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Abstract

This paper contains the cornerstone theorem of the series. We study the structure of graphs with no
minor isomorphic to a fixed graph L, when L is non-planar. (The case when L is planar was studied
in an earlier paper.) We find that every graph with no minor isomorphic to L may be constructed by
piecing together in a tree-structure graphs each of which “almost” embeds in some surface in which
L cannot be embedded.



1 Introduction

Graphs in this paper are finite, undirected graphs which may have loops or multiple edges. A graph
L is a minor of a graph G if L can be obtained from a subgraph of G by contracting edges.

In this paper we are concerned with the structure of the graphs which have no minor isomorphic
to a given graph, and we begin in this section with a discussion of what kind of structure we might
expect. It turns out that there are (at least) four ingredients to “structure”, which we now review.

Ingredient 1: tree-structure

It is a triviality that the graphs with no minor isomorphic to a loop are the forests; this is the
simplest instance of the exclusion of a minor forcing some variety of tree-structure. If we exclude K3

instead we get almost the same answer — forests augmented by loops and multiple edges. Excluding
K4 yields the “series-parallel” graphs, by a theorem of Dirac [1] or Duffin [2], and they too have a
certain tree-structure. To unify these and some other instances, we make the following definitions.
Let G be a graph with a separation (H1, H2) (that is, H1 and H2 are subgraphs of G with no common
edges and H1∪H2 = G). Let K be a complete graph with V (K) = V (H1)∩V (H2) and with no edges
in common with H1 and H2. Let Gi = Hi ∪K(i = 1, 2). Then we say that G is the clique-sum of G1

and G2. If G can be constructed from members of a class C of graphs by (repeated) clique-sums we
say that G is a tree-structure over C. Thus, the graphs with no K3-minor are the tree-structures over
the class of all graphs with ≤ 2 vertices; and the graphs with no K4-minor are the tree-structures over
the class of all graphs with ≤ 3 vertices. Let us say that G has tree-width ≤ N if G is a tree-structure
over the class of all graphs with ≤ N + 1 vertices (and the smallest such N is of course the tree-width
of G). The following is the main theorem of [4]. (An L-minor is a minor isomorphic to L.)

1.1 For any planar graph L there is a number N such that every graph with no L-minor has tree-
width ≤ N .

In a way this generalizes the above-mentioned result about the exclusion of K3 and K4. It is not
a complete generalization, because 1.1 does not yield a structure which is necessary and sufficient
for the exclusion of L, but merely one which is necessary. Nevertheless 1.1 has proved to be very
useful. In another sense, 1.1 is best possible, because the structure given by 1.1 is necessary for the
exclusion of L, and sufficient for the exclusion of some other (larger) planar graph. (A related fact;
if L is non-planar there is no number N as in 1.1.) The object of this paper is to find an analogue
of 1.1 for non-planar graphs L, best possible in the same sense; that is, the structure is necessary
for the exclusion of L and sufficient for the exclusion of some other, larger graph L′. (In fact it can
be shown that for any surface Σ in which L can be drawn, we can choose L′ so that it too can be
drawn in Σ.)

Ingredient 2: genus

As central to the subject as the genus of L, however, is the genus of graphs with no L-minor.
If Σ is a surface and L cannot be drawn in Σ, then no graph which can be drawn in Σ has an
L-minor. This provides a second type of structure associated with the exclusion of L as a minor.
There are some important theorems about excluded minors which involve combinations of these two

1



structures; for instance, K. Wagner [12] proved the following. (V8 is obtained from an eight-vertex
circuit by adding edges joining the four opposite pairs of vertices.)

1.2 A graph G has no K5 minor if and only if G is a tree-structure over the class of all graphs
which are either planar or isomorphic to V8.

Ingredient 3: bounded extension

Let us consider the result of excluding K6. The structure of the graphs with no K6-minor has
not yet been determined, but one class of such graphs consists of those with a vertex the deletion of
which yields a planar graph. It can be shown that there is no class of graphs of bounded genus such
that all these graphs are tree-structures over it, and that shows the necessity for our third ingredient.
Let Σ be a surface, let N ≥ 0 be an integer, and let L be a graph such that no graph obtained from
L by deleting ≤ N vertices can be drawn in Σ. Then there will be no L minor in any graph which
can be constructed by adding ≤ N vertices (joined arbitrarily) to a graph drawn in Σ. This then
yields a third type of structure which we should anticipate. If a subgraph G′ of G can be obtained
from G by deleting ≤ n vertices of G, let us call G a (≤ n)-vertex extension of G′.

We conjectured for some time that these three were sufficient. But that was false.

Ingredient 4: vortices

Take a graph drawn in the plane, and let the vertices on the infinite region be v1, v2, . . . , vn in
order. Add new edges joining v1 to v3, v2 to v4, v3 to v5 and so on, and let the resulting graph be
G. Then it can be shown that such a graph has no large clique minor; indeed, Seese and Wessel [11]
found the exact bound, that G can have a K7, but cannot have a K8, minor. Yet such graphs G
cannot be constructed from our first three ingredients, and so a fourth ingredient is needed, so-called
“vortices”. Roughly, a vortex is a graph with some of its vertices arranged in a circular order, so that
however these special vertices are partitioned into two intervals, there are only a bounded number
of disjoint paths from one interval to the other. For instance, the graph G above consists of a planar
graph together with a vortex (formed by the new edges) inserted into the infinite region.

