
GRAPH MINORS. XVII. TAMING A VORTEX

Neil Robertson

1

and P. D. Seymour

2

May 1987 | Revised April 1999

ABSTRACT

The main result of this series serves to reduce several problems about general graphs

to problems about graphs which can \almost" be drawn in surfaces of bounded genus.

In applications of the theorem we usually need to encode such a nearly{embedded

graph as a hypergraph which can be drawn completely in the surface. The purpose

of this paper is to show how to \tidy up" near{embeddings to facilitate the encoding

procedure.

1. INTRODUCTION

In [2] we gave a theorem about the structure of graphs with no minor iso-

morphic to a �xed graph. (Graphs in this paper are �nite, and may have loops or

multiple edges. A graph H is a minor of a graph G if H can be obtained from a

subgraph of G by contracting edges.) That theorem said that for every graph H,

every graph with no minor isomorphic to H can be expressed as a tree{structure of

\pieces", where each piece is a graph which can be drawn in a surface in which H

cannot be drawn, except for a bounded number of vertices and a bounded number

of \local areas of non{planarity" (or vortices, as we call them). (The bounds here

depend on H, but not on the graph being decomposed.) In applications each piece

is usually then encoded as a hypergraph which can be drawn completely on the sur-

face, with edges labelled from an appropriate quasi{order, and in which every edge

has two or three ends. To carry out the encoding procedure, however, we need to

arrange that the near{embeddings of the pieces have nice connectivity properties.

The object of this paper is to show that any graph which can be near{embedded in
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some surface can also be \nicely" near{embedded in some surface, homeomorphic

to or simpler than the �rst, after removing a bounded number of vertices. (Readers

are warned that, unless they understand theorem (3.1) of [2], further reading of the

present paper is a waste of time.) Most of the paper is concerned with, given a

near{embedding, �nding a better one, and analyzing its structure when there is no

better one. In section 13 we connect this with excluding a minor.

The main result of this paper is therefore rather humdrum; it will not cause

the reader any great excitement, and its proof is unfortunately quite lengthy. To

stimulate the reader's interest, let us mention that �nding the result was not hum-

drum at all. We really needed this to be true, for all the applications of this series

of papers, and for a long time the proof eluded us. (The crucial idea was that of

\warp", de�ned in section 3. This may seem unnatural, but nothing simpler works

as far as we can see.)

Since for some applications it is needed, we work with near{embeddings of

hypergraphs rather than of graphs. Near{embeddings of hypergraphs arise when a

minor is excluded from the \1{skeleton" of the hypergraph, a situation which occurs

in applications. This is discussed in section 12 and 14. So a second objective of

the paper is to convert near{embeddings of 1{skeletons of hypergraphs to near{

embeddings of the hypergraphs themselves. This is straightforward, however, and

is nowhere near as delicate or di�cult as the �rst objective.

A surface is a compact 2{manifold with (possibly empty) boundary. We

denote the boundary of a surface � by bd(�). Each component of bd(�) is home-

omorphic to a circle, and we call these components the cu�s of �. We denote by

�(a; b; c) a surface obtained from a sphere by adding a handles and b crosscaps and

deleting the interiors of c mutually disjoint closed discs. Thus �(0; 0; 1) is a closed

disc (which we shall usually just call a disc; when we mean an open disc we shall

say so), �(0; 0; 2) is a cylinder, �(1; 0; 0) is a torus, etc. Surfaces in this paper will

usually be connected. It is known that

(1.1) (i) For every non{null connected surface � there are integers a; b; c such that

� ' �(a; b; c).

(ii) �a

0

; b

0

; c

0

if and only if c = c

0

; a+ 2b = a

0

+ 2b

0

, and both or neither of b; b

0

are zero.

[' denotes homeomorphism.]

Let �, �

0

be connected surfaces, where � ' �(a; b; c);�

0

' �a

0

; b

0

; c

0

. We say

that � is simpler than �

0

if the following conditions are satis�ed:
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(i) if b

0

= 0, then b = 0

(ii) 2a+ b 6 2a

0

+ b

0

(iii) 4a+ 2b+ c < 4a

0

+ 2b

0

+ c

0

.

>From (1.1), this de�nition does not depend on the choice of a; b; c; a

0

; b

0

; c

0

.

Equivalently, � is simpler than �

0

if there exist a; b; c; a

0

; b

0

; c

0

with � ' �(a; b; c),

�

0

' �a

0

; b

0

; c

0

, a 6 a

0

; b 6 b

0

and 4a+ 2b+ c < 4a

0

+ 2b

0

+ c

0

.

An O{arc in a surface � is a subset homeomorphic to a circle, and a [0; 1]{arc

is homeomorphic to [0; 1]. The ends of a [0; 1]{arc are de�ned in the natural way.

An I{arc is a [0; 1]{arc with both ends in bd(�) and with no other point in bd(�).

We shall need to cut along certain O{ and I{arcs. Let � be a connected

surface. If F is an I{arc with ends in di�erent cu�s, then we may cut along F and

obtain a new surface with one cu� fewer. If F is an I{arc with its ends in the same

cu� we may cut along F and obtain either

(i) a connected surface simpler than �, or

(ii) a surface with two components, both simpler than �, or

(iii) a surface with two components, one a disc and the other homeomorphic to

�.

Lastly, if F � � is an O{arc with F \ bd(�) = ;, we may cut along F and obtain

either

(i) a connected surface simpler than �, or

(ii) a surface with two components, both simpler than �, or

(iii) a surface with two components, one a cylinder and the other homeomorphic

to �, or

(iv) a surface with two components, one a disc.

If X � �, we denote the closure of X by X, and we denote X�S by

~

X . A painting

� in a surface � is a pair (U;N), where U � � is closed and N � U is �nite, such

that

(i) U � N has only �nitely many arc{wise connected components (which we

call cells of �)

(ii) for each cell c, its closure c is a disc and ~c is a subset of the boundary of

this disc, and j~cj 6 3

(iii) bd(�) � U

(iv) for each cell c, if c\ bd(�) 6= ; then j~cj = 2 and c\ bd(�) is a [0; 1]{arc with
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ends the two members of ~c.

(Thus, a painting is something like a drawing, except that we use discs instead of

line segments, and cells can have up to three \ends" instead of two.) We de�ne

U(�) = U and N(�) = N . The members of N(�) are called the nodes of �. The

set of cells of � is denoted by C(�). A region of � is a component of ��U . Thus,

each region is a connected open set disjoint from bd(�). A node n is a border node

if n 2 bd(�), and otherwise it is internal. Similarly, a cell c is a border cell if

c \ bd(�) 6= ; and otherwise it is internal. (The reader should note that ~c may

contain border nodes even if c is an internal cell.) The members of ~c are the ends

of c. A node n and cell c are said to border a cu� � if n 2 � and c \ � 6= ;. A

subset X � � is �{normal if X \ U(�) � N(�).

2. HYPERGRAPHS AND THEIR PORTRAYAL

A hypergraph G consists of a �nite set V (G) of vertices, a �nite set E(G) of

edges, and an incidence relation between them. The vertices incident with an edge

e are called the ends of e. Thus G is a graph if and only if every edge has one or two

ends. We say a hypergraph H is a subhypergraph of G if V (H) � V (G); E(H) �

E(G), and every e 2 E(H) has the same ends in H and in G; and we denote this

by H � G. A separation of a hypergraph G is a pair (A;B) of subhypergraphs with

A [ B = G and E(A \ B) = ; (de�ning A [ B;A \ B in the natural way) and its

order is jV (A \B)j.

Let G be a hypergraph. A portrayal � = (�;�; �; �; 
) of G consists of

(i) a non{null connected surface �

(ii) a painting � in �

(iii) a function � which assigns to each cell c of � a subhypergraph �(c) of G

(iv) a function � which assigns to each border node n of � a subset �(n) of V (G)

(v) an injection 
 from a subset dom(
) of N(�) into V (G)

satisfying the axioms below. For anyX � N(�) we denote f
(n) : n 2 X\ dom(
)g

by 
(X): for each c

0

2 C(�) we denote [(�(c) : c 2 C(�)� fc

0

g) by �(�c

0

): and

for each border node n we de�ne �(n+) = �(n) if =2 dom(
), and �(n+) [ f
(n)g

if n 2 dom(
). The axioms are as follows:

(P1) G = [(�(c) : c 2 C(�)), and E(�(c) \ �(c

0

)) = ; for distinct cells c; c

0

(P2) 
(~c) � V (�(c)) for each cell c

(P3) 
(n) =2 �(n) for each n 2 dom(
) \ bd(�), and �(n) � V (�(c)) for each

border cell c and each n 2 ~c
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(P4) if n

1

; n

2

are nodes bordering di�erent cu�s, then �(n

1

)\ �(n

2

) = ;, and if

n

1

is a node bordering a cu� � and n

2

2 dom(
) does not border �, then


(n

2

) =2 �(n

1

)

(P5) if c is an internal cell then V (�(c) \ �(�c)) � 
(~c)

(P6) if c is a border cell with ends n

1

; n

2

, then

V (�(c) \ �(�c)) � �(n

1

+) [ �(n

2

+)

(P7) if n

1

; n

2

; n

3

; n

4

are nodes bordering the same cu� of � and in order, then

�(n

1

+) \ �(n

3

+) � �(n

2

+) [ �(n

4

+).

(\In order", here and later in the paper, refers to the order of occurrence around

the cu�. We see that the conclusion of (P7) holds trivially unless n

1

; n

2

; n

3

; n

4

are

all distinct.) For readers having trouble digesting this de�nition, it may help at

this point to jump forward to (13.1) in order to better grasp what portrayals are.

Some remarks:

(1) Permitting dom(
) 6= N(�) is a helpful but arti�cial device to assist in

removing vertices. We shall eventually be able to restrict ourselves to por-

trayals with dom(
) = N(�).

(2) Unfortunately, we need to permit 
(n

1

) 2 �(n

2

) for distinct nodes n

1

; n

2

bordering the same cu�. Eventually this will be eliminated, but for the

moment the reader is warned that it can happen.

(3) (P6) and (P7) tell us, in spirit, that for each cu� � the �(c)'s for c border-

ing � are arranged in a circle, each overlapping the next in �(n+) (where

n is the common end). However, there is a possible degeneracy to be-

ware of. If c

1

; c

2

border �, with ends n

1

; n

2

and n

2

; n

3

, it is possible that

�(n

1

+) \ �(n

3

+) � �(n

2

+); but any vertex in �(n

1

+) \ �(n

3

+)� �(n

2

+)

lies in �(n

4

+) for every n

4

6= n

2

bordering �. Eventually this degeneracy

too will be eliminated.

The reason for interest in portrayals is that they provide a means of \encod-

ing" the hypergraph G by the painting �, labelling the cells of � appropriately;

and the product of the main theorem of [2] can be converted into a portrayal. The

reason we are interested in portrayals of hypergraphs and not just of graphs is that,

by applying [2] to the \1{skeleton" of a hypergraph, we obtain a portrayal of the

hypergraph, as we shall see, and this will be important in proving Nash{Williams'

\immersions" conjecture.

First, let us observe the following.
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(2.1) Given a portrayal � = (�;�; �; �; 
) of G, let (I

1

; I

2

) be a partition of

C(�). For i = 1; 2, let A

i

=

S

(�(c) : c 2 I

i

). Then E(A

1

\ A

2

) = ;, and

V (A

1

\A

2

) =

S

(
(~c

1

)\ 
(~c

2

) : c

1

2 I

1

; c

2

2 I

2

) [

S

(�(n): there exist border cells

c

1

2 I

1

and c

2

2 I

2

with n 2 ~c

1

\ ~c

2

).

Proof. E(A

1

\A

2

) = ; from (P1). For i = 1; 2, let X

i

=

S

(~c : c 2 I

i

) and let

Y

i

=

[

(~c : c 2 I

i

is a border cell):

We must show that

V (A

1

\A

2

) = 
(X

1

\X

2

) [

[

(�(n) : n 2 Y

1

\ Y

2

) :

(1) 
(X

1

\X

2

) � V (A

1

\A

2

) :

Subproof. Let n 2 X

1

\X

2

\ dom(
), and choose c

1

2 I

1

; c

2

2 I

2

with n 2 ~c

1

\ ~c

2

.

By (P2), 
(n) 2 V (�(c

1

)) \ V (�(C

2

)) � V (A

1

\A

2

), as required.

(2)

[

(�(n) : n 2 Y

1

\ Y

2

) � V (A

1

\A

2

) :

Subproof. Let n 2 Y

1

\Y

2

, and choose border cells c

1

2 I

1

; c

2

2 I

2

, with n 2 ~c

1

\ ~c

2

.

Then from (P3), �(n) � V (�(c

1

)) \ V (�(c

2

)) � V (A

1

\A

2

) as required.

(3) V (A

1

\A

2

) � 
(X

1

\X

2

) [

[

(�(n) : n 2 Y

1

\ Y

2

) :

Subproof. Let v 2 V (A

1

\A

2

). Choose c

1

2 I

1

; c

2

2 I

2

with v 2 V (�(c

1

)); V (�(c

2

)),

and choose them, moreover, such that as many of c

1

; c

2

as possible are border cells.

Now if v 2 
(~c

1

)\
(~c

2

) then since 
 is an injection it follows that v = 
(n) for some

n 2 ~c

1

\ ~c

2

\ dom(
) � X

1

\X

2

\ dom(
) as required. Thus, from the symmetry,

we may assume that v =2 
(~c

1

). But

v 2 V (�(c

1

) \ �(c

2

)) � V (�(c

1

) \ �(�c

1

))

and so from (P5), c

1

is a border cell, and by (P6), there exists n

1

2 ~c

1

with

v 2 �(n

1

). Let c

1

border a cu� �. Suppose �rst that c

2

does not border �. Then

since

v 2 V (�(c

2

) \ �(�c

2

)) \ �(n

1

)

it follows from (P5), (P6) and (P7) that v = 
(n) for some n 2 ~c

2

\ dom(
). By

(P4), n borders � and so c

2

is internal; let c be a cell bordering � with n 2 ~c.
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>From our initial choice of c

1

; c

2

it follows that c =2 I

2

, and so c 2 I

1

. But then

n 2 ~c [ ~c

2

� X

1

\ X

2

as required. We may assume then that c

2

does border

�. 66666 v 2 V (�(c

2

) \ �(�c

2

)), it follows from (P6) that v 2 �(n

2

+) for some

n

2

2 ~c

2

. Since c

1

2 I

1

and c

2

2 I

2

, there exist nodes n

3

; n

4

bordering � such that

c

1

; n

3

; c

2

; n

4

are in order and n

3

and n

4

are both in Y

1

\Y

2

. Since n

1

; n

3

; n

2

; n

4

are

in order and v 2 �(n

1

) \ �(n

2

+), it follows from (P6) that v 2 �(n

3

+) [ �(n

4

+).

>From the symmetry we assume that v 2 �(n

3

+). But n

3

2 Y

1

\ Y

2

, and so either

v 2 �(n

3

) �

[

(�(n) : n 2 Y

1

\ Y

2

)

or n

3

2 dom(
) and

v = 
(n

3

) 2 f
(n) : n 2 X

1

\X

2

\ dom(
)g :

This proves (3). From (1{3) the result follows. �

3. WARP OF A PORTRAYAL

If V is a �nite set, K

V

denotes the complete graph with vertex set V ; that

is, the edges of K

V

are the 2{element subsets of V , with the natural incidence

relation. If G is a hypergraph, its 1{skeleton is the subgraph of K

V (G)

in which

distinct u; v 2 V (G) are adjacent if there is an edge of G incident with both u and

v. We denote the 1{skeleton of G by G

?

.

A linkage in a hypergraph G is a set fP

1

; : : : ; P

p

g of mutually vertex{disjoint

paths of G

?

. (Paths have no \repeated" vertices, and we recognize the one{vertex

path; each path has an initial vertex and a terminal vertex.) If fP

1

; : : : ; P

p

g is a

linkage and for 1 6 i 6 p; P

i

has initial vertex s

i

and terminal vertex t

i

, we say

fP

1

; : : : ; P

p

g is from fs

1

; : : : ; s

p

g to ft

1

; : : : ; t

p

g and it pairs s

i

with t

i

(1 6 i 6 p).

Let � = (�;�; �; �; 
) be a portrayal of G, and let c 2 C(�) border a cu� �,

with ends n

1

; n

2

. For p > 0 we say that c has warp 6 p (in �) if

(i) j�(n

1

)j; j�(n

2

)j 6 p, and

(ii) if j�(n

1

+)j = j�(n

2

+)j = p + 1, then every linkage in �(c)

?

from �(n

1

+)

to �(n

2

+) pairs 
(n

1

) with 
(n

2

).

The warp of c is the minimum p > 0 such that c has warp 6 p; and � has warp p

at � if p is the maximum warp of all the cells bordering �. The warp of � is the

maximum of the warp of � at �, over all cu�s � (or 1 if bd(�) = ;).

4. TANGLES
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If � > 1 is an integer, a tangle of order � in a hypergraph G is a set T of

separations of G each of order < �, such that

(i) for every separation (A;B) ofG of order< �;T contains one of (A;B); (B;A)

(ii) if (A

i

; B

i

) 2 T (i = 1; 2; 3) then A

1

\A

2

[A

3

6= G

(iii) if (A;B) 2 T , then V (A) 6= V (G).

