$.
(1) If e, $e^{\prime} \in E(T)$ are distinct, and make separations $(A, B),\left(A^{\prime}, B^{\prime}\right)$ of G say, then

$$
(A, B),(B, A) \neq\left(A^{\prime}, B^{\prime}\right),\left(B^{\prime}, A^{\prime}\right) .
$$

Subproof. Let e have ends t_{i}, t_{j}. By 2.6.2, one of $(A, B),(B, A)$ is the $\left(\mathcal{T}_{i}, \mathcal{T}_{j}\right)$-distinction, and the other is the $\left(\mathcal{T}_{j}, \mathcal{T}_{i}\right)$-distinction. Consequently, one of $(A, B),(B, A)$ does not belong to \mathcal{T}_{i} and the other does not belong to \mathcal{T}_{j}. But by 2.6.1, one of $\left(A^{\prime}, B^{\prime}\right),\left(B^{\prime}, A^{\prime}\right)$ belongs to both \mathcal{T}_{i} and \mathcal{T}_{j}. This proves (1).

For $1 \leq h \leq n$ let T_{h} be the restriction of T to $\left\{t_{i}: 1 \leq i \leq n, \mathcal{L}_{h} \subseteq \mathcal{T}_{i}\right\}$. For the moment, let us fix h with $1 \leq h \leq n$. Let S_{h} be the component of T_{h} containing t_{h}.
(2) Let $t_{i} \in V\left(S_{h}\right)$ be adjacent in T to $t_{j} \in V(T) \backslash V\left(S_{h}\right)$, and let (A, B) be the ($\left.\mathcal{T}_{h}, \mathcal{T}_{j}\right)$-distinction; then $(A, B) \in \mathcal{T}_{k}$ for every $t_{k} \in V\left(T_{h}\right)$, and (A, B) is the $\left(\mathcal{T}_{i}, \mathcal{T}_{j}\right)$-distinction.

Subproof. Since $t_{j} \notin V\left(S_{h}\right)$ it follows that $t_{j} \notin V\left(T_{h}\right)$ and so $\mathcal{L}_{h} \nsubseteq \mathcal{T}_{j}$. Choose $(C, D) \in \mathcal{L}_{h}$ with $(C, D) \notin \mathcal{T}_{j}$. Then (C, D) has order $<\theta$ since $(C, D) \in \mathcal{L}_{h}$, and so $(D, C) \in \mathcal{T}_{j}$ by (T1). Since $\mathcal{L}_{h} \theta$-isolates \mathcal{T}_{h} it follows that $A \subseteq C$ and $D \subseteq B$. For each $t_{k} \in V\left(T_{h}\right),(C, D) \in \mathcal{L}_{h} \subseteq \mathcal{T}_{k}$, and so $(B, A) \notin \mathcal{T}_{k}$ by (T2) since $B \cup C=G$; and hence $(A, B) \in \mathcal{T}_{k}$ by (T1) since \mathcal{T}_{k} has order θ. In particular, $(A, B) \in \mathcal{T}_{i}$, and therefore has λ-order at least that of the ($\left.\mathcal{T}_{i}, \mathcal{T}_{j}\right)$-distinction $\left(A^{\prime}, B^{\prime}\right)$. On the other hand, $\left(A^{\prime}, B^{\prime}\right)$ distinguishes \mathcal{T}_{h} from \mathcal{T}_{j} (by 2.6.1, since t_{i} lies on the path of T between t_{h} and $\left.t_{j}\right)$ and therefore has λ-order at least that of (A, B). Hence equality occurs, and $(A, B)=\left(A^{\prime}, B^{\prime}\right)$ by the first tie-breaker axiom. This proves (2).

(3) T_{h} is a tree.

Subproof. Let $t_{k} \notin V\left(S_{h}\right)$, and let P be the path of T from t_{h} to t_{k}. Let t_{i} be the last vertex of P in $V\left(S_{h}\right)$ and t_{j} the next vertex of P, and define (A, B) as in (2). Then $(A, B) \notin \mathcal{T}_{k}$ by 2.6.1 and 2.6.2, since (A, B) is the ($\mathcal{T}_{i}, \mathcal{T}_{j}$)-distinction; and so $t_{k} \notin V\left(T_{h}\right)$ by (2). Hence $S_{h}=T_{h}$ and T_{h} is a tree. This proves (3).

For each $e \in E(T)$ with ends t_{i}, t_{j} say, let $\mu(e)$ be the λ-order of the $\left(\mathcal{T}_{i}, \mathcal{T}_{j}\right)$-distinction. By (1), $\mu(e) \neq \mu\left(e^{\prime}\right)$ for all distinct $e, e^{\prime} \in E(T)$.
(4) If $e \in E(T)$ has one end in $V\left(T_{h}\right)$ and the other in $V(T) \backslash V\left(T_{h}\right)$, and f is an edge of the path of T with first vertex t and last edge e, then $\mu(e)<\mu(f)$ unless $e=f$.

Subproof. Let e have ends $t_{i} \in V\left(T_{h}\right)$ and $t_{j} \in V(T) \backslash V\left(T_{h}\right)$, and let (A, B) be the $\left(\mathcal{T}_{i}, \mathcal{T}_{j}\right)$-distinction. By (2) and (3), (A, B) is the $\left(\mathcal{T}_{h}, \mathcal{T}_{j}\right)$-distinction, and so its λ-order is at most the λ-order of the separation made by f, with strict inequality unless $e=f$ by (1). This proves (4).

In view of (3), (4) and 4.1, this proves 4.2.
Let $\mathcal{L}, \mathcal{L}^{*}$ be locations in a hypergraph G, and let $\mathcal{L}=\left\{\left(C_{1}, D_{1}\right), \ldots,\left(C_{k}, D_{k}\right)\right\}$. We say that \mathcal{L}^{*} is an enlargement of \mathcal{L} if there exist $\mathcal{L}_{1}, \ldots, \mathcal{L}_{k} \subseteq \mathcal{L}^{*}$, mutually disjoint (possibly empty) and with union \mathcal{L}^{*}, such that for $1 \leq h \leq k$, every $(A, B) \in \mathcal{L}_{h}$ satisfies $A \subseteq C_{h}$ and $D_{h} \subseteq B$. If in addition $w \geq 0$ and $\mathcal{L}_{h} \cup\left\{\left(D_{h}, C_{h}\right)\right\}$ has tree-width $\leq w$ for $1 \leq h \leq k$, we say that \mathcal{L}^{*} is an enlargement of \mathcal{L} by tree-width $\leq w$.
4.3 Let λ be a tie-breaker in a hypergraph G, let $\theta \geq 2$, and let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ be distinct tangles in G, each of order θ, where $n \geq 1$. For $1 \leq i \leq n$ let $\mathcal{L}_{i} \subseteq \mathcal{T}_{i}$ be a location of order $\leq \frac{3}{4} \theta$ which θ-isolates \mathcal{T}_{i}; and suppose that for every tangle \mathcal{T} in G of order θ, there is a unique i with $1 \leq i \leq n$ such that $\mathcal{L}_{i} \subseteq \mathcal{T}$. Let (T, τ) be a standard tree-decomposition of G relative to $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$, where $V(T)=\left\{t_{1}, \ldots, t_{n}\right\}$ and t_{i} represents \mathcal{T}_{i} for $1 \leq i \leq n$. Then for $1 \leq i \leq n$, the location of t_{i} in (T, τ) is an enlargement of \mathcal{L}_{i} by tree-width $\leq \frac{9}{4} \theta$.

Proof. Let $1 \leq i \leq n$, and let $\mathcal{L}_{i}=\left\{\left(C_{1}, D_{1}\right), \ldots,\left(C_{k}, D_{k}\right)\right\}$. Let \mathcal{L}^{*} be the location of t_{i} in (T, τ).
(1) If $(A, B) \in \mathcal{L}^{*}$ then (A, B) has order $\leq \frac{3}{4} \theta$ and there exists h with $1 \leq h \leq k$ such that $A \subseteq C_{h}$ and $D_{h} \subseteq B$.

Subproof. Since $(A, B) \in \mathcal{L}^{*}$, there exists $j \neq i$ with $1 \leq j \leq n$ such that t_{i}, t_{j} are adjacent in T and (A, B) is the $\left(\mathcal{T}_{i}, \mathcal{T}_{j}\right)$-distinction. Since $\mathcal{L}_{j} \subseteq \mathcal{T}_{j}$ and $j \neq i$ it follows that $\mathcal{L} / \subseteq \mathcal{T}_{j}$, and so there exists h with $1 \leq h \leq k$ such that $\left(C_{h}, D_{h}\right) \notin \mathcal{T}_{j}$. Since $\left(C_{h}, D_{h}\right)$ has order $\leq \frac{3}{4} \theta<\theta$, and \mathcal{T}_{j} has order θ, it follows that $\left(D_{h}, C_{h}\right) \in \mathcal{T}_{j}$. Since $\mathcal{L}_{i} \theta$-isolates \mathcal{T}_{i}, we deduce that $A \subseteq C_{h}$ and $D_{h} \subseteq B$. Moreover, since $\left(C_{h}, D_{h}\right)$ distinguishes \mathcal{T}_{i} from \mathcal{T}_{j} and has order $\leq \frac{3}{4} \theta$, it follows that the $\left(\mathcal{T}_{i}, \mathcal{T}_{j}\right)$-distinction (A, B) also has order $\leq \frac{3}{4} \theta$. This proves (1).
(2) Each member of \mathcal{L}^{*} is titanic.

Subproof. Let $(A, B) \in \mathcal{L}^{*}$, and choose j as above. We claim that (B, A) is linked to \mathcal{T}_{j}. For suppose that there exists $\left(B^{\prime}, A^{\prime}\right) \in \mathcal{T}_{j}$ of smaller order than (A, B), and with $B \subseteq B^{\prime}$ and $A^{\prime} \subseteq A$. Since $(A, B) \in \mathcal{T}_{i}$ and $A^{\prime} \subseteq A$ it follows that $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}_{i}$, and so $\left(A^{\prime}, B^{\prime}\right)$ distinguishes \mathcal{T}_{i} from \mathcal{T}_{j}; and hence has order at least that of (A, B), a contradiction. Thus there is no such $\left(B^{\prime}, A^{\prime}\right)$, and so (B, A) is linked to \mathcal{T}_{j}. Since (B, A) has order $\leq \frac{3}{4} \theta$ by (1), it follows that (A, B) is titanic, by 3.3 . This proves (2).

By (1), there exist $\mathcal{L}_{1}^{*}, \ldots, \mathcal{L}_{k}^{*} \subseteq \mathcal{L}^{*}$, mutually disjoint and with union \mathcal{L}^{*}, such that for $1 \leq g \leq k$, every $(A, B) \in \mathcal{L}_{g}^{*}$ satisfies $A \subseteq C_{g}$ and $D_{g} \subseteq B$. Fix h with $1 \leq h \leq k$.
(3) There is no tangle \mathcal{T} of order θ in G with $\mathcal{L}_{h}^{*} \cup\left\{\left(D_{h}, C_{h}\right)\right\} \subseteq \mathcal{T}$.

Subproof. Suppose that \mathcal{T} is such a tangle. From the hypothesis, there exists j with $1 \leq j \leq n$ such that $\mathcal{L}_{j} \subseteq \mathcal{T}$. Since $\left(D_{h}, C_{h}\right) \in \mathcal{T}$ and $\left(C_{h}, D_{h}\right) \in \mathcal{L}_{i}$, it follows that $i \neq j$. Let (A, B) be the $\left(\mathcal{T}_{i}, \mathcal{T}_{j}\right)$-distinction. Since $\mathcal{L}_{j} \nsubseteq \mathcal{T}_{i}$, there exists $(C, D) \in \mathcal{L}_{j}$ such that $(C, D) \notin \mathcal{T}_{i}$. Therefore $(D, C) \in \mathcal{T}_{i}$, since \mathcal{L}_{j} has order $<\theta$, and hence $D \subseteq A$ since (B, A) is the $\left(\mathcal{T}_{j}, \mathcal{T}_{i}\right)$-distinction and $\mathcal{L}_{j} \theta$-isolates \mathcal{T}_{j}. Since $\mathcal{L}_{j} \subseteq \mathcal{T}$ it follows that $(C, D) \in \mathcal{T}$, and hence $(B, A) \in \mathcal{T}$ since (B, A) has order $<\theta$ and $D \subseteq A$. Let $t_{j^{\prime}}$ be the second vertex of the path of T from t_{i} to t_{j}, and let $\left(A^{\prime}, B^{\prime}\right)$ be the $\left(\mathcal{T}_{i}, \mathcal{T}_{j^{\prime}}\right)$-distinction; then, since one of the edges of this path makes the separation (A, B) under (\mathcal{T}, τ) (by 2.6.2), it follows that $A \subseteq A^{\prime}$ and $B^{\prime} \subseteq B$. Hence $\left(B^{\prime}, A^{\prime}\right) \in \mathcal{T}$, since $(B, A) \in \mathcal{T}$. Choose g with $1 \leq g \leq k$ such that $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{L}_{g}^{*}$. Then $A^{\prime} \subseteq C_{g}$ since $\mathcal{L}_{g}^{*} \cup\left\{\left(D_{g}, C_{g}\right)\right\}$ is a location, and so $\left(C_{g}, D_{g}\right) \notin \mathcal{T}$ by (T2), since $\left(B^{\prime}, A^{\prime}\right) \in \mathcal{T}$ and $B^{\prime} \cup C_{g}=G$. But $\left(C_{g}, D_{g}\right)$ has order $<\theta$, and so $\left(D_{g}, C_{g}\right) \in \mathcal{T}$ by (T1). Now $\left(D_{h}, C_{h}\right) \in \mathcal{T}$ by our assumption, and so $D_{g} \cup D_{h} \neq G$ by (T2), and hence $g=h$ since \mathcal{L}_{i} is a location. But $\left(A^{\prime}, B^{\prime}\right) \notin \mathcal{T}$ and

$$
\left(A^{\prime}, B^{\prime}\right) \in \mathcal{L}_{g}^{*}=\mathcal{L}_{h}^{*} \subseteq \mathcal{T}
$$

a contradiction. Thus there is no such \mathcal{T}. This proves (3).
Let $\mathcal{L}^{\prime}=\left\{\left(A, B \cap C_{h}\right):(A, B) \in \mathcal{L}_{h}^{*}\right\}$. Then \mathcal{L}^{\prime} is a location in C_{h}, of order $<\theta$.
(4) There is no tangle in C_{h} of order θ including \mathcal{L}^{\prime}.

Subproof. Suppose that \mathcal{T}^{\prime} is such a tangle. Let \mathcal{T} be the set of all separations (A, B) of G of order $<\theta$ such that $\left(A \cap C_{h}, B \cap C_{h}\right) \in \mathcal{T}^{\prime}$. By 2.1, \mathcal{T} is a tangle in G, of order θ. Since $\left(D_{h}, C_{h}\right)$ has order $<\theta$ and $\left(D_{h} \cap C_{h}, C_{h} \cap C_{h}\right) \in \mathcal{T}^{\prime}$ by (T1) and (T3), it follows that $\left(D_{h}, C_{h}\right) \in \mathcal{T}$. Similarly, if $(A, B) \in \mathcal{L}_{h}^{*}$, then (A, B) has order $<\theta$, and $\left(A \cap C_{h}, B \cap C_{h}\right)=\left(A, B \cap C_{h}\right) \in \mathcal{L}^{\prime} \subseteq \mathcal{T}^{\prime}$, and so $(A, B) \in \mathcal{T}$. Hence, $\mathcal{L}_{h}^{*} \cup\left\{\left(D_{h}, C_{h}\right)\right\} \subseteq \mathcal{T}$, contrary to (3). This proves (4).

