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Abstract

We prove the following result. Suppose that for every graph G in a class C' of graphs, and for every
“highly connected component” of GG, there is a decomposition of G of a certain kind centred on the
component. Then C is well-quasi-ordered by minors; that is, in any infinite subset of C' there are
two graphs, one a minor of the other. This is another step towards Wagner’s conjecture.



1 Introduction

It was shown in an earlier paper [2] that if each member G of a class C of finite graphs has a “linked
tree-decomposition” into “well-behaved” pieces, then C' is well-quasi-ordered by minors; that is, in
every infinite subset of C there are two graphs, one a minor of the other. It was also shown, in
another earlier paper [3], that for every finite graph G there is a linked tree-decomposition into
pieces corresponding to the large order “tangles” in G. (A tangle of order # in G is, more or less, a
f-connected component of G.) In the present paper we combine these results into a lemma that if,
for every G € C' and for every large order tangle of G, there is a decomposition of G with certain
properties centred on the tangle, then C is well-quasi-ordered by minors.

This lemma, is crucial in the proof of Wagner’s conjecture, that the class of all finite graphs is
well-quasi-ordered by minors; indeed, we shall need it twice to prove that conjecture, first to prove
that the class of finite hypergraphs with edges of size 2 or 3 drawable on a fixed surface is well-quasi-
ordered, and secondly to derive from this that the class of all finite graphs is well-quasi-ordered. It
will also be needed in later papers, again in a hypergraph form, to prove Nash-Williams’ “immersion”
conjecture [1]. We shall therefore formulate it completely in terms of hypergraphs.

The paper is organized as follows. Section 2 contains basic definitions and results about tree-
decompositions and tangles. Sections 3 and 4 develop the relation between the kinds of decomposition
relative to a tangle that we need. In section 5 we introduce patchworks, which enable us to define
minors of hypergraphs, and develop some lemmas about them. The main result is stated and proved
in section 6, and section 7 contains a lemma which is often useful in applying the theorem.

Thus this work falls into two parts. Sections 2-4 are about how to convert information about
the local structure of a hypergraph relative to each of its high-order tangles, into a linked tree-
decomposition whose pieces (the nodes of the tree) correspond to the high-order tangles, and still
have the same local structure (more or less — we may have to grow the pieces to make them fit
together by adding on subhypergraphs of bounded tree-width). Here the tree-decompositions use
unrooted trees; there is no reason to fix a root for the tree, and if we did so the results would
appear most unnatural. The second half, sections 5-6, mostly concerns well-quasi-ordering, and in
that topic we have to use rooted trees; we have to do complicated inductions concerning the sizes
of these trees, and it is very important to fix a root of the tree. When we do so, for each piece of
the tree-decomposition, there is not symmetry between its neighbouring pieces any more; one is in
the direction of the root, and has to be treated differently. When we lop off the arms of the tree-
decomposition growing out from a given piece, and replace these arms by new hyperedges marking
where the arms used to attach (which is what we mean by the local structure at the node of the
tree), it is convenient to lop off the “root arm” in a different way; instead of replacing it by a new
hyperedge, we simply label the vertices where it used to attach and call them roots of the hypergraph.
And also, when we lop off the “non-root” arms, we need to remember not only the set of vertices
where the arm used to attach, but also which of these vertices was which; we need to remember an
ordered set. So the new hyperedge replacing the arm will have to be equipped with a linear order
of its vertex set. The point is that half-way through the paper, suddenly our trees become rooted
trees or “arborescences”, and the hypergraphs develop roots, and their hyperedges become ordered
sets of vertices. This is most confusing when it happens (particular since we have to redefine all our
terms for rooted trees and rooted hypergraphs, and there is not quite an exact correspondence), and
we hope it will help the reader to be warned ahead of time.



2 Hypergraphs, tangles and tree-decompositions

For the purposes of this paper, a hypergraph G consists of a finite set V(G) of vertices, a finite set
E(G) of edges, and an incidence relation between them. The vertices incident with an edge are the
ends of the edge. (A hypergraph is thus a graph if every edge has one or two ends.) A hypergraph
H is a subhypergraph of a hypergraph G (written H C G) if V(H) C V(G), E(H) C E(G), and for
every v € V(G) and e € E(H), e is incident with v in G if and only if v € V(H) and e is incident
with v in H. If A, B are subhypergraphs of G we denote by AU B, AN B the subhypergraphs with
vertex sets V(A) UV (B), V(A) NV (B) and edge sets E(A) U E(B), E(A) N E(B) respectively. A
separation of G is a pair (A, B) of subhypergraphs with AU B = G and E(A N B) = {; its order is
|V (AN B)|, and its reverse is (B, A).

A central idea in our approach is that of a tangle in a hypergraph, which was introduced in [3].
Intuitively, a tangle of order 8 in a hypergraph G may be thought of as a “f-connected component”
of G, a highly coherent mass in G which resides almost completely on one side or the other of every
separation of order < 6. Formally, let G be a hypergraph and # > 1 an integer. A tangle of order 0
in G is a set T of separations of G, each of order < 6, such that

(T1) for every separation (A, B) of G of order < 6, T contains one of (4, B), (B, A)
(T2) if (A;,B;) € T(: =1,2,3) then Ay UA UA3 #G

(T3) if (A, B) € T then V(A) # V(G).

Let us mention one lemma that we shall need later.

2.1 Let G be a hypergraph, let G' C G, and let T' be a tangle in G' of order 0. Let T be the set of
all separations (A, B) of G of order < 0 such that (ANG', BNG') € T'. Then T is a tangle in G
of order 6.

The proof is clear.

The second concept we need is that of tree-decomposition. A tree is a non-null connected graph
without circuits. A tree-decomposition of a hypergraph G is a pair (T, 1), where T is a tree and 7
assigns to each ¢ € V(T') a subhypergraph 7(¢) of G, such that

e U(T(t) : t e V(T)) =G
e for distinct t1,t2 € V(T), E(7(t1) N7(t2)) = 0
e if t1,t9,13 € V(T) and t9 lies on the path between ¢; and ¢35 then 7(t1) N 7(t3) C 7(t2).

If T' is a subtree of T' we denote U(7(t) : t € V(T")) by 7 x T'. If e € E(T) and Ty, T are the two
components of T'\e then (7 x T}, 7 x Ty) and its reverse are the separations made by e under (T, T);
their common order is the order of e in (T, 7). The tree-decomposition (7', 7) has width w if w > 0
is minimum such that |V (7(¢))| < w + 1 for each ¢ € V(T); and the tree-width of a hypergraph G is
the minimum width of all tree-decompositions of G. The following is proved in theorem 5.2 of [3].

2.2 Let G be a hypergraph with no tangle of order > 0, where @ > 1. Then G has tree-width < %9.

A location in G is a set L of separations of G such that A; C By for all distinct (41, By),
(A9, By) € L. We define M(G, L) to be N(B: (A,B) € L) if L # 0, and M(G,0) = G.



2.3 Let L ={(A1,B1),...,(An, Bn)} be a location in a hypergraph G. Then
1. Ay,...,Ap, M(G, L) are mutually edge-disjoint, and have union G
2. for1 <i<mn, Bi=M(G,L)UY(Aj: 1<j<n,j#1i), and AiNM(G,L)=A;NB,;

3. for1<i<j<n,ANA; CM(G,L), and
V(AZ N A]‘) = V(Al N Bl) N V(Aj N Bj) N V(M(G, ﬁ))

Proof. For 1 <i<n, M(G,L) C B; and A; C B, for j # i; since E(A; N B;) = 0, the first assertion
of 2.3.1 follows. For the second assertion of 2.3.1, we observe that any vertex or edge of G not in
M (G, L) fails to belong to some B;, and therefore belongs to the corresponding A;. Thus 2.3.1 holds.
For 2.3.2, we have already seen that

M(G,E)UU(Ajlg_]Sn,]#Z)gBZ

Conversely, any vertex or edge of B; not in M (G, L) fails to belong to B; for some j # 4, and hence
belongs to A;. This proves the first assertion of 2.3.2, and the second will follow from the first and
2.3.3. For 2.3.3,let 1 <i < j<mn. By23l, E(4;NAj) =0;let ve V(A4 NAj). Forl <k <mn,
if k£ # i then v € V(4;) C V(Byg), and if & = ¢ then v € V(A;) C V(By). Thus v € V(By) for
all k(1 <k <m),and so v € V(M(G,L)). This proves the first assertion of 2.3.3. For the second,
A;NA; C A;N B; since A; C By, and similarly 4, N A; C A; N Bj, and so the second assertion of
2.3.3 follows. This proves 2.3. |

The following is easily seen to be true (compare theorem 9.1 of [3]).

2.4 Let (T,7) be a tree-decomposition of a hypergraph G, let tg € V(T) and let eq,...,ex be the
edges of T incident with ty. For 1 < i < k let the components of T\e; be T;, T, where ty € V(T}).
Then

(T xTyH7xT):1<i<k

18 a location.

We call this the location of to in (T, 7). It is possible that (7 x T, 7 x T;) = (1 x Tj,7 x T}) for
distinct 4, §, but only if 7 x T} = G. We say (T, 7) is proper if no edge of T' makes a separation (A, B)
with B = G.

2.5 Let (T, 1) be a tree-decomposition of a hypergraph G, and let t € V(T). Let L be the location
of t in (T,7); then 7(t) = M(G, L).

Proof. Certainly 7(t) C B for every (A, B) € L and so 7(t) C M(G, L). For the converse inclusion,
let = be a vertex or edge of G not in 7(t), and choose t' € V(T') with z in 7(¢'). Let e be the edge
of T incident with ¢ such that ¢,¢ are in different components of T'\e, and let (A, B) € L be the
corresponding separation. Then AN B C 7(t), and so z is not in AN B; but z is in A, and so is not
in B. Hence z is not in M (G, £). This proves 2.5. |



For several purposes it would be convenient if there were at most one smallest order separation
with a given property, and we can more or less arrange this by a refinement in the definition of the
order of separation. A tie-breaker in a hypergraph G is a function A which maps each separation
(A, B) of G to some member A(A, B) of a linearly ordered set (A, <) (we call A(A, B) the A-order of
(A, B)) in such a way that

e \(A,B) =X, D) if and only if (A,B) = (C,D) or (A,B) = (D, C)
e for all separations (A, B), (C, D), either A\(AUC, BND) < XA(A4, B), or \(ANC, BUD) < \(C, D)
e if V(AN B)| < |V(CND)|then A(4, B) < \(C, D).

It was shown in theorem 9.2 of [3] that every hypergraph has a tie-breaker.

Let 71,72 be tangles in a hypergraph G. If (A,B) € T; and (B, A) € Ty we say that (A, B)
distinguishes Ty from Ts. If there is such an (A, B), then for a given tie-breaker A in G there is a
unique (4, B) € T; such that (B, A) € T3 of minimum A-order, called the (71, 72)-distinction; and if
(A, B) is the (71, 72)-distinction then (B, A) is the (73, 71)-distinction. By theorem 10.3 of [3], we
have

2.6 Let Tq,..., Ty, be distinct tangles of order @ in a hypergraph G with n > 1, and let A be a tie-
breaker. Then there is a tree-decomposition (T, 7) of G where V(T) = {t1,...,tn}, with the following
properties:

1. if e € E(T) and Ty, T, are the components of T\e and 1 < i < n and t; € V(Ty) then
(rxT,7xT) €T;

2. for 1 < i < j < n, let e be the edge of the path of T between t;,t; making separations of
minimum X-order; then these separations are the (T;,7T;)- and (T;,T;)-distinctions.