For elementary properties of tangles, see [1]. We de�ne ord(T ) = �.

We say that A � G is small (relative to T ) if (A;B) 2 T for some B � G. If

A is a subhypergraph of G, an attachment of A in G is a vertex of A incident with

an edge of G not in E(A). It is easy to see (compare [1, theorems (2.2) and (2.9)])

that

(4.1) (i) If A � G is small then (A;B) 2 T for every B � G such that (A;B) is a

separation of G of order < ord(T ).

(ii) If A

1

; A

2

� G are small and a � A

1

[A

2

has < ord(T ) attachments in G

then A is small.

If G is a hypergraph and Z � V (G), we denote by G=Z the hypergraph with

vertex set V (G)�Z and edge set E(G), in which e 2 E(G) is incident in G=Z with

v 2 V (G)� Z if and only if e is incident in G with v.

If Z � V (G) and T is a tangle in G of order � > jZj, we denote by T =Z

the set of all separations (A

0

; B

0

) of G=Z of order < � � jZj such that there exists

(A;B) 2 T with Z � V (A \ B); A=Z = A

0

and B=Z = B

0

. It is shown in [1,

theorem (6.2)] that

(4.2) If T is a tangle in a hypergraph G, and Z � V (G) with jZj < ord(T ), then

T =Z is a tangle in G=Z of order ord(T )� jZj.

If T is a tangle in a hypergraph G, and � = (�;�; �; �; 
) is a portrayal of

G;� is said to be T {central if �(c) is small relative to T for every c 2 C(�). We

shall need the following lemma.

(4.3) Let � = (�;�; �; �; 
) be a T {central portrayal of a hypergraph G, with warp

6 p, and let T have order �. There is no small subhypergraph A � G with < ��2p

attachments, such that 
(n) 2 V (A) for all n 2 dom(
).

Proof. Suppose that there exists such A � G, and choose A maximal.

(1) For each internal cell c; �(c) � A.

Subproof. Since every attachment of A[�(c) is an attachment of A, it follows from
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(4.1) that A [ �(c) is small, and so �(c) � A from the maximality of A.

Now since A 6= G, there is some cell c

1

with �(c

1

) * A. By (1), c

1

borders

a cu� �. Let the cells and nodes bordering � be n

1

; c

1

; n

2

; c

2

; : : : ; n

k

; c

k

; (n

1

) in

order. For 0 6 j 6 k, let X

j

= A [ �(c

1

) [ � � � [ �(c

j

).

(2) For 1 6 j 6 k, every attachment of X

j

which is not an attachment of A is in

�(n

1

) [ �(n

j+1

). In particular X

j

has fewer than � attachments.

Subproof. The second claim follows from the �rst, since j�(n

k

) [ �(n

j

)j < 2p, and

A has < � � 2p attachments. For the �rst claim, let v be an attachment of X

j

which is not an attachment of A. Then v =2 V (A), and v 2 V (�(c

i

)) for some i

with 1 6 i 6 j, and there is an edge e of G, incident with v, with e =2 E(X

j

). Let c

be a cell of � with e 2 E(�(c)). Then v 2 V (�(c

i

) \ �(c)). If c does not border �,

then by (P5), (P6) and (P7) it follows that v = 
(n) for some n 2 � \ dom(
),

and hence v 2 V (A), a contradiction. Thus c borders �, and c = c

j

0

, say, where

j < j

0

6 k. Since v 2 V (�(c

i

) \ �(�c

i

)) and v =2 
(~c

i

), it follows that v 2 �(n

h

)

where h = i or i + 1; and similarly v 2 �(n

h

0

) where h

0

= j

0

or j

0

+ 1. Now

n

1

; n

h

; n

j+1

; n

h

0

are in order, and so

v 2 �(n

h

) \ �(n

h

0

) � �(n

1

) [ �(n

j+1

) :

s proves (2).

(3) For 1 6 j 6 k;X

j

is small.

Subproof. X

0

is small; and for 1 6 j 6 k if X

j�1

is small then so is X

j

, from (4.1),

because X

j

= X

j�1

[ �(c

j

) and X

j

has < � attachments and �(c

j

) is small. The

result follows by induction on j.

In particular, X

k

is small. But every attachment of X

k

is an attachment of

A, as is easily seen, and so X

k

has < � � 2p attachments. Since �(c

1

) � X

k

and

�(c

1

) * A it follows that X

k

6= A; but this contradicts the maximality of A, as

required. �

5. SIMPLIFYING A PORTRAYAL

The main aim of this paper is to show that any T {central portrayal of a

hypergraph can be converted to one with nice connectivity properties (possibly by

removing a few vertices) if T has large enough order. In this section we begin the

process. Here we are concerned with T {central portrayals such that there is no

simpler T {central portrayal of the same hypergraph.
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We de�ne \simpler" as follows. Let � = (�;�, �; �; 
) be a portrayal of a

hypergraph G, and let �

0

= (�

0

;�

0

; �

0

; �

0

; 


0

) be a portrayal of a hypergraph G

0

.

We say that � is simpler than �

0

if either

(i) � is simpler than �

0

and the warp of � is at most that of �

0

, or

(ii) there is a homeomorphism  : �! �

0

such that for every cu� � of �, the

warp of � at � is at most the warp of �

0

at  (�), with strict inequality for

some cu� �.

We say that � resembles �

0

if there is a homeomorphism  : � ! �

0

such

that for every cu� � of �, the warp of � at � equals the warp of �

0

at  (�).

Now let T be a tangle in a hypergraph G. A T {central portrayal � of G is

0{redundant (relative to T ) if there is no T {central portrayal of G simpler than �.

In this section we shall develop some consequences of 0{redundancy.

(5.1) If � = (�;�; �; �; 
) is a 0{redundant T {central portrayal of a hypergraph

G, then for each cu� � of �; � has warp > 1 at �.

Proof. If � has warp 0 at �, then �(n) = ; for each n 2 � \ N(�). Let �

0

be

the surface obtained by pasting a disc on �, and let �

0

be the restriction of � to

bd(�

0

). Then �

0

= (�

0

;�; �; �

0

; 
) is a T {central portrayal of G, simpler than �, a

contradiction. �

>From (5.1), every 0{redundant T {central portrayal has warp > 1.

Let � be a painting in a surface �, let c 2 C(�) be internal, and let n 2 ~c.

Choose a disc � � c with n =2 � and ~c� fng � �, and de�ne

�

0

= ((U(�)� c) [�; N(�)) :

Then �

0

is a painting in �, with C(�

0

) = (C(�)� fcg)[ f�� (~c� fng)g. We say

that �

0

is obtained from � by shrinking c from n, and its cell �� (~c � fng) is the

shrunken c.

If f : A ! B is a function and C is a set, we denote the restriction of f to

A \C by f jC.

(5.2) Let � = (�;�; �; �; 
) be a hypergraph G. Let c 2 C(�) be internal, and let

n 2 ~c � dom(
). Let �

0

be obtained by shrinking c from n; and let �

0

be de�ned

by �

0

(c

0

) = �(c), where c

0

is the shrunken c, and otherwise �

0

= �. Then �

0

=

(�;�

0

; �

0

; �; 
) is a portrayal of G.

The proof is clear.
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Given a portrayal (�;�; �; �; 
), if �

0

� � we denote

S

(�(c) : c 2 C(�); c �

�

0

) by �(�

0

).

(5.3) Let � = (�;�; �; �; 
) be a 0-redundant �{central portrayal of a hypergraph

G. Let F be a �{normal I{arc with ends n

1

; n

2

such that �(n

1

) = �(n

2

) =

F \ dom(
) = ;. Then there is a disc � � � with F � bd(�) � F [ bd(�) such

that �(�) is small.

Proof. By (5.2) we may assume that F \N(�) = fn

1

; n

2

g and ~c \ fn

1

; n

2

g = ; for

every internal cell c of �. Let � be a \neighbourhood" of F ; that is, � � � is a

disc, F � �, and

F \ bd(�) = � \ bd(�) = � \ U(�) = fn

1

; n

2

g :

Let �

0

be the surface obtained from � by cutting along F . Let �

0

;�

00

be the two

discs into which � is divided by this cutting, and let n

0

i

2 �

0

; n

00

i

2 �

00

correspond

to n

i

(i = 1; 2). Let c

0

= �

0

� fn

0

1

; n

0

2

g, c

00

= �

00

� fn

00

1

; n

00

2

g. Let

U

0

= (U(�)� fn

1

; n

2

g) [�

0

[�

00

N

0

= (N(�)� fn

1

; n

2

g) [ fn

0

1

; n

0

2

; n

00

1

; n

00

2

g

and let �

0

= (U

0

; N

0

). Then �

0

is a painting in �

0

, and c

0

; c

00

are cells of it.

Suppose �rst that �

0

is connected, whence it is simpler than �. We de�ne a

portrayal �

0

= (�

0

;�

0

; �

0

; �

0

; 
) of G as follows:

�

0

(c

0

); �

0

(c

00

) are both null

�

0

(c) = �(c) (c 2 C(�

0

)� fc

0

; c

00

g)

�

0

(n

0

1

) = �

0

(n

0

2

) = �

0

(n

00

1

) = �

0

(n

00

2

) = ;

�

0

(n) = �(n) (n 2 N

0

\ bd(�

0

)� fn

0

1

; n

0

2

; n

00

1

; n

00

2

g) :

It is easy to verify that �

0

is a portrayal of G; it is T {central; and yet it is simpler

than �, a contradiction to the 0{redundancy of �.

Thus �

0

is not connected. It therefore has exactly two components �

0

;�

00

,

with �

0

� �

0

, �

00

� �

00

. >From the symmetry we may assume that (�(�

00

),

�(�

0

)) 2 T , for by (2.1) this is a separation of G of order 0.

Let �

0

= (U

0

\ �

0

; N

0

\ �

0

); then �

0

is a painting in �

0

, and c

0

is a cell of it.



12 NEIL ROBERTSON AND P. D. SEYMOUR

We de�ne a portrayal

�

0

(c

0

) = �(�

00

)

�

0

(c) = �(c) (c 2 C(�

0

)� fc

0

g)

�

0

(n

0

1

) = �

0

(n

0

2

) = ;

�

0

(n) = �(n) (n 2 N(�

0

) \ bd(�

0

)� fn

0

1

; n

0

2

g)




0

= 
jN(�

0

) :

Again, it is easy to verify that �

0

is a portrayal of G, and is T {central, and its

warp is at most that of �. Since it is not simpler than � (since � is 0{redundant)

it follows that �

0

' � and �

00

is a disc. This disc satis�es the theorem. �

We shall need a second, similar result, the following.

(5.4) Let � = (�;�; �; �; 
) be a 0{redundant T {central portrayal of a hypergraph

G. Let F � � be a �{normal O{arc with F \ dom(
) = ;. Then there is a disc

� � � with bd(�) = F such that �(�) is small.

Proof. By (5.2) we may assume that F \N(�) � bd(�) and for every internal cell

c of �; ~c \ F = ;. Since F is �{normal, it follows that F \ bd(�) � N(�), and by

\diverting" F around each member of F \bd(�), we may assume that F \bd(�) = ;

(for if the result holds for the new O{arc then it also holds for the original). Thus

F \ U(�) = ;.

Let �

0

be the surface obtained from � by cutting along F , and let

b

�

0

be

obtained from �

0

by pasting discs on the resulting (one or two) new cu�s in �

0

.

Suppose that

b

�

0

is connected. Then (

b

�

0

;�; �; �; 
) is a T {central portrayal of G,

simpler than � (because

b

�

0

is simpler than �), a contradiction.

Thus �

0

has exactly two components �

0

, �

00

, and from the symmetry we may

assume that (�(�

00

), �(�

0

)) 2 T , since by (2.1) this separation has order 0. Let

b

�

0

be the component of

b

�

0

corresponding to �

0

. Let �

0

= (U(�) \ �

0

, N(�) \ �

0

);

then �

0

is a painting in

b

�

0

. Let c

0

2 C(�

0

) (this exists, since �(�

00

) 6= G from one

of the tangle axioms). De�ne �

0

= (

b

�

0

;�

0

, �

0

; �

0

; 


0

) as follows:

�

0

(c

0

) = �(c

0

) [ �(�

00

)

�

0

(c) = �(c) (c 2 C(�

0

)� fc

0

g)

�

0

(n) = �(n) (n 2 N(�

0

) \ bd(

b

�

0

))




0

= 
jN(�

0

) :
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Then it is easy to see that �

0

is a portrayal of G; and it is T {central since �

0

(c

0

) is

small by (4.1). Its warp is at most that of �, but it is not simpler, and so

b

�

0

is not

simpler than �. Thus �

00

is a disc, satisfying the theorem. �

6. REDUNDANCY

Now we make a somewhat stronger hypothesis; we study portrayals such that

there is no simpler portrayal even if we remove a few vertices.

Let T be a tangle in a hypergraph G, and let � be a T {central portrayal of

G. We say that � is z{redundant, if z < ord (T ), and for every Z � V (G) with

jZj 6 z there is no T =Z{central portrayal of G=Z simpler than �. In this section

we develop some consequences of z{redundancy.

We shall need the following lemma, a relative of [1, theorem (6.3)].

(6.1) Let T be a tangle of order � in a hypergraph G, and let Z � V (G) with

jZj < �. Let A � G such that A=Z

0

has fewer than � � jZj attachments in G=Z,

where Z

0

= Z \ V (A). Then A is small relative to T if and only if A=Z

0

is small

relative to T =Z.

Proof. Let C � G, where V (C) = V (A) [ Z and E(C) = E(A), and choose

D � G such that Z � V (C \ D) and (C;D) is a separation of G of order < �.

(This exists, from our hypothesis about the attachments of A=Z in G=Z.) Then

A=Z

0

= C=Z. Suppose �rst that (C;D) 2 T . Then (D;A) =2 T by the second

tangle axiom, since C [ D = G, and so (A;D) 2 T (for (A;D) is a separation of

order < �) and so A is small relative to T . Moreover, (C=Z;D=Z) 2 T =Z, and so

C=Z = A=Z

0

is small relative to T =Z. We may assume therefore that (C;D) =2 T ,

and so (D;C) 2 T . Consequently A is not small with respect to T , for A[D = G;

and since (D=Z;C=Z) 2 T =Z, it follows similarly that A=Z

0

is not small with

respect to T =Z, as required. �

(6.2) Let T be a tangle in a hypergraph G and let � = (�;�; �; �; 
) be a T {central

portrayal of G with warp 6 p. Let Z � V (G), with jZj < ord (T )� 2p� 2. De�ne

�

0

(c) = �(c)=(Z \ V (�(c))) (c 2 C(�))

�

0

(n) = �(n)� Z (n 2 N(�) \ bd(�))




0

= 
jfn : n 2 dom(
); 
(n) =2 Zg :

Then �

0

= (�;�; �

0

; �

0

; 


0

) is a T =Z{central portrayal of G=Z, resembling or sim-

pler than �.



14 NEIL ROBERTSON AND P. D. SEYMOUR

Proof. It is easy to verify (P1){(P7), and so �

0

is a portrayal of G=Z; and clearly

the warp in �

0

of every border cell of � is at most its warp in �. Moreover, �

0

is

T =Z{central; for if c 2 C(�); �

0

(c) has at most 2p+2 < ord(T )� jZj attachments

in G=Z, and so �

0

(c) is small by (6.1). �

(6.3) Let � = (�;�; �; �; 
) be a z{redundant T {central portrayal of G, with warp

6 p. Let ord(T ) > z+2p+2, and let F � � be a �{normal I-arc with ends n

1

; n

2

and with jF \ dom(
)j 6 z � 2p. Then there is a disc � � � with F � bd(�) �

F [ bd(�) such that �(�) is small.

Proof. Let Z = �(n

1

) [ �(n

2

) [ f
(n) : n 2 F \ dom(
)g. Then jZj 6 z. De�ne

�

0

= (�;�; �

0

; �

0

; 


0

) as in (6.2). Then �

0

is not simpler than �, and so �

0

resembles

�. Moreover, �

0

is 0{redundant, since � is z{redundant, and so by (5.3) there is a

disc � � � with F � bd(�) � F [ bd(�) such that �

0

(�) is small relative to T =Z.

Hence, by (6.1), �(�) is small relative to T , as required. �

(6.4) Let � = (�;�; �; �; 
) be a z{redundant T {central portrayal of G, with warp

6 p. Let ord(T ) > z + 2p + 2, and let F � � be a �{normal O{arc with jF \

dom(
)j 6 z. Then there is a disc � � � with bd(�) = F such that �(�) is small.