Now every member of \mathcal{L}^{\prime} is titanic by (2) and 3.1, and so from (4) and 3.4, \mathcal{L}^{\prime} has tree-width $\leq \frac{3}{2} \theta$. Let $\mathcal{L}=\mathcal{L}_{h}^{*} \cup\left\{\left(D_{h}, C_{h}\right)\right\}$. The heart of \mathcal{L} may be obtained from the heart of \mathcal{L}^{\prime} (taking the latter to be C_{h} if $\mathcal{L}^{\prime}=\emptyset$) by adding one new edge whose set of ends is $V\left(C_{h} \cap D_{h}\right)$, and since $\left|V\left(C_{h} \cap D_{h}\right)\right| \leq \frac{3}{4} \theta$, we deduce that \mathcal{L} has tree-width $\leq \frac{3}{2} \theta+\frac{3}{4} \theta=\frac{9}{4} \theta$. This proves 4.3.

Now we deduce the main result of this section, by combining 2.7, 4.2 and 4.3.
4.4 Let λ be a tie-breaker in a hypergraph G, and let $\theta \geq 1$ be an integer. For each tangle \mathcal{T} in G of order $\geq \theta$ let $\mathcal{L}(\mathcal{T}) \subseteq \mathcal{T}$ be a location which θ-isolates \mathcal{T}, and let G have a tangle of order $\geq \frac{4}{3} \theta$. Then there is a tree-decomposition (T, τ) of G with the following properties:

- (T, τ) is proper and rotund
- for each $e \in E(T)$, the separations made by e under (T, τ) are robust
- for each $t \in V(T)$, let \mathcal{L} be the location of t in (T, τ); then there is a tangle \mathcal{T} in G of order $\geq \frac{4}{3} \theta$ with $\mathcal{L} \subseteq \mathcal{T}$, such that \mathcal{L} is an enlargement of $\mathcal{L}(\mathcal{T})$ by tree-width $\leq 3 \theta+1$.

Proof. Let θ^{\prime} be the least integer with $\theta^{\prime} \geq \frac{4}{3} \theta$. Then $\theta^{\prime} \geq 2$. Let $\mathcal{T}_{j}(j \in J)$ be all the tangles of order θ^{\prime} in G. Then $J \neq \emptyset$, by hypothesis. For each $j \in J, \mathcal{L}\left(\mathcal{T}_{j}\right) \theta^{\prime}$-isolates \mathcal{T}_{j} since it θ-isolates \mathcal{T}_{j}. By 4.2, there exists $I \subseteq J$ such that for every $j \in J$ there is a unique $i \in I$ with $\mathcal{L}\left(\mathcal{T}_{i}\right) \subseteq \mathcal{T}_{j}$. Let $I=\{1, \ldots, n\}$ say. Now $n \geq 1$ since $J \neq \emptyset$. Let (T, τ) be a standard decomposition of G relative to $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ in which t_{i} represents \mathcal{T}_{i} for $1 \leq i \leq n$. By 2.7 , the first two statements of the theorem hold. Let us verify the third. Let $1 \leq i \leq n$, and let \mathcal{L} be the location of t_{i} in (T, τ). From 4.3 (with θ replaced by $\left.\theta^{\prime}\right) \mathcal{L}$ is an enlargement of $\mathcal{L}\left(\mathcal{T}_{i}\right)$ by tree-width $\leq \frac{9}{4} \theta^{\prime}$. Since $\theta^{\prime} \leq \frac{4}{3} \theta+\frac{2}{3}$ and $\frac{9}{4}\left(\frac{4}{3} \theta+\frac{2}{3}\right)<3 \theta+2$ we deduce that the third statement holds. This proves 4.4.

5 Patchworks

Our application of 4.4 will be to prove that certain classes of "patchworks" in the sense of [2] are well-quasi-ordered by our patchwork containment relation, "simulation", and now we need to define these things. A march in a set V is a finite sequence of distinct elements of V; and if π is the march v_{1}, \ldots, v_{k}, we denote the set $\left\{v_{1}, \ldots, v_{k}\right\}$ by $\bar{\pi}$. A rooted hypergraph G is a pair $\left(G^{-}, \pi(G)\right)$ where G^{-} is a hypergraph and $\pi(G)$ is a march in $V\left(G^{-}\right)$. We define $V(G)=V\left(G^{-}\right), E(G)=E\left(G^{-}\right)$. If G, H are rooted hypergraphs and $G^{-} \subseteq H^{-}$we write $G \subseteq H$ and say that G is a rooted subhypergraph of H..

If V is a finite set we denote by K_{V} the complete graph on V, that is, the graph with vertex set V and edge set the set of all subsets of V of cardinality 2, with the natural incidence relation. A grouping in V is a subgraph of K_{V} every component of which is complete. A pairing in V is a grouping in V every component of which has at most two vertices. If K is a pairing in V, we say that K pairs X, Y if $X, Y \subseteq V$ are disjoint and

- every 2 -vertex component of K has one vertex in X and the other in Y, and
- every vertex of $X \cup Y$ belongs to some 2 -vertex component of K.

A patch Δ in V is a subset $V(\Delta)$ of V, together with a collection of groupings in V, each with vertex set $V(\Delta)$. (We shall use the same symbol Δ to denote the collection of groupings.) A patch Δ is free if Δ contains every grouping in V with vertex set $V(\Delta)$; and it is robust if for every choice of $X, Y \subseteq V(\Delta)$ with $|X|=|Y|$ and $X \cap Y=\emptyset$, there is a pairing in Δ which pairs X, Y.

A patchwork is a triple $P=(G, \mu, \Delta)$, where

- G is a rooted hypergraph
- μ is a function with domain $\operatorname{dom}(\mu) \subseteq E(G)$; and for each $e \in \operatorname{dom}(\mu) \mu(e)$ is a march with $\bar{\mu}(e)$ the set of ends of e in G
- Δ is a function with domain $E(G)$, such that for each $e \in E(G) \Delta(e)$ is a patch with $V(\Delta(e))$ the set of ends of e; and for each $e \in E(G) \backslash \operatorname{dom}(\mu), \Delta(e)$ is free.

The patchwork is robust if each $\Delta(e)(e \in E(G))$ is robust. (This is automatic for $e \notin \operatorname{dom}(\mu)$, since free patches are robust.)

A quasi-order Ω is a pair $(E(\Omega), \leq)$, where $E(\Omega)$ is a class and \leq is a reflexive transitive relation on $E(\Omega)$. It is a well-quasi-order if for every countable sequence $x_{i}(i=1,2 \ldots)$ of elements of $E(\Omega)$ there exist $j>i \geq 1$ such that $x_{i} \leq x_{j}$. If Ω_{1}, Ω_{2} are quasi-orders with $E\left(\Omega_{1}\right) \cap E\left(\Omega_{2}\right)=\emptyset$ we denote by $\Omega_{1} \cup \Omega_{2}$ the quasi-order Ω with $E(\Omega)=E\left(\Omega_{1}\right) \cup E\left(\Omega_{2}\right)$ in which $x \leq y$ if and only if for some $i \in\{1,2\}, x, y \in E\left(\Omega_{i}\right)$ and $x \leq y$ in Ω_{i}. If Ω_{1}, Ω_{2} are quasi-orders we write $\Omega_{1} \subseteq \Omega_{2}$ if $E\left(\Omega_{1}\right) \subseteq E\left(\Omega_{2}\right)$ and for all $x, y \in E\left(\Omega_{1}\right), x \leq y$ in Ω_{1} if and only if $x \leq y$ in Ω_{2}.

If Ω is a quasi-order, a partial Ω-patchwork is a quadruple (G, μ, Δ, ϕ), where (G, μ, Δ) is a patchwork and ϕ is a function from a subset $\operatorname{dom}(\phi)$ of $E(G)$ into $E(\Omega)$. It is an Ω-patchwork if $\operatorname{dom}(\phi)=E(G)$. It is robust if (G, μ, Δ) is robust. The underlying rooted hypergraph G of a partial Ω-patchwork $P=(G, \mu, \Delta, \phi)$ will be denoted by $\|P\|$.

If V is a finite set, N_{V} denotes the graph with vertex set V and no edges. A realization of a patchwork (G, μ, Δ) is a subgraph of $K_{V(G)}$ expressible in the form

$$
N_{V(G)} \cup \bigcup\left(\delta_{e}: e \in E(G)\right)
$$

where $\delta_{e} \in \Delta(e)$ for each $e \in E(G)$. A realization of a partial Ω-patchwork (G, μ, Δ, ϕ) is a realization of (G, μ, Δ). If μ_{1}, μ_{2} are marches with the same length, we denote the bijection of $\bar{\mu}_{1}$ onto $\bar{\mu}_{2}$ mapping μ_{1} to μ_{2} by $\mu_{1} \rightarrow \mu_{2}$. Let $P=(G, \mu, \Delta), P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}\right)$ be patchworks. An expansion of P in P^{\prime} is a function η with domain $V(G) \cup E(G)$ such that

- for each $v \in V(G), \eta(v)$ is a non-empty subset of $V\left(G^{\prime}\right)$, and for each $e \in E(G), \eta(e) \in E\left(G^{\prime}\right)$
- for distinct $v_{1}, v_{2} \in V(G), \eta\left(v_{1}\right) \cap \eta\left(v_{2}\right)=\emptyset$
- for distinct $e_{1}, e_{2} \in E(G), \eta\left(e_{1}\right) \neq \eta\left(e_{2}\right)$
- for each $e \in E(G), e \in \operatorname{dom}(\mu)$ if and only if $\eta(e) \in \operatorname{dom}\left(\mu^{\prime}\right)$
- for each $e \in E(G) \backslash \operatorname{dom}(\mu)$, if v is an end of e in G then $\eta(v)$ contains an end of $\eta(e)$ in G^{\prime}
- for each $e \in \operatorname{dom}(\mu), \mu(e)$ and $\mu^{\prime}(\eta(e))$ have the same length, k say, and for $1 \leq i \leq k, \eta(v)$ contains the $i^{\text {th }}$ term of $\mu^{\prime}(\eta(e))$ where v is the $i^{\text {th }}$ term of $\mu(e)$
- $\pi(G)$ and $\pi\left(G^{\prime}\right)$ have the same length, k say, and for $1 \leq i \leq k \eta(v)$ contains the $i^{\text {th }}$ term of $\pi\left(G^{\prime}\right)$ where v is the $i^{\text {th }}$ term of $\pi(G)$
- for each $e \in \operatorname{dom}(\mu), \mu(e) \rightarrow \mu^{\prime}(\eta(e))$ maps $\Delta(e)$ to $\Delta^{\prime}(\eta(e))$.

If $P=(G, \mu, \Delta, \phi), P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ are partial Ω-patchworks, an expansion of P in P^{\prime} is an expansion η of (G, μ, Δ) in $\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}\right)$ such that $\eta(e) \in \operatorname{dom}\left(\phi^{\prime}\right)$ and $\phi(e) \leq \phi^{\prime}(\eta(e))$ for each $e \in \operatorname{dom}(\phi)$.

If G is a hypergraph and $F \subseteq E(G), G \backslash F$ denotes the subhypergraph with the same vertex set and edge set $E(G) \backslash F$. If G is a rooted hypergraph, $G \backslash F$ denotes $\left(G^{-} \backslash F, \pi(G)\right)$. If $P=(G, \mu, \Delta, \phi)$ is an Ω-patchwork and $F \subseteq E(G), P \backslash F$ denotes the Ω-patchwork $\left(G \backslash F, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ where $\mu^{\prime}, \Delta^{\prime}, \phi^{\prime}$ are the restrictions of μ, Δ, ϕ to $\operatorname{dom}(\mu) \cap E(G \backslash F), E(G \backslash F), E(G \backslash F)$ respectively. Similarly, if $P=(G, \mu, \Delta)$ is a patchwork and $F \subseteq E(G), P \backslash F$ denotes the patchwork $\left(G \backslash F, \mu^{\prime}, \Delta^{\prime}\right)$, with
$\mu^{\prime}, \Delta^{\prime}$ as before. We often write $P \backslash e$ for $P \backslash\{e\}$, etc. Let η be an expansion of $P=(G, \mu, \Delta)$ in $P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}\right)$, or of $P=(G, \mu, \Delta, \phi)$ in $P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$. A realization H of $P^{\prime} \backslash \eta(E(G))$ is said to realize η if for every $v \in V(G), \eta(v)$ is the vertex set of some component of H; and if there is such a realization, η is said to be realizable. Let us say that P is simulated in P^{\prime} if there is a realizable expansion of P in P^{\prime}.

If $P=(G, \mu, \Delta)$ is a patchwork and $A \subseteq G$, we denote by $P \mid A$ the patchwork $\left(A, \mu^{\prime}, \Delta^{\prime}\right)$, where $\mu^{\prime}, \Delta^{\prime}$ are the restrictions of μ, Δ to $E(A) \cap \operatorname{dom}(\mu), E(A)$ respectively. If $P=(G, \mu, \Delta, \phi)$ is a partial Ω-patchwork, $P \mid A$ is the partial Ω-patchwork $\left(A, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ where $\mu^{\prime}, \Delta^{\prime}$ are as before and ϕ^{\prime} is the restriction of ϕ to $E(A) \cap \operatorname{dom}(\phi)$.

A separation of a rooted hypergraph G is a pair (A, B) of rooted hypergraphs such that $\left(A^{-}, B^{-}\right)$ is a separation of $G^{-}, \bar{\pi}(A)=V(A \cap B)$, and $\pi(B)=\pi(G)$. Two vertices of a graph H are connected in H if they belong to the same component of H. We begin with the following lemma.
5.1 For $i=1,2$ let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}\right)$ be a patchwork, and let $\left(G_{i}^{\prime}, G_{0}\right)$ be a separation of G_{i}. Let $\pi\left(G_{1}^{\prime}\right)=\pi\left(G_{2}^{\prime}\right)$, and let $P_{1}\left|G_{0}=P_{2}\right| G_{0}$. For $i=1,2$ let H_{i}^{\prime} be a realization of $P_{i} \mid G_{i}^{\prime}$, such that for $x, y \in \bar{\pi}\left(G_{1}^{\prime}\right)=\bar{\pi}\left(G_{2}^{\prime}\right), x$ and y are connected in H_{1}^{\prime} if and only if they are connected in H_{2}^{\prime}. Let H_{0} be a realization of $P_{1}\left|G_{0}=P_{2}\right| G_{0}$, and let $H_{i}=H_{0} \cup H_{i}^{\prime}(i=1,2)$. Then for $i=1,2, H_{i}$ is a realization of P_{i}, and for $x, y \in V\left(G_{0}\right) x$ and y are connected in H_{1} if and only if they are connected in H_{2}.

Proof. Let $x, y \in V\left(G_{0}\right)$ be connected in H_{1} say; we shall prove that they are connected in H_{2}. Choose a sequence

$$
x=v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{t}, v_{t}=y
$$

such that $v_{0}, \ldots, v_{t} \in V\left(H_{1}\right), e_{1}, \ldots, e_{t} \in E\left(H_{1}\right)$ and for $1 \leq i \leq t, e_{i}$ is incident with v_{i-1} and v_{i} in H_{1}. Let

$$
I=\left\{i: 0 \leq i \leq t, v_{i} \in V\left(G_{0}\right)\right\}
$$

Then $0, t \in I$; let $I=\{s(1), s(2), \ldots, s(r)\}$ say, in order, where $s(1)=0$ and $s(r)=t$.
(1) For $1 \leq j \leq r-1, v_{s(j)}$ and $v_{s(j+1)}$ are connected in H_{2}.