Our main result implies that these four ingredients suffice. Let us turn to the statement of the
theorem. We need first to define what we mean by an “r-ring with perimeter t1, . . . , tn”. Roughly
speaking, it consists a graph G and a sequence t1, . . . , tn of distinct vertices of G, such that G can be
constructed as follows. Let G1, . . . , Gn be mutually disjoint graphs, each with ≤ r vertices, and for
1 ≤ i ≤ n let ti ∈ V (Gi). Let us choose some i with 1 ≤ i < n, choose u ∈ V (Gi) and v ∈ V (Gi+1)
and identify u with v, provided that t1, . . . , tn remain all distinct; and repeat this process as often
as we wish.

More precisely, we say G is an r-ring with perimeter t1, . . . , tn if t1, . . . tn ∈ V (G) are distinct and
there is a sequence X1, . . . , Xn of subsets of V (G), such that

• X1 ∪ · · · ∪Xn = V (G), and every edge of G has both ends in some Xi

• ti ∈ Xi for 1 ≤ i ≤ n

• Xi ∩Xk ⊆ Xj for 1 ≤ i ≤ j ≤ k ≤ n
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• |Xi| ≤ r for 1 ≤ i ≤ n.

It is easy to check that this is equivalent with the previous definition.
Now let G0 be a graph drawn in a surface Σ, and let ∆1, . . . ,∆d ⊆ Σ be pairwise disjoint closed

discs, each meeting the drawing only in vertices of G0, and each containing no vertices of G0 in its
interior. For 1 ≤ i ≤ d let the vertices of G0 in bd(∆i) be t1, . . . , tn say, in order, and choose an
r-ring Gi with perimeter t1, . . . , tn, meeting G0 just in t1, . . . , tn and disjoint from every other Gj ;
and let G be the union of G0, G1, . . . , Gd. Such a graph G (and any graph isomorphic to it) is called
an outgrowth by d r-rings of a graph in Σ. Now we can state our theorem.

1.3 Let L be a nonplanar graph, and let Σ1, . . . ,Σs be all the connected surfaces (up to homeomor-
phism) in which L cannot be drawn. Then there are numbers r, d, w such that every graph with no
L-minor may be constructed by clique-sums, starting from graphs G′ with the following property: G′

is a (≤ w)-vertex extension of an outgrowth by ≤ d r-rings of a graph that can be drawn in one of
Σ1, . . . ,Σs.

One can think of an r-ring as a graph with a given path-decomposition of bounded width, and
in particular, its pieces come in a linear order. Since these pieces are being sewn onto a circular hole
in a surface, it would perhaps be more natural if the pieces came in a circular order. One can indeed
replace the third condition in the definition of an r-ring by the condition

• Xi ∩Xk ⊆ Xh ∪Xj and Xh ∩Xj ⊆ Xi ∪Xk for 1 ≤ h ≤ i ≤ j ≤ k ≤ n

and 1.3 remains true (because the new statement is obviously weaker than the original); and in fact
the new version is equivalent to the original (we leave the equivalence to the reader). This is why we
call it a “ring” rather than some more linear name. It is a question of convenience which definition
of “r-ring” is used.

While 1.3 has been one of the main goals of this series of papers, it turns out to have been a red
herring. There is another result (theorem 3.1) which is proved in this paper, and from which 1.3 is
then derived; and in all the future applications in this series of papers, it is not 1.3 but 3.1 that will
be needed. Let us explain how theorem 3.1 is used to prove 1.3.

Evidently we would like to eliminate the “tree-structure” part of 1.3 and concentrate on the
internal structure of one of the “nodes” of the tree. How can we do so? An inductive argument looks
plausible at first sight; if there is no low order cutset of G dividing it into two substantial pieces
then G itself must be almost a “node” if the theorem is to be true, while if there is such a cutset we
may express G as a clique-sum of two smaller graphs, and hope to apply our inductive hypothesis to
these graphs. But there is a difficulty here; it is possible that these smaller graphs have an L-minor
while G does not. Fortunately there is a way to focus in on a “node” which does not involve any
decomposing, as follows. We can assume that the tree is as refined as possible in the sense that no
node can be split into two smaller nodes, and so for every low order cutset of G, most of any node
will lie on one side or the other of the cutset (except for nodes of bounded cardinality, which we can
ignore.) Therefore if we fix some node, every small cutset has a “big” side (containing most of the
node) and a “small” side — and it turns out that no three small sides have union G. Thus a node
defines a “tangle”, which is such an assignment of big and small sides to the low order cutsets; and
conversely, it can be shown that any tangle in G of sufficiently high “order” will be associated with
some node of the tree-structure. Hence a convenient way to analyze the internal structure of the
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nodes is to analyze the local structure of G with respect to some high order tangle, and this is the
content of theorem 3.1.

We have organized the paper backwards, to try to motivate the various steps better. Thus we
first prove 1.3 assuming 3.1, then prove 3.1 assuming another statement 4.1, and so on.