Proof. Let Z = f
(n) : n 2 F \ dom(
)g. Then jZj � z. De�ne �

0

=

(�;�; �

0

; �

0

; 


0

) as in (6.2); then �

0

resembles �, and is 0{redundant. The result

follows from (5.4) and (6.1). �

(6.5) Let � = (�;�; �; �; 
) be a z{redundant T {central portrayal of a hypergraph

G with warp 6 q, let (A;B) 2 T have order 6 z, let � be a cu� of �, and let � have

warp p at �. Let ord(T ) > z + 2q + 2. Then there exists either

(i) a node n bordering � with j�(n)j = p and �(n) \ V (A) = ;, or

(ii) a cell c bordering � with ends n

1

; n

2

2 dom(
), such that 
(n

1

); 
(n

2

) =2

V (A), there is no path of (A \ �(c))

?

between �(n

1

) and �(n

2

), and

j�(n

1

)� V (A)j = j�(n

2

)� V (A)j = p� 1 > 1 :

Proof. Let Z = V (A \ B); then jZj 6 z. Choose c

0

2 C(�), and de�ne a portrayal

�

0

= (�;�; �

0

; �

0

; 


0

) of G=Z as follows:

�

0

(c

0

) = ((�(c

0

)=(Z \ V (�(c

0

)))) \ (B=Z)) [ (A=Z)

�

0

(c) = (�(c)=(Z \ V (�(c)))) \ (B=Z) (c 2 C(�); c 6= c

0

)

�

0

(n) = �(n)� V (A) (n 2 N(�) \ bd (�))




0

= 
jfn : n 2 dom(
); 
(n) =2 V (A)g :
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We can view this as obtained by, �rst, applying (6.2) to obtain a (T =Z){

central portrayal of G=Z; second, restricting it to obtain a portrayal of B=Z; and

third, addingA=Z back into �(c

0

) for one cell c

0

, to obtain a (T =Z){central portrayal

of G=Z. This third step is possible since (A=Z;B=Z) is a separation G=Z of order 0,

and is in T =Z. We hope these remarks make it evident that �

0

is a (T =Z){central

portrayal of G=Z. Its warp at each cu� is at most that of �, but it is not simpler

than � since � is z{redundant, and so its warp at every cu�, in particular at �,

equals that of �.

We may assume that �

0

(n)j 6 p�1 for each node n bordering �, for otherwise

the theorem holds (since j�(n)j 6 p). >From the de�nition of warp, there is a cell

c bordering � with ends n

1

; n

2

such that j�

0

(n

1

+)j = j�

0

(n

2

+)j = p and there is a

linkage fP

1

; : : : ; P

p

g in �

0

(c) from �

0

(n

1

+) to �

0

(n

2

+) which does not pair 


0

(n

1

)

with 


0

(n

2

). In particular, p > 2, and n

1

; n

2

2 dom(


0

), and so n

1

; n

2

2 dom(
)

and 
(n

1

); 
(n

2

) =2 V (A). Moreover,

p = j�

0

(n

1

+)j = 1 + j�(n

1

)� V (A)j

and so

j�(n

1

)� V (A)j = j�(n

2

)� V (A)j = p� 1 :

We claim that for 1 6 i 6 p; P

i

is a path of (B=Z)

?

. For it is certainly a path

of (G=Z)

?

, and it meets V (B=Z) since it meets �

0

(n

1

+) = �(n

1

+) � V (A); but

(A=Z;B=Z) is a separation of G=Z of order 0 and P

i

is connected, and so P

i

�

(B=Z)

?

as claimed.

Suppose that there is a path P

p+1

of (�(c) \ A)

?

between �(n

1

) and �(n

2

).

Then fP

1

; : : : ; P

p+1

g is a linkage in �(c) from �(n

1

+) to �(n

2

+) violating the warp

condition, a contradiction. Thus there is no such P

p+1

, and the result follows. �

(6.6) Let � = (�;�; �; �; 
) be a z{redundant T {central portrayal of G with warp

6 p and ord(T ) > z + 2p + 2, and let � be a cu�. There is no X � V (G) with

jXj 6 z=3 such that X \ �(n+) 6= ; for every node n bordering �.

Proof. Let � have warp q > 1 at �, and �x an orientation of �. From (P7) we

have immediately:

(1) For each x 2 X there is at most one n 2 N(�) \� such that x 2 �(n+) and

x =2 �(n

0

+) where n

0

is the node of N(�) bordering � immediately following n.

We call n as in (1) the terminal of x. For each x 2 X, if there is a terminal

n of X with n 2 dom(
), let y(x) = 
(n). (This is unique, by (1).) Otherwise, let
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y(x) = x. For each x 2 X, if x = 
(n) for some n 2 dom(
) with j�(n)j = q, let

z(x) 2 �(n). Otherwise, let z(x) = x. Let

W = X [ fy(x); z(x) : x 2 Xg :

(2) For each n 2 N(�) \�, if j�(n)j = q then W \ �(n) 6= ;.

Subproof. Let x 2 �(n+)\X. We may assume that x =2 �(n), and so n 2 dom(
)

and x = 
(n). Consequently either j�(n)j < q or z(x) � �(n), as required.

(3) For each cell c bordering � with ends n

1

; n

2

2 dom(
), if 
(n

1

); 
(n

2

) =2 W

and j�(n

1

)�W j = j�(n

2

)�W j = q � 1 then W \ �(n

1

) \ �(n

2

) 6= ;.

Subproof. We assume that n

2

follows n

1

. Let x 2 X \ �(n

1

+). Since 
(n

1

) =2 W

it follows that x 6= 
(n

1

) and so x 2 �(n

1

). Since 
(n

1

) =2 W it also follows that


(n

1

) 6= y(x), and so n

1

is not the terminal of x. Consequently x 2 �(n

2

+). Since

x 6= 
(n

2

) it follows that x 2 �(n

2

), and so x 2W \ �(n

1

) \ �(n

2

) as required.

Let A be the subhypergraph of G with V (A) = W and E(A) = ;. Then

(A;G) 2 T since jV (A)j 6 3k < ord(T ), and so A is small. But (2), (3) contradict

(6.5). �

(6.7) Let � = (�;�; �; �; 
) be a redundant T {central portrayal of G with warp 6 p.

Let ord(T ) > z + 2p+ 2, and let F be a �{normal I{arc with ends n

1

; n

2

and with

jF \ dom(
)j 6 z � 2p� 1. Let � be as in (6.3). Then �(n

1

+)\ �(n

2

+) � �(n+)

for all n 2 N(�) \� \ bd(�).

Proof. Let � be the cu� with n

1

; n

2

2 �, and let � have warp q at �. Suppose

that n

0

2 N(�) \� \ bd(�) and v 2 �(n

1

+) \ �(n

2

+)� �(n

0

+). Let F

0

= � \�,

and let F

00

be the other closed line segment in � with ends n

1

; n

2

. From (P7),

v 2 �(n+) for all n 2 N(�) \ F

00

.

If there exists n 2 N(�)\� such that 
(n) = v and �(n) 6= ;, choose u 2 �(n),

and otherwise let u = v. Let A � G be the hypergraph with E(A) = E(�(�)),

V (A) = (�(�))[ fug. Now �(�) has at most jF \ dom(
)j+2p < z attachments,

and so A has at most z attachments. Since �(�) is small it follows from (4.1) (ii)

that A is small. Since ord(T ) > z + 2p+ 2, (6.5) implies that there exists either

(i) a node n 2 N(�) \ � with j�(n)j = q and �(n) \ V (A) = ;, or

(ii) a cell c bordering � with endsm

1

;m

2

2 dom(
), such that 
(m

1

); 
(m

2

) =2

V (A) and V (A) \ �(m

1

) \ �(m

2

) = ;.
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If (i) occurs, then since

j�(n) \ V (A)j = 0 < q = j�(n)j

by (5.1), it follows that n =2 F

0

, and so n 2 F

00

. Consequently, v 2 �(n+). Since

�(n) \ V (A) = ; and v 2 V (A), it follows that v = 
(n), and so u 2 �(n) since

�(n) 6= ; (since 
 is an injection). Hence u 2 V (A) \ �(n) = ;, a contradiction.

If (ii) occurs, then 
(m

1

) =2 V (A) it follows that c\� � F

00

and so m

1

;m

2

2

F

00

. Consequently v 2 �(m

1

+)\ �(m

2

+), and since v 2 V (A) and 
(m

1

); 
(m

2

) =2

V (A) it follows that v 6= 
(m

1

); 
(m

2

), and so v 2 �(m

1

) \ �(m

2

). But this

contradicts the truth of (ii).

Since in both cases we have obtained a contradiction, it follows that there is

no such v; n

0

, as required. �

7. SOME CONSTRUCTIONS

Now we give three ways of making new portrayals from old ones, which will

be of use later.

(7.1) Let � = (�;�; �; �; 
) be a T {central portrayal of a hypergraph G. Let

� � � be a disc with bd(�) �{normal and jbd(�) \N(�)j 6 1, such that �(�) is

small. Let c

0

2 C(�) with c

0

� ���, chosen with ~c

0

\ bd(�) 6= ; if possible. If

~c

0

\ bd(�) 6= ;, let �

0

= (U(�) \ ���, N(�) \ ���). If ~c

0

\ bd(�) = ;, let

�

0

= (U(�)��, N(�)��). De�ne

�

0

(c

0

) = �(c

0

) [ �(�)

�

0

(c) = �(c) (c 2 C(�

0

)� fc

0

g)




0

= 
jN(�

0

) :

Then �

0

= (�;�

0

; �

0

; �; 


0

) is a T {central portrayal of G resembling �.

The proof is clear.

(7.2) Let � = (�;�; �; �; 
) be a T {central portrayal of a hypergraph G. Let � � �

be a disc, with bd(�) �{normal and jbd(�) \N(�)j 6 3, such that �(�) is small.

De�ne �

0

= (U(�)[�; N(�)\ ���); thus c

0

= ��(bd(�)\ N(�)) is a cell of �

0

.

Let A � G be minimal such that �(�) � A and 
(N(�) \ bd(�)) � V (A). De�ne

�

0

(c

0

) = A

�

0

(c) = �(c) (c 2 C(�)� fc

0

g)




0

= 
jN(�

0

) :
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Then �

0

= (�;�

0

; �

0

; �; 


0

) is a T {central portrayal of G resembling �.

Again, the proof is clear.

We shall need a third construction, and to prove that it works we need the

following lemma.

(7.3) Let � = (�;�; �; �; 
) be a portrayal of a hypergraph G. Let n

1

; n

2

be distinct

nodes bordering a cu� �, and let F � � be a �{normal I{arc with ends n

1

; n

2

and

with F \N(�) = fn

1

; n

2

g. Let � � � be a disc with F � bd(�) � F [�, and for

each n 2 N(�) \ bd(�) let �(n

1

+) \ �(n

2

+) � �(n+). Let � have warp 6 p at �,

and let j�(n

1

+)j = j�(n

2

+)j = p+ 1. Then every linkage in �(�) from �(n

1

+) to

�(n

2

+) pairs 
(n

1

) with 
(n

2

).

Proof. Let fP

0

; : : : ; P

p

g be a linkage in �(�) from �(n

1

+) to �(n

2

+). Since

j�(n

1

+)j = �(n

2

+)j = p+ 1 and j�(n

1

)j; j�(n

2

)j 6 p, it follows that equality holds

and n

1

; n

2

2 dom(
), and every vertex in �(n

1

+) is the initial vertex of one of

P

0

; : : : ; P

n

. Let 
(n

1

) be the initial vertex of P

0

say. We must show that 
(n

2

) is

the terminal vertex of P

0

.

Let M be the graph P

0

[ : : : [ P

p

. For each internal cell c with c � �, at

most one of P

0

; : : : ; P

p

has an edge in �(c)

?

since jV (�(c) \ �(�c))j 6 3, and so

the graph M \ �(c)

?

may be drawn in the disc c in the natural way. Let H be the

union of these drawings (taken over all internal cells c � �). Then H is a drawing

in � of a subgraph of M denoted by M \ �. Every component of H is a path with

both ends in I, where I = � \ bd(�).

Now H is a drawing in �; let R be the region of H in � whose closure includes

F . Let the members of N(�) \ I in the closure of R be m

1

;m

2

; : : : ;m

k

, in order

in I. Hence m

1

= n

1

and m

k

= n

2

.

Choose i with 1 6 i 6 k maximum so that m

i

2 dom(
) and 
(m

i

) 2 V (P

0

),

and suppose for a contradiction that i < k. Let S be the closed line segment with

S � bd(R) and with ends m

i

;m

i+1

, such that S \ F = ;. Then no internal point

of S belongs to N(�) \ I by the de�nition of m

1

; : : : ;m

k

. But every s 2 S either

belongs to the drawing H or belongs to bd(�), since S � bd(R), and it follows that

either S � I or S is part of H. The latter is impossible since 
(m

i+1

) =2 V (P

0

), and

so S � I. Since no internal point of S is in N(�) \ I, it follows that S \ N(�) =

fm

i

;m

i+1

g, and there is a border cell c with S = c \ I and ~c = fm

i

;m

i+1

g.

Let I

1

be the part of I between n

1

and m

i

, and let I

2

be that between m

i+1
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and n

2

. (Thus I

1

and I

2

are either closed line segments or singleton sets.) Let

B

h

=

\

(�(n+) : n 2 I

h

\ N(�)) (h = 1; 2) :

Let 0 6 j 6 p. Certainly P

j

has initial vertex in B

1

and terminal vertex in B

2

,

and so there is a minimal subpath Q

j

of P

j

with initial vertex s

j

(say) in B

1

and

terminal vertex t

j

in B

2

. Consequently no internal vertex of Q

j

is in B

1

[B

2

. We

claim that Q

j

is a path of �(c)

?

from �(m

i

+) to �(m

i+1

+).

To show this, suppose �rst that s

j

= t

j

. Then s

j

2 �(n+) \ �(n

0

+) where

n 2 I

1

\N(�) and n

0

2 I

2

\N(�). Suppose that s

j

=2 �(m

i

+). Since n

1

; n;m

i

; n

0

are in order it follows that

s

j

2 �(n+) \ �(n

0

+) � �(n

1

+) [ �(m

i

+)

and so s

j

2 �(n

1

+); and similarly s

j

2 �(n

2

+). Hence

s

j

2 �(n

1

+) \ �(n

2

+) � �(m

i

+)

a contradiction. Thus s

j

2 �(m

i

+) and similarly s

j

2 �(m

i+1

+), and Q

j

is a

subpath of �(c)

?

from �(m

i

+) to �(m

i+1

+) as required.

We may therefore assume that s

j

6= t

j

. >From the minimality of Q

j

, no vertex

of Q

j

is in B

1

\ B

2

. Now Q

j

�j M , since every component of M has intersection

with B

1

[ B

2

either included in B

1

or in B

2

. Since no internal vertex of Q

j

is in

B

1

[B

2

it follows that no edge of Q

j

is inM . Hence for every edge e of Q

j

there is

a boundary cell c

0

� � with e 2 E(�(c

0

)

?

). Since no internal vertex of Q

j

belongs

to

V (�(c

0

) [ �(�c

0

)) � B

1

[B

2

for any boundary cell c

0

, we deduce that some boundary cell c

0

� �; Q

j

is a path

of �(c

0

)

?

. But V (Q

j

) meets B

1

�B

2

and B

2

�B

1

, and so V (�(c

0

)\ �(�c

0

)) is not

a subset of B

1

or B

2

. Consequently c

0

= c and our claim holds.

It follows that fQ

0

; : : : ; Q

p

g is a linkage in �(c) from �(m

i

+) to �(m

i+1

+).

Hence j�(m

i+1

+)j = p+1 and so m

i+1

2 dom(
); and from the warp condition for

c, the linkage pairs 
(m

i

) with 
(m

i+1

). But 
(m

i

) is the initial vertex of Q

0

, and

so 
(m

i+1

) is its terminal vertex, and in particular, 
(m

i+1

) 2 V (P

0

) contrary to

the maximality of i.

Hence i = k, and the result holds. �
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(7.4) Let � = (�;�; �; �; 
) be a (2p + 3){redundant T {central portrayal of a

hypergraph G, with warp 6 p, and let ord(T ) > 4p+ 5. Let F � � be a �{normal

I{arc with jF \N(�)j = 2. Let � � � be a disc with F � bd(�) � F [ bd(�), such

that �(�) is small. De�ne �

0

= (U(�) [ �; N(�) \ ���) and let c

0

be the cell

�� (F \N(�)). De�ne

�

0

(c

0

) = �(�)

�

0

(c) = �(c) (c 2 C(�

0

)� fc

0

g)

�

0

= �j(N(�

0

) \ bd(�))




0

= 
jN(�

0

) :

Then �

0

= (�;�

0

�

0

; �

0

; 


0

) is a T {central portrayal of G resembling �.

Proof. (P1){(P5) and (P7) are easily veri�ed, and we omit them. Let the ends

of F be n

1

; n

2

. For (P6), it su�ces to show that

V (�

0

(c

0

) \ �

0

(�c

0

)) � �(n

1

+) [ �(n

2

+) :

But this follows from (2.1), setting I

1

= fc 2 C(�) : c � �g; I

2

= C(�)� I

1

.

Thus �

0

is a portrayal of G. Now �(�) is small, and so �

0

is T {central.

Moreover, the warp in �

0

of each cell of C(�

0

) � fc

0

g is the same as in �. To

complete the proof we must show that c

0

has warp in �

0

at most the warp (q say) of

� at �, where � is the cu� of � containing n

1

; n

2

. (For then it will follow that �

0

resembles or is simpler than �; and it cannot be simpler, since � is 0{redundant.)

By (5.1), q > 1.

Let F

0

= bd(�) \ �; then F

0

is a [0; 1]{arc with ends n

1

; n

2

. Let F

00

� �

be the other [0; 1]{arc with ends n

1

; n

2

. >From (6.7) we deduce that for every

n 2 N(�) \ F

0

; �(n

1

+) \ �(n

2

+) � �(n+). >From (7.3), c

0

has warp 6 q in �

0

.