We call (T, 1) a standard decomposition of G relative to T1,..., 7T, in which t; represents T; for
1=1,...,n.

A separation (A, B) of a hypergraph G is robust if for every separation (C, D) of A, one of the
separations (C, B U D), (D,B U () has order at least that of (A, B). A tree-decomposition (T, 7)
of a hypergraph G is rotund if for every two edges f1, fo € E(T), making separations (A;, B1) and
(As, Bs) of the same order k, where By C Ay and By C As, the following holds: if there is a separation
(Hy, Hy) of G with By C Hy and By C Hy of order < k, then some edge of F' makes a separation of
order < k, where F' is the path of T" with first and last edges f1, fo.

2.7 Let Tq,...,Ty be distinct tangles of order 0 in a hypergraph G with n > 1, and let X be a
tie-breaker. Let (T, 1) be as in 2.6. Then (T, T) is proper and rotund, and every separation made by
an edge of T under (T, T) is robust.

Proof. Let V(T) = {t1,...,tp} where t; represents T; (1 < i < n). Let e € E(T), making separations
(A,B), (B, A). Then (A, B) is the (7;, T;)-distinction where t;, ; are the ends of e, and so (4, B) € T;,
and V(A) # V(G) by (T3). Thus (T, 1) is proper. From theorem 10.2 of [3], (4, B) is robust. It
remains to show that (7', 7) is rotund.

Thus, let f1, fo € E(T), and let F be the path of T' with first and last edges f1, fo. Let f1, fo make
separations (A1, B1), (Ag, By) respectively, where B; C Ay and By C Aj; and suppose that both



these separations have order k. Let (Hy, Ho) be a separation of G of order k' < k with By C H; and
By C Hs, and let the first and last vertices of F' be t1, ¢ say. Now (Ay, By) € T1, and so (Hy, Hy) ¢ T1
by (T2), since A; U H; D A1 U By = G; and so (Hy, Hy) € T1 by (T1), since k' < k < 6. Similarly
(Hy, Hy) € T2, and so (Hg, Hy) distinguishes 77 from 73. Thus the (77, 72)-distinction (A, B) has
order < k' < k, and by 2.6.2 (A, B) is made by some edge of F. It follows that (T, 7) is rotund. This
proves 2.7. |

3 Tree-width of a location

A separation (A, B) of G is titanic if at least one of the inequalities

V(XuY)nZ)| > |[V(XUY)nB)
V((¥uz)nX)| > [V((YUuZz)nB)|

V((zUX)nY)| > [V((ZUX)NB)

holds for every choice of X,Y,Z C A such that A= X UY UZ and E(X), E(Y), E(Z) are mutually
disjoint. We observe that whether or not (A, B) is titanic depends only on A and on V(AN B); more
precisely,

3.1 Let (A, B) be a separation of a hypergraph G, and let (A, B") be a separation of a hypergraph
G', with ANB = AN B'. Then (A, B) is titanic if and only if (A, B') is titanic.

The proof is clear. From theorem 8.3 of [3], we have the following.

3.2 Let (C,D) be a separation of a hypergraph G, and let (C',D) be a titanic separation of a
hypergraph G', with V(CND) =V (C'ND). Let T be a tangle in G of order 0 > 2 with (C,D) € T.
Let T be the set of all separations (A', B') of G' of order < 0 such that there exists (A, B) € T with
E(AND)=E(A' ND). Then T is a tangle in G' of order 0.

If T is a tangle in a hypergraph G, we say that (A, B) € T is linked to T if there isno (A’,B") € T
of smaller order with A C A’ and B’ C B.

3.3 Let T be a tangle of order > 0 in a hypergraph G and let (B, A) € T be linked to T and have
order < 26. Then (A, B) is titanic.

Proof. Let us suppose that (A, B) is not titanic. Hence we may choose subhypergraphs X1, X, X3
of A such that X; U Xo U X3 = A and E(X,), E(X3), E(X3) are mutually disjoint, and

|(‘/1U‘/2)0V3| < |W1UW2|
(VaUVs) NV < [WyU W3
|(VgUVﬂﬂVQ| < |W3UW1|

where V(X;) = V; and V(X; N B) = W; (i = 1,2,3). Suppose that (X1, XoU X3 U B) ¢ T. Then
either (Xo UX3UB,X;) € T or (X1,X,U X3U B) has order > 6; and in either case, since (B, A) is
linked to 7", we deduce that (X1, X5 U X3 U B) has order at least that of (B, A). Hence

Vin(VaUVsUV(B))| = V(AN B,



that is,
Vin (VoUVs)| + Wi\ (We UW3)| > [Wo UWs| + Wy \ (We UW3)|

contrary to our assumption. Hence (X, XoUX3UB) € T and similarly (X2, X3UX; UB), (X3, X1 U
XoUB) € T. It follows that (X; UB,XoU X3) ¢ T by (T2), since (X; UB)U X3 U X3 =G and
(XoU X3, X1 UB) ¢ T since (XoU X3)U X, UB = G; and so (X7 UB, X5 U X3) has order > 6; that

is,

0 < |(V1 U V(B)) N (VQ UV3)| = |(V2 UV3) N V1| + |(W2 U W3) \ W1|
< |W2 U W3| + |(W2 UW;J,) \ W1| = 2|(W2 UW3) \ W1| + |(W2 U Wg) N W1|.

By summing this and the two similar inequalities, we obtain

30 < 2|(WyUWs) \ Wil +2|(Ws UWy) \ Wa| +2|(W; UWs) \ Ws|
+ |(W2UW3)0W1|-I-|(W3UW1)ﬂW2|+|(W1UW2)ﬂW3|
— AWy UWs U Ws| — [Wi N Wa N W]
< 4V(ANB)

Hence the order of (A, B) is > 36/4, a contradiction, and so our initial assumption that (A, B) is
not titanic was false. This completes the proof of 3.3. |

Let £ be a location in G. The order of L is the maximum order of the members of £ (or 0 if
L = ). For each (A, B) € L let e(A, B) be a new element, and let H be the hypergraph with

V(H) =V (M(G, L))

E(H) = E(M(G, L)) U{e(A,B) : (A, B) € L}

where for e € E(M (L)) its ends are as in G, and for (A, B) € L the ends of e(A, B) are the elements
of V(AN B). This is a hypergraph by 2.3.2, and we call it the heart of L. We define the tree-width
of L to be the tree-width of H.

3.4 Let L be a location in a hypergraph G, such that each (A, B) € L is titanic, and L has order
< 0, where 8 > 2. Then either there is a tangle T in G of order 0 with L C T, or L has tree-width
< 3¢.

>3

Proof. Define H as above. If there is no tangle in H of order 8, then by 2.2 the tree-width of H is
at most %0, as required. So we may assume that there is a tangle Ty in H of order . Let

L={(A1,B1),...,(An, Bn)},

and for 1 < ¢ < nlet C; be the subhypergraph of H with V(C;) = V(A;NB;) and E(C;) = {e(A4;, B;)}.
Thus,
H=MG,L)UCLU---UC,,

and
G=MG,LYUALU---UA,.

For 0 < k < n, let
Hy=M(G,L)UA U---UApUChyi U---UC,.



Then Hy = H and H, = G. For 1 < j <k, let
Bjk:M(G,[,)UU(Ai:1§i§k,i7éj)UCk+1U---UCn.

Then (Aj, Bji) is a separation of Hy, and A; N Bj, = A; N B;. We claim that, for 0 < &k < n,
(1) There is a tangle Ty, in Hy, of order 6 such that (A;, Bj) € Ty, for 1 <j <k.

Subproof. We proceed by induction on k. It holds for k£ = 0, and we therefore assume that 1 < k < n
and that 7j_; satisfies (1) with k& replaced by k£ — 1. Since (Cf, Bgi) has order < 6 (because £ has
order < 6) it follows from (T3) that (Ck, Bxi) € Tr—1. Now (A, Bi) is titanic, and hence so is
(Ag, Bir) by 3.1. Let T be the set of all separations (A’, B') of Hy of order < € such that there
exists (A, B) € T;,_1 with E(A N Byk) = E(A' N By). By 3.2 (with C,D,G,C",G', T,0,T' replaced
by Ck, Bkk, Hy 1, Ak, Hg, Te—1,0, Tx) Tr is a tangle in Hy, of order 0. Let 1 < j < k; we must ver-
ify that (Ag, Bji) € Tp. If j < k, then (A, Bjy—1) € Ti—1 from the inductive hypothesis, and so
(A;,Bji) € Ty from the definition of 7;,. We assume then that j = k. But (Ci, Bii) € Ti—1 as we
saw above, and E(Cy N Byi) = 0 = E(Ag N By) and so (A, Bik) € Tk from the definition of k.
Thus Ty satisfies (1); and so (1) holds, by induction on k.

From (1) with & = n, we deduce that (4;, B;) € T, for 1 < j < n, since B; = Bj,; and so L C Ty,.
This proves 3.4. |

4 Isolating locations

Let 7 be a tangle in a hypergraph G, and let A be a tie-breaker in G. A location L is said to #-isolate
T if L C T and has order < 6, and for every (C, D) € L and every tangle 7' in G of order > 6
with (D,C) € T, if (A, B) is the (T, T')-distinction then A C C' and D C B. Our objective in this
section is to study the global structure of a hypergraph G given, for every tangle 7 in G of high
order, a location 6-isolating T .

We shall need the following lemma, (our thanks to M. Saks for its proof).

4.1 Let T be a tree and let < be some linear order on E(T). For each t € V(T), let T} be a subtree
of T such that

o tcV(T})

e ife € E(T) has one end in V(T;) and the other end in V(T) \ V(T}) and f is an edge of the
path of T with first vertex t and last edge e, then e < f.

Then there exists I C V(T) such that the sets V(Ty) (t € I) form a partition of V(T).

Proof. We proceed by induction on |V(T)|. We may assume that E(T) # (), and may therefore
choose f € E(T) minimum under <. Let 7%, T? be the two components of T'\ f, and let the ends of
f beu! € V(TY), u? € V(T?). For each t € V(T?), define T} = T, N T" (i = 1,2). These satisfy the
hypotheses of 4.1, so from our inductive hypothesis, we may choose I* C V(T") such that the sets
V(T}) (t € I*) form a partition of V(T?) (i = 1,2). Now if for i = 1,2, T} = T; for every ¢ € I' then



I = I U I? satisfies our requirement. We assume then that there exists s € I' with T} # Ty. Hence
T, ¢ T!, and so f € E(Ts), and in particular ' € V(T}). It follows that T}! =T} for all t € I'\ {s},
since no other V(T}!) contains u'. Moreover, we claim that T2 C Ts. For if not, there is an edge e
of T? with one end in V(T) and the other in V(T?)\ V(Ts). Then f is in the path of T, with first
vertex s and last edge e, and so e < f. But f < e from our choice of f since e # f, a contradiction.
Thus T? C Ty, and so the sets V(T3) (¢ € I') partition V(T). This proves 4.1. |

4.2 Let T; (j € J) be distinct tangles of order 6 in a hypergraph G, let X be a tie-breaker in G, and
for each j € J let L; CT; be a location which 0-isolates T; with respect to X. Then there exists I C .J
such that for every j € J there is a unique © € I with L; C T;.

Proof. We may assume that J # (. Let J = {1,...,n} say where n > 1. Let (T, 7) be a standard
tree-decomposition relative to 71, ..., 7, in which ¢; represents 7; for 1 < i < n.