2 Structure relative to a tangle

A separation of a graph G is a pair (A,B) of subgraphs with A ∪B = G and E(A ∩B) = ∅, and its
order is |V (A ∩B)|. A tangle of order θ in G, where θ ≥ 1 is an integer, is a set T of separations of
G, all of order < θ, such that

1. For every separation (A,B) of order < θ, one of (A,B), (B,A) belongs to T

2. If (A1, B1), (A2, B2), (A3, B3) ∈ T then A1 ∪A2 ∪A3 6= G, and

3. If (A,B) ∈ T then V (A) 6= V (G).

We define ord(T ) = θ.
A design is a pair (H,M) where H is a graph and M is a set of subsets of V (H). A location

in G is a set {(A1, B1), . . . , (AkBk)} of separations of G such that Ai ⊆ Bj for all distinct i, j with
1 ≤ i, j ≤ k. If {(A1, B1), . . . , (Ak, Bk)} is a location then

(G ∩B1 ∩ · · · ∩Bk, {V (Ai ∩Bi) : 1 ≤ i ≤ k})

is a design, which we call the design of the location.
Let θ ≥ 1 be an integer, and let D be a class of designs. We say that D is θ-pervasive in a graph

G if for every subgraph G′ of G and every tangle T in G′ of order ≥ θ there is a location L ⊆ T with
its design in D.

A tree-decomposition of a graph G is a pair (T, τ), where T is a tree and for each t ∈ V (T ), τ(t)
is a subgraph of G, such that

• ∪(τ(t) : t ∈ V (T )) = G, and E(τ(t) ∩ τ(t′)) = ∅ for all distinct t, t′ ∈ V (T )

• if t, t′, t′′ ∈ V (T ) and t′ lies on the path of T between t and t′′ then τ(t) ∩ τ(t′′) ⊆ τ(t′).

If (T, τ) is a tree-decomposition of G and t0 ∈ V (T ), and t0 has neighbours t1, . . . , tk ∈ V (T ), then

(τ(t0), {V (τ(t0) ∩ τ(ti)) : 1 ≤ i ≤ k})

is a design, called the design of t0 in (T, τ).
Let (H,M), (H ′,M ′) be designs. We say that (H ′,M ′) is an n-enlargement of (H,M) if there

exists Z ⊆ V (H ′) such that

• H is a subgraph of H ′ and V (H ′)\V (H) ⊆ Z

• every edge of H ′ is an edge of H

• for every X ∈M ′ with X 6= Z,X ∩ V (H) ∈M
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• n is an integer and |Z| ≤ n.

If D is a class of designs and n ≥ 0 is an integer, the class of all n-enlargements of members of D is
denoted by Dn. The class of all designs (H,M) with |V (H)| ≤ n is denoted by Rn. The following is
implied by theorem 11.1 of [6].

2.1 For any θ ≥ 1, let D be a class of designs which is θ-pervasive in a graph G. Then G has a tree-
decomposition (T, τ) such that for each t ∈ V (T ), the design of t in (T, τ) belongs to D3θ−2 ∪R4θ−3.

Let (H,M) be a design. A graph H ′ is a torso of (H,M) if V (H) = V (H ′), H is a subgraph of
H ′, and for every e ∈ E(H ′)\E(H) there exists X ∈M including the ends of e. It is easy to see the
following.

2.2 Let D be a class of designs, and let D′ be the class of torsos of members of D. If G is a graph
with a tree-decomposition (T, τ) such that D contains the design of t in (T, τ) for each t ∈ V (T ),
then G is a tree-structure over D′.

Now for n ≥ 0, if D is a class of designs then every torso of a member of Dn is a (≤ n)-vertex
extension of a torso of a member of D. From 2.1 and 2.2 we deduce the following.

2.3 For any θ ≥ 1, let D be a class of designs which is θ-pervasive in a graph G. Then G may be
constructed by clique-sums starting from graphs G′ such that either

• |V (G′)| ≤ 4θ − 3, or

• G′ is a (≤ 3θ − 2)-vertex extension of a torso of a member of D.

We shall use 2.3 to derive 1.3 from a theorem that a certain class of designs is θ-pervasive.

3 Surfaces, societies and segregations

In this paper, by a surface we mean a non-null compact connected 2-manifold without boundary.
An O-arc in a surface Σ is a subset F ⊆ Σ homeomorphic to a circle. Open and closed discs in Σ
are defined in the natural way. For X ⊆ Σ, its closure is denoted by X, and X ∩ Σ\X is denoted
by bd(X). If F ⊆ Σ is an O-arc and X ⊆ F is finite then F induces two cyclic permutations on X,
called the natural orders of X from F .

A society is a pair (A,Ω), where A is a graph and Ω is a cyclic permutation of a subset (denoted
by Ω) of V (A). A segregation of G is a set S of societies such that

• A ⊆ G for every (A,Ω) ∈ S, and ∪(A : (A,Ω) ∈ S) = G

• V (A ∩A′) ⊆ Ω ∩ Ω′ and E(A ∩A′) = ∅ for all distinct (A,Ω), (A′,Ω′) ∈ S.

We write V (S) = ∪(Ω : (A,Ω) ∈ S).
Let Σ be a surface, and S = {(A1,Ω1), . . . , (Ak,Ωk)} a segregation of G. It is convenient always

to assume (as we may) that S ∩ V (S) = ∅. An arrangement of S in Σ is a function α with domain
S ∪ V (S), such that (writing α(A,Ω) for α((A,Ω)):
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• For 1 ≤ i ≤ k, α(Ai,Ωi) is a closed disc ∆i ⊆ Σ, and α(x) ∈ bd(∆i) for each x ∈ Ωi

• For 1 ≤ i < j ≤ k, if x ∈ ∆i ∩∆j then x = α(v) for some v ∈ Ωi ∩ Ωj

• For all distinct x, y ∈ V (S), α(x) 6= α(y)

• For 1 ≤ i ≤ k,Ωi is mapped by α to a natural order of α(Ωi) from bd(∆i).