This completes the proof. �

8. THE PAINTING OF A TRUE PORTRAYAL

Now we begin to use the results of the last two sections to show that, if G

has a T {central portrayal with reasonable redundancy, then it has a resembling

T {central portrayal with even more desirable properties.

Let � = (�;�; �; �; 
) be a portrayal ofG. Its truth is the sequence (�

1

; : : : ; �

6

)
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where

�

i

= jfc 2 C(�) : c is internal and j~cj = 4� igj(i = 1; : : : ; 4)

�

5

= jN(�)� bd(�)j

�

6

= jN(�) \ bd(�)j :

We order truths lexicographically; thus, if �

0

is another portrayal with truth (�

0

1

; : : : ; �

0

6

),

we say that � is truer than �

0

if for some k (1 6 k 6 6), �

i

= �

0

i

for 1 6 i < k and

�

k

< �

0

k

.

Let T be a tangle in a hypergraph G. A 0{redundant T {central portrayal

� is true (relative to T ) if there is no truer T {central portrayal resembling �.

(Certainly there is none simpler than �, since � is 0{redundant.) In this section

we shall study properties of paintings in true portrayals. Throughout this section,

� = (�;�; �; �; 
) is a true, (2p+3){redundant, T {central portrayal of a hypergraph

G with warp 6 p, and ord(T ) > 4p+ 5.

(8.1) Every region of � is an open disc.

Proof. Otherwise, there is an O{arc F � � with F \U(�) = ; such that there is no

disc � � � with bd(�) = F and �\U(�) = ;. But then (7.1), applied to the disc

provided by (6.4), yields a truer T {central portrayal resembling �, a contradiction.

�

(8.2) The boundary of every region is an O{arc, and in particular, j~cj > 2 for every

cell c.

Proof. The second claim follows from the �rst. If the �rst is false then there is a

�{normal O{arc F with jF \ N(�)j = 1, such that there is no disc � � F with

bd(�) = F and � \ U(�) � F . Hence (7.1) and (6.4) yield a truer portrayal, a

contradiction. �

(8.3) For every �{normal I{arc F with jF \N(�)j = 2, there is a disc � � � with

F � bd(�) � F [ bd(�) such that � \ N(�) � F and � includes exactly one cell

of �.

Proof. By (6.3), there is a disc � � � with F � bd(�) � F [ bd(�) such that �(�)

is small. But (7.4) applied to � does not yield a truer portrayal, and so the result

holds. �

(8.4) dom(
) = N(�).

Proof. Suppose that n 2 N(�)� dom(
). If n 2 ~c and c is internal then shrinking
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c from n yields a truer portrayal, a contradiction. Thus, n 2 ~c for only two cells c,

both border cells. But this contradicts (8.3). �

(8.5) For every �{normal O{arc F � � with jF \N(�)j 6 3, there is a disc � � �

with F = bd(�) such that �(�) is small, and either

(i) � \N(�) � F and � includes at most one cell of �, or

(ii) jF \N(�)j = 3, and j~cj = 2 for every cell c � �.

Proof. By (6.4), there is a disc � � � with F = bd(�) such that �(�) is small.

We may assume that � includes some cell, for otherwise (i) holds, by (8.2). We

may therefore assume that there is a cell c � � with j~cj > jF \N(�)j, for otherwise

(ii) holds, by (8.2). But (7.2) applied to � does not yield a truer portrayal, and so

(i) holds, as required. �

(8.6) If c is an internal cell, then jc\ bd(�)j 6 2, and if equality holds then j~cj = 3

and the two members of ~c \ bd(�) are consecutive.

Proof. >From (8.3), any two members of c \ bd(�) lie on the same cu�, and are

consecutive nodes in that cu�. It follows that jc \ bd(�)j 6 2 (unless c \ bd(�) =

N(�) and jC(�)j 6 4, which is easily seen to be impossible). If jc \ bd(�)j = 2,

then again there is an I{arc violating (8.3) unless j~cj � 3, as required. �

We de�ne C

?

(�) to be the set of all c 2 C(�) such that there is no c

0

2 C(�)

with c

0

6= c and ~c � ~c

0

.

(8.7) For every node n there are at least two cells c 2 C

?

(�) with n 2 ~c, and if

there are only two and j~cj = 2 for one of them, then c is a border cell.

Proof. If there is at most one such c, then n is internal and (8.5) is violated. If

there are only two, and j~cj = 2 for one of them, then (8.5) is violated, unless c is a

border cell. �

(8.8) If c

1

; c

2

are distinct cells with ~c

1

� ~c

2

, then c

1

is a border cell, and j~c

2

j = 3

Proof. If c

1

is a border cell the claim follows from (8.6). Suppose then that c

1

is internal. If c

2

is a border cell, then ~c

1

= ~c

2

and (8.6) is violated. Thus c

2

is

internal. De�ne �

0

= (U(�)� c

1

; N(�)); this is a painting. De�ne

�

0

(c

2

) = �(c

1

) [ �(c

2

)

�

0

(c) = �(c) (c 2 C(�

0

)� c

2

) :

Then (�;�

0

; �

0

; �; 
) is a truer portrayal, a contradiction. �
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9. CELL CONNECTIVITY IN A TRUE PORTRAYAL

Again, throughout this section � = (�;�; �; �; 
) is a true, (2p+3){redundant,

T {central portrayal of a hypergraph G, with warp 6 p, and ord(T ) > 4p+5. Now

we study connectivity properties of the �(c)'s for individual cells c.

(9.1) Let c

0

be an internal cell, and let v

1

; v

2

2 
(~c

0

). Then there is a path in �(c

0

)

?

from v

1

to v

2

with no other vertex in 
(~c

0

).

Proof. Otherwise there is a separation (A

1

; A

2

) of �(c) with v

i

2 V (A

i

) (i = 1; 2)

and V (A

1

\A

2

) � 
(~c

0

)�fv

1

; v

2

g. Hence jV (A

1

\A

2

)j 6 1. Choose discs �

1

;�

2

�

c

0

such that

�

1

\�

2

= fn 2 ~c

0

: 
(n) 2 V (A

1

\A

2

)g

�

i

� fn 2 ~c

0

: 
(n) 2 V (A

i

)g (i = 1; 2) :

Let c

i

= �

i

� N(�) (i = 1; 2), and let �

0

= ((U(�) � c

0

) [�

1

[�

2

; N(�)). Then

�

0

is a painting in � with C(�

0

) = (C(�)� fc

0

g) [ fc

1

; c

2

g. De�ne

�

0

(c

1

) = A

1

; �

0

(c

2

) = A

2

�

0

(c) = �(c) (c 2 C(�

0

)� fc

1

; c

2

g) :

Then (�;�

0

; �

0

; �; 
) is a T {central portrayal of G resembling � but truer, a con-

tradiction. �

(9.2) Let c

0

be an internal cell with j~c

0

j = 3, and ~c

0

= fn

1

; n

2

; n

3

g. Then there do

not exist subhypergraphs A

1

; A

2

; A

3

� �(c

0

) and v 2 V (�(c

0

)) such that 
(n

i

) 2

V (A

i

) (i = 1; 2; 3), A

1

[ A

2

[ A

3

= �(c

0

), and for 1 6 i < j 6 3, E(A

i

\ A

j

) = ;

and V (A

i

\A

j

) = fvg.

Proof. Suppose that such A

1

; A

2

; A

3

exist. By (9.1), v 6= 
(n

1

); 
(n

2

); 
(n

3

).

Choose n

0

2 c

0

, and discs �

i

� c

0

with n

i

2 �

i

(1 = 1; 2; 3) such that for

1 6 i < j 6 3, �

i

\�

j

= fn

0

g. Let c

i

= �

i

� fn

0

; n

i

g (i = 1; 2; 3), and let

�

0

= ((U(�)� c

0

) [�

1

[�

2

[�

3

; N(�) [ fn

0

g) :

De�ne �

0

(c

i

) = A

i

(i = 1; 2; 3) and �

0

(c) = �(c) (c 2 C(�

0

) � fc

1

; c

2

; c

3

g). De�ne




0

(n

0

) = v, 


0

(n) = 
(n) (n 2 N(�

0

) � fn

0

g). Then (�;�

0

; �

0

; �; 


0

) is a T {central

portrayal of G resembling � but truer, a contradiction. �

(9.3) Let c

0

be a cell bordering a cu� � with ~c

0

= fn

1

; n

2

g, and let � have warp

q at �. Suppose that there is no internal cell c with ~c

0

� ~c. Then there are q + 1
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mutually vertex{disjoint paths of �(c

0

) from �(n

1

+) to �(n

2

+), and in particular

j�(n

i

)j = q (i = 1; 2).

Proof. Otherwise, there is a separation (A

1

; A

2

) of �(c

0

) of order6 q with �(n

1

+) �

V (A

1

) and �(n

2

+) � V (A

2

). Let r be the region of � with r \ c

0

6= ;. Then

r \ bd(�) = fn

1

; n

2

g, for otherwise there would be an I{arc violating (8.3). Since

there is no internal cell c with ~c

0

� ~c, it follows that there is an internal node n

0

incident with r. Let �

0

� r [ fn

0

g [ c

0

be a disc with fn

0

g \ c

0

� �

0

. Then

n

0

; n

1

; n

2

2 bd(�

0

); let F

1

� bd(�

0

) be the line segment between n

0

and n

1

not

containing n

2

, and de�ne F

2

similarly. For i = 1; 2, let �

i

� r [ fn

0

; n

i

g be a disc

with �

0

\�

i

= F

i

. Let �

0

= �� (�

0

� (F

1

[ F

2

)), let

�

0

= ((U(�) � c

0

) [�

1

[�

2

; N(�)) :

Then �

0

is a painting in �

0

, and c

i

= �

i

�fn

0

; n

i

g is a cell of it (i = 1; 2). For i =

1; 2, let A

0

i

be the hypergraph with E(A

0

i

) = E(A

i

) and V (A

0

i

) = V (A

i

) [ f
(n

0

)g.

De�ne

�

0

(c

i

) = A

0

i

(i = 1; 2)

�

0

(c) = �(c) (c 2 C(�)� fc

0

g)

�

0

(n

0

) = V (A

1

\A

2

)

�

0

(n) = �(n) (n 2 N(�) \ bd(�)) :

It is straightforward to verify that �

0

= (�

0

;�

0

; �

0

; �

0

; 
) is a portrayal of G. More-

over, it has warp 6 q at �, for jV (A

1

\A

2

)j 6 q, and there is no linkage in �

0

(c

1

)

between �(n

1

+) and �(n

0

+) of cardinality q+1 since 
(n

0

) is an isolated vertex of

�

0

(c

1

) and is not in �(n

1

+) (and similarly for �

0

(c

2

)). Since A

i

is small and hence

A

0

i

is small (i = 1; 2) by (4.1)(ii), it follows that �

0

is T {central. But it is truer

than �, a contradiction. �

(9.4) Let � have warp q at a cu� �; then j�(n)j = q for all n 2 N(�) \�.

Proof. Let n

1

2 N(�) \ �, and suppose that j�(n

1

)j < q. Let c

0

be a border

cell with n

1

2 ~c

0

. Since j�(n

1

)j < q there are not q + 1 mutually vertex{disjoint

paths as in (9.3), and so by (9.3) there is an internal cell c

3

with ~c

0

� ~c

3

. By (8.8)

j~c

3

j = 3 and by (8.6) the third node of ~c

3

is internal. Let ~c

3

= fn

1

; n

2

; n

3

g where

~c

0

= fn

1

; n

2

g and n

3

is internal.

Let F

i

� c

3

[ fn

i

; n

3

g be a closed line segment with ends n

i

; n

3

and F

i

\

bd(c

3

) = fn

i

; n

3

g (i = 1; 2), chosen so that F

1

\ F

2

= fn

3

g. Let � � � be the disc
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bounded by F

1

[F

2

[(c

0

\�) and let �

0

= ��(��(F

1

[F

2

)). Let F

0

1

be the closed

line segment in bd(c

3

) between n

3

and n

1

not containing n

2

, and de�ne F

0

2

similarly.

For i = 1; 2, let �

i

be the disc bounded by F

i

[F

0

i

, and let c

i

= �

i

� fn

i

; n

3

g. Let

�

0

= (U(�)� (�� (F

1

[ F

2

)); N(�)) ;

then �

0

is a painting in �

0

and c

1

; c

2

are cells of it. By (8.3) , C(�

0

) = (C(�) �

fc

0

; c

3

g) [ fc

1

; c

2

g. De�ne

�

0

(c

1

) = �(c

0

) [ �(c

3

)

V (�

0

(c

2

)) = �(n

1

) [ f
(n

1

); 
(n

3

)g; E(�

0

(c

2

)) = ;

�

0

(c) = �(c) (c 2 C(�)� fc

0

; c

3

g)

�

0

(n

3

) = �(n

1

+)

�

0

(n) = �(n) (n 2 N(�) [ bd(�)) :

Let �

0

= (�

0

;�

0

; �

0

; �

0

; 
); we claim that �

0

is a portrayal of G. (P1){(P6) are

obvious; let us verify (P7). Let �

0

be the cu� of �

0

corresponding to �, and let

m

1

;m

2

;m

3

;m

4

2 N(�

0

) border �

0

in order. We must show that

�(m

1

+) \ �(m

3

+) � �(m

2

+) [ �(m

4

+) :

We may assume that m

1

;m

2

;m

3

;m

4

are all distinct, and that one of them is n

3

;

indeed, we may assume that m

1

= n

3

or m

2

= n

3

. If m

1

= n

3

, then n

1

;m

2

;m

3

;m

4

are in order around � (although they are not necessarily distinct), and so

�(n

1

+) \ �(m

3

+) � �(m

2

+) [ �(m

4

+) :

Since �(n

1

+) \ �(m

3

+) = �

0

(m

1

+) \ �(m

3

+) since 
(n

3

) =2 �(m

3

+), the claim

follows. Ifm

2

= n

3

it follows similarly, since nowm

1

; n

1

;m

3

;m

4

are in order around

�.

Thus, �

0

is a portrayal, and by (4.1)(ii) it is T {central. It remains to check

its warp, and it su�ces to check the warp of c

1

and c

2

in �

0

. Since j�

0

(n

1

+)j 6 q,

it follows that c

1

has warp 6 q. Let fP

0

; : : : ; P

q

g be a linkage in �

0

(c

2

) from

�

0

(n

2

+) = �(n

2

+) to �

0

(n

3

+) = �(n

1

+) [ f
(n

3

)g. Then 
(n

3

) is the terminal

vertex of one of these paths, say P

0

; and we must show that P

0

has initial vertex


(n

2

). But 
(n

1

); 
(n

2

) are not internal vertices of P

0

, since each of them is an end

of one of P

0

; : : : ; P

q

. But 
(n

3

) =2 �(c

0

), and so the edge of P

0

incident with 
(n

3

)
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is an edge of �(c

3

)

?

. Since no internal vertex of P

0

is in 
(c

3

) it follows that P

0

is

a path of 
(c

3

), and hence its initial vertex is in

�(n

2

+) \ V (�(c

3

)) = f
(n

2

)g [ (f
(n

1

)g \ �(n

2

)) :

But 
(n

1

) is the terminal vertex of one of P

1

; : : : ; P

q

and so is not the initial vertex

of P

0

; and so 
(n

2

) is the initial vertex of P

0

as required.

We conclude that �

0

is a T {central portrayal of G, resembling or simpler than

�. But it is truer, a contradiction. �

We shall need the following standard lemma from network 
ow theory. If H

is a graph and X � V (H), we denote by HnX the graph obtained by deleting X.

(9.5) Let H be a graph, let A;B � V (H), and let X � A and Y � B with

jXj = jY j = q. Suppose that there is a linkage in Hn(A�X) from X to a q{subset

of B, and there is a linkage in Hn(B � Y ) from a q{subset of A to Y . Then either

there is a linkage in Hn((A�X)[(B�Y )) from X to Y , or there are q+1 mutually

vertex{disjoint paths in H from A to B.

(9.5) is used to prove the following.

(9.6) Let c

0

be a cell bordering a cu� � with ~c

0

= fn

1

; n

2

g, and let � have a warp

q at �. Then there are q mutually vertex{disjoint paths of �(c

0

)

?

from �(n

1

) to

�(n

2

), each containing neither 
(n

1

) nor 
(n

2

).

Proof. We claim �rst that there is a linkage in �(c

0

)

?

nf
(n

1

)g from �(n

1

) to a

subset of �(n

2

+) of cardinality q. For suppose not; then by Menger's theorem, there

is a separation (A

1

; A

2

) of �(c

0

) of order q with �(n

1

+) � V (A

1

) and �(n

2

+) [

f
(n

1

)g � V (A

2

). Let c

1

be the border cell with c

1

6= c

0

and n

1

2 ~c

1

. De�ne

�

0

(c

0

) = A

2

�

0

(c

1

) = A

1

[ �(c

1

)

�

0

(c) = �(c) (c 2 C(�)� fc

0

; c

1

g)

�

0

(n

1

) = V (A

1

\A

2

)� f
(n

1

)g

�

0

(n) = �(n) (n 2 N(�) \ bd(�)� fn

1

g) :

Then �

0

= (�;�; �

0

; �

0

; 
) is a �{central portrayal resembling or simpler than �.