(1) If e,e’ € E(T) are distinct, and make separations (A, B),(A’, B') of G say, then
(A’ B)’ (B’ A) # (A,’ B,)’ (BI’ AI)'

Subproof. Let e have ends ¢;,t;. By 2.6.2, one of (A, B), (B, A) is the (7;, T;)-distinction, and the
other is the (7;, 7;)-distinction. Consequently, one of (A, B), (B, A) does not belong to 7; and the
other does not belong to 7;. But by 2.6.1, one of (4’, B"), (B', A") belongs to both 7; and 7;. This
proves (1).

For 1 < h < n let T}, be the restriction of T' to {t; : 1 <i <mn, L, C T;}. For the moment, let us
fix h with 1 < h < n. Let Sj be the component of T}, containing .

(2) Let t; € V(Sh) be adjacent in T to t; € V(T) \ V(Sh), and let (A, B) be the (T, T;)-distinction;
then (A, B) € Ty, for every t, € V(T},), and (A, B) is the (T;, T;)-distinction.

Subproof. Since t; ¢ V(Sy) it follows that ¢; ¢ V(T}) and so L, € T;. Choose (C,D) € Ly
with (C, D) ¢ T;. Then (C, D) has order < § since (C, D) € Ly, and so (D,C) € T; by (T1). Since
Ly, 0-isolates Ty, it follows that A C C and D C B. For each t; € V(T},), (C,D) € Ly, C T, and so
(B, A) ¢ T, by (T2) since BUC = G; and hence (4, B) € Ty by (T1) since Ty has order 6. In partic-
ular, (A, B) € T;, and therefore has A-order at least that of the (7;, 7;)-distinction (A’, B’). On the
other hand, (A’, B") distinguishes 7}, from 7; (by 2.6.1, since ¢; lies on the path of T' between ¢;, and
t;) and therefore has A-order at least that of (A, B). Hence equality occurs, and (4, B) = (A, B’)
by the first tie-breaker axiom. This proves (2).

(3) T, is a tree.

Subproof. Let ty ¢ V(Sy), and let P be the path of T from t; to tx. Let ¢; be the last vertex
of P in V(S},) and t; the next vertex of P, and define (A, B) as in (2). Then (A4, B) ¢ T; by 2.6.1
and 2.6.2, since (A, B) is the (7;, T;)-distinction; and so t; ¢ V(T},) by (2). Hence S, = T}, and Tj,
is a tree. This proves (3).



For each e € F(T) with ends ¢;,¢; say, let pu(e) be the A-order of the (7;, T;)-distinction. By (1),
u(e) # p(e') for all distinct e, e’ € E(T).

(4) If e € E(T) has one end in V(T},) and the other in V(T) \ V(T},), and f is an edge of the
path of T with first vertex t and last edge e, then p(e) < p(f) unless e = f.

Subproof. Let e have ends t; € V(T},) and t; € V(T)\V (T}), and let (A, B) be the (7;, T;)-distinction.
By (2) and (3), (A, B) is the (7, 7;)-distinction, and so its A-order is at most the A-order of the
separation made by f, with strict inequality unless e = f by (1). This proves (4).

In view of (3), (4) and 4.1, this proves 4.2. |

Let L, L* be locations in a hypergraph G, and let £ = {(C1, D1),...,(Ck, Dg)}. We say that £*
is an enlargement of L if there exist Li,...,L; C L£*, mutually disjoint (possibly empty) and with
union £*, such that for 1 < h < k, every (A, B) € L, satisfies A C C}, and D;, C B. If in addition
w > 0 and L, U{(Dp,Cp)} has tree-width < w for 1 < h < k, we say that £* is an enlargement of
L by tree-width < w.

4.3 Let A\ be a tie-breaker in a hypergraph G, let @ > 2, and let T1,..., T, be distinct tangles in
G, each of order 0, where n > 1. For 1 < i < n let L; C T; be a location of order < %9 which
f-isolates T;; and suppose that for every tangle T in G of order 0, there is a unique i with 1 <i <n
such that L; C T. Let (T,T) be a standard tree-decomposition of G relative to Ti,...,Tn, where
V(T) = {t1,...,tn} and t; represents T; for 1 < i < n. Then for 1 < i < n, the location of t; in
(T, T) is an enlargement of L; by tree-width < %9.

Proof. Let 1 <i <mn,and let £; = {(C1,D1),...,(Ck,Dy)}. Let L* be the location of ¢; in (T, 7).

(1) If (A,B) € L* then (A,B) has order < 30 and there exists h with 1 < h < k such that
ACCy and Dy, C B.

Subproof. Since (A, B) € L*, there exists j # ¢ with 1 < j < n such that ¢;,¢; are adjacent in
T and (A, B) is the (7;, T;)-distinction. Since £; C 7T; and j # i it follows that £,C T;, and so
there exists h with 1 < h < k such that (Cy, D) ¢ T;. Since (Cj, Dp,) has order < 36 < 6, and
T; has order 0, it follows that (Dj,C)) € T;. Since L; f-isolates T;, we deduce that A C Cj, and
Dy, C B. Moreover, since (Cy, Dy,) distinguishes 7; from 7; and has order < %9, it follows that the
(T;, T;)-distinction (A, B) also has order < 2. This proves (1).

(2) Each member of L* is titanic.

Subproof. Let (A,B) € L*, and choose j as above. We claim that (B, A) is linked to 7;. For
suppose that there exists (B’, A") € 7, of smaller order than (A, B), and with B C B’ and A’ C A.
Since (A, B) € T; and A" C A it follows that (A’, B') € T;, and so (A, B') distinguishes 7; from T;;
and hence has order at least that of (A, B), a contradiction. Thus there is no such (B’, A’), and so
(B, A) is linked to T;. Since (B, A) has order < 3 6 by (1), it follows that (A, B) is titanic, by 3.3.
This proves (2).



By (1), there exist £7,...,L; C L£*, mutually disjoint and with union £*, such that for 1 < g <k,
every (A, B) € L satisfies A C Cy and D, C B. Fix h with 1 <h < k.

(3) There is no tangle T of order 0 in G with Lj U {(Dy,Ch)} CT.

Subproof. Suppose that T is such a tangle. From the hypothesis, there exists 7 with 1 < 7 < n
such that £; C T. Since (Dy,Cy) € T and (Cy,Dyp) € L;, it follows that i # j. Let (A, B) be
the (7;, T;)-distinction. Since £; Z T;, there exists (C, D) € L; such that (C,D) ¢ T;. Therefore
(D,C) € T, since L; has order < 6, and hence D C A since (B, A) is the (7}, 7;)-distinction and
L; 6-isolates T;. Since L£; C T it follows that (C,D) € T, and hence (B, A) € T since (B, A) has
order < # and D C A. Let t;; be the second vertex of the path of T from ¢; to t;, and let (A, B') be
the (7;, 7;r)-distinction; then, since one of the edges of this path makes the separation (A, B) under
(T,7) (by 2.6.2), it follows that A C A" and B’ C B. Hence (B',A’") € T, since (B, A) € T. Choose
g with 1 < g < k such that (A',B') € £;. Then A" C C; since L; U {(Dy,Cy)} is a location, and
so (Cy,Dgy) ¢ T by (T2), since (B',A’) € T and B'UCy = G. But (Cy, Dy) has order < 6, and so
(Dg,Cy) € T by (T1). Now (D, Cy) € T by our assumption, and so D, U Dy, # G by (T2), and
hence g = h since £; is a location. But (A4',B') ¢ T and

(A,B")e Ly =L}, CT,
a contradiction. Thus there is no such 7. This proves (3).

Let £'={(A,BNCy): (A, B) € L;}. Then L' is a location in Cj, of order < 6.
(4) There is no tangle in Cy, of order 0 including L'.

Subproof. Suppose that 77 is such a tangle. Let 7 be the set of all separations (A, B) of G of
order < 6 such that (ANCy, BNCy) € T'. By 2.1, T is a tangle in G, of order . Since (Dp,, C,) has
order < 0 and (Dy, N Cy,CL,NCy) € T' by (T1) and (T3), it follows that (Dp,Cy) € T. Similarly,
if (A,B) € L}, then (A, B) has order < 6, and (ANCj,, BNCy) = (A, BNCy) € L' C T, and so
(A,B) € T. Hence, L; U{(Dp,Cp)} C T, contrary to (3). This proves (4).

Now every member of £’ is titanic by (2) and 3.1, and so from (4) and 3.4, £ has tree-width
< 20. Let £ = £ U{(D},Ch)}. The heart of £ may be obtained from the heart of £’ (taking
the latter to be C}, if L = ) by adding one new edge whose set of ends is V(Cj, N D), and since
|[V(CrL N Dy)| < %0, we deduce that £ has tree-width < %6‘ + %9 = %0. This proves 4.3. |

Now we deduce the main result of this section, by combining 2.7, 4.2 and 4.3.

4.4 Let A be a tie-breaker in a hypergraph G, and let § > 1 be an integer. For each tangle T in G
of order > 0 let L(T) C T be a location which O-isolates T, and let G have a tangle of order > %9.
Then there is a tree-decomposition (T,T) of G with the following properties:

e (T,7) is proper and rotund

e for each e € E(T), the separations made by e under (T,T) are robust
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e for each t € V(T), let L be the location of t in (T, T); then there is a tangle T in G of order
> %0 with £ C T, such that L is an enlargement of L(T) by tree-width < 360 + 1.

Proof. Let 0’ be the least integer with ¢/ > 36. Then 6’ > 2. Let 7, (j € J) be all the tangles of
order 0" in G. Then J # 0, by hypothesis. For each j € J, L(T;) 0'-isolates T; since it #-isolates T;.
By 4.2, there exists I C J such that for every j € J there is a unique ¢« € I with £(7;) C T;. Let
I'={1,...,n} say. Now n > 1 since J # (). Let (T, 7) be a standard decomposition of G relative to
Ti,..., 7T, in which ¢; represents 7; for 1 < ¢ < m. By 2.7, the first two statements of the theorem
hold. Let us verify the third. Let 1 < i < n, and let £ be the location of ¢; in (7,7). From 4.3
(with @ replaced by ¢') £ is an enlargement of £(7;) by tree-width < 26'. Since ¢’ < 36 + % and
% (% 0 + %) < 360+ 2 we deduce that the third statement holds. This proves 4.4. |

5 Patchworks

Our application of 4.4 will be to prove that certain classes of “patchworks” in the sense of [2] are
well-quasi-ordered by our patchwork containment relation, “simulation”, and now we need to define
these things. A march in a set V is a finite sequence of distinct elements of V'; and if 7 is the march
v1,...,V, we denote the set {v1,..., v} by T. A rooted hypergraph G is a pair (G~ , 7(G)) where G~
is a hypergraph and 7(G) is a march in V(G™). We define V(G) =V(G™),E(G) = E(G7). If G,H
are rooted hypergraphs and G~ C H~ we write G C H and say that G is a rooted subhypergraph of
H..

If V is a finite set we denote by Ky the complete graph on V, that is, the graph with vertex
set V and edge set the set of all subsets of V' of cardinality 2, with the natural incidence relation.
A grouping in V is a subgraph of Ky every component of which is complete. A pairing in V is a
grouping in V every component of which has at most two vertices. If K is a pairing in V, we say
that K pairs X, Y if X, Y C V are disjoint and

e every 2-vertex component of K has one vertex in X and the other in Y, and
e every vertex of X UY belongs to some 2-vertex component of K.