Subproof. If $e_{k} \in E\left(H_{0}\right)$ for some k with $s(j)+1 \leq k \leq s(j+1)$ then $v_{k-1}, v_{k} \in V\left(G_{0}\right)$ since they are both incident with e_{k}; hence $k-1, k \in I$, and so from the definition of $I, k-1=s(j)$, $k=s(j+1)$ and $v_{s(j)}, v_{s(j+1)}$ are connected in H_{2}, as claimed. If $e_{k} \notin E\left(H_{0}\right)$ for $s(j)+1 \leq k \leq s(j+1)$ then $v_{s(j)}, v_{s(j+1)}$ are vertices of H_{1}^{\prime} and are connected in H_{1}^{\prime}; but $v_{s(j)}, v_{s(j+1)} \in V\left(G_{0}\right)$ and so both belong to $\bar{\pi}\left(G_{1}^{\prime}\right)$. Since $v_{s(j)}, v_{s(j+1)}$ are connected in H_{1}^{\prime} it follows from our hypothesis that they are connected in H_{2}^{\prime} and hence in H_{2}, as claimed. This proves (1).

From (1) it follows that x, y are connected in H_{2}. This proves 5.1.
Let $P=(G, \mu, \Delta)$ be a patchwork. A grouping K is feasible in P if $V(K)=\bar{\pi}(G)$ and there is a realization H of P such that for distinct $x, y \in V(K), x$ and y are connected in H if and only if they are adjacent in K. A grouping is feasible in a partial Ω-patchwork (G, μ, Δ, ϕ) if it is feasible in (G, μ, Δ). The set of all groupings feasible in P will be denoted by $\operatorname{gr}(P)$.
5.2 For $i=1,2$ let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}\right)$ be a patchwork, and let $\left(G_{i}^{\prime}, G_{0}\right)$ be a separation of G_{i}, such that $\pi\left(G_{1}^{\prime}\right)=\pi\left(G_{2}^{\prime}\right), P_{1}\left|G_{0}=P_{2}\right| G_{0}$, and $\operatorname{gr}\left(P_{1} \mid G_{1}^{\prime}\right) \subseteq \operatorname{gr}\left(P_{2} \mid G_{2}^{\prime}\right)$. Then for every realization H_{1} of P_{1} there is a realization H_{2} of P_{2} such that for $x, y \in V\left(G_{0}\right), x$ and y are connected in H_{1} if and only if they are connected in H_{2}.
Proof. Let H_{1} be a realization of P_{1}; then $H_{1}=H_{0} \cup H_{1}^{\prime}$, where H_{0} is a realization of $P_{1} \mid G_{0}$ and H_{1}^{\prime} is a realization of $P_{1} \mid G_{1}^{\prime}$. Let H_{2}^{\prime} be a realization of $P_{2} \mid G_{2}^{\prime}$ such that for $x, y \in \bar{\pi}\left(G_{1}^{\prime}\right), x$ and y are connected in H_{1}^{\prime} if and only if they are connected in H_{2}^{\prime}. (This exists because $g r\left(P_{1} \mid G_{1}^{\prime}\right) \subseteq g r\left(P_{2} \mid G_{2}^{\prime}\right)$. Then $H_{2}=H_{0} \cup H_{2}^{\prime}$ is a realization of P_{2} satisfying the theorem, by 5.1. This proves 5.2.
5.3 For $i=1,2$ let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}\right)$ be a patchwork, and let $\left(G_{i}^{\prime}, G_{0}\right)$ be a separation of G_{i}, such that $\pi\left(G_{1}^{\prime}\right)=\pi\left(G_{2}^{\prime}\right), P_{1}\left|G_{0}=P_{2}\right| G_{0}$, and $\operatorname{gr}\left(P_{1} \mid G_{1}^{\prime}\right) \subseteq g r\left(P_{2} \mid G_{2}^{\prime}\right)$. Let η_{1} be a realizable expansion of some patchwork $P=(G, \mu, \Delta)$ in P_{1} such that $\eta_{1}(e) \in E\left(G_{0}\right)$ for every $e \in E(G)$ and $\eta_{1}(v) \cap V\left(G_{0}\right) \neq \emptyset$ for each $v \in V(G)$. Then there is a realizable expansion η_{2} of P in P_{2} such that $\eta_{2}(e)=\eta_{1}(e)$ for each $e \in E(G)$, and $\eta_{2}(v) \cap V\left(G_{0}\right)=\eta_{1}(v) \cap V\left(G_{0}\right)$ for each $v \in V(G)$.

Proof. Let H_{1} be a realization of $P_{1} \backslash \eta_{1}(E(G))$ which realizes η_{1}. By 5.2 applied to $P_{1} \backslash \eta_{1}(E(G))$ and $P_{2} \backslash \eta_{1}(E(G))$, there is a realization H_{2} of $P_{2} \backslash \eta_{1}(E(G))$ such that for $x, y \in V\left(G_{0}\right), x$ and y are connected in H_{1} if and only if they are connected in H_{2}. For $e \in E(G)$ let $\eta_{2}(e)=\eta_{1}(e)$. For each $v \in V(G)$ there is a component C_{1} of H_{1} with $V\left(C_{1}\right)=\eta_{1}(v)$, and hence a (unique) component C_{2} of H_{2} with

$$
V\left(C_{2}\right) \cap V\left(G_{0}\right)=V\left(C_{1}\right) \cap V\left(G_{0}\right)=\eta_{1}(v) \cap V\left(G_{0}\right),
$$

since $\eta_{1}(v) \cap V\left(G_{0}\right) \neq \emptyset$. Let $\eta_{2}(v)$ be $V\left(C_{2}\right)$. Then η_{2} is the required expansion. This proves 5.3.

If f, g are functions with domains $\operatorname{dom}(f), \operatorname{dom}(g)$ respectively and x is any object, the statement $f(x) \equiv g(x)$ will mean "either $x \in \operatorname{dom}(f) \cap \operatorname{dom}(g)$ and $f(x)=g(x)$, or $x \notin \operatorname{dom}(f) \cup \operatorname{dom}(g)$."

Let G be a rooted hypergraph. We say that $A \subseteq G$ is complemented if $\bar{\pi}(A)$ contains every vertex $v \in V(A)$ such that either $v \in \bar{\pi}(G)$ or some edge $e \in E(G) \backslash E(A)$ is incident with v. If A is complemented, we define $G \backslash A \subseteq G$ to be the rooted hypergraph with

$$
\begin{aligned}
V(G \backslash A) & =(V(G) \backslash V(A)) \cup \bar{\pi}(A) \\
E(G \backslash A) & =E(G) \backslash E(A) \\
\pi(G \backslash A) & =\pi(G)
\end{aligned}
$$

Then $(A, G \backslash A)$ is a separation of G, since $\left(A^{-},(G \backslash A)^{-}\right)$is a separation of $G^{-}, \bar{\pi}(A)=V(A) \cap V(G \backslash$ $A)$, and $\pi(G \backslash A)=\pi(G)$. A rooted location \mathcal{L} in a rooted hypergraph G is a set \mathcal{L} of complemented rooted hypergraphs A with $A \subseteq G$ such that $A_{1} \subseteq G \backslash A_{2}$ for all distinct $A_{1}, A_{2} \in \mathcal{L}$. If \mathcal{L} is a rooted location in G then $\left\{\left(A^{-},(G \backslash A)^{-}\right): A \in \mathcal{L}\right\}$ is a location in G^{-}which we denote by \mathcal{L}^{-}. (It is possible that $\left(A^{-},(G \backslash A)^{-}\right)=\left(A^{\prime-},\left(G \backslash A^{\prime}\right)^{-}\right)$for distinct $A, A^{\prime} \in \mathcal{L}$, but only if $E(A)=E\left(A^{\prime}\right)=\emptyset$ and $V(A)=V\left(A^{\prime}\right)=\bar{\pi}(A)=\bar{\pi}\left(A^{\prime}\right)$.) We define $M(G, \mathcal{L})=M\left(G^{-}, \mathcal{L}^{-}\right)$.

Let $P=(G, \mu, \Delta)$ be a patchwork and let \mathcal{L} be a rooted location in G. For each $A \in \mathcal{L}$ let $e(A)$ be a new element, and let G^{\prime} be the rooted hypergraph with

$$
\begin{aligned}
V\left(G^{\prime}\right) & =V(M(G, \mathcal{L})) \\
E\left(G^{\prime}\right) & =E(M(G, \mathcal{L})) \cup\{e(A): A \in \mathcal{L}\} \\
\pi\left(G^{\prime}\right) & =\pi(G)
\end{aligned}
$$

where for $e \in E(M(G, \mathcal{L}))$ its ends are as in G^{-}, and for $A \in \mathcal{L}$ the ends of $e(A)$ are the vertices in $\bar{\pi}(A)$. We define the heart $P \mid \mathcal{L}$ of (P, \mathcal{L}) to be the patchwork $\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}\right)$ such that $\mu^{\prime}(e(A))=\pi(A)$ and $\Delta^{\prime}(e(A))=g r(P \mid A)$ for all $A \in \mathcal{L}$ and $\mu^{\prime}(e) \equiv \mu(e)$ and $\Delta^{\prime}(e)=\Delta(e)$ for all $e \in E(M(G, \mathcal{L}))$. (It is unique up to the choice of the new elements $e(A)$.)
5.4 Let $P=(G, \mu, \Delta)$ be a patchwork, let \mathcal{L} be a rooted location in G, and let $P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}\right)$ be the heart of (P, \mathcal{L}). Then

$$
V(G) \backslash \bar{\pi}(G)=\left(V\left(G^{\prime}\right) \backslash \bar{\pi}\left(G^{\prime}\right)\right) \cup \bigcup_{A \in \mathcal{L}}(V(A) \backslash \bar{\pi}(A))
$$

and $\operatorname{gr}(P)=\operatorname{gr}\left(P^{\prime}\right)$.
Proof. For the first assertion, let $v \in V(G) \backslash \bar{\pi}(G)$. By the definition of $M(G, \mathcal{L})$, either $v \in$ $V(M(G, \mathcal{L}))$ or there exists $A \in \mathcal{L}$ with $v \notin V(G \backslash A)$. In the first case, $v \in V\left(G^{\prime}\right)$, and since $\pi(G)=\pi\left(G^{\prime}\right)$ it follows that $v \in V\left(G^{\prime}\right) \backslash \bar{\pi}\left(G^{\prime}\right)$. In the second case $v \in V(A)$, and therefore $v \notin \bar{\pi}(A)$ since $\bar{\pi}(A) \subseteq V(G \backslash A)$. So in either case

$$
v \in\left(V\left(G^{\prime}\right) \backslash \bar{\pi}\left(G^{\prime}\right)\right) \cup \bigcup_{A \in \mathcal{L}}(V(A) \backslash \bar{\pi}(A))
$$

and therefore $V(G) \backslash \bar{\pi}(G)$ is a subset of this set.
To prove the reverse inclusion, we observe that $\bar{\pi}(G) \cap V\left(G^{\prime}\right) \subseteq \bar{\pi}\left(G^{\prime}\right)$ and for each $A \in \mathcal{L}$, $\bar{\pi}(G) \cap V(A) \subseteq \bar{\pi}(A)$ since A is complemented. It follows that no vertex of

$$
\left(V\left(G^{\prime}\right) \backslash \bar{\pi}\left(G^{\prime}\right)\right) \cup \bigcup_{A \in \mathcal{L}}(V(A) \backslash \bar{\pi}(A))
$$

belongs to $\bar{\pi}(G)$, so this set is a subset of $V(G) \backslash \bar{\pi}(G)$. This proves the first assertion of the theorem.
For the second assertion, let $\mathcal{L}=\left\{A_{1}, \ldots, A_{k}\right\}$, and for $1 \leq i \leq k$ let $e\left(A_{i}\right) \in E\left(G^{\prime}\right)$ be the new element of P^{\prime} corresponding to A_{i}. Since $\pi\left(G^{\prime}\right)=\pi(G)$, we must show that a grouping K with $V(K)=\bar{\pi}(G)$ is feasible in P if and only if K is feasible in P^{\prime}. Thus, let K be a grouping with $V(K)=\bar{\pi}(G)$.

For $0 \leq j \leq k$, let G_{j} be the rooted hypergraph with

$$
\begin{aligned}
V\left(G_{j}\right) & =V(M(G, \mathcal{L})) \cup \bigcup\left(V\left(A_{i}\right): j<i \leq k\right) \\
E\left(G_{j}\right) & =E(M(G, \mathcal{L})) \cup\left\{e\left(A_{i}\right): 1 \leq i \leq j\right\} \cup \bigcup\left(E\left(A_{j}\right): j<i \leq k\right) \\
\pi\left(G_{j}\right) & =\pi(G)
\end{aligned}
$$

where for $e \in E(M(G, \mathcal{L}))$ its ends are as in G^{-}, for $1 \leq i \leq j$ the ends of $e\left(A_{i}\right)$ are the vertices in $\bar{\pi}\left(A_{i}\right)$, and for $e \in E\left(A_{i}\right)$ where $j<i \leq k$ its ends are as in A_{i}^{-}. For

$$
e \in \operatorname{dom}(\mu) \cap\left(E(M(G, \mathcal{L})) \cup E\left(A_{j+1}\right) \cup \cdots \cup E\left(A_{k}\right)\right)
$$

let $\mu_{j}(e)=\mu(e)$, and for $1 \leq i \leq j$ let $\mu_{j}\left(e\left(A_{i}\right)\right)=\pi\left(A_{i}\right)$. For

$$
e \in E(M(G, \mathcal{L})) \cup E\left(A_{j+1}\right) \cup \cdots \cup E\left(A_{k}\right)
$$

let $\Delta_{j}(e)=\Delta(e)$, and for $1 \leq i \leq j$ let $\Delta_{j}\left(e\left(A_{i}\right)\right)=g r\left(P \mid A_{i}\right)$, with $V\left(\Delta_{j}\left(e\left(A_{i}\right)\right)\right)=\bar{\pi}\left(A_{i}\right)$. Then $P_{j}=\left(G_{j}, \mu_{j}, \Delta_{j}\right)$ is a patchwork for $0 \leq j \leq k$, and $P_{0}=P$, and $P_{k}=P^{\prime}$. It therefore suffices to show that for $1 \leq j \leq k, K$ is feasible in P_{j-1} if and only if K is feasible in P_{j}, since $\pi\left(G_{j}\right)=\pi(G)$.

Let B be $G_{j} \backslash e\left(A_{j}\right)$, and let A_{j}^{\prime} be the rooted hypergraph with $E\left(A_{j}^{\prime}\right)=\left\{e\left(A_{j}\right)\right\}, V\left(A_{j}^{\prime}\right)=\bar{\pi}\left(A_{j}\right)$ (where the ends of $e\left(A_{j}\right)$ are the vertices in $\left.\bar{\pi}\left(A_{j}\right)\right)$, and $\pi\left(A_{j}^{\prime}\right)=\pi\left(A_{j}\right)$. Since

$$
V\left(A_{j}^{\prime}\right)=\bar{\pi}\left(A_{j}\right) \subseteq V(B)
$$

it follows that $\bar{\pi}\left(A_{j}\right)=V\left(A_{j} \cap B\right)$ and $\pi\left(A_{j}^{\prime}\right)=V\left(A_{j}^{\prime}\right) \cap B$, and so $\left(A_{j}, B\right)$ is a separation of G_{j-1}, and $\left(A_{j}^{\prime}, B\right)$ is a separation of G_{j}.
(1) A grouping is feasible in $P_{j-1} \mid A_{j}$ if and only if it is feasible in $P_{j} \mid A_{j}^{\prime}$.

Subproof. $\quad P_{j-1}\left|A_{j}=P\right| A_{j}$, and a grouping with vertex set $\bar{\pi}\left(A_{j}\right)$ is feasible in $P_{j} \mid A_{j}^{\prime}$ if and only if it belongs to $\Delta_{j}\left(E\left(A_{j}\right)\right)$; that is, it is feasible in $P\left|A_{j}=P_{j-1}\right| A_{j}$. This proves (1).