(Both c

1

and c

2

have warp 6 q in �

0

because j�

0

(n

1

)j < q.) Hence �

0

resembles �,

and (since � is unchanged) �

0

is true; but j�

0

(n

1

)j < q, contrary to (9.4).
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Thus there is a linkage in �(c

0

)nf
(n

1

)g from �(n

1

) to a q{subset of �(n

2

+),

and similarly there is a linkage in �(c

0

)n
(n

2

) from �(n

2

) to a q{subset of �(n

1

+).

>From (9.5) we deduce that either there is a linkage in �(c

0

)nf
(n

1

); 
(n

2

)g from

�(n

1

) to �(n

2

) (and hence the theorem holds) or there is a linkage fP

0

; : : : ; P

q

g of

cardinality q+1 from �(n

1

+) to �(n

2

+). We may therefore assume the latter. By

the warp condition it pairs 
(n

1

) with 
(n

2

), and so we may assume P

0

has initial

vertex 
(n

1

) and terminal vertex 
(n

2

); but then P

1

; : : : ; P

q

satis�es the theorem.

�

(9.7) For every border node n; �(n) \ 
(N(�)) = ;.

Proof. Let n border a cu� �, and suppose that 
(n

0

) 2 �(n) for some n

0

2

dom(
) = N(�). By (P4), n

0

borders �. Let c

1

; c

2

be the border cells with

n

0

2 ~c

1

; ~c

2

and let ~c

i

= fn

0

; n

i

g (i = 1; 2). Then n; n

1

; n

0

; n

2

are in order, and so


(n

0

) 2 �(n+) \ �(n

0

+) � �(n

1

+) [ �(n

2

+)

and we may assume that 
(n

0

) 2 �(n

1

+). Since n

0

6= n

1

and so 
(n

0

) 6= 
(n

1

), it

follows that 
(n

0

) 2 �(n

1

). But by (9.6) there is a linkage from �(n

0

) to �(n

1

) not

passing through 
(n

0

), a contradiction. �

We summarize (9.3), (9.4), (9.6), (9.7) in the following.

(9.8) Let c

0

be a border cell with c

0

= fn

1

; n

2

g. Then

(i) j�(n

1

)j = j�(n

2

)j =q and �(n

1

) \ 
(N(�)), �(n

2

) \ 
(N(�)) = ;

(ii) there is a linkage fP

1

; : : : ; P

q

g in �(c

0

)nf
(n

1

); 
(n

2

)g from �(n

1

) to �(n

2

)

such that either there is a path P

0

such that fP

0

; P

1

; : : : ; P

q

g is a linkage

in �(c

0

) from �(n

1

+) to �(n

2

+), or there is an internal cell c with j~cj = 3

and ~c

0

� ~c.

10. CIRCUMNAVIGATING A VORTEX

Throughout this section, � = (�;�; �; �; 
) is a true, T {central portrayal

of a hypergraph G, with warp p, and it is z{redundant where z > 2p + 3, and

ord(T ) > z + 2p+ 2.

Assign arbitrarily an orientation to each cu� of �, called clockwise. Then

for each cell c bordering a cu� �, we may call one member of ~c the tail of c and

the other its head, so that the head of each cell is the tail of the next as the cu�

is traversed clockwise. Let c be a border cell with tail n

1

and head n

2

, and let c

have warp q in �. By (9.8) we may choose a linkage fQ

1

; : : : ; Q

q

g of �(c) from
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�(n

1

) to �(n

2

) such that 
(n

1

); 
(n

2

) =2 V (Q

1

); : : : ; V (Q

q

), and either there is a

linkage fQ

0

; Q

1

; : : : ; Q

q

g of �(c) from �(n

1

+) to �(n

2

+), or there is an internal

cell c

0

with ~c � ~c

0

. Choose such a linkage fQ

1

; : : : ; Q

q

g arbitrarily; we call it the

standard linkage in �(c).

Let � be a cu�, let � have warp q at �, let n

0

be a node bordering �, and let

v 2 �(n

0

). Let the nodes and cells bordering � be n

0

; c

1

; n

1

; c

2

; : : : ; c

k

; n

k

= n

0

,

in clockwise order. Let v

0

= v, and inductively, having de�ned v

0

; : : : ; v

i�1

and

P

1

; : : : ; P

i�1

for some 1 6 i 6 k, let P

i

be the path of the standard linkage in �(c

i

)

from �(n

i�1

) to �(n

i

) with initial vertex v

i�1

, and let v

i

be its terminal vertex.

From this inductive de�nition we see that v

i

2 �(n

i

) (0 6 i 6 k). We de�ne

L(v; n

0

) to be P

1

[ : : : [ P

k

.

(10.1) With notation as before, if v

k

6= v then L(v; n

0

) is a path, and if v

k

= v

then L(v; n

0

) is a circuit; and for distinct v; v

0

2 �(n

0

); L(v; n

0

) and L(v

0

; n

0

) are

edge{disjoint, and if some vertex u belongs to both of them then both are paths and

u is an initial vertex of one and a terminal vertex of the other.

The proof (using (6.6) with jXj = 1 and (P6) and (P7)) is clear but lengthy,

and we omit it.

(10.2) There is no (A;B) 2 T of order 6 z with V (L(v; n

0

)) � V (A).

Proof. Suppose that such an (A;B) exists, and choose it with B minimal. By [1,

theorem (2.8)], L(v; n

0

) � A. De�ne P

1

; : : : ; P

k

as before, and then we see that for

1 6 i 6 k; P

i

is a path of (A \ �(c

i

))

?

from �(n

i�1

) to �(n

i

). But this contradicts

(6.5). �

(10.3) For each cu� �, there is no (A;B) 2 T of order 6 z with 
(N(�) \ �) �

V (A).

Proof. Suppose that there is such an (A;B), and choose it with A maximal and

B minimal. By [1, theorem (2.8)] applied to a separation (B

1

; B

2

) of B with

B

1

\ B

2

= A \ B, we deduce that G=V (A) is connected. By (4.3), since A has

6 z < ord(T ) � 2p attachments, there exists n

0

2 N(�) with 
(n

0

) =2 V (A). By

(5.1) and (10.2), there exists c

0

2 C(�) bordering � with V (�(c

0

)) * V (A). Since

G=V (A) is connected there is a path P of (G=V (A))

?

with one end 
(n

0

) and the

other in V (�(c

0

)). But by (2.1), (A

1

; A

2

) is a separation of G where

A

1

= [(�(c) : c 2 C(�) borders �)

A

2

= [(�(c) : c 2 C(�) does not border �)
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and V (A

1

\ A

2

) � 
(N(�) \ �). Since P has one end in V (A

1

) and the other

in V (A

2

) (for 
(n

0

) 2 V (A

2

) by (8.7)) it follows that V (P \ A

1

\ A

2

) 6= ;. But

V (P ) � V (G)� V (A), and

V (A

1

\A

2

) � 
(N(�) \�) � V (A) ;

a contradiction. �

11. SURFACE SEPARATIONS IN A TRUE PORTRAYAL

This section is devoted to analyzing separations (A;B) 2 T with �(c

0

) � A

of order 6 jV (�(c

0

) \ �(�c

0

))j, for cells c

0

in a true portrayal. Throughout this

section � = (�;�; �; �; 
) is a true, (2p + 4){redundant, T {central portrayal of a

hypergraph G, with warp 6 p, and ord(T ) > 6p + 8. For I � C(�) we de�ne


(I) = [(
(~c) : c 2 I). We begin with the following.

(11.1) Let I; J be a partition of C(�) with 
(I); 
(J) 6= N(�) and j
(I)\
(J)j 6 3.

Then j
(I) \ 
(J)j = 3 and there is a disc � � � such that:

(i) fc 2 C(�) : c � �g is one of I; J

(ii) �(�) is small, and

(iii) either bd(�) is a �{normal O{arc in � and N(�) \ bd(�) = 
(I) \ 
(J),

or F � bd(�) � F [ bd(�) and N(�)\F = 
(I)\ 
(J) for some �{normal

I{arc F .

Proof. Let

b

� be a surface with bd(

b

�) = ;, obtained from � by pasting a disc onto

each cu� of �. We may regard � as a painting in

b

�. For each region r of � in

b

�, r

is an open disc and r � r is an O{arc by (8.1) and (8.2). Choose a representative

point from each region of � in

b

�, and let H be the simple bipartite graph with

vertex set the union of N(�) and the set of all these representative points, in which

the point representing a region r is adjacent to n 2 N(�) if n 2 r. Take a drawing

of H in

b

� in the natural way, and for each circuit C of H let U(C) be the O{arc

in

b

� corresponding to C in the drawing.

(1) For every circuit C of H of length 6 6, either

(i) U(C) is a �{normal O{arc in �, or

(ii) U(C) \� is a �{normal I{arc in �, or

(iii) U(C)\N(�) = fn

1

; n

2

; n

3

g � � for some cu� � of �, and U(C)\� = F

1

[

F

2

where F

1

; F

2

are �{normal I{arcs with F

i

\ N(�) = fn

i

; n

3

g (i = 1; 2)

and F

1

\ F

2

= fn

3

g.
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Subproof. Since jE(C)j 6 6 it follows that jU(C) \N(�)j 6 3 and so U(C) meets

at most one component of

b

� � �. If U(C) � � then (i) holds, and so we assume

that for some component r of

b

�� �, the point v representing r belongs to C. Its

neighbours in C are both nodes n

1

; n

2

2 N(�) bordering the corresponding cu� �.

If no other point of U(C) \ � belongs to bd(�) then (ii) holds; and if some point

n

3

2 U(C) \� belongs to bd(�), then n

3

2 N(�) and n

3

2 � by (6.3), and so (iii)

holds. This proves (1).

>From (1), (6.3) and (6.4) it follows that for every circuit C of H of length

6 6, there is a disc ins(C) �

b

� bounded by U(C) such that �(ins(C)) is small.

>From (1), (8.3) and (8.4), we deduce that:

(2) For every circuit C of H with jE(H)j = 4, ins(C) is the closure of a region of

H in

b

�.

Now every region of H includes a unique cell of �, and every cell of � is in a

unique region. Let �(I) be the subgraph of H consisting of all edges e of H (and

their ends) such that one of the regions of H incident with e includes a cell in I,

and the other includes a cell in C(�)� I. We see that

(3) E(�(I)) 6= ;, and every vertex of �(I) has even valency in �(I), and every edge

of �(I) has an end in V (�(I)) \N(�); and

V (�(I)) \N(�) � 
(I) \ 
(J)

and consequently jV (�(I)) \N(�)j 6 j
(I) \ 
(J)j 6 3.

We claim

(4) �(I) is a circuit of length 6.

Subproof. We prove (4) by induction on jE(�(I))j. We suppose, for a contradiction,

that (4) is false, and hence �(I) has a circuit, C say, of length 4, by (3). By (2),

ins(C) includes a unique cell c

0

of �, and u; v 2 U(C) where ~c

0

= fu; vg. If c

0

2 I let

I

0

= I�fc

0

g, and if c

0

=2 I let I

0

= I[fc

0

g. Let J

0

= C(�)�I

0

. Then 
(I

0

) � 
(I)

and 
(J

0

) � 
(J), since u; v 2 
(I)[ 
(J). Consequently, 
(I

0

); 
(J

0

) 6= N(�), and

j
(I

0

)\
(J

0

)j 6 3. Moreover, E(�(I

0

)) = E(�(I))�E(C), and so from the inductive

hypothesis, �(I

0

) is a circuit of length 6. By (3), V (�(I)) \ N(�) � V (�(I

0

)), and

so there is a 2{edge path joining u and v in �(I

0

). Consequently there are three

2{edge paths joining u and v in H, contrary to (2). This proves (4).

Let �(I) = D. Now U(D) partitions C(�) into two sets, those cells within
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ins(D) and the remainder, and by de�nition of �(I), one of these sets is I and the

other is J . By applying (1) to D we see there are three cases.

Case 1: U(D) is a �{normal O{arc in �.

Let � = ins(D); then the theorem holds.

Case 2: U(D) \� = F is a �{normal I{arc in �.

Let � be the disc provided by (6.3); then the theorem holds.

Case 3: U(D)\N(�) = fn

1

; n

2

; n

3

g � � for some cu� �, and U(C)\� = F

1

[F

2

where F

1

; F

2

are �{normal I{arcs with F

i

\N(�) = fn

1

; n

3

g (i = 1; 2) and F

1

\F

2

=

fn

3

g.

By applying (8.3) to F

1

and to F

2

, we see that ins(D) \N(�) = fn

1

; n

2

; n

3

g

and so one of 
(I); 
(J) = N(�), a contradiction.

This completes the proof. �

(11.2) Let (A;B) 2 T have order < ord(T )� 4p� 3, let c

0

2 C(�) with �(c

0

) � A,

let I; J be a partition of C(�) so that 
(I) � V (A) and 
(J) � V (B) and let

jfn 2 N(�) : 
(n) 2 V (A \B)gj 6 j~c

0

j :

Then equality holds, and either

(i) fn 2 N(�) : 
(n) 2 V (A)g = ~c

0

and 
(n) 2 V (B) for all n 2 N(�), or

(ii) j~c

0

j = 3, and there is a �{normal I{arc F and a disc � � � with �(�)

small and with F � bd(�) � F [ bd(�), such that I = fc 2 C(�) : c � �g

and for all n 2 N(�), 
(n) 2 V (A) if and only if n 2 �, and 
(n) 2 V (B)

if and only if n 2 ���.

Proof. Let X = fn 2 N(�) : 
(n) 2 V (A)g, and Y = fn 2 N(�) : 
(n) 2 V (B)g.

Then X [ Y = N(�), ~c

0

� X, jX \ Y j 6 j~c

0

j and ~c � X or ~c � Y for every cell c.

Moreover, 
(I) � X and 
(J) � Y , and so

j
(I) \ 
(J)j 6 jX \ Y j 6 jc

0

j 6 3 :

Since A is small and has < ord(T ) � 2p attachments, it follows from (4.3) that


(n) =2 V (A) for some n 2 N(�), and consequently X 6= N(�) and so 
(I) 6= N(�).

Suppose �rst that 
(J) 6= N(�). Then by (11.1), j
(I) \ 
(J)j = 3 and there is a

disc � as in (11.1). Since

j
(I) \ 
(J)j 6 jX \ Y j 6 jc

0

j 6 3
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it follows that equality holds throughout, and in particular 
(I) \ 
(J) = X \ Y ,

and jX \ Y j = jc

0

j = 3. Moreover, X = 
(I) and Y = 
(J). Since A has

< ord(T )� 4p� 3 attachments and �(�) has 6 2p+3 attachments, it follows that

A [ �(�) has < ord(T ) � 2p attachments; and since A and �(�) are small, we

deduce from (4.1)(ii) that A [ �(�) is small. By (4.3) there exists n 2 N(�) with


(n) =2 V (A [ �(�)). Hence n =2 �, and n =2 X, and so every cell c with n 2 ~c

belongs to J . Since there is such a cell, it follows that fc 2 C(�) : c � �g 6= J , and

so fc 2 C(�) : c � �g = I. We deduce that X � �\N(�) and Y � ���\N(�)

(because X = 
(I) and Y = 
(J)).

Let us investigate the two cases of (11.1)(iii). Suppose, �rst, that bd(�) is a

�{normal O{arc in �. Since c

0

2 I and hence c

0

� �, it follows from (8.5) that

� \N(�) � bd(�), and so Y = N(�) contrary to our assumption. Thus bd(�) is

not a �{normal O{arc in �, and by (11.1)(iii) there is a �{normal I{arc F with

F � bd(�) � F [ bd(�) and N(�) \ F = 
(I) \ 
(J). Then N(�) \ F = X \ Y ,

and (11.2)(iii) holds. We conclude that the theorem is true if 
(J) 6= N(�).

Now let us assume that 
(J) = N(�), and consequently Y = N(�). Since

jX \ Y j 6 j~c

0

j we deduce that jXj 6 j~c

0

j; and since ~c

0

� X it follows that X = ~c

0

.

But then (11.2)(i) holds, as required. �

(11.3) Let F � � be a �{normal I{arc with F \N(�) = fn

1

; n

2

; n

3

g, where F has

ends n

1

; n

2

, and let � � � be the disc with �(�) small and F � bd(�) � F [bd(�).

Suppose that there is a cell c

0

� � with j~c

0

j = 3. Then either

(i) ~c

0

= � \N(�) or

(ii) there is no separation (A

1

; A

2

) of �(�) with V (A

1

\A

2

) = f
(n

1

); 
(n

2

)g,


(n

3

) 2 V (A

1

), and �(n

1

) [ �(n

2

) � V (A

2

).