An arrangement is proper if ∆i ∩ ∆j = ∅ for all 1 ≤ i < j ≤ k such that |Ωi|, |Ωj | > 3. A society
(G,Ω) is a ρ-vortex, where ρ ≥ 0 is an integer, if for all distinct u, v ∈ Ω there do not exist ρ + 1
mutually vertex-disjoint paths of G between I∪{u} and J∪{v}, where I denotes the set of vertices in
Ω after u and before v and J is the set after v and before u, in the natural sense (so (I ∪{u}, J ∪{v})
is a partition of Ω). A segregation S is of type (ρ, κ), where ρ, κ ≥ 0 are integers, if |Ω| > 3 for at
most κ members (A,Ω) of S, and each such member is a ρ-vortex.

Let L be a graph, and let T ∗ be a tangle in a graph G. We say that T ∗ controls an L-minor of
G if there is a function α, with domain V (L) ∪ E(L), such that

• for each v ∈ V (L), α(v) is a non-null connected subgraph of G, and for all distinct u, v ∈
V (L), α(u) and α(v) are vertex-disjoint

• for each e ∈ E(L) with distinct ends u, v, α(e) ∈ E(G) with one end in V (α(u)) and the other
in V (α(v))

• for every loop e ∈ E(L) with end v, α(e) ∈ E(G)\E(α(v)) with both end in V (α(v))

• for all distinct e, f ∈ E(L), α(e) 6= α(f).

• there is no (A,B) ∈ T ∗ of order < |V (L)| and v ∈ V (L) such that V (α(v)) ⊆ V (A).

If Z ⊆ V (G), we denote the graph obtained by deleting Z by G\Z. If T is a tangle in G of order θ
and Z ⊆ V (G) with |Z| < θ, we denote by T \Z the set of all separations (A′, B′) of G\Z of order
< θ − |Z| such that there exists (A,B) ∈ T with Z ⊆ V (A ∩ B), A\Z = A′ and B\Z = B′. It is
shown in theorem 8.5 of [6] that T \Z is a tangle in G\Z of order θ − |Z|.

If T is a tangle in G, a segregation S of G is said to be T -central if for all (A,Ω) ∈ S there is no
(A′, B′) ∈ T with B′ ⊆ A. Now we can state our main result.

3.1 For any graph L, there are integers κ, ρ, ζ ≥ 0 and θ ≥ 1 with the following property. Let T
be a tangle of order ≥ θ in a graph G, controlling no L-minor of G. Then there exists Z ⊆ V (G)
with |Z| ≤ ζ, and a T \Z-central segregation of G\Z of type (ρ, κ) which has a proper arrangement
in some surface in which L cannot be drawn.

In the remainder of this section we shall show that 3.1 implies 1.3, by means of 2.3; and then the
rest of the paper is devoted to proving 3.1. To deduce 1.3 from 3.1 we need the following lemma.

3.2 Let (G,Ω) be a ρ-vortex, and let the vertices in Ω be t1, . . . , tn in order, where n ≥ 1. Then
there are separations (A1, B1), . . . , (An, Bn) of G, such that:

1. t1, . . . , tn ∈ V (Bi) for 1 ≤ i ≤ n,

2. ti ∈ V (Ai) for 1 ≤ i ≤ n,
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3. L = {(A1, B1), . . . , (An, Bn)} is a location in G,

4. (Ai, Bi) has order ≤ 2ρ+ 1 for 1 ≤ i ≤ n, and

5. every torso of the design of L is a (2ρ+ 1)-ring with perimeter t1, . . . , tn.

Proof. By theorem 8.1 of [5], there is a sequence A1, . . . , An of subgraphs of G, such that:

(a) A1 ∪ · · · ∪An = G.

(b) E(Ai ∩Aj) = ∅ for 1 ≤ i < j ≤ n.

(c) ti ∈ V (Ai) for 1 ≤ i ≤ n

(d) Ai ∩Ak ⊆ Aj for 1 ≤ i ≤ j ≤ k ≤ n.

(e) |V (Ai ∩Aj)| ≤ ρ for 1 ≤ i < j ≤ n.

Let A0 and An+1 be the null graph. For 1 ≤ i ≤ n, let Bi be the unique subgraph of G such that
(Ai, Bi) is a separation of G and

V (Ai ∩Bi) = V (Ai−1 ∩Ai) ∪ V (Ai ∩Ai+1) ∪ {ti}.

(This exists, because it is easy to see that for i 6= j and 1 ≤ i, j ≤ n,

V (Ai ∩Aj) ⊆ V (Ai−1 ∩Ai) ∪ V (Ai ∩Ai+1).)

We claim that (A1, B1), . . . , (An, Bn) satisfies the theorem.

(1) Ai ⊆ Bj for 1 ≤ i, j ≤ n with i 6= j.

Subproof. To show this it suffices to show that Ai ∩ Aj ⊆ Bj , since (Aj , Bj) is a separation. But
E(Ai ∩Aj) = ∅ by (b), and

V (Ai ∩Aj) ⊆ V (Ai−1 ∩Ai) ∪ V (Ai ∩Ai+1) ⊆ V (Bj),

and so Ai ∩Aj ⊆ Bj . This proves (1).