Suppose that K is feasible in one of P_{j-1}, P_{j} (say Q_{1}), and let H_{1} be the corresponding realization of Q_{1} such that for distinct $x, y \in V(K), x, y$ are connected in H_{1} if and only if they are adjacent in K. By (1) and 5.2 there is a realization H_{2} of Q_{2} (where $\left\{P_{j-1}, P_{j}\right\}=\left\{Q_{1}, Q_{2}\right\}$) such that for distinct $x, y \in V(B), x, y$ are connected in H_{1} if and only if they are connected in H_{2}. But $V(K) \subseteq V(B)$, and so for distinct $x, y \in V(K), x, y$ are connected in H_{2} if and only if they are adjacent in K. Thus K is feasible in Q_{2}. This proves 5.4.

Now let $P=(G, \mu, \Delta, \phi)$ be a partial Ω-patchwork, and let \mathcal{L} be a rooted location in G. We call (P, \mathcal{L}) a partial Ω-place. If $\operatorname{dom}(\phi)=E(G)$ we call (P, \mathcal{L}) an Ω-place. For $e \in E(M(G, \mathcal{L})) \cap \operatorname{dom}(\phi)$ let $\phi^{\prime}(e)=\phi(e)$, and let $\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}\right)$ be the heart of $((G, \mu, \Delta), \mathcal{L})$; then $\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ is a partial Ω-patchwork which we call the heart (again denoted by $P \mid \mathcal{L})$ of (P, \mathcal{L}).

A partial Ω-patchwork (G, μ, Δ, ϕ) has tree-width $\leq w$, where $w \geq 0$, if there is a tree-decomposition (T, τ) of G^{-}of width $\leq w$ such that $\bar{\pi}(G) \subseteq V(\tau(t))$ for some $t \in V(T)$. If (P, \mathcal{L}) is a partial Ω-place, and $P \mid A$ has tree-width $\leq w$ for all $A \in \mathcal{L}$, we say that P is an enlargement of $P \mid \mathcal{L}$ by tree-width $\leq w$.
5.5 Let $P=(G, \mu, \Delta, \phi)$ be an Ω-patchwork, let $w \geq 0$, and let $\mathcal{L}, \mathcal{L}^{*}$ be rooted locations in G, such that \mathcal{L}^{*-} is an enlargement of \mathcal{L}^{-}by tree-width $\leq w$. Then $P \mid \mathcal{L}^{*}$ is an enlargement of $P \mid \mathcal{L}$ by tree-width $\leq w$.

Proof. Let $\mathcal{L}=\left\{C_{1}, \ldots, C_{k}\right\}$ where C_{1}, \ldots, C_{k} are distinct, and for $1 \leq i \leq k$ let $D_{i}=\left(G \backslash C_{i}\right)^{-}$. Then $\mathcal{L}^{-}=\left\{\left(C_{1}^{-}, D_{1}\right), \ldots,\left(C_{k}^{-}, D_{k}\right)\right\}$. (However, $\left(C_{1}^{-}, D_{1}\right), \ldots,\left(C_{k}^{-}, D_{k}\right)$ may not all be distinct.) Let $P \mid \mathcal{L}^{*}=\left(G^{*}, \mu^{*}, \Delta^{*}, \phi^{*}\right)\left(=P^{*}\right.$ say $)$, using new elements $e(A)\left(A \in \mathcal{L}^{*}\right)$. Choose $\mathcal{L}_{1}, \ldots, \mathcal{L}_{k} \subseteq \mathcal{L}^{*}$, mutually disjoint and with union \mathcal{L}^{*}, such that for $1 \leq i \leq k$, every $(A, B) \in \mathcal{L}_{i}^{-}$satisfies $A \subseteq C_{i}^{-}$ and $D_{i} \subseteq B$, and $\mathcal{L}_{i}^{-} \cup\left\{\left(D_{i}, C_{i}^{-}\right)\right\}$is a location in G^{-}of tree-width $\leq w$. We claim that for $1 \leq i \leq k$ and all $A \in \mathcal{L}_{i}, A$ is complemented in C_{i}. For certainly $A^{-} \subseteq C_{i}^{-}$and $D_{i} \subseteq(G \backslash A)^{-}$since $\mathcal{L}_{i}^{-} \cup\left\{\left(D_{i}, C_{i}^{-}\right)\right\}$is a location in G^{-}. Moreover,

$$
\bar{\pi}\left(C_{i}\right) \cap V(A) \subseteq V\left(D_{i}\right) \cap V(A) \subseteq V(G \backslash A) \cap V(A)=\bar{\pi}(A)
$$

and if $v \in V(A)$ is an end of some $e \in E\left(C_{i}\right) \backslash E(A)$, then $e \in E(G) \backslash E(A)$ and so $v \in \bar{\pi}(A)$. This proves that A is complemented in C_{i}. Consequently, for $1 \leq i \leq k, \mathcal{L}_{i}$ is a rooted location in C_{i}, and
so $\left(P \mid C_{i}, \mathcal{L}_{i}\right)$ is an Ω-place; let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)$ be its heart (with "new" elements $e(A)\left(A \in \mathcal{L}_{i}\right)$, some of the new elements of P^{*}).
(1) P_{i} has tree-width $\leq w$.

Subproof. Let H be the heart of $\mathcal{L}_{i}^{-} \cup\left\{\left(D_{i}, C_{i}^{-}\right)\right\}$. Then H is the hypergraph obtained from

$$
M\left(G^{-}, \mathcal{L}_{i}^{-} \cup\left\{\left(D_{i}, C_{i}^{-}\right)\right\}\right)=C_{i}^{-} \cap \bigcap\left((G \backslash A)^{-}: A \in \mathcal{L}_{i}\right)
$$

by adding a new edge with set of ends $V(A \cap B)$ for each $(A, B) \in \mathcal{L}_{i}^{-}$, and adding one further new edge with set of ends $V\left(D_{i} \cap C_{i}^{-}\right)$(unless $\left.\left(D_{i}, C_{i}^{-}\right) \in \mathcal{L}_{i}\right)$. Also, G_{i}^{-}is obtained from

$$
M\left(C_{i}, \mathcal{L}_{i}\right)=C_{i}^{-} \cap \bigcap\left(\left(C_{i} \backslash A\right)^{-}: A \in \mathcal{L}_{i}\right)
$$

by adding a new edge with set of ends $\bar{\pi}(A)$ for each $A \in \mathcal{L}_{i}$. But

$$
C_{i}^{-} \cap \bigcap\left((G \backslash A)^{-}: A \in \mathcal{L}_{i}\right)=C_{i}^{-} \cap \bigcap\left(C_{i}^{-} \cap(G \backslash A)^{-}: A \in \mathcal{L}_{i}\right)=C_{i}^{-} \cap \bigcap\left(\left(C_{i} \backslash A\right)^{-}: A \in \mathcal{L}_{i}\right)
$$

and there is a surjection from \mathcal{L}_{i} onto \mathcal{L}_{i}^{-}such that if $A \in \mathcal{L}_{i}$ is mapped to $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{L}_{i}^{-}$then $A^{\prime}=A^{-}$and $V\left(A^{\prime} \cap B^{\prime}\right)=\bar{\pi}(A)$. Consequently, a hypergraph isomorphic to G_{i}^{-}may be obtained from H by deleting an edge with set of ends $\bar{\pi}\left(C_{i}\right)=V\left(D_{i} \cap C_{i}^{-}\right)$(unless ($\left.D_{i}, C_{i}^{-}\right) \in \mathcal{L}_{i}$) and adding some new edges, each with the same ends as some edge of H. (The latter arise when distinct members of \mathcal{L}_{i} correspond to the same member of \mathcal{L}_{i}^{-}. Since H has tree-width $\leq w$, there is a treedecomposition (T, τ) of G_{i}^{-}such that $\bar{\pi}\left(C_{i}\right) \subseteq V(\tau(t))$ for some $t \in V(T)$; that is, P_{i} has tree-width $\leq w$. This proves (1).
(2) For $1 \leq i \leq k, G_{i}$ is a complemented rooted subhypergraph of G^{*}.

Subproof. $\quad G_{i}^{-}$is obtained from $C_{i}^{-} \cap \bigcap\left(\left(C_{i} \backslash A\right)^{-}: A \in \mathcal{L}_{i}\right)$ by adding a new edge with set of ends $\bar{\pi}(A)$ for each $A \in \mathcal{L}_{i}$, and G^{*-} is obtained from $M\left(G, \mathcal{L}^{*}\right)=G^{-} \cap \bigcap\left((G \backslash A)^{-}: A \in \mathcal{L}^{*}\right)$ by adding a new edge with set of ends $\bar{\pi}(A)$ for each $A \in \mathcal{L}^{*}$. Since $C_{i} \backslash A \subseteq G \backslash A$ for each $A \in \mathcal{L}_{i}$ and $C_{i} \subseteq G \backslash A$ for all $A \in \mathcal{L}^{*}-\mathcal{L}_{i}$, it follows that $C_{i}^{-} \cap \bigcap\left(\left(C_{i} \backslash A\right)^{-}: A \in \mathcal{L}_{i}\right)$ is a subhypergraph of $G^{-} \cap \bigcap\left((G \backslash A)^{-}: A \in \mathcal{L}^{*}\right)$, and so G_{i}^{-}is a subhypergraph of G^{*-}. Hence G_{i} is a rooted subhypergraph of G^{*}. To see that it is complemented, let $v \in V\left(G_{i}\right)$ be such that either $v \in \bar{\pi}\left(G^{*}\right)$ or some $e \in E\left(G^{*}\right) \backslash E\left(G_{i}\right)$ is incident with v; we claim that $v \in V\left(D_{i}\right)$. If $v \in \bar{\pi}\left(G^{*}\right)$, then $v \in \bar{\pi}(G)$ since $\pi\left(G^{*}\right)=\pi(G)$, and so $v \in V\left(G \backslash C_{i}\right)=V\left(D_{i}\right)$, as claimed. We assume then that some $e \in E\left(G^{*}\right) \backslash E\left(G_{i}\right)$ is incident with v. If $e \in E(G)$, then $e \in E\left(D_{i}\right)$ and so $v \in V\left(D_{i}\right)$ as claimed. If $e \notin E(G)$, then $e=e(A)$ for some $A \in \mathcal{L}^{*}$. Since $e \notin E\left(G_{i}\right)$ it follows that $A \notin \mathcal{L}_{i}$, and so $A \in \mathcal{L}_{j}$ for some $j \neq i$. In particular, $A^{-} \subseteq C_{j}^{-} \subseteq D_{i}$, and so $v \in V\left(D_{i}\right)$, as claimed. Thus in each case $v \in V\left(D_{i}\right)$, and so

$$
v \in V\left(G_{i}\right) \cap V\left(D_{i}\right) \subseteq V\left(C_{i}^{-} \cap D_{i}\right)=\bar{\pi}\left(C_{i}\right)=\bar{\pi}\left(G_{i}\right)
$$

Hence G_{i} is complemented in G^{*}. This proves (2).
(3) $P_{i}=P^{*} \mid G_{i}$ for $1 \leq i \leq k$.

Subproof. By (2), $P^{*} \mid G_{i}$ is well-defined, and has the same underlying rooted hypergraph as P_{i}, namely G_{i}. Let $e \in E\left(G_{i}\right)$; we must show that $\mu_{i}(e) \equiv \mu^{*}(e), \phi_{i}(e) \equiv \phi^{*}(e)$, and $\Delta_{i}(e)=\Delta^{*}(e)$. Now

$$
E\left(G_{i}\right)=E\left(M\left(C_{i}, \mathcal{L}_{i}\right)\right) \cup\left\{e(a): A \in \mathcal{L}_{i}\right\} .
$$

We recall that P_{i} is the heart of $\left(P \mid C_{i}, \mathcal{L}_{i}\right)$ and P^{*} is the heart of $\left(P, \mathcal{L}^{*}\right)$. If $e \in E\left(M\left(C_{i}, \mathcal{L}_{i}\right)\right)$, then $\mu_{i}(e) \equiv \mu^{*}(e)$ (because $\mu_{i}(e) \equiv \mu(e)$ and $\mu^{*}(e) \equiv \mu(e)$), and the other two relations follow similarly. We assume then that $e=e(A)$ for some $A \in \mathcal{L}_{i}$. Since A belongs to both \mathcal{L}_{i} and \mathcal{L}^{*}, it follows from the definition of "heart" that

- $\mu_{i}(e)=\mu^{*}(e)$ (for they are both equal to $\left.\pi(A)\right)$,
- e does not belong to $\operatorname{dom}(\phi) \cup \operatorname{dom}\left(\phi^{*}\right)$, and
- $\Delta_{i}(e)=\Delta^{*}(e)$ (for they are both equal to $\operatorname{gr}(P \mid A)$).

This proves (3).
(4) G_{1}, \ldots, G_{k} are all distinct, and $\left\{G_{1}, \ldots, G_{k}\right\}$ is a rooted location in G^{*}.

Subproof. Let $1 \leq i, j \leq k$ with $i \neq j$; we claim that $G_{i} \subseteq G^{*} \backslash G_{j}$; in other words, that $V\left(G_{i}\right) \cap V\left(G_{j}\right) \subseteq \bar{\pi}\left(G_{j}\right)$ and $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset$. First, let $v \in V\left(G_{i}\right) \cap V\left(G_{j}\right)$. Since $V\left(G_{i}\right) \subseteq V\left(C_{i}\right)$ and $V\left(G_{j}\right) \subseteq V\left(C_{j}\right)$, it follows that $v \in V\left(C_{i}\right) \cap V\left(C_{j}\right) \subseteq \bar{\pi}\left(C_{j}\right)$ since \mathcal{L} is a rooted location. Since $\bar{\pi}\left(C_{j}\right)=\bar{\pi}\left(G_{j}\right)$ we deduce that $V\left(G_{i}\right) \cap V\left(G_{j}\right) \subseteq \bar{\pi}\left(G_{j}\right)$ as required. Secondly, let $e \in E\left(G_{i}\right) \cap E\left(G_{j}\right)$. If $e \in E(G)$ then $e \in E\left(C_{i}\right) \cap E\left(C_{j}\right)=\emptyset$, which is impossible. Thus $e=e(A)$ for some $A \in \mathcal{L}^{*}$. Since $e \in E\left(G_{i}\right)$ it follows that $A \in \mathcal{L}_{i}$, and similarly $A \in \mathcal{L}_{j}$; but $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset$, a contradiction. Thus $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset$, as required. This proves that $G_{i} \subseteq G^{*}-G_{j}$. Suppose that $G_{i}=G_{j}$. Then $E\left(G_{i}\right)=\emptyset$, and so $\mathcal{L}_{i}=\emptyset$ and $G_{i}=C_{i}$; and similarly $G_{j}=C_{j}$. Consequently $C_{i}=C_{j}$, a contradiction. Thus $G_{i} \neq G_{j}$, and (4) follows.

$$
\text { Let } \mathcal{L}^{\prime}=\left\{G_{1}, \ldots, G_{k}\right\} .
$$

(5) $M(G, \mathcal{L})=M\left(G^{*}, \mathcal{L}^{\prime}\right)$.