Proof. Suppose that (ii) is false, and let (A

1

; A

2

) be a separation as in (ii). Let

F

0

= bd(�) \ bd(�) and let F

1

; F

2

� � be closed line segments, both with ends

n

1

; n

2

and with

F

1

\ F

2

= (F

1

[ F

2

) \ bd(�) = fn

1

; n

2

g ;

where F

2

is a subset of the disc in � bounded by F

1

[ F

0

. Let �

2

� � be the disc

bounded by F

0

[F

2

and let �

1

� � be the disc bounded by (bd(�)�F

0

)[F

1

. Let

�

0

= ((U(�)��) [�

1

[�

2

; (N(�)��) [ fn

1

; n

2

; n

3

g) :

Then �

0

is a painting in � and c

1

= �

1

�fn

1

; n

2

; n

3

g, c

2

= �

2

� fn

1

; n

2

g are cells
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of it, and C(�

0

) = fc

1

; c

2

g [ fc 2 C(�) : c * �g. De�ne

�

0

(c

1

) = A

1

�

0

(c

2

) = A

2

�

0

(c) = �(c) (c 2 C(�

0

)� fc

1

; c

2

g)

�

0

(n) = �(n) (n 2 N(�

0

) \ bd(�))




0

(n) = 
(n) (n 2 N(�

0

)) :

Then it is easy to check that �

0

= (�;�

0

; �

0

; �

0

; 


0

) is a portrayal of G. Since �(�)

is small it follows that A

1

and A

2

are small, and so �

0

is T {central. Let us check its

warp. It su�ces to check the warp condition for c

2

. Now �(n

1

+)\�(n

2

+) � �(n+)

for every n 2 N(�)\F

0

, by (6.7) with z = 2p+4, since � is (2p+4){redundant and

ord(T ) > 4p+ 6. By applying (7.3) to the \restriction" of � to A

2

we deduce that

the warp condition holds for c

2

. Consequently, �

0

is a T {central portrayal of G,

resembling �. Since it is not truer, and yet � includes a cell c

0

of � with j~c

0

j = 3,

it follows that (i) holds. �

We denote by S the union, over all border cells c, of the vertex set of the

standard linkage in �(c). For any separation (A;B) of G we de�ne

D(A;B) = fc 2 C

?

(�) : 
(~c) * V (A) and 
(~c) * V (B)g :

(We remind the reader that C

?

(�) was de�ned immediately before (8.7).)

(11.4) For any separation (A;B) of G, if d 2 D(A;B) then

V (A \B) \ (V (�(d)) � (S [ V (�(�d)))) 6= ; :

Proof. There exists u

1

2 
(

~

d) � V (A) and u

2

2 
(

~

d) � V (B) since 
(

~

d) * V (A)

and 
(

~

d) * V (B). There is a path P of �(d)

?

from u

1

to u

2

with no internal vertex

in S [ V (�(�d)); for if d is internal then this follows from (9.1) since

V (�(d)) \ (S [ V (�(�d))) = 
(

~

d) ;

while if d is a border cell then since d 2 C

?

(�); P exists by de�nition of the standard

linkage. Since u

1

2 V (B)�V (A) and u

2

2 V (A)�V (B), there is an internal vertex

v of P in V (A \B). But then

v 2 V (A \B) \ V (�(d)) � (S [ V (�(�d)))
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as required. �

(11.5) For any separation (A;B) of G,

jD(A;B)j 6 jV (A \B)� (S [ 
(N(�)))j :

Proof. For each d 2 D(A;B), there exists

v

d

2 V (A \B) \ (V (�(d)) � (S [ V (�(�d))))

by (11.4). Since v

d

2 V (�(d)) � V (�(�d)), it follows that the vertices v

d

(d 2

D(A;B)) are all distinct. Moreover, each v

d

belongs to V (A \ B), and not to

S [ 
(N(�)), since 
(N(�)) � V (�(�d)). Hence

jD(A;B)j = jfv

d

: d 2 D(A;B)gj 6 jV (A \B)� (S [ 
(N(�)))j

as required. �

Throughout the remainder of this section, c

0

2 C(�) and (A;B) 2 T with

�(c

0

) � A, satisfying

jV (A \B)j 6 jV (�(c

0

) \ �(�c

0

))j :

(11.6) jV (A \B)� Sj 6 j~c

0

j, and if equality holds then

jV (A \B) \ Sj = jV (�(c

0

) \ �(�c

0

)) \ Sj :

Proof. Since jV (A \B)j 6 jV (�(c

0

) \ �(�c

0

))j, it follows that

jV (A\B)\Sj+ jV (A\B)�Sj 6 jV (�(c

0

)\�(�c

0

))\Sj+ jV (�(c

0

)\�(�c

0

))�Sj :

Since jV (�(c

0

) \ �(�c

0

))� Sj = j~c

0

j, it su�ces to show that

jV (A \B) \ Sj > jV (�(c

0

) \ �(�c

0

)) \ Sj :

If c

0

is internal then V (�(c

0

))\ S = ; and the result is trivial. Let c

0

border

a cu� � with head n

1

and tail n

2

. Then

V (�(c

0

) \ �(�c

0

)) \ S = �(n

1

) [ �(n

2

) :

Let � have warp q at �, and let �(n

1

) = fu

1

; : : : ; u

q

g. For 1 6 i 6 q let v

i

be

the terminal vertex of L(u

i

; n

1

). Thus fv

1

; : : : ; v

q

g = fu

1

; : : : ; u

q

g. Let 1 6 i 6 q.
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By (10.2) there is a �rst vertex of L(u

i

; n

1

) which is not in V (A), and it is not u

i

;

and so the previous vertex a

i

of L(u

i

; n

1

) is in V (A \ B). Similarly there is a last

vertex of L(u

i

; n

1

) which is not in V (A), and it is not v

i

; and the next vertex b

i

is

in V (A \B).

By (10.1), the paths L(u

i

; n

1

)nv

i

are mutually vertex{disjoint, and so a

1

; : : : ; a

q

are all distinct, since a

i

6= v

i

(1 6 i 6 q). Similarly, b

1

; : : : ; b

q

are all distinct. Let

1 6 i; j 6 q and suppose that a

i

= b

j

. We claim that a

i

= u

i

= v

j

= b

j

. For

a

i

6= b

i

unless L(u

i

; n

1

) is a circuit and a

i

= u

i

= v

i

= b

i

as required. Hence we

may assume that i 6= j. But L(u

i

; n

1

) and L(u

j

; n

1

) are disjoint, except for u

i

(if

u

i

= v

j

) or u

j

(if u

j

= v

i

). Thus either a

i

= b

j

= u

i

= v

j

or a

i

= b

j

= u

j

= v

i

.

Since a

i

6= v

i

the second is impossible, and the �rst is our claim.

Now if v

j

= b

j

, the vertex of L(u

j

; n

1

) before v

j

is not in V (A) and so the

corresponding path of the standard linkage in �(c

0

) has no edges. Hence v

j

2 �(n

2

).

We have shown then that if a

i

= b

j

then v

j

2 �(n

2

). It follows that

jfa

1

; : : : ; a

q

g \ fb

1

; : : : ; b

q

gj 6 j�(n

1

) \ �(n

2

)j

and so jfa

1

; : : : ; a

q

g [ fb

1

; : : : ; b

q

gj > j�(n

1

) [ �(n

2

)j. The result follows, since

a

1

; : : : ; a

q

; b

1

; : : : b

q

2 V (A \B) \ S. �

(11.7) jV (A \B)j = jV (�(c

0

) \ �(�c

0

))j.

Proof. For each d 2 D(A;B), since j
(

~

dj 6 3, it follows that there exists n

d

2

~

d

such that 
(

~

d) � V (A) [ f
(n

d

)g or 
(

~

d) � V (B) [ f
(n

d

)g. Let A

0

be the graph

with vertex set

V (A) [ f
(n

d

) : d 2 D(A;B)g

and edge set E(A), and de�ne B

0

similarly. Then (A

0

; B

0

) is a separation of G of

order at most jD(A;B)j more than that of (A;B). Since (A;B) has order 6 2p+2

and by (11.5),

jD(A;B)j 6 jV (A \B)� (S [ 
(N(�)))j 6 jV (A \B)� Sj 6 j~c

0

j 6 3 ;

it follows that (A

0

; B

0

) has order 6 2p+5 < ord(T ), and so (A

0

; B

0

) 2 T by (4.1)(ii).

Moreover,

fn 2 N(�) : 
(n) 2 V (A

0

\B

0

)g = fn 2 N(�) : 
(n) 2 V (A\B)g[fn

d

: d 2 D(A;B)g

and so

jfn 2 N(�) : 
(n) 2 V (A

0

\B

0

)gj 6 jfn 2 N(�) : 
(n) 2 V (A \B)gj+ jD(A;B)j

6 jV (A \B) \ 
(N(�))j + jV (A \B)� (S [ 
(N(�)))j

= jV (A \B)� Sj 6 j~c

0

j ;
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by (11.5), (11.6) and since 
(N(�)) \ S = ;. Furthermore, for every c 2 C(�),

either 
(~c) � V (A

0

) or 
(~c) � V (B

0

); for this is true if c 2 C

?

(�)�D(A;B) since

either 
(~c) � V (A) � V (A

0

) or 
(~c) � V (B) � V (B

0

), and it is true if c 2 D(A;B)

by choice of n

c

, and it is true if c =2 C

?

(�) because there exists c

0

2 C

?

(�) with

~c � ~c

0

(and we have seen it is true for c

0

). Hence we may apply (11.2), because

(A

0

; B

0

) has order 6 2p+ 5 < ord(T )� 4p� 3. We deduce that

jfn 2 N(�) : 
(n) 2 V (A

0

\B

0

)gj = j~c

0

j

and if j~c

0

j = 2 then fn 2 N(�) : 
(n) 2 V (A

0

)g = ~c

0

. Since

j~c

0

j = jfn 2 N(�) : 
(n) 2 V (A

0

\B

0

)gj 6 jV (A \B)� Sj 6 j~c

0

j

we deduce that jV (A \B)� Sj = j~c

0

j. The result follows from (11.6). �

12. FILLING OUT A PORTRAYAL OF THE 1{SKELETON

Because of a certain excluded minor theorem for graphs that we shall discuss

later, we sometimes are provided with a portrayal of the 1{skeleton of a hypergraph

G, and what we really want is a portrayal of G itself. In this section we discuss

how to convert one to the other.

We proceed with a series of lemmas. A clique in a hypergraph G is (for our

purposes) a subset of V (G) the members of which are mutually adjacent in G

?

.

(12.1) Let T be a tangle of order > 4p+9 in a hypergraph G, let � = (�;�; �; �; 
)

be a true, (2p + 7){redundant, T {central portrayal of G with warp 6 p, and let �

be a cu� of �. For every clique K of G with

K �

[

(V (�(c)) : c 2 C(�) bordering �)

there is a cell c bordering � with K � V (�(c)).

Proof. We proceed by induction on jKj.

(1) If jKj 6 2 the result is true.

Subproof. If jKj 6 1 it is clear, and so let jKj = 2;K = (x

1

; x

2

g say. Let e 2 E(G)

incident with x

1

; x

2

and choose c 2 C(�) with e 2 E(�(c)). If c borders � the result

holds, and so we assume it does not. For i = 1; 2 there exists c

i

2 c(�) bordering �

with x

i

2 V (�(c

i

)), and since x

i

2 V (�(c)) � V (�(�c

i

)) there exists n

i

2 ~c

i

with
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x

i

2 �(n

i

+). Moreover, x

1

; x

2

2 V (�(c) \ �(�c)). If c is a border cell, bordering

a cu� �

0

6= � say, then by (P6), fx

1

; x

2

g � �(n

0

1

+) [ �(n

0

2

+) for some two nodes

n

0

1

; n

0

2

bordering �

0

. It follows from (P4) that x

1

=2 �(n

1

), and so x

1

= 
(n

1

) since

x

1

2 �(n

1

+); but since n

1

6= n

0

1

; n

0

2

it follows that x

1

2 �(n

0

1

) [ �(n

0

2

) contrary to

(P4). Hence c is an internal cell, and so by (P5), fx

1

; x

2

g � 
(~c) � 
(V (�)). By

(9.8)(i), x

i

=2 �(n

i

), and so x

i

= 
(n

i

) (i = 1; 2). Since x

i

2 
(~c) it follows that

n

i

2 ~c since 
 is an injection (i = 1; 2). Hence there is a �{normal O{arc F with

F \ N(�) = fn

1

; n

2

g; and so by (8.3), there is a border cell c

0

with n

1

; n

2

2 ~c

0

.

Then K � V (�(c

0

)) as required. This proves (1).

Thus we may assume that jKj � 3. Choose x

1

; x

2

; x

3

2 K, distinct. >From

our inductive hypothesis there are cells c

1

; c

2

; c

3

bordering � with

K � fx

i

g � V (�(c

i

)) (i = 1; 2; 3) ;

and we may suppose (for a contradiction) that x

i

=2 V (�(c

i

)) (1; 2; 3) for otherwise

the theorem holds. Hence c

1

; c

2

; c

3

are all distinct.

(2) fx

1

; x

2

; x

3

g \ �(n+) 6= ; for all n 2 N(�) \�.

Subproof. We may assume that c

1

; n; c

2

; c

3

are in order. For i = 1; 2, since x

3

2

V (�(c

i

) \ �(�c

i

)) there is an end n

i

of c

i

so that x

3

2 �(n

i

+)by (P6). Let n

3

be

an end of c

3

. By (P7)

x

3

2 �(n

1

+) \ �(n

2

+) � �(n

3

+) \ �(n+) :

But x

3

=2 �(n

3

+) since x

3

=2 V (�(c

3

)), and so x

3

2 �(n+). This proves (2).

But (2) contradicts (6.6) (taking z = 9). The result follows. �

(12.2) Let T be a tangle of order > 4p + 9 in a hypergraph G, and let � =

(�;�; �; �; 
) be a true, (2p + 7){redundant, T {central portrayal of G, with warp

6 p. Then for every clique K of G, either:

(i) there is a disc � � � such that �(�) is small, K � V (�(�)), and bd(�)

is a �{normal O{arc with jbd(�) \N(�)j 6 3, or

(ii) K � V (�(c)) for some c 2 C(�).

Proof. By an arc of � we mean a component of bd(c)� ~c for some cell c. Each arc

is homeomorphic to the open interval (0; 1), and the arcs of � together with N(�)

yield a drawing of a graph in �, which we denote by H.

(1) If for each x 2 K there is a node n with x = 
(n) then the theorem holds.
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Subproof. Let M = fn 2 N(�) : 
(n) 2 Kg. Then every two members of M are

adjacent in H. If jKj 6 2 the result is clear, and we may assume therefore that

jM j > 3. By (8.5), for every circuit C of H of length 3, there is a disc �(C) � �

with boundary the drawing of C, such that �(�(C)) is small. Choose a circuit

C of H of length 3 with V (C) � M such that �(C) is maximal. We claim that

M � �(C). For suppose that m

0

2M ��(C). Let V (C) = fm

1

;m

2

;m

3

g. Let e

i

be an edge of H joining m

0

and m

i

(i = 1; 2; 3). Let C

i

be the circuit of H with

vertex set fm

0

g[(fm

1

;m

2

;m

3

g�fm

i

g), with one edge in common with C and the

other two from fe

1

; e

2

; e

3

g appropriately. From our choice of C, none of the discs

�(C

1

);�(C

2

);�(C

3

) includes �(C); but then �(C) [�(C

1

) [�(C

2

) [ �(C

3

) is

a sphere, and hence equals �, which is easily seen to be impossible since �(�(C))

and each �(�(C

i

)) are small. We deduce that M � �(C), and hence the theorem

is satis�ed. This proves (1).

Next, we claim

(2) If there exists x 2 K and a cell c with x 2 V (�(c))�V (�(�c)) then the theorem

holds.

Subproof. If y 2 K, there is a cell c

0

with x; y 2 V (�(c

0

)), and hence c

0

= c, since

x 2 V (�(�c)). Thus K � V (�(c)). This proves (2).

>From (1), we may assume that there exists x 2 K such that 
(n) 6= x for

n 2 N(�). We may choose a cell d with x 2 V (�(d)); and by (2), we may assume

that x 2 V (�(d) \ �(�d)). Since x =2 
(

~

d) it follows that d is a border cell and

x 2 �(n) for some end n of d. Let d border a cu� �. For every y 2 K there is a

cell c with x; y 2 V (�(c)); and hence c borders �. We deduce that

K �

[

(V (�(c)) : c 2 C(�) bordering �)

and the theorem follows from (12.1). �

If G is a hypergraph and X � E(G), we denote the subhypergraph

(V (G), E(G)�X) by GnX. If T

0

is a tangle in a subhypergraph G

0

of G, let T be

the set of all separations (A;B) of G of order less then the order of T

0

, such that

(A\G

0

; B \G

0

) 2 T

0

. Then T is clearly a tangle in G; we call it the tangle induced

by T

0

.

(12.3) Let e be an edge of a hypergraph G, and let K be the set of ends of e. Let K

be a clique of Gne. Let T be a tangle in Gne of order > 2p+ 8, inducing a tangle

T

0

in G. Let � = (�;�; �; �; 
) be a 6{redundant, T {central portrayal of Gne with
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warp 6 p. Let c

0

2 C(�) with K � V (�(c

0

)). De�ne �

0

by

�

0

(c

0

) = (V (�(c

0

)); E(�(c

0

)) [ feg)

�

0

(c) = �(c) (c 2 C(�)� fc

0

g) :

Then �

0

= (�;�; �

0

; �; 
) is a T

0

{central portrayal of G, resembling �.

Proof. Since K � V (�(c

0

)); �

0

is a portrayal of G; and from de�nition of T ; �

0

(c

0

)

is small relative to T

0

. Thus �

0

is T

0

{central. We suppose that �

0

does not resemble

�. Then c

0

borders a cu� �, and the warp of c

0

in �

0

is greater than q, the warp

of � at �. Let n

1

; n

2

be the ends of c

0

. Then j�(n

1

+)j = j�(n

2

+)j = q + 1, and

there is a linkage fP

0

; : : : ; P

q

g in �

0

(c

0

) from �(n

1

+) to �(n

2

+) which does not

pair 
(n

1

) with 
(n

2

). Since the warp of � at � is q it follows that fP

0

; : : : ; P

q

g

is not a linkage in �(c

0

), and so there is an edge f of P

0

say with f =2 E(�(c

0

)

?