A patch A in V is a subset V(A) of V, together with a collection of groupings in V', each with vertex
set V(A). (We shall use the same symbol A to denote the collection of groupings.) A patch A is
free if A contains every grouping in V' with vertex set V(A); and it is robust if for every choice of
X,Y CV(A) with | X| = |Y| and X NY = 0, there is a pairing in A which pairs X,Y".

A patchwork is a triple P = (G, u, A), where

e (G is a rooted hypergraph

e 4 is a function with domain dom(u) C E(G); and for each e € dom(u) p(e) is a march with
fi(e) the set of ends of e in G

e A is a function with domain E(G), such that for each e € E(G) A(e) is a patch with V(A(e))
the set of ends of e; and for each e € E(G) \ dom(u), Ae) is free.
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The patchwork is robust if each A(e) (e € E(G)) is robust. (This is automatic for e ¢ dom(u), since
free patches are robust.)

A quasi-order Q is a pair (E(Q2), <), where E() is a class and < is a reflexive transitive relation
on E(Q). It is a well-quasi-order if for every countable sequence z; (i = 1,2...) of elements of F(£2)
there exist j > ¢ > 1 such that z; < z;. If Q;,Qy are quasi-orders with E(Q;) N E(Q) = 0 we
denote by Q; U Qo the quasi-order 2 with E(Q2) = E(Q;) U E(Q2) in which z < y if and only if
for some i € {1,2},z,y € E(Q;) and z < y in ;. If Q1,Qy are quasi-orders we write 1 C Qo if
E(Qq) C E(2s) and for all z,y € E(Q),z <y in Q if and only if z < y in Q.

If Q is a quasi-order, a partial Q-patchwork is a quadruple (G, pu, A, ¢), where (G,pu, A) is a
patchwork and ¢ is a function from a subset dom(¢) of E(G) into E(Q2). It is an Q-patchwork if
dom(¢p) = E(G). It is robust if (G, p, A) is robust. The underlying rooted hypergraph G of a partial
Q-patchwork P = (G, u, A, ¢) will be denoted by ||P|].

If V is a finite set, Ny denotes the graph with vertex set V and no edges. A realization of a
patchwork (G, 1, A) is a subgraph of Ky () expressible in the form

Ny UUGe : e € B(Q))

where 0, € A(e) for each e € E(G). A realization of a partial Q-patchwork (G, i1, A, ¢) is a realization
of (G, u, A). If g, po are marches with the same length, we denote the bijection of f1; onto fi2 mapping
w1 to pe by p1 — pe. Let P = (G,u,A),P' = (G', i, A”) be patchworks. An ezpansion of P in P’
is a function n with domain V(G) U E(G) such that

e for each v € V(G),n(v) is a non-empty subset of V(G'), and for each e € E(G), n(e) € E(G")

for distinct vy, vy € V(G),n(v1) Nn(ve) =0

e for distinct ey, es € F(G),n(e1) # nlez)

e for each e € E(G),e € dom(u) if and only if n(e) € dom(u')

e for each e € E(G) \ dom(u), if v is an end of e in G then n(v) contains an end of n(e) in G’

e for each e € dom(u),u(e) and p'(n(e)) have the same length, k say, and for 1 < i < k,n(v)
contains the i*" term of y/(n(e)) where v is the i'" term of p(e)

e 7(G) and 7(G") have the same length, k say, and for 1 < i < k n(v) contains the i*" term of
7(G") where v is the i term of 7(Q)

e for each e € dom(u), u(e) = p'(n(e)) maps A(e) to A’(n(e)).

IftP=(GuA ), PP=(Gu A¢) are partial Q-patchworks, an ezpansion of P in P’ is
an expansion 1 of (G, u,A) in (G', ', A’) such that n(e) € dom(¢’) and ¢(e) < ¢'(n(e)) for each
e € dom(o).

If G is a hypergraph and F' C E(G), G\F denotes the subhypergraph with the same vertex set
and edge set E(G)\ F. If G is a rooted hypergraph, G\ F denotes (G™\F,n(G)). If P = (G, u, A, ¢)
is an Q-patchwork and F C E(G), P\F denotes the Q-patchwork (G\F,u',A’,¢') where pu/, A’ ¢’
are the restrictions of p, A, ¢ to dom(u) N E(G\F), E(G\F), E(G\F) respectively. Similarly, if
P = (G,u,A) is a patchwork and F C E(G), P\F denotes the patchwork (G\F,u',A’), with
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p', A" as before. We often write P\e for P\{e}, etc. Let n be an expansion of P = (G, u,A) in
P = (G A", orof P = (G pu,A¢) in P = (G, A" ¢"). A realization H of P'\n(E(G)) is
said to realize n if for every v € V(G), n(v) is the vertex set of some component of H; and if there
is such a realization, 7 is said to be realizable. Let us say that P is simulated in P’ if there is a
realizable expansion of P in P’.

If P=(G,u,A) is a patchwork and A C G, we denote by P|A the patchwork (A, u', A’), where
p', A" are the restrictions of u, A to E(A)Ndom(u), E(A) respectively. If P = (G, u, A, ¢) is a partial
Q-patchwork, P|A is the partial Q-patchwork (A, p', A’, ¢') where p', A" are as before and ¢’ is the
restriction of ¢ to E(A) Ndom(¢).

A separation of a rooted hypergraph G is a pair (A, B) of rooted hypergraphs such that (A=, B™)
is a separation of G7,7(A) = V(AN B), and 7(B) = n(G). Two vertices of a graph H are connected
in H if they belong to the same component of H. We begin with the following lemma.

5.1 For i = 1,2 let P; = (Gj, ui, Ai) be a patchwork, and let (G, Gy) be a separation of G;. Let
m(G)) = n(GY), and let Pi|Gy = P2|Gy. For i = 1,2 let H. be a realization of P;|G), such that for
z,y € W(G)) = 7(GY),  and y are connected in H| if and only if they are connected in H. Let
Hy be a realization of Pi|Gy = P»|Gy, and let H; = Hy U H, (i = 1,2). Then for i = 1,2, H; is a
realization of P;, and for x,y € V(Gy) x and y are connected in Hy if and only if they are connected
mn Hg.

Proof. Let z,y € V(Gy) be connected in Hy say; we shall prove that they are connected in Ho.
Choose a sequence
T =v0,€1,V1,€2,...,€6, U0t =Y

such that vg,...,v; € V(Hy),eq,...,e; € E(Hy) and for 1 < i <'t, e; is incident with v;_; and v; in
Hl. Let
[:{i: OSiSt,viEV(GO)}.

Then 0, t € I; let I = {s(1), s(2),...,s(r)} say, in order, where s(1) = 0 and s(r) = t.
(1) For 1 <j <r—1, vy and vy;41) are connected in Ho.

Subproof. 1If e}, € E(Hy) for some k with s(j) +1 < k < s(j + 1) then vp_q,v, € V(Gp) since
they are both incident with eg; hence k — 1,k € I, and so from the definition of I,k — 1 = s(j),
k = s(j+1) and vyj), vs(j+1) are connected in Ha, as claimed. If e, ¢ E(Ho) for s(j)+1 < k < s(j+1)
then vy(;), vg(j41) are vertices of Hj and are connected in Hj; but vg(;), ve;41) € V(Go) and so both
belong to 7(G). Since Vs(j)s Vs(j+1) are connected in Hj it follows from our hypothesis that they are
connected in H) and hence in Hy, as claimed. This proves (1).

From (1) it follows that x,y are connected in Hy. This proves 5.1. |

Let P = (G, u,A) be a patchwork. A grouping K is feasible in P if V(K) = 7(G) and there is
a realization H of P such that for distinct z, y € V(K), = and y are connected in H if and only if
they are adjacent in K. A grouping is feasible in a partial Q-patchwork (G, u, A, ¢) if it is feasible
in (G, pu, A). The set of all groupings feasible in P will be denoted by gr(P).
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5.2 For i = 1,2 let P; = (G;, i, A;) be a patchwork, and let (G}, Gy) be a separation of G;, such
that 7(G}) = 7(GY), P1|Go = P2|Go, and gr(Py|G}) C gr(P2|GY,). Then for every realization Hy of
Py there is a realization Ho of Py such that for z, y € V(Gy), x and y are connected in Hy if and
only if they are connected in Ho.

Proof. Let Hy be a realization of Py; then H; = HyU Hj, where H) is a realization of P; |G and H]
is a realization of P;|G). Let H} be a realization of P|GY, such that for z, y € 7(G)), z and y are
connected in H7 if and only if they are connected in H). (This exists because gr(P;|G}) C gr(P2|GY).
Then Hy = HyU H), is a realization of P satisfying the theorem, by 5.1. This proves 5.2. |

5.3 Fori=1,2let P, = (G, i, A;) be a patchwork, and let (G}, Gy) be a separation of G;, such that
©(GY) = n(GY), P1|Gy = P2|Go, and gr(Py|GY) C gr(P|GY). Let 1 be a realizable expansion of some
patchwork P = (G, u,A) in Py such that m(e) € E(Gy) for every e € E(G) and m(v) NV (Go) # 0
for each v € V(G). Then there is a realizable expansion 1o of P in Py such that na(e) = ni(e) for
each e € E(G), and na(v) NV (Go) = n1(v) NV (Gy) for each v € V(G).

Proof. Let Hy be a realization of P;\n;(E(G)) which realizes ;. By 5.2 applied to Pi\n (E(G))
and Po\m (F(G)), there is a realization Hy of Po\ni(E(G)) such that for z, y € V(Gp), = and y are
connected in H; if and only if they are connected in Hs. For e € E(G) let ny(e) = n1(e). For each
v € V(G) there is a component Cy of Hy; with V(C7) = n1(v), and hence a (unique) component Cy
of H2 with
V(C2) NV (Go) = V(C1) NV (Go) =m(v) NV (Go),

since 11 (v) NV (Gyp) # (. Let n2(v) be V(Cq). Then 79 is the required expansion. This proves 5.3.
|

If f, g are functions with domains dom(f), dom(g) respectively and x is any object, the statement
f(z) = g(z) will mean “either z € dom(f) Ndom(g) and f(x) = g(z), or = ¢ dom(f) U dom(g).”

Let G be a rooted hypergraph. We say that A C G is complemented if T(A) contains every vertex
v € V(A) such that either v € 7(G) or some edge e € E(G) \ E(A) is incident with v. If A is
complemented, we define G\ A C G to be the rooted hypergraph with

VG\A) = (V(G)\V(A)) Ur(A);
E(G\A) = EBE(G)\E(A);
m(G\A4) = n(G).
Then (A4, G\ A) is a separation of G, since (A, (G\ A) ") is a separation of G, 7(A4) = V(A)NV(G\
A), and 7(G \ A) = 7(G). A rooted location L in a rooted hypergraph G is a set £ of complemented
rooted hypergraphs A with A C G such that A C G\ A for all distinct Ay, Ay € L. If £ is a rooted
location in G then {(A7,(G\ A)7) : A € L} is a location in G~ which we denote by £~. (It is
possible that (A, (G\ A)~7) = (A", (G \ A’)7) for distinct A, A" € L, but only if E(A) = E(A") =10
and V(A) =V (4") =7(A) = 7(A").) We define M(G,L) = M(G—,L7).
Let P = (G, u,A) be a patchwork and let £ be a rooted location in G. For each A € L let e(A)
be a new element, and let G’ be the rooted hypergraph with
V(G) = V(M(G,L)
E(G) = EM(G,L)U{e(A): AeL}
©(G) = =(G)
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where for e € E(M (G, L)) its ends are as in G, and for A € L the ends of e(A) are the vertices in
7(A). We define the heart P|L of (P, L) to be the patchwork (G', ', A’) such that u'(e(A)) = n(A)
and A’(e(A)) = gr(P|A) for all A € £ and p'(e) = p(e) and A’(e) = A(e) for all e € E(M(G, L)).
(It is unique up to the choice of the new elements e(A).)