Subproof. If $k=0$ then $\mathcal{L}=\emptyset$ and $\mathcal{L}^{\prime}=\emptyset$; and $\mathcal{L}^{*}=\emptyset$, since \mathcal{L}^{*-} is an enlargement of \mathcal{L}^{-}. Hence $G^{*}=G$, and $M(G, \mathcal{L})=G^{-}=G^{*-}=M\left(G^{*}, \mathcal{L}^{\prime}\right)$ as claimed. We may assume then that $k \neq 0$. Hence $M(G, \mathcal{L})=D_{1} \cap \cdots \cap D_{k}$ and $M\left(G^{*}, \mathcal{L}^{\prime}\right)=\cap\left(\left(G^{*} \backslash G_{i}\right)^{-}: 1 \leq i \leq k\right)$. If $A \in \mathcal{L}^{*}$, then $e(A) \notin E\left(M\left(G^{*}, \mathcal{L}^{\prime}\right)\right)$, because $e(A) \in E\left(G_{i}\right)$ and hence $e(A) \notin E\left(G^{*} \backslash G_{i}\right)$ for some $i(1 \leq i \leq k)$, namely, the value of i such that $A \in \mathcal{L}_{i}$. Since $M\left(G^{*}, \mathcal{L}^{\prime}\right)$ is a subhypergraph of G^{*-} and $e(A) \notin E\left(M\left(G^{*}, \mathcal{L}^{\prime}\right)\right)$ for each $A \in \mathcal{L}^{*}$, it follows that $M\left(G^{*}, \mathcal{L}^{\prime}\right)$ is a subhypergraph of G^{-}. But also $M(G, \mathcal{L})$ is a subhypergraph of G^{-}, and therefore to show that $M(G, \mathcal{L})=M\left(G^{*}, \mathcal{L}^{\prime}\right)$ it suffices to show that $M(G, \mathcal{L})$ and $M\left(G^{*}, \mathcal{L}^{\prime}\right)$ have the same vertex- and edge-sets. Let $v \in V(G)$. Then
from 5.4 applied to $\left(P \mid C_{i}, \mathcal{L}_{i}\right)$, we have:

$$
\begin{aligned}
v \in V(M(G, \mathcal{L})) & \Leftrightarrow v \notin V\left(C_{i}\right) \backslash \bar{\pi}\left(C_{i}\right) \text { for } 1 \leq i \leq k \\
\Leftrightarrow & v \notin V\left(G_{i}\right) \backslash \bar{\pi}\left(G_{i}\right) \text { and } v \notin V(A) \backslash \bar{\pi}(A) \text { for } 1 \leq i \leq k \\
& \text { and for all } A \in \mathcal{L}_{i} \\
\Leftrightarrow & v \notin V(A) \backslash \bar{\pi} \text { for all } A \in \mathcal{L}^{*} \text { and } v \notin V\left(G_{i}\right) \backslash \bar{\pi}\left(G_{i}\right) \text { for } 1 \leq i \leq k \\
\Leftrightarrow & v \in V\left(G^{*}\right) \text { and } v \notin V\left(G_{i}\right) \backslash \bar{\pi}\left(G_{i}\right) \text { for } 1 \leq i \leq k \\
\Leftrightarrow & v \in V\left(M\left(G^{*}, \mathcal{L}^{\prime}\right)\right)
\end{aligned}
$$

Thus $V(M(G, \mathcal{L}))=V\left(M\left(G^{*}, \mathcal{L}^{\prime}\right)\right)$, and a similar (somewhat easier) proof shows that $E(M(G, \mathcal{L}))=$ $E\left(M\left(G^{*}, \mathcal{L}^{\prime}\right)\right)$. This proves (5).

Let $P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ be the heart of the partial Ω-place $\left(P^{*}, \mathcal{L}^{\prime}\right)$.
(6) P^{\prime} is the heart of (P, \mathcal{L}).

Subproof. Since $\pi\left(G_{h}\right)=\pi\left(C_{h}\right)$ for $1 \leq h \leq k$, it follows from (5) that (P, \mathcal{L}) has heart $\left(G^{\prime}, \mu^{\prime \prime}, \Delta^{\prime \prime}, \phi^{\prime \prime}\right)$ for some $\mu^{\prime \prime}, \Delta^{\prime \prime}, \phi^{\prime \prime}$. We claim that $\mu^{\prime}=\mu^{\prime \prime}, \phi^{\prime}=\phi^{\prime \prime}$, and $\Delta^{\prime}=\Delta^{\prime \prime}$. Let the edges of G^{\prime} which are not edges of G be e_{1}, \ldots, e_{k}, numbered in the natural way. (Here we use the fact that G_{1}, \ldots, G_{k} are distinct, from (4).) Let $e \in E\left(G^{\prime}\right)$, and assume first that $e \neq e_{1}, \ldots, e_{k}$. Then $\mu^{\prime}(e) \equiv \mu^{*}(e)$ since P^{\prime} is the heart of $\left(P^{*}, \mathcal{L}^{\prime}\right) ; \mu^{*}(e) \equiv \mu(e)$ since P^{*} is the heart of $\left(P, \mathcal{L}^{*}\right)$; and $\mu^{\prime \prime}(e) \equiv \mu(e)$ since $\left(G^{\prime}, \mu^{\prime \prime}, \Delta^{\prime \prime}, \phi^{\prime \prime}\right)$ is the heart of (P, \mathcal{L}). Consequently $\mu^{\prime}(e) \equiv \mu^{\prime \prime}(e)$; and similarly $\phi^{\prime}(e)=\phi^{\prime \prime}(e)$ and $\Delta^{\prime}(e)=\Delta^{\prime \prime}(e)$ as required. Now we assume that $e=e_{i}$ for some i with $1 \leq i \leq k$. Then

$$
\mu^{\prime}\left(e_{i}\right)=\pi\left(G_{i}\right)=\pi\left(C_{i}\right)=\mu^{\prime \prime}\left(e_{i}\right)
$$

and $e_{i} \notin \operatorname{dom}\left(\phi^{\prime}\right) \cup \operatorname{dom}\left(\phi^{\prime \prime}\right)$. Moreover, $\Delta^{\prime}\left(e_{i}\right)=\operatorname{gr}\left(P^{*} \mid G_{i}\right)$, and and $\Delta^{\prime \prime}\left(e_{i}\right)=g r\left(P \mid C_{i}\right)$. But $P^{*} \mid G_{i}=P_{i}$ by (3), and P_{i} is the heart of $\left(P \mid C_{i}, \mathcal{L}_{i}\right)$, and so $\Delta^{\prime}\left(e_{i}\right)=\Delta^{\prime \prime}\left(e_{i}\right)$ from 5.4. This proves (6).

Since P^{*} is by (1) and (3) an enlargement of P^{\prime} by tree-width $\leq w$, it follows from (6) that the heart of $\left(P, \mathcal{L}^{*}\right)$ is an enlargement of the heart of (P, \mathcal{L}) by tree-width $\leq w$. This proves 5.5.
5.6 Let P_{1}, P_{2} be partial Ω-patchworks, and let $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)$ be separations of $\left\|P_{1}\right\|,\left\|P_{2}\right\|$ respectively. Let η^{\prime} be a realizable expansion of $P_{1} \mid A_{1}$ in $P_{2} \mid A_{2}$ (whence $\left|\bar{\pi}\left(A_{1}\right)\right|=\left|\bar{\pi}\left(A_{2}\right)\right|=k$, say) and let $\eta^{\prime \prime}$ be a realizable expansion of $P_{1} \mid B_{1}$ in $P_{2} \mid B_{2}$ such that for $1 \leq i \leq k, \eta^{\prime \prime}(v)$ contains the $i^{\text {th }}$ term of $\pi\left(A_{2}\right)$, where v is the $i^{\text {th }}$ term of $\pi\left(A_{1}\right)$. Define η by:

$$
\begin{aligned}
& \eta(v)= \begin{cases}\eta^{\prime}(v) & : v \in V\left(A_{1}\right) \backslash V\left(B_{1}\right) \\
\eta^{\prime \prime}(v) & : v \in V\left(B_{1}\right) \backslash V\left(A_{1}\right) \\
\eta^{\prime}(v) \cup \eta^{\prime \prime}(v) & : v \in V\left(A_{1} \cap B_{1}\right)\end{cases} \\
& \eta(e)= \begin{cases}\eta^{\prime}(e) & : e \in E\left(A_{1}\right) \\
\eta^{\prime \prime}(e) & : e \in E\left(B_{1}\right) .\end{cases}
\end{aligned}
$$

Then η is a realizable expansion of P_{1} in P_{2}.
Proof. Let $*$ be a new element and let Ω^{\prime} be the well-quasi-order with $\Omega \subseteq \Omega^{\prime}$ and $E\left(\Omega^{\prime}\right)=E(\Omega) \cup\{*\}$, in which $*<x$ for all $x \in E(\Omega)$. For $i=1,2$, let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)$; and for all $e \in E\left(G_{i}\right)$, define $\phi_{i}^{\prime}(e)=\phi_{i}(e)$ if $e \in \operatorname{dom}\left(\phi_{i}\right)$, and otherwise $\phi_{i}^{\prime}(e)=*$. Let $P_{i}^{\prime}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}^{\prime}\right)$; then P_{i}^{\prime} is an Ω^{\prime} patchwork. Since η^{\prime} is a realizable expansion of $P_{1} \mid A_{1}$ in $P_{2} \mid A_{2}$, it follows that it is also a realizable expansion of $P_{1}^{\prime} \mid A_{1}$ in $P_{2}^{\prime} \mid A_{2}$. (Here we use that $* \leq x$ for all $x \in E(\Omega)$.) Similarly, $\eta^{\prime \prime}$ is a realizable expansion of $P_{1}^{\prime} \mid B_{1}$ in $P_{2}^{\prime} \mid B_{2}$.

By theorem 8.1 of [2] applied to these two Ω^{\prime}-patchworks, we deduce that η is a realizable expansion of P_{1}^{\prime} in P_{2}^{\prime}. For each $e \in \operatorname{dom}\left(\phi_{1}\right)$, it follows that $\phi_{2}(\eta(e)) \neq *$, and therefore $\eta(e) \in$ $\operatorname{dom}\left(\phi_{2}\right)$; and consequently η is a realizable expansion of P_{1} in P_{2}. This proves 5.6.
If $P=(G, \mu, \Delta, \phi)$ is an Ω-patchwork, we write $V(P)=V(G), E(P)=E(G)$.
5.7 For $i=1,2$ let $\left(P_{i}, \mathcal{L}_{i}\right)$ be an Ω-place with heart Q_{i}, using new elements $e_{i}(A)\left(A \in \mathcal{L}_{i}\right)$. Suppose that η is a realizable expansion of Q_{1} in Q_{2} such that

- if $e \in E\left(Q_{1}\right)$ and $\eta(e)=e_{2}\left(A_{2}\right)$ for some $A_{2} \in \mathcal{L}_{2}$ then $e=e_{1}\left(A_{1}\right)$ for some $A_{1} \in \mathcal{L}_{1}$,
- for each $A_{1} \in \mathcal{L}_{1}$ there exists $A_{2} \in \mathcal{L}_{2}$ such that $\eta\left(e_{1}\left(A_{1}\right)\right)=e_{2}\left(A_{2}\right)$ and $P_{1} \mid A_{1}$ is simulated in $P_{2} \mid A_{2}$.

Then P_{1} is simulated in P_{2}.
Proof. We proceed by induction on $\left|\mathcal{L}_{2}\right|$. If $\mathcal{L}_{2}=\emptyset$ then by (ii), $\mathcal{L}_{1}=\emptyset$, and so $Q_{1}=P_{1}$ and $Q_{2}=P_{2}$, and η is a realizable expansion of P_{1} in P_{2}, as required. We assume then that $\mathcal{L}_{2} \neq \emptyset$. Choose $A_{2} \in \mathcal{L}_{2}$. There are two cases, depending on whether or not $e_{2}\left(A_{2}\right)=\eta(e)$ for some $e \in E\left(Q_{1}\right)$.

First, we assume that $e_{2}\left(A_{2}\right) \neq \eta(e)$ for all $e \in E\left(Q_{1}\right)$. Let $\mathcal{L}_{2}^{\prime}=\mathcal{L}_{2} \backslash\left\{A_{2}\right\}$, and let Q_{2}^{\prime} be the heart of the Ω-place $\left(P_{2}, \mathcal{L}_{2}^{\prime}\right)$, using new elements $e_{2}(A)\left(A \in \mathcal{L}_{2}^{\prime}\right)$. Let $Q_{2}=(G, \mu, \Delta, \phi)$, and $Q_{2}^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$; then $e_{2}\left(A_{2}\right) \in E(G)$, and $\left(A_{2}, G \backslash e_{2}\left(A_{2}\right)\right)$ is a separation of G^{\prime}. Let K be the rooted subhypergraph of G formed by $e_{2}\left(A_{2}\right)$ and its ends, with $\pi(K)=\pi\left(A_{2}\right)$; then ($K, G \backslash e_{2}\left(A_{2}\right)$) is a separation of G. Now $\pi(K)=\pi\left(A_{2}\right)$ and $Q_{2}\left|\left(G \backslash e_{2}\left(A_{2}\right)\right)=Q_{2}^{\prime}\right|\left(G \backslash e_{2}\left(A_{2}\right)\right)$, and every grouping feasible in $Q_{2} \mid K$ is also feasible in $P_{2}\left|A_{2}=Q_{2}^{\prime}\right| A_{2}$ (by definition of $\Delta\left(e_{2}\left(A_{2}\right)\right)$). Moreover, η is a realizable expansion of Q_{1} in Q_{2}, and $\eta(e) \in E\left(G \backslash e_{2}\left(A_{2}\right)\right)$ for all $e \in E\left(Q_{1}\right)$, and $\eta(v) \cap V\left(G \backslash e_{2}\left(A_{2}\right)\right) \neq \emptyset$ for each $v \in V\left(Q_{1}\right)$ (because $V\left(G \backslash e_{2}\left(A_{2}\right)\right)=V(G)$). From 5.3 with $P_{1}, G_{1}, \mu_{1}, \Delta_{1}, P_{2}, G_{2}, \mu_{2}, \Delta_{2}, G_{1}^{\prime}$, $G_{2}^{\prime}, G_{0}, \eta_{1}$ replaced by $(G, \mu, \Delta), G, \mu, \Delta,\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}\right), G^{\prime}, \mu^{\prime}, \Delta^{\prime}, K, A_{2}, G \backslash e_{2}\left(A_{2}\right), \eta$ respectively, and with P replaced by the patchwork formed by the first three components of the quadruple Q_{1}, we deduce that there is a realizable expansion η_{0} of Q_{1} in Q_{2}^{\prime} such that $\eta_{0}(e)=\eta(e)$ for all $e \in E\left(Q_{1}\right)$. In particular, if $e \in E\left(Q_{1}\right)$ and $\eta_{0}(e)=e_{2}\left(A_{2}^{\prime}\right)$ for some $A_{2}^{\prime} \in \mathcal{L}_{2}^{\prime}$ then $e=e_{1}\left(A_{1}\right)$ for some $A_{1} \in \mathcal{L}_{1}$; and for each $A_{1} \in \mathcal{L}_{1}, \eta_{0}\left(e_{1}\left(A_{1}\right)\right)=e_{2}\left(A_{2}^{\prime}\right)$ and $P_{1} \mid A_{1}$ is simulated in $P_{2} \mid A_{2}^{\prime}$ for some $A_{2}^{\prime} \in \mathcal{L}_{2}^{\prime}$. From the inductive hypothesis we deduce that P_{1} is simulated in P_{2}, as required.