(2) ti ∈ V (Bj) for 1 ≤ i, j ≤ n.

Subproof. If i = j this is immediate. If i 6= j then again the claim holds, since ti ∈ V (Ai) ⊆ V (Bj)
by (1). This proves (2).

From (1) and (2) we see that statements 1-4 of 3.2 hold. It remains to show statement 5. For
1 ≤ i ≤ n let Xi = V (Ai ∩Bi). Let H be the subgraph of G with vertex set X1 ∪ · · · ∪Xn and with
no edges; then it is easy to see that H = B1 ∩ · · · ∩ Bn. Let M = {Xi : 1 ≤ i ≤ n}. Then L has
design (H,M).
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(3) Xi ∩Xk ⊆ Xj for 1 ≤ i ≤ j ≤ k ≤ n.

Subproof. Let v ∈ Xi ∩ Xk. Then v ∈ V (Ai ∩ Ak), and hence v ∈ V (Aj) by (d). But we may
assume that j 6= i, and so V (Ai) ⊆ V (Bj) by (1); and hence v ∈ V (Bj), and consequently v ∈ Xj .
This proves (3).

Since |Xi| ≤ 2ρ+ 1 for 1 ≤ i ≤ n, it follows from (3) that every torso of (H,M) is a (2ρ+ 1)-ring
with perimeter t1, . . . , tn. This proves statement 5 of 3.2, and hence completes the proof of 3.2.

Proof of 1.3, assuming 3.1
Let θ, κ, ρ, ζ be as in 3.1. We may assume (by replacing θ by a larger number if necessary) that

θ ≥ 2ρ+ 4 + ζ. Let r = 2ρ+ 1, d = κ and w = ζ + 4θ − 3. We claim that r, d, w satisfy 1.3. For let
D be the class of all designs (G′,M) such that every torso of (G′,M) is isomorphic to an outgrowth
by ≤ d r-rings of a graph in one of Σ1, . . . ,Σs, where Σ1, . . . ,Σs are the surfaces in which L cannot
be drawn (up to homeomorphism).

(1) For any graph G′ with no L-minor, Dζ is θ-pervasive in G′.

Subproof. Let G be a subgraph of G′, and let T be a tangle in G of order ≥ θ. Certainly T
controls no L-minor of G, and so, by 3.1, there exists Z ⊆ V (G) with |Z| ≤ ζ, and a segregation S
of G\Z of type (ρ, κ), such that

• there is a proper arrangement α of S in one of Σ1, . . . ,Σs, and

• for each (A,Ω) ∈ S there is no (A′, B′) ∈ T with Z ⊆ V (A′ ∩B′) and B′\Z ⊆ A.

Let (A1,Ω1), . . . , (Ak,Ωk) be the members (A,Ω) of S with |Ω| > 3. For 1 ≤ j ≤ k, let the
vertices of Ωj be tjn1 , . . . , t

j
nj , in order. Since (Aj ,Ωj) is a ρ-vortex, by 3.2 there are separations

(Aj1, B
j
1), . . . , (Ajnj , B

j
nj ) of Aj as in 3.2. For each (A,Ω) ∈ S, let C(A,Ω) be the unique subgraph B

of G\Z such that (A,B) is a separation of G\Z and V (A ∩ B) = Ω. For 1 ≤ j ≤ k and 1 ≤ i ≤ nj ,

let Cji = B ∪ C(Aj ,Ωj). Let

L = {(Aji , C
j
i ) : 1 ≤ j ≤ k, 1 ≤ i ≤ nj} ∪ {(A,C(A,Ω)) : (A,Ω) ∈ S, |Ω| ≤ 3}.

Then since S is a segregation of G, and (Aj1, B
j
1), . . . , (Ajnj , B

j
nj ) satisfy 3.2, it is straightforward

to verify (we omit the details) that L is a location in G\Z and every torso of the design of L is an
outgrowth by ≤ d r-rings of a graph in one of Σ1, . . . ,Σs, that is, D contains the design of L. (We
use here that for (A,Ω) ∈ S with |Ω| ≤ 3, the edges for the torso of L with ends in Ω may all be
drawn within α(A,Ω).)

For each (A,B) ∈ L, let (A+, B+) be the separation of G such that Z ⊆ V (A+∩B+), A+\Z = A,
B+\Z = B and E(B+) contains every edge of E(G)\E(A) with both ends in V (B+). Let L+ =
{(A+, B+) : (A,B) ∈ L}. Then L+ is a location in G, and its design belongs to Dζ . To complete
the proof of (1) we must show that L+ ⊆ T . Let (A,B) ∈ L, and suppose that (A+, B+) 6∈ T .
Now (A,B) has order ≤ max(3, 2ρ + 1) from the definition of L, and so (A+, B+) has order at
most max(3, 2ρ + 1) + ζ < θ. Consequently, (B+, A+) ∈ T . Let (A′, B′) = (B+, A+). Then
Z ⊆ V (A′∩B′), and B′\Z ⊆ A. But there exists (A∗,Ω∗) ∈ S with A ⊆ A∗ from the construction of
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L, and so B′\Z ⊆ A∗. This contradicts the second condition in the definition of S. Hence L+ ⊆ T .
This completes the proof of (1).