5.4 Let P = (G,pu,A) be a patchwork, let L be a rooted location in G, and let P' = (G', ', A") be
the heart of (P,L). Then

V(G)\ 7 (@) = (V(G)\7(G)) u [ (V(4) \ 7(4)),

AeLl
and gr(P) = gr(P’).

Proof. For the first assertion, let v € V(G) \ 7(G). By the definition of M (G, L), either v €
V(M(G, L)) or there exists A € £ with v ¢ V(G \ A). In the first case, v € V(G'), and since
7(G) = 7(G'") it follows that v € V(G')\ 7(G’). In the second case v € V(A), and therefore v ¢ 7(A)
since T(A) C V(G \ A). So in either case

ve (VE\m(@))u [J v\ 74),

AeLl

and therefore V(G) \ 7(G) is a subset of this set.
To prove the reverse inclusion, we observe that 7#(G) N V(G') C 7(G') and for each A € L,
T(G)NV(A) C 7(A) since A is complemented. It follows that no vertex of

V(@ \ (@) u [J V(4 \7(4)

AeLl

belongs to 7(G), so this set is a subset of V/(G) \ 7(G). This proves the first assertion of the theorem.
For the second assertion, let £ = {Ay,..., A}, and for 1 <7 < k let e(4;) € E(G") be the new
element of P’ corresponding to A;. Since 7(G') = 7(G), we must show that a grouping K with
V(K) = 7(G) is feasible in P if and only if K is feasible in P’. Thus, let K be a grouping with
V(K) = 7(G).
For 0 < j <k, let G; be the rooted hypergraph with

V(G;) = VIM(G,L)UUWV(4i):j<i<k)
E(Gy) = E(M(G,L)Uf{e(A):1<i<i}UUEWA,): j<i<k)
r(G;) = m(G)

where for e € E(M(G, L)) its ends are as in G, for 1 < i < j the ends of e(4;) are the vertices in
7(A;), and for e € F(A;) where j < i <k its ends are as in A, . For

e € dom(p) N (E(M(G, L)) UE(Aj11)U--- UE(Ag))
let pj(e) = p(e), and for 1 <i < j let pj(e(A;)) = m(A4;). For

e € E(M(G,L)) UE(Aj1) U~ U E(A)
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let Aj(e) = A(e), and for 1 <4 < jlet Aj(e(A;)) = gr(P|A;), with V(Aj(e(A;))) = 7(A;). Then
P; = (Gj,pj,4;) is a patchwork for 0 < j < k, and Py = P, and P, = P'. It therefore suffices to
show that for 1 < j <k, K is feasible in P;_; if and only if K is feasible in P}, since 7(G;) = n(G).

Let B be Gj\e(4;), and let A’ be the rooted hypergraph with E(A}) = {e(4;)}, V(4)) = 7(4;)

(where the ends of e(A;) are the vertices in 7(A;)), and 7(A}) = 7 (A;). Since

V(A)) =7(A;) CV(B),

it follows that 7(A;) = V(4; N B) and 7(A}) = V(A}) N B, and so (A, B) is a separation of G;_1,
and (A}, B) is a separation of Gj.

1) A grouping is feasible in P; _1|A; if and only if it is feasible in P;|A’..
J J 31455

Subproof. Pj_1|Aj = P|A;, and a grouping with vertex set 7(A;) is feasible in P;|A] if and only if
it belongs to Aj(E(A;)); that is, it is feasible in P|A; = P;_1|A;. This proves (1).

Suppose that K is feasible in one of Pj_;, P; (say Q1), and let H; be the corresponding realization
of @1 such that for distinct z,y € V(K), x,y are connected in H; if and only if they are adjacent in
K. By (1) and 5.2 there is a realization Hy of Q2 (where {P;_1, Pj} = {Q1,Q2}) such that for distinct
x,y € V(B), z,y are connected in Hy if and only if they are connected in Hy. But V(K) C V(B),
and so for distinct z,y € V(K), z,y are connected in Hs if and only if they are adjacent in K. Thus
K is feasible in ()o. This proves 5.4. |

Now let P = (G, i1, A, ¢) be a partial Q-patchwork, and let £ be a rooted location in G. We call
(P, L) a partial Q-place. If dom(¢) = E(G) we call (P, L) an Q-place. For e € E(M (G, L)) Ndom(¢)
let ¢'(e) = ¢(e), and let (G, ', A’) be the heart of ((G,u,A),L); then (G',u',A’,¢') is a partial
Q-patchwork which we call the heart (again denoted by P|L) of (P, L).

A partial Q-patchwork (G, u, A, ¢) has tree-width < w, where w > 0, if there is a tree-decomposition
(T, 7) of G~ of width < w such that 7(G) C V(7(t)) for some t € V(T). If (P, L) is a partial Q-place,
and P|A has tree-width < w for all A € L, we say that P is an enlargement of P|L by tree-width
< w.

5.5 Let P = (G,pu, A, ¢) be an Q-patchwork, let w > 0, and let L£,L* be rooted locations in G,
such that L*~ is an enlargement of L~ by tree-width < w. Then P|L* is an enlargement of P|L by
tree-width < w.

Proof. Let L = {C,...,C} where C1,...,C} are distinct, and for 1 <i < k let D; = (G \ C;) .
Then L~ = {(C| ,Dy),...,(C, ,Dy)}. (However, (C,D1),...,(C} , D) may not all be distinct.)
Let P|L* = (G*, u*, A*, ¢*) (= P* say), using new elements e(A) (A € £*). Choose Ly, ..., L, C L*,
mutually disjoint and with union £*, such that for 1 <14 < k, every (A, B) € L, satisfies A C C;
and D; C B, and L; U {(D;,C; )} is a location in G~ of tree-width < w. We claim that for
1 <i<kandall A€ L;, Aiscomplemented in C;. For certainly A~ C C;” and D; C (G'\ A)~ since
L; U{(D;,C; )} is a location in G~. Moreover,

T(C)NV(A) CV(D) NV (A) CV(G\A)NV(A) = 7(A);
and if v € V(A) is an end of some e € E(C;) \ E(A), then e € F(G) \ E(A) and so v € 7(A). This

proves that A is complemented in C;. Consequently, for 1 < i < k, £; is a rooted location in C;, and
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so (P|C;, L;) is an Q-place; let P; = (G, pi, Ai, ¢;) be its heart (with “new” elements e(A) (A € L),
some of the new elements of P*).

(1) P; has tree-width < w.

Subproof. Let H be the heart of £ U {(D;,C;)}. Then H is the hypergraph obtained from
MG, L; u{(D;,C;)}) = C, NNU(G\A)” : Ae L)

by adding a new edge with set of ends V(A N B) for each (A4, B) € L, and adding one further new
edge with set of ends V(D; N C;") (unless (D;,C;") € L;). Also, G is obtained from

M(Cz',ﬁi) = C; N ﬂ((Cz \A)f A€ Ei)
by adding a new edge with set of ends 7(A) for each A € L;. But
Ci NNIGNA)™: AeLy) = G NG N(GNA)™: Ae L) = Gy NN((Ci\ A)™ = A€ Ly);

and there is a surjection from £; onto £ such that if A € £; is mapped to (A’,B’') € L then
A" = A" and V(A' N B') = n(A). Consequently, a hypergraph isomorphic to ;' may be obtained
from H by deleting an edge with set of ends 7(C;) = V(D; N C;7) (unless (D;,C;") € L;) and
adding some new edges, each with the same ends as some edge of H. (The latter arise when distinct
members of £; correspond to the same member of £7). Since H has tree-width < w, there is a tree-
decomposition (7, 7) of G, such that 7(C;) C V(7(t)) for some ¢ € V(T'); that is, P; has tree-width
< w. This proves (1).

(2) For 1 <i <k, G; is a complemented rooted subhypergraph of G*.

Subproof. G, is obtained from C; N(((C; \ A)~ : A € L;) by adding a new edge with set of
ends 7(A) for each A € L;, and G* is obtained from M (G,L*) = G NN(G\ A)” : A € L)
by adding a new edge with set of ends 7(A) for each A € L£*. Since C; \ A C G \ A for each
A€ Liand C; C G\ Aforall A € L* — L;, it follows that C; NN ((C; \ A)~ : A € L;) is a
subhypergraph of G- NN((G\ A)~ : A € £*), and so G, is a subhypergraph of G*~. Hence G; is
a rooted subhypergraph of G*. To see that it is complemented, let v € V(G;) be such that either
v € m(G*) or some e € E(G*)\ E(G;) is incident with v; we claim that v € V(D;). If v € ©(G*),
then v € 7(G) since n(G*) = n(G), and so v € V(G \ C;) = V(D;), as claimed. We assume then
that some e € E(G*) \ E(G;) is incident with v. If e € E(G), then e € E(D;) and so v € V(D;) as
claimed. If e ¢ E(G), then e = e(A) for some A € £*. Since e ¢ E(G;) it follows that A ¢ £;, and
so A € L; for some j # i. In particular, A~ C C;” C D;, and so v € V(D;), as claimed. Thus in
each case v € V(D;), and so

v e V(Gi)NV(D;) CV(C; ND;) = 7(C;) = 7(Gi).
Hence G; is complemented in G*. This proves (2).

(3) P, = P*|G; for 1 <i<k.
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Subproof. By (2), P*|G; is well-defined, and has the same underlying rooted hypergraph as P;,
namely G;. Let e € F(G;); we must show that u;(e) = p*(e), di(e) = ¢*(e), and A;(e) = A*(e).
Now

E(G;) = E(M(C;i, L;)) U{e(a) : A€ L;}.

We recall that P; is the heart of (P|C;, £;) and P* is the heart of (P, L*). If e € E(M(Cj, L;)), then
wi(e) = u*(e) (because p;(e) = p(e) and p*(e) = p(e)), and the other two relations follow similarly.
We assume then that e = e(A) for some A € £;. Since A belongs to both £; and L£*, it follows from
the definition of “heart” that

e ui(e) = p*(e) (for they are both equal to w(A)),
e ¢ does not belong to dom(¢$) U dom(¢$*), and
e Aj(e) = A*(e) (for they are both equal to gr(P|A)).

This proves (3).
(4) G1,...,Gy are all distinct, and {G1,...,Gy} is a rooted location in G*.

Subproof. Let 1 < 4, j < k with ¢ # j; we claim that G; C G* \ Gj; in other words, that

V(Gi)N (G ) C 7(G;) and E(G;)NE(G;) = 0. First, let v € V(G;) NV (G;). Since V(G;) C V(C))

C V(Cj), it follows that v € V(C )NV (C;) C w(C;) since L is a rooted location. Since

7(Cj) = 7?( ) we deduce that V(G;)NV(G;) C 7(G;) as required. Secondly, let e € E(G;) NE(Gj).
( ) then e € E(C;) N E(C;) = 0, which is impossible. Thus e = e(A4) for some A € L*.

Since e € E(G;) it follows that A € £;, and similarly A € £;; but £; N £; = 0, a contradiction.
Thus E(G;) N E(G;) = 0, as required. This proves that G; C G* — Gj. Suppose that G; = Gj.