In the second case, we assume that $e_{2}\left(A_{2}\right)=\eta\left(e_{1}\left(A_{1}\right)\right)$ for some $A_{1} \in \mathcal{L}_{1}$. For $i=1,2$, let $\mathcal{L}_{i}^{\prime}=\mathcal{L}_{i} \backslash\left\{A_{i}\right\}$, let $Q_{i}^{\prime}=\left(G_{i}^{\prime}, \mu_{i}^{\prime}, \Delta_{i}^{\prime}, \phi_{i}^{\prime}\right)$ be the heart of $\left(P_{i}, \mathcal{L}_{i}^{\prime}\right)$ using new elements $e_{i}(A)\left(A \in \mathcal{L}^{\prime}{ }_{i}\right)$, and let $B_{i}=G_{i}^{\prime} \backslash A_{i}$. We claim that for $i=1,2, Q_{i} \backslash e_{i}\left(A_{i}\right)=Q_{i}^{\prime} \mid B_{i}$. For let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)$ say. Then

$$
M\left(G_{i}, \mathcal{L}_{i}\right)=M\left(G_{i}, \mathcal{L}_{i}^{\prime}\right) \cap\left(G_{i} \backslash A_{i}\right)^{-}=M\left(G_{i}, \mathcal{L}_{i}^{\prime}\right) \cap\left(G_{i}^{\prime} \backslash A_{i}\right)^{-}
$$

since $M\left(G_{i}, \mathcal{L}_{i}^{\prime}\right) \subseteq G_{i}^{\prime-}$ and $M\left(G_{i}, \mathcal{L}_{i}^{\prime}\right) \subseteq G_{i}^{-}$. Hence

$$
Q_{i} \backslash\left\{e_{i}(A): A \in \mathcal{L}_{i}\right\}=\left(Q_{i}^{\prime} \mid B_{i}\right) \backslash\left\{e_{i}(A): A \in \mathcal{L}_{i}^{\prime}\right\}
$$

and so $Q_{i} \backslash e_{i}\left(A_{i}\right)=Q_{i}^{\prime} \mid B_{i}$, as claimed.
Since $e_{2}\left(A_{2}\right)=\eta\left(e_{1}\left(A_{1}\right)\right)$, the second hypothesis of the theorem implies that there is a realizable expansion η^{\prime} of $P_{1} \mid A_{1}$ in $P_{2} \mid A_{2}$, and hence of $Q_{1}^{\prime} \mid A_{1}$ in $Q_{2}^{\prime} \mid A_{2}$, since $P_{i}\left|A_{i}=Q_{i}^{\prime}\right| A_{i}(i=1,2)$. Let $\eta^{\prime \prime}$ be the restriction of η to $V\left(Q_{1}^{\prime}\right) \cup E\left(Q_{1}^{\prime}\right)$; then $\eta^{\prime \prime}$ is a realizable expansion of $Q_{1} \backslash e_{1}\left(A_{1}\right)$ in $Q_{2} \backslash e_{2}\left(A_{2}\right)$; that is, of $Q_{1}^{\prime} \mid B_{1}$ in $Q_{2}^{\prime} \mid B_{2}$. Let $\left|\bar{\pi}\left(A_{1}\right)\right|=\left|\bar{\pi}\left(A_{2}\right)\right|=k$ say. For $1 \leq i \leq k$, let v be the $i^{\text {th }}$ term of $\pi\left(A_{1}\right)$; we claim that $\eta^{\prime \prime}(v)$ contains the $i^{\text {th }}$ term of $\pi\left(A_{2}\right)$. For η is a realizable expansion of Q_{1} in Q_{2}, and since $\eta\left(e_{1}\left(A_{1}\right)\right)=e_{2}\left(A_{2}\right)$ and v is the $i^{\text {th }}$ end of $e_{1}\left(A_{1}\right)$, it follows that $\eta(v)$ contains the $i^{\text {th }}$ end of $e_{2}\left(A_{2}\right)$; that is, the $i^{\text {th }}$ term of $\pi\left(A_{2}\right)$. From 5.6 with P_{1}, P_{2} replaced by $Q_{1}^{\prime}, Q_{2}^{\prime}$ respectively, there is a realizable expansion η_{0} of Q_{1}^{\prime} in Q_{2}^{\prime} such that $\eta_{0}(e)=\eta(e)$ for all $e \in E\left(Q_{1}\right) \backslash\left\{e_{1}\left(A_{1}\right)\right\}$. In particular, if $e \in E\left(Q_{1}^{\prime}\right)$ and $\eta_{0}(e)=e_{2}\left(A_{2}^{\prime}\right)$ for some $A_{2}^{\prime} \in \mathcal{L}_{2}^{\prime}$ then $e=e_{1}\left(A_{1}^{\prime}\right)$ for some $A_{1}^{\prime} \in \mathcal{L}_{1}^{\prime}$; and for each $A_{1}^{\prime} \in \mathcal{L}_{1}^{\prime}, \eta_{0}\left(e_{1}\left(A_{1}^{\prime}\right)\right)=e_{2}\left(A_{2}^{\prime}\right)$ and $P_{1} \mid A_{1}^{\prime}$ is simulated in $P_{2} \mid A_{2}^{\prime}$ for some $A_{2}^{\prime} \in \mathcal{L}_{2}^{\prime}$. From the inductive hypothesis applied to \mathcal{L}_{1}^{\prime} and \mathcal{L}_{2}^{\prime}, we deduce that P_{1} is simulated in P_{2}. This proves 5.7.

6 Well-behavedness

Let $P=(G, \mu, \Delta, \phi)$ be a partial Ω-patchwork, and let Ω^{\prime} be a quasi-order with $\Omega \subseteq \Omega^{\prime}$. By an $\Omega^{\prime}-$ completion of P we mean an Ω^{\prime}-patchwork ($\left.G, \mu, \Delta, \phi^{\prime}\right)$ such that $\phi^{\prime}(e)=\phi(e)$ for each $e \in \operatorname{dom}(\phi)$. If Ω is a well-quasi-order, a class \mathcal{C} of partial Ω-patchworks is well-behaved if for every well-quasi-order Ω^{\prime} with $\Omega \subseteq \Omega^{\prime}$ and every countable sequence $P_{i}^{\prime}(i=1,2, \ldots)$ of Ω^{\prime}-completions of members of \mathcal{C} there exist $j>i \geq 1$ such that P_{i}^{\prime} is simulated in P_{j}^{\prime}. (We remark that whether \mathcal{C} is well-behaved depends prima facie not only on \mathcal{C}, but also on Ω; we leave this dependence implicit. In fact, it is an easy exercise to show that there is no dependence on Ω.)

A partial Ω-patchwork $P=(G, \mu, \Delta, \phi)$ is rootless if $\bar{\pi}(G)=\emptyset$. Let $P=(G, \mu, \Delta, \phi)$ be a rootless partial Ω-patchwork, let $e \in \operatorname{dom}(\mu) \backslash \operatorname{dom}(\phi)$, and let $P^{\prime}=\left(G^{\prime}, \mu^{\prime}, \Delta^{\prime}, \phi^{\prime}\right)$ be the partial Ω-patchwork with $G^{\prime-}=G^{-} \backslash e, \pi\left(G^{\prime}\right)=\mu(e)$, and $P^{\prime}=P \mid G^{\prime}$. We call P^{\prime} a rooting of P.
6.1 Let Ω be a well-quasi-order, and let \mathcal{C} be a well-behaved class of partial Ω-patchworks. Let \mathcal{C}^{\prime} be the class of all rootings of rootless members of \mathcal{C}. Then \mathcal{C}^{\prime} is well-behaved.

Proof. Let Ω^{\prime} be a well-quasi-order with $\Omega \subseteq \Omega^{\prime}$, and let $Q_{i}^{\prime}(i=1,2, \ldots)$ be a countable sequence of Ω^{\prime}-completions of members of \mathcal{C}^{\prime}. Let $*$ be a new element and let $\Omega^{\prime \prime}$ be the well-quasi-order with $\Omega^{\prime} \subseteq \Omega^{\prime \prime}$ and $E\left(\Omega^{\prime \prime}\right)=E\left(\Omega^{\prime}\right) \cup\{*\}$, in which if $x \leq *$ or $* \leq x$ then $x=*$. For each i, let $Q_{i}^{\prime}=$ $\left(G_{i}^{\prime}, \mu_{i}^{\prime}, \Delta_{i}^{\prime}, \psi_{i}^{\prime}\right)$ be an Ω^{\prime}-completion of $P_{i}^{\prime}=\left(G_{i}^{\prime}, \mu_{i}^{\prime}, \Delta_{i}^{\prime}, \phi_{i}^{\prime}\right) \in \mathcal{C}^{\prime}$ and choose $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right) \in \mathcal{C}$ and $e_{i} \in \operatorname{dom}\left(\mu_{i}\right) \backslash \operatorname{dom}\left(\phi_{i}\right)$ such that $\bar{\pi}\left(G_{i}\right)=\emptyset, \pi\left(G_{i}^{\prime}\right)=\mu_{i}\left(e_{i}\right), G_{i}^{-} \backslash e_{i}=G_{i}^{\prime-}$ and $P_{i}^{\prime}=P_{i} \mid G_{i}^{\prime}$. Let $Q_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \psi_{i}\right)$ be the $\Omega^{\prime \prime}$-completion of P_{i} where

$$
\begin{aligned}
\psi_{i}(e) & =\psi_{i}^{\prime}(e)\left(e \in E\left(G_{i}^{\prime}\right)\right) \\
\psi_{i}\left(e_{i}\right) & =* .
\end{aligned}
$$

Since \mathcal{C} is well-behaved, there exist $j>i \geq 1$ such that Q_{i} is simulated in Q_{j}; let η be a realizable expansion of Q_{i} in Q_{j}. Then $\eta\left(e_{i}\right)=e_{j}$ since e_{j} is the only edge e of G_{j} with $\psi_{j}(e)=*$; and hence there is a realizable expansion of $Q_{i} \mid G_{i}^{\prime}$ in $Q_{j} \mid G_{j}^{\prime}$; that is, of Q_{i}^{\prime} in Q_{j}^{\prime}. This proves 6.1.

The following is a consequence of theorem 9.1 of [2].
6.2 If Ω is a well-quasi-order and $w \geq 0$, the class of all robust partial Ω-patchworks of tree-width $\leq w$ is well-behaved.

Let \mathcal{C} be a class of partial Ω-patchworks, and let (P, \mathcal{L}) be a partial Ω-place. If $P \mid A \in \mathcal{C}$ for all $A \in \mathcal{L}$ we say that P is an enlargement of $P \mid \mathcal{L}$ by \mathcal{C}.
6.3 Let Ω be a well-quasi-order, and let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be well-behaved classes of partial Ω-patchworks. Then the class of all enlargements of members of \mathcal{C}_{1} by \mathcal{C}_{2} is well-behaved.

Proof. Let \mathcal{C} be the class of all enlargements of members of \mathcal{C}_{1} by \mathcal{C}_{2}. Let Ω^{\prime} be a well-quasi-order with $\Omega \subseteq \Omega^{\prime}$. Let $\Omega^{\prime \prime}$ be the class of all Ω^{\prime}-completions of members of \mathcal{C}_{2}, ordered by simulation; then $\Omega^{\prime \prime}$ is a well-quasi-order, since \mathcal{C}_{2} is well-behaved. By replacing Ω, Ω^{\prime} by isomorphic well-quasi-orders we may assume that $E\left(\Omega^{\prime}\right) \cap E\left(\Omega^{\prime \prime}\right)=\emptyset$. Let $\Omega^{*}=\Omega^{\prime} \cup \Omega^{\prime \prime}$.

Let P_{1} be an Ω^{\prime}-completion of a member of \mathcal{C}. We construct an Ω^{*}-patchwork enc $\left(P_{1}\right)$ as follows. (Throughout, for $i=1,2,3,4, P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)$.) Choose $P_{2} \in \mathcal{C}$ so that P_{1} is an Ω^{\prime}-completion of P_{2}. Choose $P_{3} \in \mathcal{C}_{1}$ so that P_{2} is an enlargement of P_{3} by \mathcal{C}_{2} and let \mathcal{L} be the corresponding rooted location in G_{2}, so that $\left(P_{2}, \mathcal{L}\right)$ has heart P_{3}. Let the new elements of P_{3} be $\{e(A): A \in \mathcal{L}\}$. Since $G_{2}=G_{1}, \mathcal{L}$ is also a rooted location in G_{1}, and so $\left(P_{1}, \mathcal{L}\right)$ is an Ω^{\prime}-place; let its heart be Q (using the same new elements as for $\left.P_{3}\right)$. Let $\left(G_{4}, \mu_{4}, \Delta_{4}\right)=\left(G_{3}, \mu_{3}, \Delta_{3}\right)$ and define $\phi_{4}: E\left(G_{4}\right) \rightarrow E\left(\Omega^{*}\right)$ by

$$
\phi_{4}(e)= \begin{cases}\phi_{3}(e) & \text { if } e \in \operatorname{dom}\left(\phi_{3}\right) \\ \phi_{1}(e) & \text { if } e \in E\left(G_{3}\right) \backslash \operatorname{dom}\left(\phi_{3}\right) \text { and } e \neq e(A) \text { for all } A \in \mathcal{L} \\ P_{1} \mid A & \text { if } e=e(A) \text { for some } A \in \mathcal{L}\end{cases}
$$

Let $P_{4}=\left(G_{4}, \mu_{4}, \Delta_{4}, \phi_{4}\right)$. Thus, P_{4} is an Ω^{*}-completion of both P_{3} and Q. We define $\operatorname{enc}\left(P_{1}\right)=P_{4}$.
Now let P_{1}^{\prime} be another Ω^{\prime}-completion of a member of \mathcal{C}, and suppose that $\operatorname{enc}\left(P_{1}\right)$ is simulated in $e n c\left(P_{1}^{\prime}\right)$. We claim that P_{1} is simulated in P_{1}^{\prime}. For let $P_{2}, P_{3}, \mathcal{L}, Q, P_{4}$ and $\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)(i=1, \ldots, 4)$ be as above for P_{1}, and define $P_{2}^{\prime}, P_{3}^{\prime}, \mathcal{L}^{\prime}, Q^{\prime}, P_{4}^{\prime}$ and $\left(G_{i}^{\prime}, \mu_{i}^{\prime}, \Delta_{i}^{\prime}, \phi_{i}^{\prime}\right)(i=1, \ldots, 4)$ similarly for P_{1}^{\prime}. Let η be a realizable expansion of $\operatorname{enc}\left(P_{1}\right)=P_{4}$ in $\operatorname{enc}\left(P_{1}^{\prime}\right)=P_{4}^{\prime}$. Then η is a realizable expansion of Q in Q^{\prime} (since P_{4}, P_{4}^{\prime} are Ω^{*}-completions of Q, Q^{\prime} respectively). Moreover, for each $e \in E(Q)$, $\phi_{4}(e) \leq \phi_{4}^{\prime}(\eta(e))$, and so $\phi_{4}(e) \in E\left(\Omega^{\prime \prime}\right)$ if and only if $\phi_{4}^{\prime}(\eta(e)) \in E\left(\Omega^{\prime \prime}\right)$; that is, e is one of the new elements of Q if and only if $\eta(e)$ is one of the new elements of Q^{\prime}. Moreover, if $e=e(A)$ say for some $A \in \mathcal{L}$, and $\eta(e)=e^{\prime}\left(A^{\prime}\right)$ say for some $A^{\prime} \in \mathcal{L}^{\prime}$, then $P_{1} \mid A$ is simulated in $P_{1}^{\prime} \mid A^{\prime}$ since $\phi_{4}(e) \leq \phi_{4}^{\prime}(\eta(e))$. Consequently the hypotheses of 5.7 are satisfied (with $P_{1}, \mathcal{L}_{1}, Q_{1}, P_{2}, \mathcal{L}_{2}, Q_{2}, \Omega$ replaced by $P_{1}, \mathcal{L}, Q, P_{1}^{\prime}, \mathcal{L}^{\prime}, Q^{\prime}, \Omega^{\prime}$ respectively) and so by $5.7, P_{1}$ is simulated in P_{1}^{\prime}.

Let P_{1}, P_{2}, \ldots be a countable sequence of Ω^{\prime}-completions of members of \mathcal{C}. Since Ω^{*} is a well-quasi-order and \mathcal{C}_{1} is well-behaved, there exist $j>i \geq 1$ such that $\operatorname{enc}\left(P_{i}\right)$ is simulated in $\operatorname{enc}\left(P_{j}\right)$. It follows that P_{i} is simulated in P_{j}. Hence \mathcal{C} is well-behaved. This proves 6.3.