From (1) and 2.3, we deduce that every graph G with no L-minor may be constructed by clique-
sums, starting from graphs G′ such that either

• |V (G′)| ≤ 4θ − 3 ≤ w, or

• G′ is a (≤ 3θ − 2)-vertex extension of a torso of a member of Dζ .

But since L is nonplanar, it follows that there is a surface in which L cannot be drawn, and so the null
graph is a torso of a member of Dζ . Consequently any graph G′ satisfying either of the conditions
above is a (≤ w)-vertex extension of a torso of a member of D, and hence is a (≤ w)-vertex extension
of an outgrowth by ≤ d r-rings of a graph in one of Σ1, . . . ,Σs. This proves 1.3.

4 Induction on the surface

The remainder of the paper is devoted to proving 3.1. To get much further in this paper the reader
will need to be familiar with [8, 9], and so there seems little point in repeating the large number of
definitions that we shall need. The reader should therefore see [8] for the meaning of the following
terms and notation: drawing, U(H),region, A(H), radial drawing, H-path, respectful tangle, metric
of a tangle, free, λ-zone, clearing, rigid, dial, regional distance, battlefield. Also, the reader should
see [9] for the terms Σ-span, λ-compression, rearranging within λ of z, (λ, µ)-level. (As these terms
turn up in the text, we shall remind the reader again where to look for the definition.)

If T ∗ is a tangle in a graph G, we shall usually abbreviate “Σ-span in G with respect to T ∗” by
“Σ-span” when there is no danger of ambiguity. (For “Σ-span”, see section 1 of [9].)

If H is a minor of G, and so E(H) ⊆ E(G), and T ′ is a tangle in H of order ≥ 2, let T be
the set of all separations (A,B) of G of order < ord(T ′) such that there exists (A′, B′) ∈ T ′ with
E(H) ∩ E(A) = E(A′). By theorem 6.1 of [6], T is a tangle in G, called the tangle in G induced by
T ′.

We shall show that 3.1 is implied by the following.

4.1 Let Σ be a surface and let p ≥ 0, φ ≥ 1. Then there exist κ, ρ, ζ ≥ 0 and θ ≥ 1 such that if T ∗
is a tangle in a graph G, and there is a Σ-span of order ≥ θ, then either

• there is a Σ′-span of order ≥ φ, for some surface Σ′ obtained from Σ by adding a handle or
crosscap, or

• there exists Z ⊆ V (G) with |Z| ≤ ζ, and a T ∗\Z-central segregation of G\Z of type (ρ, κ) with
a proper arrangement in Σ, or

• T ∗ controls a Kp minor of G.

We remark that in the first outcome of 4.1 there are three possibilities for Σ′ (up to homeo-
morphism) if Σ is orientable, because a handle can be added in two ways, preserving or destroying
orientability. If Σ is non-orientable, there are only two possibilities.
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To show that 4.1 implies 3.1, we need two lemmas. The m× n grid has vertex set

{(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n},

and (i, j), (i′, j′) are adjacent if |i − i′| + |j − j′| = 1. For 1 ≤ j ≤ n, the set of edges joining (i, j)
and (i+ 1, j) for 1 ≤ i ≤ m− 1 is called a row of the grid. Our first lemma is as follows.

4.2 For any integer θ ≥ 1 there exists θ∗ ≥ 1 such that if T ∗ is a tangle of order ≥ θ∗ in a graph
G, there is a Σ-span of order ≥ θ, where Σ is the sphere.

Proof. We may assume that θ is even, by increasing θ if necessary. Let N0 be the (2θ + 1)× θ grid,
and let its rows be P1, . . . , Pθ. Let N1 be obtained from N0 by deleting all edges with ends (i, j) and
(i, j + 1), where 1 ≤ i ≤ 2θ + 1, 1 ≤ j ≤ θ − 1 and i+ j is odd. We see that there is a rigid drawing
(see sections 2 and 4 of [8]) in a sphere, isomorphic to N1.

Let T1 be the set of all separations (A,B) of N1 of order < θ such that E(B) includes one of
P1, . . . , Pθ.

(1) T1 is a tangle in N1 of order θ.

Subproof. Let us delete the vertices (2θ + 1, 1), . . . , (2θ + 1, θ) from N1, and contract the edges
joining (i, j) and (i+ 1, j) for all i, j with 1 ≤ i ≤ 2θ and 1 ≤ j ≤ θ such that i is odd. We thereby
obtain a graph N2 isomorphic to the θ× θ grid. Let T2 be the set of all separations (A′, B′) of N2 of
order < θ such that E(B′) includes Pj ∩ E(N2) for some j. By theorem 7.3 of [6], T2 is a tangle of
order θ in N2. But T1 is the tangle in N1 induced by T2. This proves (1).

By theorem 6.1 of [10], there exists θ∗ ≥ 1 such that

(2) For every graph G and tangle T ∗ in G of order ≥ θ∗, there is a (2θ + 1) × (2θ + 1) grid minor
of G such that for all (A,B) ∈ T ∗ of order ≤ 2θ,E(A) includes no row of the grid.