Then E(G;) = 0, and so L; = 0 and G; = Cj; and similarly G; = C;. Consequently C; = Cj, a

contradiction. Thus G; # G, and (4) follows.

Let £' = {Gl, e ,Gk}
(5) M(G, L) = M(G*,L").

Subproof. If k = 0 then £ = () and £ = (); and £* = 0, since £L*~ is an enlargement of £ .
Hence G* = G, and M(G,L) = G- = G~ = M(G*,L') as claimed. We may assume then
that k& # 0. Hence M(G,L) = Dy N---N Dy and M(G*, L") = N((G*\G;)” : 1 <i < k). If
A € L£*, then e(A) ¢ E(M(G*,L")), because e(A) € E(G;) and hence e(A) ¢ E(G* \ G;) for some
i (1 <1 < k), namely, the value of i such that A € £;. Since M (G*, L") is a subhypergraph of G*~
and e(A) ¢ E(M(G*, L)) for each A € L*, it follows that M (G*, L) is a subhypergraph of G~. But
also M (G, L) is a subhypergraph of G~, and therefore to show that M (G, L) = M(G*, L) it suffices
to show that M (G, L) and M(G*, L") have the same vertex- and edge-sets. Let v € V(G). Then

18



from 5.4 applied to (P|C;, L;), we have:

veV(M(G,L) & vgV(C)\7(C;) for 1<i<k
& v V(G)\7(G;) and v ¢ V(A)\7(A) for 1 <i<k
and for all A € £;
v V(A)\7 forall A€ L" and v ¢ V(G;) \7(G;) for 1 <i<k
veV(G*) and v ¢ V(G;) \7(G;) for 1 <i<k
s ve V(MG L))

-~
=

Thus V(M (G, L)) =V (M(G*,L")), and a similar (somewhat easier) proof shows that E(M (G, L)) =
E(M(G*,L")). This proves (5).

Let P! = (G',p', A, ¢') be the heart of the partial Q-place (P*, L').
(6) P' is the heart of (P, L).

Subproof. Since w(Gy) = w(C},) for 1 < h < k, it follows from (5) that (P, £) has heart (G, u”", A", ¢")
for some pu”, A", ¢". We claim that p' = p”, ¢ = ¢", and A’ = A”. Let the edges of G’ which are
not edges of G be eq,..., e, numbered in the natural way. (Here we use the fact that Gy,..., Gy
are distinct, from (4).) Let e € E(G'), and assume first that e # eq,...,ex. Then p'(e) = p*(e)
since P’ is the heart of (P*, L'); u*(e) = u(e) since P* is the heart of (P, L*); and p"(e) = p(e) since
(G' u", A", ¢") is the heart of (P,L). Consequently u'(e) = p”(e); and similarly ¢'(e) = ¢”(e) and
A’(e) = A”(e) as required. Now we assume that e = ¢; for some 7 with 1 < i < k. Then

w(ei) = m(Gy) = m(Ci) = p(ei);
and e; ¢ dom(¢') U dom(¢"). Moreover, A'(e;) = gr(P*|G;), and and A"(e;) = gr(P|C;). But

P*|G; = P; by (3), and P, is the heart of (P|Cy, L£;), and so A’(e;) = A”(e;) from 5.4. This proves
(6).

Since P* is by (1) and (3) an enlargement of P’ by tree-width < w, it follows from (6) that the
heart of (P, £*) is an enlargement of the heart of (P, L) by tree-width < w. This proves 5.5. |

5.6 Let Py, P, be partial Q-patchworks, and let (A1, B1), (A2, Bs) be separations of ||Py||, || Pz
respectively. Let ' be a realizable expansion of Pi|Ay in PylAs (whence |7(A1)| = |7(A2)| =k, say)
and let " be a realizable expansion of Py|By in Py|By such that for 1 < i <k, 1" (v) contains the i*"
term of w(Asz), where v is the i'" term of w(Ay). Define n by:

n'(v) v eV(A)\V(By)
n(w) =< n"(v) t v € V(B1)\ V(A)
n'(w)Un'(v) : veV(A NBy)

) ecB(A)
n(e) = { n"(e) : e€ E(By).
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Then n is a realizable expansion of P in Ps.

Proof. Let * be a new element and let Q' be the well-quasi-order with Q@ C Q' and E(Q') = E(Q)U{x},
in which x < z for all x € E(Q). For i = 1,2, let P; = (G, i, Aj, ¢i); and for all e € E(G;), define
di(e) = pi(e) if e € dom(¢;), and otherwise ¢(e) = *. Let P/ = (Gj, i, Ai, ¢}); then P! is an Q-
patchwork. Since 7 is a realizable expansion of P;|A; in P|As, it follows that it is also a realizable
expansion of P[|A; in Pj|As. (Here we use that *+ < z for all z € E(2).) Similarly, n” is a realizable
expansion of Pj|Bj in Py|Bs.

By theorem 8.1 of [2] applied to these two Q'-patchworks, we deduce that 7 is a realizable
expansion of P{ in Pj. For each e € dom(¢y), it follows that ¢2(n(e)) # *, and therefore n(e) €

dom(¢2); and consequently 7 is a realizable expansion of Py in P,. This proves 5.6. |

If P=(G,p,A,¢) is an Q-patchwork, we write V(P) = V(G), E(P) = E(G).

5.7 Fori=1,2let (P;, L;) be an Q-place with heart Q;, using new elements e;(A) (A € L;). Suppose
that n is a realizable expansion of Q1 in Q2 such that

e ife € E(Q1) and n(e) = ea(As2) for some Ay € Lo then e = e1(Ay) for some Ay € Ly,

e for each Ay € Ly there exists Ay € Lo such that n(e1(A1)) = e2(Asz) and Py|A; is simulated in
P2|A2.

Then Py is simulated in Ps.

Proof. We proceed by induction on |Ls|. If L3 = () then by (ii), £ =, and so Q1 = P and Q2 = P,
and 7 is a realizable expansion of P; in P,, as required. We assume then that Lo # (). Choose Ay € Ls.
There are two cases, depending on whether or not es(As) = n(e) for some e € E(Q1).

First, we assume that es(As) # n(e) for all e € E(Q1). Let £, = L5\ {As}, and let Q) be
the heart of the Q-place (P2, L)), using new elements es(A)(A € L}). Let Q2 = (G, u, A, ¢), and
Q) = (G' 1!, A, ¢'); then ez(As) € E(G), and (A2, G\e2(Az)) is a separation of G'. Let K be the
rooted subhypergraph of G formed by e2(A2) and its ends, with 7(K) = n(Asg); then (K, G\e2(As2))
is a separation of G. Now 7(K) = m(As2) and Q2|(G\e2(A2)) = Q4(G\e2(Az2)), and every grouping
feasible in Q2| K is also feasible in Py| A2 = Q)| As (by definition of A(ea(As2))). Moreover, 7 is a real-
izable expansion of @ in Q2, and n(e) € E(G\e2(Asg)) for all e € E(Q1), and n(v)NV (G\e2(As2)) # 0
for each v € V(Ql) (because V(G\BQ(AQ)) = V(G)) From 5.3 with P, G, M1, Al, P, G, H2, Ag, Gll,
GY, Gy, m replaced by (G, u, A), G, u, A, (G' 1/, A"), G', ', A, K, As, G\e2(As), n respectively, and
with P replaced by the patchwork formed by the first three components of the quadruple @1, we
deduce that there is a realizable expansion 1y of Q1 in Q) such that ng(e) = n(e) for all e € E(Q1).
In particular, if e € E(Q) and ng(e) = ez(AL) for some AL € £}, then e = e1(A;) for some A; € Ly;
and for each Ay € L1, no(e1(A1)) = e2(AY) and Py|A; is simulated in Py| A for some A, € £}. From
the inductive hypothesis we deduce that P; is simulated in Ps, as required.

In the second case, we assume that es(As) = n(e1(Ay)) for some A; € Ly. For i = 1,2, let
L= L;\ {A;}, let Q) = (G}, ui, AL, ¢) be the heart of (P;, £]) using new elements ¢;(A) (A € L),
and let B; = G} \ A;. We claim that for i = 1,2, Q;\e;(A4;) = Q}|B;. For let P; = (Gj, s, A, ¢;) say.
Then

M(G;, L;) = M(Gi,ﬁg) N(G; \ Ai)~ = M(G;, E;) N (G; \ 4;)”
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since M (G;, £}) C G~ and M (G, L}) C G; . Hence
Qi\{ei(4) 1 A € Li} = (Qi]Bi)\{ei(4) : A € L3},

and so Q;\e;(A4;) = Q}|B;, as claimed.

Since eg(A2) = n(e1(A1)), the second hypothesis of the theorem implies that there is a realizable
expansion 7' of Pi|A; in P»|As, and hence of Q|4 in Q4|As, since Pi|A; = Q}|A; (i =1,2). Let n”
be the restriction of n to V(Q})UE(Q); then n” is a realizable expansion of Q1\e1(A41) in Q2\e2(A2);
that is, of Q||B1 in Q4|Bs. Let |7(A1)| = |7(A2)| = k say. For 1 < i <k, let v be the i*" term of
m(A1); we claim that 1 (v) contains the i*! term of 7(Ay). For 5 is a realizable expansion of Q; in
Q2, and since n(e1(A1)) = ez(Az) and v is the i*" end of e;(A;), it follows that n(v) contains the 7"
end of ey(As); that is, the i*" term of 7(43). From 5.6 with P;, P, replaced by Q', Q) respectively,
there is a realizable expansion 7y of @) in @, such that ny(e) = n(e) for all e € E(Q1) \ {e1(A1)}.
In particular, if e € E(Q) and ng(e) = ez(A}) for some A} € £}, then e = eg(A}) for some A} € L;
and for each A} € L], no(e1(A})) = e2(A4}) and Py|A] is simulated in Py| A, for some A, € £}. From
the inductive hypothesis applied to £} and L), we deduce that P; is simulated in P». This proves
5.7. |

6 Well-behavedness

Let P = (G, u, A, ¢) be a partial Q-patchwork, and let ' be a quasi-order with Q C . By an ()'-
completion of P we mean an Q'-patchwork (G, u, A, ¢') such that ¢'(e) = ¢(e) for each e € dom(g).
If Q is a well-quasi-order, a class C of partial 2-patchworks is well-behaved if for every well-quasi-order
' with Q@ C Q' and every countable sequence P/ (i = 1,2,...) of ©'-completions of members of C
there exist j > ¢ > 1 such that P/ is simulated in P]’ . (We remark that whether C is well-behaved
depends prima facie not only on C, but also on 2; we leave this dependence implicit. In fact, it is
an easy exercise to show that there is no dependence on §2.)

A partial Q-patchwork P = (G, u, A, ¢) is rootless if 71(G) = 0. Let P = (G, u, A, ¢) be a rootless
partial Q-patchwork, let e € dom(u)\dom(4), and let P' = (G', ', A, ¢') be the partial Q-patchwork
with G~ = G~ \e,n(G’) = p(e), and P' = P|G'. We call P’ a rooting of P.

6.1 Let Q be a well-quasi-order, and let C be a well-behaved class of partial Q-patchworks. Let C' be
the class of all rootings of rootless members of C. Then C' is well-behaved.