).

Let f have ends v

1

; v

2

. Since f 2 E(�

0

(c

0

)

?

) it follows that v

1

; v

2

are ends of e,

and so f 2 E((Gne)

?

). Hence there exists c 6= c

0

such that f 2 E(�(c)

?

). Since

v

1

; v

2

2 V (�(c)) it follows that

v

1

; v

2

2 V (�(c

0

) \ �(�c

0

)) = �(n

1

+) [ �(n

2

+) :

But since P

0

; : : : ; P

q

are vertex{disjoint it follows that no internal vertex of P

0

is

in �(n

1

+) [ �(n

2

+); and so P

0

has ends v

1

; v

2

, and v

i

2 �(n

i

+) (i = 1; 2). Since

fP

0

; : : : ; P

q

g does not pair 
(n

1

) with 
(n

2

) and it pairs v

1

with v

2

, we may assume

that v

1

6= 
(n

1

), and so v

1

2 �(n

1

). Consequently c borders �.

(1) fv

1

; v

2

g \ �(n+) 6= ; for every n 2 N(�) \�.

Subproof. Let n 2 (�) \ �; we may assume that n; n

1

; n

2

; c are in order. Since

v

1

2 V (�(c) \ �(�c)), there is an end n

3

of c such that v

1

2 �(n

3

+). Then from

(P7)

v

1

2 �(n

1

+) \ �(n

3

+) � �(n

2

+) [ �(n+) :

But v

1

=2 �(n

2

+), since v

1

6= v

2

and v

2

is the only vertex of P

0

in �(n

2

+). Thus

v

1

2 �(n+), as required.

But (1) contradicts (6.6). The result follows. �

(12.4) Let e be an edge of a hypergraph G, such that the set of ends of e is a clique

of Gne. Let T be a tangle in Gne, of order > 4p + 9, inducing a tangle T

0

in G.

Let � be a (2p + 7){redundant, T {central portrayal of Gne with warp 6 p. Then

there is a T

0

{central portrayal of G resembling �.
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Proof. There is a (2p + 7){redundant T {central portrayal of Gne resembling �

which is true; and so we may assume that � is true. Let K be the set of ends of e,

and let � = (�;�; �; �; 
). By (12.2), either there is a disc � � � such that �(�)

is small, K � V (�(�)), and bd(�) is a �{normal O{arc with jbd(�) \N(�)j 6 3,

or K � V (�(c)) for some c 2 C(�). In the second case the result follows from

(12.3), and so we assume that the �rst case applies. Let �

0

be the portrayal of

Gne obtained by applying (7.2) to �. Then �

0

resembles �, and is T {central. Let

�

0

= (�;�

0

; �

0

; �

0

; 


0

), and let c

0

be the cell of �

0

with c

0

= �. ThenK � V (�

0

(c

0

)),

and the result follows from (12.3). �

(12.5) Let G be a hypergraph, and let T

?

be a tangle in G

?

of order �. Let T be the

set of all separations (A;B) of G of order < � such that A

?

is small relative to T

?

.

Then T is a tangle in G of order �.

Proof. We verify the three tangle axioms. For the �rst, if (A;B) is a separation

of G of order < �, there is certainly a separation (A

0

; B

0

) of G

?

with V (A

0

) =

V (A); V (B

0

) = V (B) and A

0

� A

?

; B

0

� B

?

. >From the symmetry we may assume

that (A

0

; B

0

) 2 T

?

; but then A

?

is small by [1, theorem (2.9)], and so (A;B) 2 T .

Thus either (A;B) 2 T or (B;A) 2 T , and the �rst tangle axiom is satis�ed. But

the second and third axioms are clearly satis�ed, as required. �

We call T in (12.4) the embodiment of T

?

in G.

(12.6) Let G be a hypergraph, and let T

?

be a tangle in G

?

of order > 4p+ 9. Let

T be the embodiment of T

?

in G. Let � = (�;�; �; �; 
) be a (2p+ 7){ redundant,

T

?

{central portrayal of G

?

with warp 6 p. Then there is a T {central portrayal of

G resembling �.

Proof. We may assume that G and G

?

are both subhypergraphs of some hyper-

graph, so that G

0

= G [ G

?

is de�ned. Let T

0

be the embodiment of T

?

in G

0

.

If there is a T

0

{central portrayal of G

0

resembling �, then there is a T {central

portrayal of G resembling �. Thus, it su�ces to prove the result for G

0

; that is, we

may assume that G

?

� G.

Let X = E(G) � E(G

?

), so that GnX = G

?

. Then T is the tangle in G

induced by T

?

; for if (A;B) 2 T then A

?

is small relative to T

?

, and so certainly

A \ G

?

is small relative to T

?

. Let X = fx

1

; : : : ; x

n

g. For 0 6 i 6 n, let

G

i

= Gn(X � fx

1

; : : : ; x

i

g), and let T

i

be the embodiment of T

?

in G

i

. Thus

G

0

= G

?

, and T

0

= T

?

; and for 1 6 i 6 n;G

i�1

= G

i

nx

i

, and T

i

is the tangle

induced in G

i

by T

i�1

; and the set of ends of x

i

is a clique of G

i�1

. We claim that
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for 0 6 i 6 n there is a (2p+7){redundant, T

i

{central portrayal of G

i

resembling �.

For this holds for i = 0. Inductively, suppose that it holds for i = j; then by (12.4)

there is a T

j+1

{central portrayal �

0

of G

j+1

resembling �. Moreover, �

0

is (2p+7){

redundant, for if Z � V (G

j+1

) with jZj 6 2p + 7 and there is a (T =Z){central

portrayal of G

j+1

=Z simpler than �

0

, then by deleting x

1

; : : : ; x

j+1

we obtain a

(T

?

=Z){central portrayal of G

?

=Z simpler than �, a contradiction. Thus the claim

holds for i = j+1, and hence for 0 6 i 6 n. In particular, its truth for i = n yields

the theorem. �

13. EXCLUDING A MINOR

Let G and H be graphs. By an H{minor of G we mean a function � with

domain V (H) [E(H), such that

(i) �(v) is a non-null connected subgraph of G for each v 2 V (H), and �(u)

and �(v) are disjoint for all distinct u; v 2 V (H)

(ii) �(e) 2 E(G) for each e 2 E(H), and �(e) 6= �(f) for all distinct e; f 2 E(H)

(iii) if e 2 E(H) has distinct ends u; v then �(e) has one end in V (�(u)) and the

other in V (�(v))

(iv) if e 2 E(H) is a loop with end v, then �(e) has both ends in V (�(v)) and

e =2 E(�(v)).

If T is a tangle in a graph G and � is an H{minor of G, we say T controls � if for

each v 2 V (H) there is no (A;B) 2 T of order < jV (H)j such that V (�(v)) � V (A).

If G is a graph and Z � V (G), we denote by GnZ the graph obtained by

deleting Z. If T is a tangle in G of order > jZj, then T nZ denotes the set

f(AnZ;BnZ) : (A;B) 2 T ; Z � V (A \B)g :

It is shown in [1, theorem (8.5)] that T nZ is a tangle in GnZ of order ord(T )�jZj.

(13.1) For any graph H there are numbers p; q; z and � > z, such that for every

hypergraph G and every tangle T in G of order > �, either

(i) T controls an H{minor of G

?

, or

(ii) there exists Z � V (G) with jZj 6 z and a T nZ{central portrayal

� = (�;�; �; �; 
) of GnZ with warp 6 p, such that � has 6 q cu�s

and H cannot be drawn in �.

Proof. From theorem (3.1) of [2], there are integers p

0

; q; z; �

0

such that for every

graph G and every tangle T in G of order > �

0

, either T controls an H{minor of
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G, or there exists Z � V (G) with jZj 6 z, and a non{null connected surface �

0

with bd(�

0

) = ; in which H cannot be drawn, and a painting �

0

in �

0

, and an

injection 
 : N(�

0

) �! V (G) � Z, and a function � assigning to each c 2 C(�

0

) a

subgraph �(c) of G, with the following properties:

(a) GnZ is the union of all the subgraphs �(c), and E(�(c) \ �(c

0

)) = ;

for all distinct c; c

0

2 C(�

0

)

(b) for each cell c and node n; n 2 ~c if and only if 
(n) 2 V (�(c))

(c) for distinct cells c; c

0

; V (�(c) \ �(c

0

)) = f
(n) : n 2 ~c \ ~c

0

g

(d) there are at most q cells c with j~cj > 4 (so{called major cells), and

c \ c

0

= ; for all distinct major cells c; c

0

(e) for each major cell c there is a function � which assigns to every node n 2 ~c

a subgraph �(n) of �(c), such that:

(i) �(c) is the union of all the �(n)'s for n 2 ~c, and 
(n) 2 V (�(n))

for each n, and E(�(n) \ �(n

0

)) = ; for all distinct n; n

0

2 ~c

(ii) for distinct nodes n

1

; n

2

; n

3

; n

4

2 ~c in order, V (�(n

1

) \ �(n

3

)) �

V (�(n

2

) [ �(n

4

)) (actually, what is proved in [2, theorem (3.1)] is somewhat

stronger, but this corollary is all we need here)

(iii) for distinct nodes n; n

0

2 ~c; jV (�(n) \ �(n

0

))j 6 p

0

.

(f) for each cell c 2 C(�), there is no (A;B) 2 T nZ with B � �(c).

Let p = p

0

+1 and � = max(�

0

; 2p

0

+z+4); we shall show that p; q; z; � satisfy

the theorem. For let G;T in the theorem fail to satisfy condition (13.1)(i); then

from our choice of p

0

; q; z; �

0

, there exists Z;�

0

; 
; �; � as in (a) ; : : : ;(f) above.

Let � be the surface obtained from �

0

by deleting the interior of every major

cell. (By (d), this is indeed a surface.) Then H cannot be drawn in �. We shall

show that there is a T nZ{central portrayal � =(�;�; �; �; 
) of GnZ in � with warp

6 p. For each cu� � and each component s of ��N(�

0

), choose a disc �(s) � �

with s � �(s);�(s)\ bd(�) = s, �(s)\U(�

0

) = s, and with �(s)\�(s

0

) = s\ s

0

for distinct s , s

0

. De�ne

� = ((U(�

0

) \ �) [

[

(�(s)); N(�

0

))

the union being taken over all components s of bd(�)�N(�

0

). Then � is a painting

in �.

To de�ne � and � we proceed as follows. For each internal cell c of � we

de�ne �(c) = �(c). It remains to de�ne �(c) for border cells c and �(n) for border
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nodes n. Let � be a cu� of �. Enumerate the nodes and cells bordering �, in

order, as n

1

; c

1

; n

2

; c

2

; : : : ; n

k

; c

k

; (n

1

). (Then k > 4.) Let � be as in (e) above, for

the corresponding major cell of �

0

.

For 1 6 i 6 k, we de�ne �(n

i

) = V (�(n

i�1

) \ �(n

i

)) � f
(n

i

)g, where n

0

means n

k

. For 1 6 i 6 k we de�ne �(c

i

) = �(n

i

) + 
(n

i+1

), where n

k+1

means n

1

.

(In general, if H is a subhypergraph of a hypergraph G, and v 2 V (G), by H + v

we mean the hypergraph (V (H) [ fvg; E(H)).)

This completes our de�nition of �. Now we verify that � is a portrayal of

GnZ, by verifying (P1){(P7).

(P1) From (a) and (e)(i), GnZ is the union of all the �(c)'s; and by (a) and (e)(i)

again, E(�(c) \ �(c

0

)) = ; for distinct cells c; c

0

.

(P2) Let c 2 C(�) and n 2 ~c. If c 2 C(�

0

) then 
(n) 2 V (�(c)) = V (�(c)) by (b)

above. If c =2 C(�

0

), then c borders some cu�, and n is an end of c. Let c = c

i

and

n 2 fn

1

; n

i+1

g, with numbering as before. Then 
(n

i

) 2 V (�(n

i

)) � V (�((c)) by

(e)(i) and the de�nition of �(c

i

); and 
(n

i+1

) 2 V (�(c

i

)) by de�nition of �(c

i

).

(P3) Both these statements are clear from the de�nitions of � and �.

(P4) If n

1

; n

2

are nodes bordering di�erent cu�s, arising from major cells c

1

; c

2

of

�

0

, then �(n

i

) � V (�(c

i

)) (i = 1; 2), and by (c) above,

V (�(c

i

) \ �(c

2

)) � f
(n) : n 2 ~c

1

\ ~c

2

g

which is null by (d). If n

1

is a node bordering a cu� arising from a major cell c

1

of �

0

and n

2

is a node not bordering this cu�, then 
(n

2

) =2 V (�(c

1

)) by (b), and

since �(n

1

) � V (�(c

1

)) it follows that 
(n

2

) =2 �(n

1

).

(P5) Let c

1

be an internal cell of � and let v 2 V (�(c

1

) \ �(�c

1

)). Let c

2

2

C(�)� fc

1

g with v 2 V (�(c

2

)). Now c

1

2 C(�

0

), and so if c

2

is an internal cell of

� then

v 2 V (�(c

1

) \ �(c

2

)) = f
(n) : n 2 ~c

1

\ ~c

2

g � f
(n) : n 2 ~c

1

g

by (c), as required. If c

2

borders a cu� arising from a major cell c

0

of �

0

, then

again v 2 V (�(c

1

) \ �(c

0

)) and so v = 
(n) for some n 2 ~c

1

from (c), as required.

(P6) Let c

1

be a cell bordering a cu� �, arising from a major cell c

0

of �

0

. Number

the nodes and cells bordering � as n

1

; c

1

; n

2

; c

2

; : : : ; n

k

; c

k

; (n

1

) as before. Let
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v 2 V (�(c

1

)\�(�c

1

)), and choose d 2 C(�)�fc

1

g with v 2 V (�(d)), bordering �

if possible. We must show that v 2 �(n

1

+)[�(n

2

+). Suppose �rst that d does not

border �. Then �(d) � �(d

0

) for some cell d

0

6= c

0

of �

0

, and v 2 V (�(c

0

)\�(d

0

)) �

f
(n) : n 2 ~c

0

\

~

d

0

g, by (c). Choose n 2 ~c

0

\

~

d

0

with 
(n) = v. Since n 2 ~c

0

; n

borders �, and d can be chosen bordering �, a contradiction. Thus d borders

�; d = c

j

say where 2 6 j 6 k. We may assume that v 6= 
(n

1

); 
(n

2

) since

otherwise v 2 �(n

1

+) [ �(n

2

+) as required. Since v 2 V (�(c

1

)), we deduce that

v 2 V (�(n

1

)). Also, since v 2 V (�(c

j

)), either v 2 V (�(n

j

)) or v 2 V (�(n

j+1

)),

and the �rst occurs unless v = 
(n

j+1

). Since v = 
(n

j+1

) implies j 6= k, we

may assume (replacing j by j +1 if necessary) that v 2 V (�(n

j

)) where 2 6 j 6 k.

>From (e)(ii), v 2 V (�(n

2

)[�(n

k

)), since either n

j

= n

2

or n

j

= n

k

or n

1

; n

2

; n

j

; n

k

are distinct and in order. If v 2 V (�(n

2

)) then v 2 �(n

2

+) (since v 6= 
(n

2

))

and if v 2 V (�(n

k

)) then v 2 �(n

1

+) (since v 6= 
(n

1

)). Thus in either case

v 2 �(n

1

+) [ �(n

2

+), as required.

(P7) Number the nodes and cells around � as n

1

; c

1

; : : : ; n

k

; c

k

; (n

1

) as before.

Let 1 6 e < f < g < h 6 k. Let v 2 �(n

e

+) \ �(n

g

+). We must show that

v 2 �(n

f

+) [ �(n

h

+). Now v 2 V (�(n

e

) \ �(n

g

)), and so v 2 V (�(n

f

) [ �(n

h

))

by (e)(ii). We may assume then that v 2 V (�(n

f

)) without loss of generality. We

may also assume that v =2 �(n

f

+), and so v =2 V (�(n

f�1

)). Hence f � 1 6= e, and

so e; f � 1; g; h are distinct and in order. Thus

v 2 V (�(n

e

) \ �(n

g

)) � V (�(n

j�1

) [ �(n

h

))

and so v 2 V (�(n

h

)). We may assume that v =2 �(n

h

+), and so v =2 V (�(n

h�1

)).

Hence h � 1 6= g, and so e; f � 1; g; h � 1 are distinct and in order. But v 2

V (�(n

e

) \ �(n

g

)) and v =2 V (�(n

f�1

) [ �(n

h�1

)), a contradiction.