An arborescence is a directed graph T, whose underlying graph is a tree (denoted by T^{-}), such that every vertex is the head of at most one edge. It follows that there is a unique vertex of T that is the head of no edge of T, and we call it the root of T and denote it by $o(T)$. If T is an arborescence and $t \in V(T), T^{t}$ denotes the maximal subarborescence with root t. If $f \in E(T)$, then T^{f}, T_{f} denote the two components of $T \backslash f$, where the head of f belongs to T^{f} (and hence $o(T)$ belongs to T_{f}).

Let $P=(G, \mu, \Delta, \phi)$ be a partial Ω-patchwork. A rooted decomposition of P is a pair (T, τ), where

- T is an arborescence, and for each $t \in V(T), \tau(t) \subseteq G$ is a rooted hypergraph
- $\left(T^{-}, \tau^{-}\right)$is a tree-decomposition of G^{-}, where $\tau^{-}(t)=\tau(t)^{-}$for each $t \in V(T)$
- $\pi(\tau(o(T)))=\pi(G)$
- for every subarborescence S of T, let $\tau \times S$ denote the rooted hypergraph H with $H^{-}=\tau^{-} \times S^{-}$ and $\pi(H)=\pi(\tau(o(S)))$; then for every edge $f \in E(T)$ with head t,

$$
\bar{\pi}(\tau(t))=V\left(\tau \times T^{f}\right) \cap V\left(\tau \times T_{f}\right)
$$

- for every directed path F of T with first edge f_{1} and last edge f_{2} such that f_{1}, f_{2} make separations under (T^{-}, τ^{-}) of the same order and no edge of F makes a separation of smaller order, $P \mid \tau \times T^{f_{2}}$ is simulated in $P \mid \tau \times T^{f_{1}}$.
If (T, τ) is a rooted decomposition of a partial Ω-patchwork (G, μ, Δ, ϕ) and $f \in E(T)$, we define $\tau \times(T, f)$ to be the rooted hypergraph $\left(\left(\tau \times T_{f}\right)^{-}, \pi\left(\tau \times T^{f}\right)\right)$. (This makes sense because of the fourth condition above.)

We need the following, an immediate consequence of a result of [2].
6.4 Let $P=(G, \mu, \Delta, \phi)$ be a rootless, robust Ω-patchwork, and let (S, σ) be a rotund tree-decomposition of G^{-}. Let T be an arborescence with $T^{-}=S$. Then there is a rooted decomposition (T, τ) of P such that $\tau(t)^{-}=\sigma(t)$ for each $t \in V(T)$.
Proof. For each $t \in V(T)$ let $\sigma^{+}(t)$ be a rooted hypergraph chosen so that $\left(\sigma^{+}(t)\right)^{-}=\sigma(t)$ and

- if $t=o(T)$ then $\bar{\pi}\left(\sigma^{+}(T)\right)=\emptyset$
- if t is the head of an edge $f \in E(T)$ then $\bar{\pi}\left(\sigma^{+}(t)\right)=V\left(\sigma \times T^{f}\right) \cap V\left(\sigma \times T_{f}\right)$.

Since (S, σ) is rotund (in the sense defined in section 2 above), it follows that (T, σ^{+}) is a "rotund tree-decomposition" in the sense of [2] (which is different from the sense in the present paper). Let \mathcal{R} be the set of all rooted hypergraphs H with $H^{-} \subseteq G^{-}$; and let us say that $H_{1} \in \mathcal{R}$ is simulated in $H_{2} \in \mathcal{R}$ if $P \mid H_{1}$ is simulated in $P \mid H_{2}$. Then, as in section 9 of [2], Axioms 1-3 of [2] are satisfied, and so we can apply theorem 4.1 of [2] (with T, τ, \mathcal{R}, F replaced by $T, \sigma^{+}, \mathcal{R}, E(T)$). We deduce that there is a rooted decomposition (T, τ) of P such that $\tau(t)^{-}=\sigma(t)$ for each $t \in V(T)$. This proves 6.4 .

We need another lemma about rooted decompositions.
6.5 Let (T, τ) be a rooted decomposition of a rootless Ω-patchwork $P=(G, \mu, \Delta, \phi)$.

1. If $f \in E(T)$, then $\tau \times T^{f}$ is complemented in G, and $G \backslash \tau \times T^{f}=\tau \times T_{f}$.
2. If $f \in E(T)$ then $\tau \times(T, f)$ is complemented in G and $G \backslash \tau \times(T, f)$ is the rooted hypergraph H with $H^{-}=\left(\tau \times T^{f}\right)^{-}$and $\bar{\pi}(H)=\emptyset$.
3. If $f_{0} \in E(T)$ has head t and f_{1}, \ldots, f_{n} are the edges of T with tail t, then

$$
\mathcal{L}=\left\{\tau \times T^{f_{1}}, \ldots, \tau \times T^{f_{n}}\right\}
$$

is a rooted location in $\tau \times T^{t}$ and $\mathcal{L}^{*}=\mathcal{L} \cup\left\{\tau \times\left(T, f_{0}\right)\right\}$ is a rooted location in G and $M\left(\tau \times T^{t}, \mathcal{L}\right)=M\left(G, \mathcal{L}^{*}\right)$.

Proof. For 6.5.1, we observe that $\bar{\pi}\left(\tau \times T^{f}\right)=V\left(\tau \times T^{f}\right) \cap V\left(\tau \times T_{f}\right)$, from the fourth condition in the definition of a rooted decomposition; and also, that $\left(\left(\tau \times T^{f}\right)^{-},\left(\tau \times T_{f}\right)^{-}\right)$is one of the separations made by f under the tree-decomposition $\left(T^{-}, \tau^{-}\right)$. From these two facts it follows that $\tau \times T^{f}$ is complemented in G, and consequently $\tau \times T_{f}=G \backslash \tau \times T^{f}$ since $\tau \times T_{f}$ and G are both rootless.

For 6.5.2, let $G_{0}=\tau \times(T, f)$. Since $\left(\left(\tau \times T_{f}\right)^{-},\left(\tau \times T^{f}\right)^{-}\right)$is one of the separations made by f under $\left(T^{-}, \tau^{-}\right)$, and since $G_{0}^{-}=\left(\tau \times T_{f}\right)^{-}$and

$$
\bar{\pi}\left(G_{0}\right)=V\left(\tau \times T_{f}\right) \cap V\left(\tau \times T^{f}\right)
$$

it follows that G_{0} is complemented; and since G and H are rootless and $H^{-}=\left(\tau \times T^{f}\right)^{-}$, we deduce that $H=G \backslash G_{0}$.

For 6.5.3, we observe first that
(1) If $f \in E(T)$ has tail t then $\tau \times T^{f}$ is complemented in $\tau \times T^{t}$, and

$$
\left(\tau \times T^{t} \backslash \tau \times T^{f}\right)^{-}=\left(\tau \times T_{f}\right)^{-} \cap\left(\tau \times T^{t}\right)^{-}
$$

Subproof. We have

$$
\bar{\pi}\left(\tau \times T^{t}\right)=\bar{\pi}(\tau(t)) \subseteq V\left(\tau \times T_{f}\right)
$$

and by 6.5.1, $G \backslash \tau \times T^{f}=\tau \times T_{f}$. Since $\tau \times T^{f} \subseteq \tau \times T^{t}$, it follows that $\tau \times T^{f}$ is complemented in $\tau \times T^{t}$, and the equation of (1) holds. This proves (1).
(2) If distinct $f_{1}, f_{2} \in E(T)$ have a common tail t, then $\tau \times T^{f_{1}} \subseteq \tau \times T^{t} \backslash \tau \times T^{f_{2}}$.

Subproof. $\tau \times T^{f_{1}}$ and $\tau \times T^{f_{2}}$ have no edges in common, and any vertex in them both lies in $V(\tau(t))$, from the third condition in the definition of a tree-decomposition. Hence

$$
V\left(\tau \times T^{f_{1}}\right) \cap V\left(\tau \times T^{f_{2}}\right) \subseteq V(\tau(t)) \cap V\left(\tau \times T^{f_{2}}\right) \subseteq \bar{\pi}\left(\tau \times T^{f_{2}}\right)
$$

and so $\tau \times T^{f_{1}} \subseteq \tau \times T^{t} \backslash \tau \times T^{f_{2}}$. This proves (2).
(3) If $f_{0}, f_{1} \in E(T)$ and the head of f_{0} equals the tail of f_{1}, let $G_{0}=\tau \times(T, f)$; then $\tau \times T^{f_{1}} \subseteq G \backslash G_{0}$ and $G_{0} \subseteq G \backslash \tau \times T^{f_{1}}$.

The proof of (3) is very similar to that of (2) and we leave it to the reader.
Now we complete the proof of 6.5.3. By (1) and (2), \mathcal{L} is a rooted location in $\tau \times T^{t}$. By 6.5 .1 and 6.5.2, all members of \mathcal{L}^{*} are complemented in G. If $i, j \in\{1, \ldots, n\}$ and $i \neq j$ then

$$
\tau \times T^{f_{i}} \subseteq \tau \times T_{f_{j}}=G \backslash \tau \times T^{f_{j}}
$$

by 6.5.1. If $i \in\{1, \ldots, n\}$ then $\tau \times\left(T, f_{0}\right) \subseteq G \backslash \tau \times T^{f_{i}}$ by (3), and

$$
\left(\tau \times T^{f_{i}}\right)^{-} \subseteq\left(\tau \times T^{f_{0}}\right)^{-}=\left(G \backslash \tau \times T^{f_{0}}\right)^{-}
$$

by 6.5 .2. Hence \mathcal{L}^{*} is a rooted location in G.

To prove that $M\left(\tau \times T^{t}, \mathcal{L}\right)=M\left(G, \mathcal{L}^{*}\right)$, we observe first that by 6.5.1, $G \backslash \tau \times T^{f_{i}}=\tau \times T_{f_{i}}$ for $1 \leq i \leq n$, and by 6.5.2, $(G \backslash \tau \times(T, f))^{-}=\left(\tau \times T^{t}\right)^{-}$, and so

$$
M\left(G, \mathcal{L}^{*}\right)=\left(\tau \times T^{t}\right)^{-} \cap \bigcap_{i=1}^{n}\left(\tau \times T_{f_{i}}\right)^{-}
$$

By (1), this is equal to $M\left(\tau \times T^{t}, \mathcal{L}\right)$. This proves 6.5 .3 , and hence completes the proof of 6.5 .
Let $P=(G, \mu, \Delta, \phi)$ be a rootless Ω-patchwork, and let (T, τ) be a tree-decomposition of G^{-}. If (P, \mathcal{L}) is an Ω-place such that \mathcal{L}^{-}is the location of t_{0} in (T, τ) for some $t_{0} \in V(T)$, we call the heart of (P, \mathcal{L}) a piece of P (at t_{0}, under $\left.(T, \tau)\right)$. For each $t_{0} \in V(T)$, there is at least one piece of P at t_{0}, and in general there are many, because of the arbitrary choices of the marches $\pi(A)(A \in \mathcal{L})$.
6.6 Let Ω be a well-quasi-order, and let \mathcal{C} be a well-behaved class of rootless partial Ω-patchworks. Let \mathcal{C}^{\prime} be the class of all rootless, robust Ω-patchworks P such that there is a rotund, proper treedecomposition of $\|P\|$ under which all pieces of P belong to \mathcal{C}. Then \mathcal{C}^{\prime} is well-quasi-ordered by simulation.

Proof. Let $P=(G, \mu, \Delta, \phi) \in \mathcal{C}^{\prime}$. From the definition of \mathcal{C}^{\prime} there exist an arborescence T and a rotund, proper tree-decomposition $\left(T^{-}, \sigma\right)$ of G^{-}such that all pieces of P under $\left(T^{-}, \sigma\right)$ belong to \mathcal{C}. By 6.4 we may choose a rooted decomposition (T, τ) of P such that $\tau(t)^{-}=\sigma(t)$ for each $t \in V(T)$ and consequently $\sigma=\tau^{-}$. Let \mathcal{C}^{*} be the union of \mathcal{C} and the class of all rootings of members of \mathcal{C}.
(1) Let $t \in V(T)$ and let $N(t)$ be the set of all $y \in V(T)$ such that there is an edge of T with head y and tail t. Then $P \mid \tau \times T^{t}$ is an enlargement of a member of \mathcal{C}^{*} by the set of Ω-patchworks $\mathcal{C}_{t}=\left\{P \mid \tau \times T^{y}: y \in N(t)\right\}$.

Subproof. Let $B=P \mid \tau \times T^{t}=\left(G^{*}, \mu^{*}, \Delta^{*}, \phi^{*}\right)$. Let $N(t)=\left\{t_{1}, \ldots, t_{n}\right\}$, and let F be the path of T between t and $o(T)$. For $1 \leq i \leq n$, let $P_{i}=P \mid \tau \times T^{t_{i}}$, and let $P_{i}=\left(G_{i}, \mu_{i}, \Delta_{i}, \phi_{i}\right)$. Since $\left(T^{-}, \tau^{-}\right)$is proper, G_{1}, \ldots, G_{n} are distinct; and $\mathcal{L}=\left\{G_{1}, \ldots, G_{n}\right\}$ is a rooted location in G^{*} by 6.5.3. Thus (B, \mathcal{L}) is an Ω-place. If $t=o(T)$, then by 6.5.1 \mathcal{L}^{-}is the location of t in $\left(T^{-}, \tau^{-}\right)$, and so $B \mid \mathcal{L}$ is a piece of P under $\left(T^{-}, \tau^{-}\right)$, and consequently belongs to \mathcal{C}. But for each $A \in \mathcal{L}$,

$$
P\left|A=P_{i}=P\right| \tau \times T^{t_{i}} \in \mathcal{C}_{t}
$$

for some i, and so B is an enlargement of a member of $\mathcal{C} \subseteq \mathcal{C}^{*}$ by \mathcal{C}_{t}. We may assume then that $t \neq o(T)$. Let t_{0} be the neighbour of t in $V(F)$ and let $f_{0} \in E(T)$ have ends t, t_{0}. Let $G_{0}=\tau \times\left(T, f_{0}\right)$. Then $G_{0}, G_{1}, \ldots, G_{n}$ are all distinct since $\left(T^{-}, \tau^{-}\right)$is proper; and $\mathcal{L}^{*}=\left\{G_{0}, G_{1}, \ldots, G_{n}\right\}$ is a rooted location in G, by 6.5.3; and \mathcal{L}^{*-} is the location of t in $\left(T^{-}, \tau^{-}\right)$, by 6.5.1 and 6.5.2. Consequently, $\left.P \mid \mathcal{L}^{*}\right)$ is a piece of P under $\left(T^{-}, \tau^{-}\right)$, and hence belongs to \mathcal{C}. Now $B \mid \mathcal{L}$ is a rooting of $P \mid \mathcal{L}^{*}$, because $\mathcal{L}=\mathcal{L}^{*} \backslash\left\{G_{0}\right\}$, and $M\left(G^{*}, \mathcal{L}\right)=M\left(G, \mathcal{L}^{*}\right)$ by 6.5 .3 , and $\pi(B)=\pi\left(G_{0}\right)$. Consequently, $B \mid \mathcal{L} \in \mathcal{C}^{*}$, and since

$$
B\left|G_{i}=\left(P \mid \tau \times T^{t}\right)\right| \tau \times T^{t_{i}}=P \mid \tau \times T^{t_{i}}
$$

for $1 \leq i \leq n$, we deduce that B is an enlargement of a member of \mathcal{C}^{*} by \mathcal{C}_{t}. This proves (1).