Proof. Let € be a well-quasi-order with & C €', and let Q) (: = 1,2,...) be a countable sequence
of ¥-completions of members of C’. Let * be a new element and let Q" be the well-quasi-order with
Q' C Q" and E(Q") = E(Q') U {+}, in which if z < % or * < z then z = x. For each i, let Q} =
(Gl ph, AL 4h) be an Q'-completion of P! = (G, ul, AL, ¢!) € C' and choose P; = (G, pi, A, ¢i) € C
and e; € dom(u;) \ dom(¢;) such that 7(G;) = 0, 7(G}) = wi(e;), G; \e; = G and P! = P;|G!. Let
Qi = (G4, pi, Ay, ;) be the Q"-completion of P; where

bile) = ile) (e € E(GY))
Yi(e)) = =
Since C is well-behaved, there exist j > 4 > 1 such that @); is simulated in Q;; let n be a realizable

expansion of (; in ;. Then 7n(e;) = e; since e; is the only edge e of G; with 1;(e) = *; and hence
there is a realizable expansion of Q;|G} in Q;|G’; that is, of @ in Q. This proves 6.1. |
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The following is a consequence of theorem 9.1 of [2].

6.2 If Q is a well-quasi-order and w > 0, the class of all robust partial Q-patchworks of tree-width
< w 18 well-behaved.

Let C be a class of partial Q-patchworks, and let (P, £) be a partial Q-place. If P|A € C for all
A € L we say that P is an enlargement of P|L by C.

6.3 Let Q) be a well-quasi-order, and let C1, Co be well-behaved classes of partial Q-patchworks. Then
the class of all enlargements of members of C1 by Co is well-behaved.

Proof. Let C be the class of all enlargements of members of C; by Cs. Let Q' be a well-quasi-order
with Q C Q. Let Q" be the class of all Q'-completions of members of Cs, ordered by simulation; then
Q" is a well-quasi-order, since Cy is well-behaved. By replacing Q, Q' by isomorphic well-quasi-orders
we may assume that E(Q)NE(Q") =0. Let Q* =Q UQ".

Let Py be an ©'-completion of a member of C. We construct an Q*-patchwork enc(P;) as follows.
(Throughout, for : = 1,2,3,4, P; = (G, pi, As, ¢i).) Choose Py € C so that P; is an Q'-completion of
P,. Choose P3 € Cq so that P, is an enlargement of P3 by Co and let £ be the corresponding rooted
location in Gg, so that (P, £) has heart P;. Let the new elements of P3 be {e(A) : A € L}. Since
G2 = G4, L is also a rooted location in G, and so (Pp, L) is an Q'-place; let its heart be @ (using
the same new elements as for P3). Let (G4, 4, As) = (G3,us3,As) and define ¢4 : E(G4) — E(Q¥)
by

ps(e) if e € dom(¢3)
da(e) = < ¢i(e) if e € E(G3) \ dom(ps) and e # e(A) for allA € L
Pi|A if e=e(A) for some A € L.

Let Py = (G4, pa, Ay, ¢4). Thus, Py is an Q*-completion of both P3 and Q). We define enc(P;) = Pj.

Now let P{ be another {'-completion of a member of C, and suppose that enc(Py) is simulated in
enc(P]). We claim that P is simulated in P|. For let Py, P3, L, Q, Py and (G, i, Ai, ¢3) (i = 1,...,4)
be as above for Py, and define P, P;, L', Q', P} and (G}, p}, AL ¢) (i = 1,...,4) similarly for P|.
Let 1 be a realizable expansion of enc(P;) = Py in enc(P]) = P;. Then 7 is a realizable expansion
of @ in Q' (since Py, P| are Q*-completions of @, Q" respectively). Moreover, for each e € E(Q),
da(e) < ¢Ph(n(e)), and so ¢s(e) € E(Q") if and only if ¢)(n(e)) € E(Q"); that is, e is one of the
new elements of @ if and only if n(e) is one of the new elements of Q'. Moreover, if e = e(A) say
for some A € L, and n(e) = €'(A’) say for some A" € L] then P;|A is simulated in Pj|A’ since
da(e) < @)(n(e)). Consequently the hypotheses of 5.7 are satisfied (with Py, Ly, Q1, Py, L2, Q2,9
replaced by P, L, Q,P{, L', Q',Q respectively) and so by 5.7, Py is simulated in P.

Let Py, Py, ... be a countable sequence of Q'-completions of members of C. Since Q* is a well-
quasi-order and C; is well-behaved, there exist j > 4 > 1 such that enc(F;) is simulated in enc(FP;).
It follows that P; is simulated in P;. Hence C is well-behaved. This proves 6.3. |

An arborescence is a directed graph T', whose underlying graph is a tree (denoted by T7), such
that every vertex is the head of at most one edge. It follows that there is a unique vertex of T" that is
the head of no edge of T', and we call it the root of T and denote it by o(T"). If T' is an arborescence
and t € V(T), T* denotes the maximal subarborescence with root t. If f € E(T), then T7, Tt denote
the two components of T'\ f, where the head of f belongs to T/ (and hence o(T) belongs to T}).

Let P = (G,u,A, ¢) be a partial Q-patchwork. A rooted decomposition of P is a pair (T,7),
where
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T is an arborescence, and for each t € V(T'), 7(t) C G is a rooted hypergraph
e (T,77) is a tree-decomposition of G~, where 77 (t) = 7(¢)~ for each t € V(T
o 7(7(o(T))) = (G)
e for every subarborescence S of T', let 7 X .S denote the rooted hypergraph H with H~ =7~ x5~
and m(H) = m(7(0(S))); then for every edge f € E(T) with head ¢,
T(r(t) = V(r xTH)nV(r x Ty)
e for every directed path F of T with first edge fi and last edge fs such that fi, fo make

separations under (77, 77) of the same order and no edge of F' makes a separation of smaller
order, P|r x T/ is simulated in P|r x T/

If (T, 7) is a rooted decomposition of a partial Q-patchwork (G, pu, A, ¢) and f € E(T), we define
7 % (T, f) to be the rooted hypergraph ((1 x Tf)~,n(r x T7)). (This makes sense because of the
fourth condition above.)

We need the following, an immediate consequence of a result of [2].

6.4 Let P = (G, u, A, @) be a rootless, robust Q-patchwork, and let (S, o) be a rotund tree-decomposition
of G=. Let T be an arborescence with T~ = S. Then there is a rooted decomposition (T,T) of P
such that 7(t)~ = o(t) for each t € V(T).

Proof. For each t € V(T) let o () be a rooted hypergraph chosen so that (ot (t))™ = o(t) and
e if t = o(T) then #(c™(T)) =
o if ¢ is the head of an edge f € E(T) then 7(ct(t)) = V(o x TH) NV (0 x T}).

Since (S, 0) is rotund (in the sense defined in section 2 above), it follows that (T,07") is a “rotund
tree-decomposition” in the sense of [2] (which is different from the sense in the present paper). Let
R be the set of all rooted hypergraphs H with H~ C G7; and let us say that H; € R is simulated
in Hy € R if P|H; is simulated in P|Hj. Then, as in section 9 of [2], Axioms 1-3 of [2] are satisfied,
and so we can apply theorem 4.1 of [2] (with T, 7, R, F replaced by T, 0", R, E(T)). We deduce that
there is a rooted decomposition (T',7) of P such that 7(¢)~ = o(t) for each ¢t € V(T'). This proves
6.4. i

We need another lemma about rooted decompositions.

6.5 Let (T,7) be a rooted decomposition of a rootless Q-patchwork P = (G, u, A, ¢).
1. If f € E(T), then 7 x T is complemented in G, and G\ 7 x TV =1 x Ty.
)

2. If f € E(T) then 7 x (T, f) is complemented in G and G\ 7 x (T, f) is the rooted hypergraph
H with H~ = (1 x TY)™ and 7(H) = 0.

3. If fo € E(T) has head t and f1,..., fn are the edges of T with tail t, then
L={rxTh, .. rxT"h}
is a rooted location in T x Tt and L* = L U {1 x (T, fo)} is a rooted location in G and

M(r x Tt, L) = M(G, L*).
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Proof. For 6.5.1, we observe that 71(7 x TY) = V(7 x T/)NV (1 x T}), from the fourth condition in the
definition of a rooted decomposition; and also, that (( x /)™, (7 x T)~) is one of the separations
made by f under the tree-decomposition (7, 7). From these two facts it follows that 7 x T/ is
complemented in G, and consequently 7 x Ty = G \ 7 X T/ since T x Ty and G are both rootless.

For 6.5.2, let Go = 7 x (T, f). Since (( x Ty)~, (7 x T7)7) is one of the separations made by f
under (T, 77), and since G, = (7 x T¢)~ and

T(Go) =V(r xTp)NV(T x T/)
it follows that Gy is complemented; and since G and H are rootless and H~ = (7 x T/)~, we deduce

that H =G \ Go.
For 6.5.3, we observe first that

(1) If f € E(T) has tail t then T x T' is complemented in 7 x T, and
(rxT'\7xTH " =(rxTp) N(rxThH.

Subproof. We have
7(r x TY = 7(r(t)) C V(7 x Ty),

and by 6.5.1, G\ 7 x T/ =1 x Ty. Since T X TF C 7 x T, it follows that 7 x T is complemented in
7 x T!, and the equation of (1) holds. This proves (1).

(2) If distinct f1, fo € E(T) have a common tail t, then T x T C 7 x T*\ 7 x T72.

Subproof. T x TTt and 7 x T%2 have no edges in common, and any vertex in them both lies in
V(7(t)), from the third condition in the definition of a tree-decomposition. Hence

V(rx T nV(r xT?) CV(rt) NV(r x T?) C 7(r x T?),
and so 7 x T/t C 7 x T*\ 7 x T72. This proves (2).

(3) If fo, f1 € E(T) and the head of fo equals the tail of fi1, let Gy = 7 x (T, f); then 7 x TH1 C G\ Gy
and Gy C G\ 7 x T,

The proof of (3) is very similar to that of (2) and we leave it to the reader.

Now we complete the proof of 6.5.3. By (1) and (2), £ is a rooted location in 7 x Tt. By 6.5.1
and 6.5.2, all members of £* are complemented in G. If 7,5 € {1,...,n} and i # j then

T x TV C 1 x Ty =G\7xTli
by 6.5.1. Ifi € {1,...,n} then 7 x (T, fo) C G'\ 7 x T by (3), and
(r xTI)~ C (r x TH)” =(G\ 7 xT/)~

by 6.5.2. Hence L£* is a rooted location in G.
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To prove that M(r x T*, L) = M(G, L*), we observe first that by 6.5.1, G\ 7 x T/i = 7 x T}, for
1<i<mn,and by 6.5.2, (G\ 7 x (T, f))” = (r xT")~ , and so

M(G,L*) = (T xT" n (n](T x Tp,) .
=1

By (1), this is equal to M (7 x T*, £). This proves 6.5.3, and hence completes the proof of 6.5. |

Let P = (G, u, A, ¢) be a rootless Q-patchwork, and let (T, 7) be a tree-decomposition of G~. If
(P, L) is an Q-place such that £~ is the location of ¢y in (T, 7) for some ty € V(T'), we call the heart
of (P,L) a piece of P (at ty, under (T,7)). For each ¢ty € V(T'), there is at least one piece of P at
to, and in general there are many, because of the arbitrary choices of the marches 7(A)(A € L).

6.6 Let Q) be a well-quasi-order, and let C be a well-behaved class of rootless partial Q-patchworks.
Let C' be the class of all rootless, robust Q-patchworks P such that there is a rotund, proper tree-
decomposition of ||P|| under which all pieces of P belong to C. Then C' is well-quasi-ordered by
simulation.