This completes the veri�cation that � is a portrayal of GnZ. For its warp,

since each �(n) has cardinality 6 p

0

the warp of � is at most p

0

+ 1 = p, as

claimed. Finally, we verify that � is T nZ{central. Let c 2 C(�). Then the

separation (�(c); �(�c)) of GnZ has order j~cj 6 3 if c is internal, and has order

6 2p from (P6), if c is a border cell. Thus in either case its order is at most

max(3; 2p) and hence less than � � z. But from (f); (�(�c); �(c)) =2 T nZ, and so

(�(c); �(�c)) 2 T nZ. Thus � is T nZ{central. This completes the proof. �

Next we would like to convert the portrayal given by (13.1) to a z{redundant

one where z is large, so that the theorems of this paper apply to it; our objective

now is to prove (13.4) below.
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Let p > 0 be an integer. If � = (�;�; �; �; 
) is a portrayal of a hypergraph

G, we de�ne h

p

(�) = (4a + 2b + c)

2

p + r, where � is homeomorphic to �(a; b; c)

and r is the sum over all cu�s � of � of the warp of � at �.

(13.2) Let p > 1, and let �; �

0

be portrayals of G;G

0

respectively. If � has warp 6 p,

and �

0

is simpler than �, then h

p

(�

0

) < h

p

(�).

Proof. Let � = (�;�; �; �; 
), and let a; b; c; r be as in the de�nition of h

p

(�).

De�ne �

0

;�

0

; �

0

; �

0

; 


0

,�

0

; b

0

; c

0

; r

0

similarly, for G

0

; �

0

. Now �

0

is simpler than �,

and so either

(i) �

0

is simpler than �, and �

0

has warp 6 p, or

(ii) �

0

is homeomorphic to �, and r

0

< r.

In the �rst case, 4a

0

+2b

0

+c

0

< 4a+2b+c, and since r

0

6 c

0

p 6 (4a+2b+c�1)p; p > 0

and 4a+ 2b+ c > 0, it follows that

h

p

(�

0

) = (4a

0

+ 2b

0

+ c

0

)

2

p+ r

0

6 (4a+ 2b+ c� 1)

2

p+ (4a + 2b+ c� 1)p

= (4a+ 2b+ c� 1)(4a + 2b+ c)p = h

p

(�)� (4a+ 2b+ c)p� r < h

p

(�)

as required. In the second case, 4a

0

+ 2b

0

+ c

0

= 4a + 2b + c, and so h

p

(�

0

) =

h

p

(�) + r

0

� r < h

p

(�), as required. �

For each connected surface � and all integers p > 1 and z > 0, let �(�; p; z) >

0 be an integer. We call the function � a standard if �(�; p; z) = �(�

0

; p; z) whenever

�;�

0

are homeomorphic.

(13.3) For any standard � and all p > 1 and h; z

0

> 0, there exist �; z with � > z >

z

0

and with the following property. Let T be a tangle of order > � in a graph G, let

Z

0

� V (G) with jZ

0

j 6 z

0

, and let �

0

be a (T nZ

0

){central portrayal of GnZ

0

with

warp 6 p and with h

p

(�

0

) 6 h. Then there exist Z � V (G) with Z

0

� Z such that

jZj 6 z, and a (T nZ){central portrayal � = (�;�; �; �; 
) of GnZ, such that � is

simpler than or resembles �

0

, and � is �(�; p; jZj){redundant.

Proof. For all �; z, de�ne �

0

(�; p; z) to be the maximum of �(�

0

; p; z

0

) taken over

all connected surfaces �

0

simpler than or homeomorphic to �, and over all z

0

6 z.

Then �

0

is also a standard, and if the result holds for �

0

then it holds for �, since

�(�; p; z) 6 �

0

(�; p; z). Consequently, by replacing � by �

0

, we may assume that

(1) For all �

0

; z

0

, If �

0

is simpler then or homeomorphic to �, and z

0

6 z, then

�(�

0

; p; z

0

) 6 �(�; p; z).
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We prove the theorem by induction on h. We �rst assume that h = 0. Let

z = z

0

and � = �(�; p; z) + 1 where � is the sphere; we claim that the result holds.

For let T ; G; Z

0

; �

0

= (�

0

;�

0

, �

0

; �

0

; 


0

) be as in the theorem, with h

p

(�

0

) = 0.

Then �

0

is a sphere, and so �

0

is z

0

{redundant for all z

0

< ord(T ). In particular,

it is �(�

0

; p; jZ

0

j){redundant by (1), as required.

Now we assume that h > 0, and that the result holds for h � 1 and all z

0

.

Choose z

0

0

so that

z

0

0

> z

0

+ �(�(a; b; c); p; z

0

)

for all a; b; c > 0 such that p(4a+ 2b+ c)

2

6 h. Since p > 1, there are only �nitely

many such a; b; c, so such a choice is possible.

Let h

0

= h � 1, and choose �

0

; z

0

so that the result holds with h; z

0

; �; z

replaced by h

0

; z

0

0

; �; z. We claim that the theorem holds. For let T ; G; Z

0

and �

0

=

(�

0

;�

0

; �

0

; �

0

; 


0

) be as in the theorem. If �

0

is �(�

0

; p; z

0

){redundant, the result

holds, taking Z = Z

0

; � = �

0

; for jZ

0

j 6 z

0

6 z, and so �(�

0

; p; jZj) 6 �(�

0

; p; z

0

)

by (1). We assume then that �

0

is not �(�

0

; p; z

0

){redundant. Consequently there

exists Z

0

0

� V (G) with Z

0

� Z

0

0

and jZ

0

0

j 6 jZ

0

j + �(�

0

; p; z

0

) 6 z

0

0

, such that

there is a T nZ

0

=(Z

0

0

� Z

0

)){central portrayal of GnZ

0

=(Z

0

0

� Z

0

) which is simpler

than �

0

. But GnZ

0

=(Z

0

0

� Z

0

) and GnZ

0

0

di�er only by certain edges with 6 1

end. By deleting such edges, we deduce that there is a (T nZ

0

0

){central portrayal

�

0

0

= (�

0

0

;�

0

0

; �

0

0

; �

0

0

; 


0

0

) of GnZ

0

0

which is simpler than �

0

. By (13.2), h

p

(�

0

0

) <

h

p

(�

0

0

) 6 h, and so h

p

(�

0

0

) 6 h

0

. Since �

0

0

is simpler than �

0

, it follows that �

0

0

has

warp 6 p. >From the choice of �; z, there exists Z � V (G) with Z

0

0

� Z such that

jZj 6 z, and there is a (T nZ){central portrayal � = (�;�; �; �; 
) of GnZ which

is simpler than or resembles �

0

0

, such that � is �(�; p; jZj){redundant. The result

follows, since �

0

0

is simpler than �

0

. �

By means of (13.3), we obtain a version of (13.1) with high redundancy, as

follows.

(13.4) For any graph H and standard �, there are numbers p; q; z and � > z, such

that for every graph G and every tangle T in G of order > �, either

(i) T controls an H{minor of G, or

(ii) there exists Z � V (G) with jZj 6 z, and a (T nZ){central portrayal � =

(�;�; �; �; 
) of GnZ with warp 6 p, such that � has 6 q cu�s, H cannot be drawn

in �, and � is �(�; p; jZj){redundant and true.
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Proof. If H is planar, let p; q; z; � be as in (13.1); then the theorem is satis�ed (for

(13.1)(ii) cannot hold since H is planar). We assume then that H is non{planar.

Choose p; q

0

; z

0

; �

0

so that (13.1) is satis�ed with p; q; z; � replaced by p; q

0

; z

0

; �

0

.

Choose a

?

; b

?

> 0 with 2a

?

+b

?

maximum so that H cannot be drawn in �(a

?

; b

?

; 0).

Let q = 4a

?

+ 2b

?

+ q

0

, and let h = p(q

2

+ q

0

). Choose �; z so that (13.3) holds

(with the given �; p; h; z

0

; �; z).

We claim that the theorem holds. For let T be a tangle of order > � in a graph

G. We may assume that T does not control anH{minor of G. By (13.1) there exists

Z

0

� V (G) with jZ

0

j 6 z

0

, and a (T nZ

0

){central portrayal �

0

= (�

0

;�

0

; �

0

; �

0

; 


0

),

of GnZ

0

with warp 6 p, such that �

0

has 6 q

0

cu�s and H cannot be drawn in

�

0

. Consequently h

p

(�

0

) 6 h. By (13.2), there exists Z � V (G) with Z

0

� Z

such that jZj 6 z, and a (T nZ){central portrayal � = (�;�; �; �; 
) of GnZ, such

that � is simpler than or resembles �

0

, and � is �(�; p; jZj){redundant. Choose �

with maximal truth. We claim that � is true. For if �

0

is another (T nZ){central

portrayal of GnZ resembling �, then �

0

is �(�; p; jZj){redundant, because � is, and

consequently �

0

is not truer than �. Since � is 0{redundant, it follows that it is

true.

Let � be homeomorphic to �(a; b; c), and let �

0

be homeomorphic to �(a

0

; b

0

; c

0

).

Then

c 6 4a+ 2b+ c 6 4a

0

+ 2b

0

+ c

0

6 4a

?

+ 2b

?

+ q

0

= q :

Moreover, H cannot be drawn in �, sinceH cannot be drawn in �

0

and � is simpler

than or homeomorphic to �

0

. The result follows. �

14. HYPERGRAPH FORM OF THE EXCLUDED MINOR THEO-

REM

If T is a tangle in a hypergraph G, and H is a graph, we say that T controls

an H{minor of G

?

if there is an H{minor � of G

?

such that for all v 2 V (H), there

is no (A;B) 2 T of order < jV (H)j with V (�(v)) � V (A).

Our objective now is to obtain a portrayal of a hypergraph, if some tangle T

in it fails to control an H{minor of G

?

. For this we need the following lemma.

(14.1) Let T be a tangle of order � in a hypergraph G. Let �

?

> 1 with �

?

<

2

3

�+1,

and let T

?

be the set of all separations (A

0

; B

0

) of G

?

of order < �

?

such that there

exists (A;B) 2 T with V (A) = V (A

0

) and V (B) = V (B

0

). Then T

?

is a tangle in

G

?

of order �

?

.
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Proof. We verify the three tangle axioms. For the �rst, let (A

0

; B

0

) be a separation

of G

?

of order < �

?

. Then there is a separation (A;B) of G with V (A) = V (A

0

) and

V (B) = V (B

0

), and one of (A;B); (B;A) 2 T . Hence one of (A

0

; B

0

), (B

0

; A

0

) 2 T

?

,

as required.

The third axiom clearly holds, and it remains to verify the second. If �

?

= 1

the result is easy, and we assume �

?

> 2, and hence � > 2. We use the following

two observations.

(1) If (A

0

1

; B

0

1

); (A

0

2

; B

0

2

) 2 T

?

then B

0

1

* A

0

2

.

Subproof. Choose (A

i

; B

i

) 2 T with V (A

i

) = V (A

0

i

), V (B

i

) = V (B

0

i

) (i = 1; 2).

If B

0

1

� A

0

2

then V (B

1

) � V (A

2

), and so (B

2

; A

2

) 2 T by [1, theorem (2.9)], a

contradiction.

(2) There do not exist subhypergraphs A

0

1

; A

0

2

; A

0

3

of G

?

, mutually edge{disjoint,

with A

0

1

[A

0

2

[ A

0

3

= G

?

, and with (A

0

1

; A

0

2

[A

0

3

), (A

0

2

; A

0

3

[A

0

1

), (A

0

3

; A

0

1

[A

0

2

) all

in T

?

.

Subproof. Suppose that such A

0

1

; A

0

2

; A

0

3

exist. Let

V (A

0

1

\A

0

2

\A

0

3

) =W

0

V (A

0

2

\A

0

3

)� V (A

0

1

) =W

1

V (A

0

3

\A

0

1

)� V (A

0

2

) =W

2

V (A

0

1

\A

0

2

)� V (A

0

3

) =W

3

:

Then W

0

, W

1

;W

2

;W

3

are mutually disjoint, and

V (A

0

1

\ (A

0

2

[A

0

3

)) =W

0

[W

2

[W

3

V (A

0

2

\ (A

0

3

[A

0

1

)) =W

0

[W

3

[W

1

V (A

0

3

\ (A

0

1

[A

0

2

)) =W

0

[W

1

[W

2

:

Hence jW

0

j+ jW

2

j+ jW

3

j 6 �

?

� 1, and summing this and two similar inequalities,

we obtain

3jW

0

j+ 2(jW

1

j+ jW

2

j+ jW

3

j) 6 3�

?

� 3 :

Consequently,

jW

0

j+ jW

1

j+ jW

2

j+ jW

3

j 6

1

2

(3�

?

� 3) < � :

Now there exists (A

i

; B

i

) 2 T with V (A

i

) = V (A

0

i

); V (B

i

) = V (B

0

i

). Since

jW

0

j + jW

1

j + jW

2

j + jW

3

j 6 �, it follows by [1, theorem (2.9)] that there exists
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(A

i

; B

i

) 2 T with V (A

i

) = V (A

0

i

)[W

i

; V (B

i

) = V (B

0

i

). Choose such (A

i

; B

i

) with

E(A

i

) maximal. Let e be an edge of G. We claim that e 2 E(A

1

[ A

2

[ A

3

). For

if some end v of e is not in W

0

[W

1

[W

2

[W

3

, say

v 2 V (A

0

1

)� V (B

0

1

) ;

then every other end v

0

of e is in V (A

0

1

) (since v

0

is adjacent to v in G

?

, and (A

0

1

; B

0

1

)

is a separation of G

?

); but then e 2 E(A

1

) by [1, theorem (2.9)] and the maximality

of E(A

1

). On the other hand, if every end of e belongs to W

0

[W

1

[W

2

[W

3

then

every end of e belongs to V (A

1

), and again e 2 E(A

1

) by [1, theorem (2.9)] and the

maximality of A

1

. Consequently E(A

1

[A

2

[A

3

) = E(G). Hence A

1

[A

2

[A

3

= G,

contrary to the second axiom. This proves (2).

>From (1), (2) and [1,theorem (4.5)], we deduce that T

?

satis�es the second

tangle axiom, as required. �

The following is the main result of this section.

(14.2) For any graph H there are numbers p; q; z and � > z, such that for every

hypergraph G and every tangle T in G of order > �, either

(i) T controls an H{minor of G

?

, or

(ii) there exists Z � V (G) with jZj 6 z and a T =Z{central portrayal

� = (�;�; �; �; 
) of G=Z with warp 6 p, such that � has 6 q cu�s

and H cannot be drawn in �, and � is true and (2p+ 7){redundant.

Proof. Let � be the standard de�ned by �(�; p; z) = 2p+7 for all �; z. Choose p; q; z

and �

0

> z so that (13.4) holds (with � replaced by �

0

). Let �

?

= max(jV (H)j; �

0

; 4p+

z + 10) and let � = d3�

?

=2e.

We claim that the theorem is satis�ed. For let T be a tangle in a hypergraph

G of order > �, not controlling an H{minor of G

?

. Let T

?

be the tangle in G

?

of

order �

?

obtained as in (14.1).

(1) T

?

controls no H{minor of G

?

.

Subproof. Let � be an H{minor of G

?

. Since T does not control �, there exists

v 2 V (H) and (A;B) 2 T of order < jV (H)j such that V (�(v)) � V (A). Let

(A

0

; B

0

) be a separation of G

?

with V (A

0

) = V (A), V (B

0

) = V (B). Then (A

0

; B

0

)

has order < jV (H)j 6 �

?

, and so (A

0

; B

0

) 2 T

?

. Since V (�(v)) � V (A

0

), it follows

that T

?

does not control �. This proves (1).

By (1) and (13.4), there exist Z � V (G) with jZj < z and a (T

?

nZ){central
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portrayal �

1

= (�

1

;�

1

; �

1

; �

1

; 


1

) of G

?

nZ with warp 6 p, such that �

1

has 6 q

cu�s, H cannot be drawn in �

1

and �

1

is (2p+ 7){redundant.

Now G

?

nZ = (G=Z)

?

, and T

?

nZ is therefore a tangle in (G=Z)

?

. Let T

0

be

the embodiment of T

?

nZ in G=Z. By (12.6), there is a 2p+7{redundant T

0

{central

portrayal �

2

= (�

1

;�

2

; �

2

; �

2

; 


2

) of G=Z.

(2) �

2

is T =Z{central.

Subproof. Let c 2 C(�). Since �

2

is T

0

{central it follows that (�

2

(c); �

2

(�c)) 2 T

0

by (4:1)(i), since (�

2

(c); �

2

(�c)) has order 6 max(2p; 3) < �

?

�z 6 ord(T

0

). Hence

�

2

(c)

?

is small relative to T

0

nZ, since T

0

is the embodiment of T

?

nZ. Consequently

there existsB

1

� �

2

(�c)

?

with V (B

1

) = V (�

2

(�c)) such that (�

2

(c)

?

; B

1

) 2 T

?

nZ;

and so there exists (A

2

; B

2

) 2 T

?

with Z � V (A

2

\ B

2

) such that A

2

nZ = �

2

(c)

?

and B

2

nZ = B

1

. By de�nition of T

?

, there exists (A

3

; B

3

) 2 T with V (A

3

) =

V (A

2

) and V (B

3

) = V (B

2

). Let A

4

= A

3

=Z;B

4

= B

4

=Z; then (A

4

; B

4

) 2 T =Z.

But

V (A

4

) = V (A

3

)� Z = V (A

2

)� Z = V (�

2

(c))

and so �

2

(c) is small relative to T =Z, by [1, theorem (2.9)]. This proves (2).

Since �

2

is a (2p+ 7){redundant, (T =Z){central portrayal of G=Z, there is a

true, (2p + 7){redundant, (T =Z){central portrayal � of G=Z which resembles �

2

.

The result follows. �
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