We claim that θ∗ satisfies the theorem. For let T ∗ be a tangle of order ≥ θ∗ in a graph G. By
(2), G has a (2θ + 1) × (2θ + 1) grid minor as in (2). Since this grid has a subgraph isomorphic to
N1 (and to simplify notation we may assume that it is N1) it follows that N1 is a minor of G, and
for every (A,B) ∈ T ∗ of order ≤ 2θ, E(A) includes none of P1, . . . , Pθ. Let T3 be the tangle in G
induced by T1. If (A,B) ∈ T3 then E(B) ∩E(N1) (and hence E(B)) includes one of P1, . . . , Pθ, and
so (B,A) 6∈ T ∗. Consequently (A,B) ∈ T ∗, and so T3 ⊆ T ∗.

Now N1 has maximum degree ≤ 3, and so there is a subgraph N4 of G isomorphic to a subdivision
of N1 (and hence N1 is a minor of N4). We may assume that N4 is a rigid drawing in a sphere Σ. Let
T4 be the tangle in N4 induced by T1. Then T3 is the tangle in G induced by T4, and since T3 ⊆ T ∗
it follows that N4, T4 is a Σ-span of order θ. This proves 4.2.

Our second lemma is the following, theorem 4.3 of [7].

4.3 If L is a graph and Σ is a surface such that L can be drawn in Σ, there is an integer θ ≥ 1
with the following property. If T ∗ is a tangle in a graph G controlling no L minor, then there is no
Σ-span of order ≥ θ.
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Proof of 3.1, assuming 4.1.
Up to homeomorphism, let Σ1, . . . ,Σn be all the surfaces on which L cannot be drawn together

with the sphere and all the surfaces which can be obtained from a surface on which L cannot be
drawn by adding a handle or crosscap. (There are only finitely many up to homeomorphism.) Let
us number Σ1, . . . ,Σn so that for 1 ≤ i, j ≤ n, if Σj can be obtained from Σi by adding a handle or
crosscap then j > i.

Now we define κi, ρi, ζi for 1 ≤ i ≤ n as follows. Choose p ≥ 0 so that Kp has a minor isomorphic
to L. Inductively, suppose that 1 ≤ i ≤ n, and κj , ρj , ζj , θj are defined for all j with i < j ≤ n.
If L can be drawn in Σi, choose θi so that 4.3 is satisfied (with Σ, θ replaced by Σi, θi), and let
κi, ρi, ζi = 0. If L cannot be drawn in Σi, then i < n; choose θi, κi, ρi, ζi so that 4.1 is satisfied (with
φ, κ, ρ, ζ, θ replaced by max(θi+1, . . . , θn), κi, ρi, ζi, θi). This completes the inductive definition.

Choose θ∗ ≥ 1 so that 4.2 is satisfied (with θ replaced by θ1). Let κ = max(κ1, . . . , κn), ρ =
max(ρ1, . . . , ρn), ζ = max(ζ1, . . . , ζn) and θ = θ∗. We claim that κ, ρ, ζ, θ satisfy 3.1.

For let T ∗ be a tangle of order ≥ θ = θ∗ in a graph G, controlling no L-minor. By 4.2, there
is a Σ1-span of order ≥ θ1 (because Σ1 is the sphere). Choose i with 1 ≤ i ≤ n maximum so that
there is a Σi-span of order ≥ θi. If L can be drawn in Σi then θi satisfies 4.3 and yet T ∗ controls
no L-minor, a contradiction. Thus, L cannot be drawn in Σi, and so one of the outcomes of 4.1
holds (with φ, κ, ρ, ζ, θ replaced by max(θi+1, . . . , θn), κi, ρi, ζi, θi). Since L cannot be drawn in Σi it
follows that every surface which can be obtained from Σi by adding a handle or crosscap occurs in
the list Σi+1, . . . ,Σn (up to homeomorphism), and so the first outcome of 4.1 does not hold from the
maximality of i. Moreover the third outcome of 4.1 does not hold, since T ∗ controls no L-minor and
hence controls no Kp-minor, by theorem 4.2 of [7]. Thus the second outcome of 4.1 holds, and so 3.1
holds as required.

5 Induction on horns

Thus, it remains to prove 4.1. Let Σ be a surface, let T ∗ be a tangle in a graph G, and let H, η, T
be a Σ-span in G with respect to T ∗. Let v ∈ V (G)\V (η(H)). A horn at v of breadth ≥ θ (over
H, η, T ) is a set {P1, . . . , Pσ} of paths of G, such that

• P1, . . . , Pσ each have one end v and are otherwise mutually disjoint,

• for 1 ≤ i ≤ σ, Pi has precisely one vertex in V (η(H)), its end different from v; let this end be
η(ui), where ui ∈ V (H),

• for 1 ≤ i < j ≤ σ, d(ui, uj) ≥ θ where d is the metric of T (see section 3 of [8]).

Let Σ be a surface. An animal (in G, with respect to T ∗) is a quintuple (H, η, T , X, Y ) , such
that H, η, T is a Σ-span, X ⊆ V (G) \ V (η(H)) and Y ⊆ V (H). If |X| = χ and |Y | = δ, we call this
an animal with χ horns and δ hairs. The animal has strength ≥ (θ, σ), where θ ≥ 1 and σ ≥ 0 are
integers, if

• T has order ≥ θ,

• for each v ∈ X there is a horn at v of cardinality ≥ σ and breadth ≥ θ,
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• for each u ∈ Y there is an η(H)-path (see section 3 of [8]) P with ends η(u), η(v) say, such that
X ∩ V (P ) = ∅ and d(u, v) ≥ θ, where d is the metric of T ,

• d(u1, u2) ≥ θ for all distinct u1, u2 ∈ Y .