Now let P_{1}, P_{2}, \ldots be a countable sequence of members of \mathcal{C}^{\prime}. For all $i \geq 1$, let $\left(T_{i}, \tau_{i}\right)$ be the corresponding rooted decomposition of P_{i}; that is, such that $\left(T_{i}^{-}, \tau_{i}^{-}\right)$is a rotund, proper treedecomposition of $\left\|P_{i}\right\|^{-}$such that all pieces of P_{i} under this decomposition belong to \mathcal{C}. We may assume that T_{1}, T_{2}, \ldots are mutually disjoint; let their union be M. For $X \subseteq V(M)$, let $N(X)$ be the set of all $y \in V(M)$ such that for some $x \in X$, there is an edge $x y$ of M with head y. Let $B(X)$ be the set of all $P_{i} \mid \tau_{i} \times T_{i}^{*}$, for $i \geq 1$ and $x \in X \cap V\left(T_{i}\right)$.
(2) If $X \subseteq V(M)$ and $B(N(X))$ is well-quasi-ordered by simulation, then so is $B(X)$.

Subproof. By (1), each member of $B(X)$ is an enlargement of a member of \mathcal{C}^{*} by $B(N(X))$. Since \mathcal{C}^{*} is well-behaved by 6.1 (for the union of two well-behaved classes is well-behaved) and $B(N(X))$ is well-behaved by hypothesis, the claim follows from 6.3. This proves (2).

We may assume that for $1 \leq i<j,\left(V\left(P_{i}\right) \cup E\left(P_{i}\right)\right) \cap\left(V\left(P_{j}\right) \cup E\left(P_{j}\right)\right)=\emptyset$. Let \mathcal{R} be the set of all rooted hypergraphs G such that $G \subseteq\left\|P_{i}\right\|$ for some $i>0$; then \mathcal{R} satisfies axioms 1 and 2 of [2] (as is explained at the start of section 9 of [2]). Let $i>0$ and let $s \in V\left(T_{i}\right)$. Let S be the subtree of T_{i} induced on $\{s\} \cup N(s)$; that is, the star formed by s and its outneighbours. Define $\sigma(s)=\tau_{i}(s)$, and for each $t \in N(s)$ define $\sigma(t)=\tau_{i} \times T_{i}^{t}$. Let \mathcal{S} be the set of all such pairs (S, σ) (for all $i>0$ and all $\left.s \in V\left(T_{i}\right)\right)$. We see that \mathcal{S} is a set of "star-decompositions", in the sense of section 3 of [2]. We claim that \mathcal{S} is "good", in the sense of that paper. We have to check that:

- $\sigma \times S \in \mathcal{R}$ for each $(S, \sigma) \in \mathcal{S}$; this is clear.
- There exists $k \geq 0$ such that $|\bar{\pi}(t)| \leq k$ for every $(S, \sigma) \in \mathcal{S}$ and every $t \in V(S)$. To see this, observe that since \mathcal{C} is well-behaved, there exists $k \geq 0$ such that $|\bar{\pi}(G)| \leq k$ for every $(G, \mu, \Delta, \phi) \in \mathcal{C}$; and since all pieces of each P_{i} under $\left(T_{i}^{-}, \tau_{i}\right)$ belong to \mathcal{C}, it follows that $|\bar{\pi}(t)| \leq k$ for all $i>0$ and all $t \in V\left(T_{i}\right)$, and so the claim follows.
- The third condition to be verified is just (2) above, in different language.

Hence we may apply theorem 3.3 of [2]. We deduce that there exist $j>i \geq 1$ such that P_{i} is simulated in P_{j}. Hence \mathcal{C}^{\prime} is well-quasi-ordered by simulation, as required.

Now we can prove our main result, the following.
6.7 Let Ω be a well-quasi-order, let \mathcal{C} be a well-behaved class of rootless partial Ω-patchworks, and let $\theta \geq 1$ be an integer. Let \mathcal{D} be a class of rootless, robust Ω-patchworks and suppose that for each $P \in \mathcal{D}$ there is a tie-breaker λ in $\|P\|^{-}$such that for every tangle \mathcal{T} in G^{-}of order $\geq \theta$, there is an Ω-place (P, \mathcal{L}) with heart in \mathcal{C} such that $\mathcal{L}^{-} \theta$-isolates \mathcal{T}. Then \mathcal{D} is well-quasi-ordered by simulation.

Proof. Let \mathcal{C}^{\prime} be the class of all robust partial Ω-patchworks of tree-width $\leq 3 \theta+1$. By $6.2, \mathcal{C}^{\prime}$ is well-behaved. Let \mathcal{C}^{*} be the class of all enlargements of members of \mathcal{C} by \mathcal{C}^{\prime}. By 6.3 it follows that
(1) \mathcal{C}^{*} is well-behaved.

Now let $P=(G, \mu, \Delta, \phi) \in \mathcal{D}$ be such that G^{-}has a tangle of order $\geq \frac{4}{3} \theta$. Let λ be a tiebreaker in G^{-}, as in the theorem. By 4.4 we deduce that
(2) There is a tree-decomposition (T, τ) of G^{-}such that
(a) (T, τ) is proper and rotund
(b) for each $e \in E(T)$, the separations made by e under (T, τ) are robust, and
(c) for each $t \in V(T)$, if \mathcal{L}_{t} is the location of t in (T, τ), then there is an Ω-place (P, \mathcal{L}) with heart in \mathcal{C}, such that \mathcal{L}_{t} is an enlargement of \mathcal{L}^{-}by tree-width $\leq 3 \theta+1$.
(3) Let (T, τ) be as in (2) and let $t \in V(T)$. Then every piece of P at t under (T, τ) is in \mathcal{C}^{*}.

Subproof. Let $\mathcal{L}_{t}, \mathcal{L}$ be as in $(2)(\mathrm{c})$, and let Q be a piece of P at t. Then $Q=P \mid \mathcal{L}^{*}$ for some rooted location \mathcal{L}^{*} in G with $\mathcal{L}^{*-}=\mathcal{L}_{t}$. By (2)(c), \mathcal{L}^{*-} is an enlargement of \mathcal{L}^{-}by tree-width $\leq 3 \theta+1$. By $5.5, Q=P \mid \mathcal{L}^{*}$ is an enlargement of $P \mid \mathcal{L}$ by tree-width $\leq 3 \theta+1$; and since $P \mid \mathcal{L} \in \mathcal{C}$ by hypothesis, it follows that Q is an enlargement of a member of \mathcal{C} by the class of all partial Ω patchworks of tree-width $\leq 3 \theta+1$. However, the latter differs from \mathcal{C}^{\prime}, because the members of \mathcal{C}^{\prime} are robust. To show that $Q\left(=\left(G_{0}, \mu_{0}, \Delta_{0}, \phi_{0}\right)\right.$ say $)$ is an enlargement of a member of \mathcal{C} by \mathcal{C}^{\prime}, we must show that $\Delta_{0}(e)$ is a robust patch for every $e \in E(Q)$ which is not an edge of $P \mid \mathcal{L}$. Actually, we shall prove more, that $\Delta_{0}(e)$ is robust for every $e \in E(Q)$. Let $e \in E(Q)$. If $e \in E(P)$ then $\Delta_{0}(e)=\Delta(e)$ and hence is robust since P is robust, as required. We assume then that $e \notin E(P)$. Since $Q=P \mid \mathcal{L}^{*}$, it follows that G_{0} is obtained from $M\left(G, \mathcal{L}^{*}\right)$ by adding a new edge $e(A)$ for each $A \in \mathcal{L}^{*}$, where $e(A)$ has set of ends $\bar{\pi}(A)$; and $\Delta_{0}(e(A))$ is the set of all groupings feasible in $P \mid A$. Since $e \notin E(P)$ and hence $e \notin E\left(M\left(G, \mathcal{L}^{*}\right)\right)$, it follows that $e=e(A)$ for some $A \in \mathcal{L}^{*}$. Let $B=G \backslash A$; then $\left(A^{-}, B^{-}\right) \in \mathcal{L}^{*-}=\mathcal{L}_{t}$. Hence $\left(A^{-}, B^{-}\right)$is robust by $(2)(\mathrm{b})$. Let $X_{1}, X_{2} \subseteq \bar{\pi}(A)=V\left(\Delta_{0}(e)\right)$ with $\left|X_{1}\right|=\left|X_{2}\right|$ say, and $X_{1} \cap X_{2}=\emptyset$. Define $k=|\bar{\pi}(A)|-\left|X_{1}\right|$. Let $\left(H_{1}, H_{2}\right)$ be any separation of A^{-} such that $\bar{\pi}(A) \backslash X_{i} \subseteq V\left(H_{i}\right)$ for $i=1,2$. Since $\left(A^{-}, B^{-}\right)$is robust, there exists $i \in\{1,2\}$ such that $\left|V\left(H_{i}\right) \cap V\left(H_{j} \cup B^{-}\right)\right| \geq\left|V\left(A^{-} \cap B^{-}\right)\right|$, where $j=3-i$. Subtracting $\left|V\left(H_{i} \cap B\right) \backslash V\left(H_{j}\right)\right|$ from both sides gives

$$
\left|V\left(H_{1} \cap H_{2}\right)\right| \geq\left|V\left(B^{-} \cap H_{j}\right)\right| \geq\left|\bar{\pi}(A) \backslash X_{j}\right|=k,
$$

since $\bar{\pi}(A) \backslash X_{j} \subseteq V\left(B^{-} \cap H_{j}\right)$. From theorem 6.1 of [2], applied to $P \mid A$, there is a realization of $P \mid A$ such that k of its components have nonempty intersection with both $\bar{\pi}(A) \backslash X_{1}$ and $\bar{\pi}(A) \backslash X_{2}$. Therefore there is a pairing with vertex set $\bar{\pi}(A)$, feasible in $P \mid A$, which pairs X_{1}, X_{2}. Since $\Delta_{0}(e)$ is the set of all groupings feasible in $P \mid A$, it follows that $\Delta_{0}(e)$ is robust, as required. This proves (3).

Let \mathcal{D}^{\prime} be the class of all members $(G, \mu, \Delta, \phi) \in \mathcal{D}$ such that G has a tangle of order $\geq \frac{4}{3} \theta$. We have shown then that
(4) For all $P=(G, \mu, \Delta, \phi) \in \mathcal{D}^{\prime}$, there is a rotund, proper tree-decomposition (T, τ) of G^{-}such that all pieces of P under (T, τ) belong to \mathcal{C}^{*}.

By (1), (4) and $6.6, \mathcal{D}^{\prime}$ is well-quasi-ordered by simulation. If $P=(G, \mu, \Delta, \phi) \in \mathcal{D} \backslash \mathcal{D}^{\prime}$ then G^{-}has tree-width $\leq 2 \theta$ by 2.2 , and hence so does P since P is rootless. By $6.2, \mathcal{D} \backslash \mathcal{D}^{\prime}$ is well-quasi-ordered by simulation, and hence so is $\mathcal{D}=\mathcal{D}^{\prime} \cup\left(\mathcal{D} \backslash \mathcal{D}^{\prime}\right)$. This proves 6.7.

7 More on isolation

Here is a useful way to prove that locations θ-isolate tangles. Let λ be a tie-breaker in a hypergraph G, let \mathcal{T} be a tangle in G, and let $(A, B) \in \mathcal{T}$. We say that (A, B) is λ-linked to \mathcal{T} if there is no $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}$ with smaller λ-order with $A \subseteq A^{\prime}$ and $B^{\prime} \subseteq B$.
7.1 Let \mathcal{T} be a tangle of order $\geq \theta \geq 1$ in a hypergraph G with a tie-breaker λ, and let $\mathcal{L} \subseteq \mathcal{T}$ be a location of order $<\theta$, every member of which is λ-linked to \mathcal{T}. Then $\mathcal{L} \theta$-isolates \mathcal{T}.

Proof. Let \mathcal{T}^{\prime} be a tangle of order $\geq \theta$, and let $(D, C) \in \mathcal{T}^{\prime}$ for some $(C, D) \in \mathcal{L}$. Let (A, B) be the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction.
(1) $(A \cup C, B \cap D)$ has λ-order at least that of (C, D).

Subproof. Suppose not. Since $C \subseteq A \cup C$ and $B \cap D \subseteq D$, and (C, D) is λ-linked to \mathcal{T}, it follows that $(A \cup C, B \cap D) \notin \mathcal{T}$. But its order is at most that of (C, D) (by the third tie-breaker axiom) and hence less than the order of \mathcal{T}, and so $(B \cap D, A \cup C) \in \mathcal{T}$. Yet $(A, B),(C, D) \in \mathcal{T}$, contrary to (T2), since $(B \cap D) \cup A \cup C=G$. This proves (1).
(2) $(A \cap C, B \cup D)$ has λ-order at least that of (A, B).

Subproof. Suppose not. As before, the order of $(A \cap C, B \cup D)$ is at most that of (A, B), and hence less than the orders of \mathcal{T} and \mathcal{T}^{\prime}. Since $(A, B) \in \mathcal{T}$ and $A \cap C \subseteq A$ it follows that $(A \cap C, B \cup D) \in \mathcal{T}$. Since $(B, A),(D, C) \in \mathcal{T}^{\prime}$ and $B \cup D \cup(A \cap C)=G$ it follows that $(A \cap C, B \cup D) \notin \mathcal{T}^{\prime}$ from (T2), and so $(B \cup D, A \cap C) \in \mathcal{T}^{\prime}$. Thus $(A \cap C, B \cup D)$ distinguishes \mathcal{T} from \mathcal{T}^{\prime}, and yet its λ-order is less than that of the $\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$-distinction, a contradiction. This proves (2).

From (1), (2) and the second tie-breaker axiom, we deduce that ($A \cup C, B \cap D$) has the same λ-order as (C, D), and hence $(A \cup C, B \cap D)=(C, D)$ or (D, C), from the first tie-breaker axiom. Since ($B \cap D, A \cup C$) has the same order as (C, D) and hence belongs to \mathcal{T}^{\prime} (because $(B, A) \in \mathcal{T}^{\prime}$) and $(C, D) \notin \mathcal{T}^{\prime}$, it follows that $(B \cap D, A \cup C) \neq(C, D)$. Hence $(A \cup C, B \cap D)=(C, D)$, and so $A \subseteq C$ and $D \subseteq B$. Thus $\mathcal{L} \theta$-isolates \mathcal{T}. This proves 7.1.

8 Acknowledgement

The referee for this paper was Crispin Nash-Williams; he was anonymous, but there was no mistaking his style. He did an enormous amount of work checking and improving the paper through several iterations (even his last report was some nine pages of detailed corrections), spotting inconsistencies and inaccuracies that we missed. (He also liked full details - at its inception, this paper was short and sweet, with a few steps left to the reader...) Unfortunately he died in 2002. We are very grateful for his efforts.

References

[1] C. St. J. A. Nash-Williams, "On well-quasi-ordering trees", Theory of Graphs and Its Applications (Proc. Symp. Smolenice, 1963), Publ. House Czechoslovak Acad. Sci., 1964, 83-84.
[2] Neil Robertson and P. D. Seymour, "Graph Minors. IV. Tree-width and well-quasi-ordering," J. Combinatorial Theory, Ser. B, 48 (1990), 227-254.
[3] Neil Robertson and P. D. Seymour, "Graph Minors. X. Obstructions to tree-decomposition," J. Combinatorial Theory, Ser. B, 52 (1991), 153-190.

SYMBOLS

Greek: $\eta, \theta, \lambda, \mu, \pi, \tau, \phi, \Delta, \Omega$
Script: $\mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{L}, \mathcal{T}$
Math: $\cup, \cap, \backslash, \bigcup, \cap$ (cup, cap, union, intersection), \sum (summation), $\rceil, ~\llcorner \rfloor$ (rounding), \emptyset (null set), *, $A^{-}, P \mid A, G \backslash F, G / F, \tau \times T, \bar{\pi}, \tau^{+}$.

[^0]: ${ }^{1}$ This research was partially supported by NSF grant DMS8504054 and was partially performed under a consulting agreement with Bellcore.
 ${ }^{2}$ Present address: Princeton University, Princeton, NJ.