Proof. Let P = (G,pu,A,¢) € C'. From the definition of C’ there exist an arborescence T and a
rotund, proper tree-decomposition (7T, o) of G~ such that all pieces of P under (7', o) belong to C.
By 6.4 we may choose a rooted decomposition (T',7) of P such that 7(¢)~ = o(t) for each t € V(7))
and consequently o = 77. Let C* be the union of C and the class of all rootings of members of C.

(1) Let t € V(T) and let N(t) be the set of all y € V(T) such that there is an edge of T with
head y and tail t. Then P|t x T is an enlargement of a member of C* by the set of Q-patchworks
Co=A{P|r xTY:y e N(t)}.

Subproof. Let B = P|r x T' = (G*,u*, A*, ¢*). Let N(t) = {t1,...,ts}, and let F be the path
of T between t and o(T). For 1 < i < n, let P, = P|7 x Tt and let P, = (G, ju;, As, ¢;). Since
(T—,77) is proper, Gy,...,G, are distinct; and £ = {Gy,...,G,} is a rooted location in G* by
6.5.3. Thus (B, L) is an Q-place. If ¢ = o(T), then by 6.5.1 £ is the location of ¢ in (T, 7 ), and
so B|L is a piece of P under (T'~,77), and consequently belongs to C. But for each A € L,

P|A=P,=Plr xTh €,

for some 7, and so B is an enlargement of a member of C C C* by C;. We may assume then that
t # o(T). Let ty be the neighbour of ¢ in V(F) and let fo € E(T') have ends ¢, 9. Let Gy = 7 x (T, fo).
Then Gy, Gy,...,Gy, are all distinct since (T, 77) is proper; and L* = {Gy, G1,...,Gy} is a rooted
location in G, by 6.5.3; and £* is the location of ¢ in (7,7 ), by 6.5.1 and 6.5.2. Consequently,
P|L*) is a piece of P under (T'~,77), and hence belongs to C. Now B|L is a rooting of P|L*, because
L= L*\{Gy}, and M(G*,L) = M(G, L*) by 6.5.3, and n(B) = n(Gy). Consequently, B|L € C*,
and since
B|G; = (P|t x T")|r x T" = P|t x T"

for 1 <14 < mn, we deduce that B is an enlargement of a member of C* by C;. This proves (1).
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Now let Pp, P,,... be a countable sequence of members of C'. For all 4 > 1, let (T}, 7;) be the
corresponding rooted decomposition of F;; that is, such that (T, ,7, ) is a rotund, proper tree-
decomposition of ||F;||~ such that all pieces of P; under this decomposition belong to C. We may
assume that T1,Th, ... are mutually disjoint; let their union be M. For X C V(M), let N(X) be the
set of all y € V(M) such that for some z € X, there is an edge zy of M with head y. Let B(X) be

the set of all P;|r; x T, for i > 1 and z € X N V(T;).
(2) If X C V(M) and B(N (X)) is well-quasi-ordered by simulation, then so is B(X).

Subproof. By (1), each member of B(X) is an enlargement of a member of C* by B(N(X)). Since
C* is well-behaved by 6.1 (for the union of two well-behaved classes is well-behaved) and B(N (X))
is well-behaved by hypothesis, the claim follows from 6.3. This proves (2).

We may assume that for 1 <i < j, (V(P;) UE(P;)) N (V(P;) UE(P;j)) =0. Let R be the set of
all rooted hypergraphs G such that G C || F;|| for some i > 0; then R satisfies axioms 1 and 2 of [2]
(as is explained at the start of section 9 of [2]). Let ¢ > 0 and let s € V(T;). Let S be the subtree of
T; induced on {s} U N(s); that is, the star formed by s and its outneighbours. Define o(s) = 7;(s),
and for each ¢t € N(s) define o(t) = 7; x T}. Let S be the set of all such pairs (S,0) (for all i > 0
and all s € V(T;)). We see that S is a set of “star-decompositions”, in the sense of section 3 of [2].
We claim that S is “good”, in the sense of that paper. We have to check that:

e 0 xS € R for each (S,0) € S; this is clear.

e There exists k¥ > 0 such that |7(¢)] < k for every (S,0) € S and every ¢ € V(S). To see
this, observe that since C is well-behaved, there exists £ > 0 such that |7(G)| < k for every
(G,p, A, $) € C; and since all pieces of each P; under (T, ,7;) belong to C, it follows that
|T(t)] <k for all ¢ > 0 and all ¢t € V(T;), and so the claim follows.

e The third condition to be verified is just (2) above, in different language.

Hence we may apply theorem 3.3 of [2]. We deduce that there exist j > i > 1 such that P; is
simulated in P;. Hence C' is well-quasi-ordered by simulation, as required. |

Now we can prove our main result, the following.

6.7 Let Q2 be a well-quasi-order, let C be a well-behaved class of rootless partial Q-patchworks, and
let @ > 1 be an integer. Let D be a class of rootless, robust Q-patchworks and suppose that for each
P € D there is a tie-breaker X in ||P||~ such that for every tangle T in G~ of order > 0, there is an
Q-place (P, L) with heart in C such that L~ 0-isolates T. Then D is well-quasi-ordered by simulation.

Proof. Let C' be the class of all robust partial Q-patchworks of tree-width < 360 + 1. By 6.2, C' is
well-behaved. Let C* be the class of all enlargements of members of C by C'. By 6.3 it follows that

(1) C* is well-behaved.

Now let P = (G,pu,A,¢) € D be such that G~ has a tangle of order > %9. Let X\ be a tie-
breaker in G, as in the theorem. By 4.4 we deduce that

26



(2) There is a tree-decomposition (T, 7) of G~ such that
(a) (T, 7) is proper and rotund
(b) for each e € E(T), the separations made by e under (T,T) are robust, and

(c) for each t € V(T), if L, is the location of t in (T, T), then there is an Q-place (P, L) with heart
in C, such that L, is an enlargement of L™ by tree-width < 360 + 1.

(3) Let (T,7) be as in (2) and let t € V(T). Then every piece of P at t under (T,7) is in C*.

Subproof. Let Ly, £ be as in (2)(c), and let @ be a piece of P at t. Then @Q = P|L* for some
rooted location £* in G with £*~ = £;. By (2)(c), £*~ is an enlargement of £~ by tree-width
<360+ 1. By 5.5, Q = P|L* is an enlargement of P|L by tree-width < 30 + 1; and since P|L € C
by hypothesis, it follows that ) is an enlargement of a member of C by the class of all partial -
patchworks of tree-width < 30 +1. However, the latter differs from C’, because the members of C’ are
robust. To show that @ (= (G, po, Ao, o) say) is an enlargement of a member of C by C’, we must
show that Ay(e) is a robust patch for every e € E(Q) which is not an edge of P|L. Actually, we shall
prove more, that Ag(e) is robust for every e € E(Q). Let e € E(Q). If e € E(P) then Ag(e) = A(e)
and hence is robust since P is robust, as required. We assume then that e ¢ E(P). Since @ = P|L¥,
it follows that G is obtained from M(G,L*) by adding a new edge e(A) for each A € L*, where
e(A) has set of ends 7(A); and Ag(e(A)) is the set of all groupings feasible in P|A. Since e ¢ E(P)
and hence e ¢ E(M(G,L*)), it follows that e = e(A) for some A € L*. Let B = G\ A4; then
(A=,B7) € L*~ = L;. Hence (A7,B7) is robust by (2)(b). Let X;, Xy C 7(A4) = V(Ao(e)) with
| X1| = | X2| say, and X; N Xo = (. Define k = |7(A)| — | X1|. Let (Hi, H2) be any separation of A~
such that 7(A4) \ X; C V(H;) for i = 1,2. Since (A™, B7) is robust, there exists ¢ € {1,2} such that
\V(H;)NV(H; UB™)| > |V(A~NB7)|, where j = 3 —i. Subtracting |V (H; N B) \ V(H,)| from both
sides gives
V(HL O H)| > V(B 0 H)| > [7(A)\ X;] = k,

since w(A) \ X; C V(B~ N Hj). From theorem 6.1 of [2], applied to P|A, there is a realization of
P|A such that k of its components have nonempty intersection with both 7(A)\ X; and 7(A) \ Xo.

Therefore there is a pairing with vertex set 7(A), feasible in P|A, which pairs X1, X2. Since Ag(e)
is the set of all groupings feasible in P|A, it follows that Ag(e) is robust, as required. This proves

(3).

Let D' be the class of all members (G, u, A, ¢) € D such that G has a tangle of order > %0. We
have shown then that

(4) For all P = (G,p,A,¢) € D', there is a rotund, proper tree-decomposition (T,T) of G~ such
that all pieces of P under (T, T) belong to C*.

By (1), (4) and 6.6, D’ is well-quasi-ordered by simulation. If P = (G, u, A, ¢) € D\ D' then G~ has

tree-width < 26 by 2.2, and hence so does P since P is rootless. By 6.2, D\ D’ is well-quasi-ordered
by simulation, and hence so is D = D' U (D \ D’). This proves 6.7. |
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7 More on isolation

Here is a useful way to prove that locations #-isolate tangles. Let X be a tie-breaker in a hypergraph
G, let T be a tangle in G, and let (A, B) € T. We say that (A, B) is A-linked to T if there is no
(A", B") € T with smaller A-order with A C A" and B’ C B.

7.1 Let T be a tangle of order > 6 > 1 in a hypergraph G with a tie-breaker X, and let L C T be a
location of order < 0, every member of which is A-linked to T. Then L 0-isolates T .

Proof. Let T' be a tangle of order > 0, and let (D,C) € T for some (C,D) € L. Let (A, B) be the
(T, T')-distinction.

(1) (AUC,BnND) has X-order at least that of (C,D) .

Subproof. Suppose not. Since C C AUC and BN D C D, and (C, D) is A-linked to T, it fol-
lows that (AUC, BN D) ¢ T. But its order is at most that of (C, D) (by the third tie-breaker axiom)
and hence less than the order of 7, and so (BN D,AUC) € T. Yet (A, B),(C,D) € T, contrary to
(T2), since (BN D)UAUC = G. This proves (1).

(2) (ANC,BUD) has \-order at least that of (A, B).

Subproof. Suppose not. As before, the order of (AN C, B U D) is at most that of (A, B), and hence
less than the orders of 7 and 7'. Since (4, B) € T and ANC C A it follows that (ANC,BUD) € T.
Since (B, A),(D,C) € T" and BUDU(ANC) =G it follows that (ANC,BUD) ¢ T’ from (T2),
and so (BUD,ANC) € T'. Thus (ANC, BU D) distinguishes 7 from 7", and yet its A-order is less
than that of the (77, 7")-distinction, a contradiction. This proves (2).

From (1), (2) and the second tie-breaker axiom, we deduce that (A U C, B N D) has the same
A-order as (C, D), and hence (AU C,B N D) = (C,D) or (D,C), from the first tie-breaker axiom.
Since (BN D, AU C) has the same order as (C, D) and hence belongs to 7' (because (B, A) € T')
and (C,D) ¢ T, it follows that (BN D,AUC) # (C,D). Hence (AUC,BN D) = (C, D), and so
A CC and D C B. Thus L 6-isolates 7. This proves 7.1.
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SYMBOLS
Greek: n, 0, \, u, w, 7, ¢, A, Q
Script: B, C, D, L, T

Math: U, N, \, U, N (cup, cap, union, intersection), > (summation), [], | | (rounding), § (null set),
x, A=, P|A, G\F, G/F,7 x T, 7, 7.
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