As usual, we shall omit reference to η if η is the identity, and instead speak of the animal
(H, T , X, Y ). The animal (H, η, T , X, Y ) is hairless if Y = ∅, and in that case we shall speak of
(H, η, T , X) or (H, T , X). In this section we shall only be concerned with hairless animals.

We shall show that the following implies 4.1.

5.1 Let Σ be a surface and let p, τ, χ ≥ 0 and φ, ψ ≥ 1. Then there exist σ, κ, ρ, ζ ≥ 0 and θ ≥ 1
such that if T ∗ is a tangle in a graph G, and there is a hairless animal with χ horns, of strength
≥ (θ, σ), then either:

1. there is a Σ′-span of order ≥ φ, for some surface Σ′ obtained from Σ by adding a handle or a
crosscap, or

2. there is a hairless animal with χ+ 1 horns, of strength ≥ (ψ, τ), or

3. there exists Z ⊆ V (G) with |Z| ≤ ζ, and a T ∗\Z-central segregation of G\Z of type (ρ, κ) with
a proper arrangement in Σ, or

4. T ∗ controls a Kp-minor of G.

To prove that 5.1 implies 4.1 we need several lemmas. The first is theorem 4.4 of [7].

5.2 Let Σ be a surface and let p ≥ 0. Then there exists θ ≥ 1 such that if T ∗ is a tangle in a graph
G, and H, η, T is a Σ-span of order ≥ θ with metric d, and

• s1, t1, . . . , sµ, tµ are distinct vertices of H, where µ = 1
2p(p − 1), such that d(u, v) ≥ θ for all

distinct u, v ∈ {s1, t1, . . . , sµ, tµ}, and

• Q1, . . . , Qµ are mutually disjoint η(H)-paths, such that Qi has ends η(si), η(ti)(1 ≤ i ≤ µ),

then T ∗ controls a Kp-minor of G.

We also need

5.3 Let G be a graph and let Y ⊆ V (G), such that no component of G contains exactly one vertex
in Y . If µ, τ ≥ 0 are integers and |Y | > τ(µ− 1), then either:

• There are µ disjoint paths of G each with both ends distinct and in Y and with no internal
vertex in Y , or

• There exist v ∈ V (G) and τ paths P1, . . . , Pτ of G, with ends v, ui(1 ≤ i ≤ τ) respectively,
mutually disjoint except for v, and such that for 1 ≤ i ≤ τ , ui ∈ Y and ui 6= v, and no internal
vertex of Pi is in Y .
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Proof. Let T be a minimal subgraph of G with the properties that Y ⊆ V (T ) and any two vertices
in Y which belong to the same component of G also belong to the same component of Y . We deduce
that T is a forest, every component of T contains at least two vertices in Y , and every vertex T with
degree 1 belongs to Y .

Now let P be the set of all paths P of T with distinct ends both in Y , and with no internal
vertex in Y . Since P is a set of subtrees of a forest, it follows by an elementary theorem that either
there are µ members of P, mutually vertex-disjoint, or there exists X ⊆ V (T ) with |X| < µ meeting
all members of P. In the first case we are finished, and so we assume that the second case holds.
For each y ∈ Y,X meets the component T ′ of T containing y, since |V (T ′) ∩ Y | ≥ 2 and X meets
every member of P. Hence there is a minimal path Py of T from y to some member vy of X. Since
|Y | > τ(µ − 1) ≥ τ |X|, there exists x ∈ X and Y ′ ⊆ Y such that |Y ′| ≥ τ + 1 and vy = x for all
y ∈ Y ′. For each y ∈ Y , no vertex of Py belongs to X except vy, and so for distinct y, y′ ∈ Y ′, Py
and Py′ intersect in precisely x (since X meets every path between y and y′). Since there are at least
τ members of Y ′ different from x, it follows that the second outcome of the theorem holds. This
proves 5.3.

5.4 Let G be a graph, and let v ∈ V (G). For 1 ≤ i ≤ n let Pi be a path of G with distinct ends
v, ui, such that P1, . . . , Pn are mutually disjoint except for v. Let Q1, . . . , Qm be mutually disjoint
paths of G, not passing through v, such that Qi has ends si, ti for 1 ≤ i ≤ m. Let

Z = {u1, . . . , un, s1, t1, . . . , sm, tm}.

If n ≥ 5m+ 2, there are m+ 1 mutually disjoint paths of G, each with distinct ends both in Z.

Proof. Let H be the graph formed by the union of P1, . . . , Pn and Q1, . . . , Qm; we see that no vertex
of H has degree > 4 except possibly v. Let J be the union of all components of H\v which contain
at least two vertices in Z, and let Y = Z ∩ V (J). Let us apply 5.3 to J, Y , setting µ = m + 1 and
τ = 5. Certainly the second statement of 5.3 does not hold, because no vertex of J has degree ≥ 5.
If the first statement holds then the theorem is satisfied, and so we assume not. By 5.3, it follows
that |Y | ≤ 5m. Now certainly each Qj is a path of J because it has at least two vertices in Z, and
so Pi\v ⊆ J for each i such that Pi meets some Qj . Consequently,

|Z\Y | = |{i : 1 ≤ i ≤ n, Pi meets no Qj}|.

But |Z\Y | = |Z| − |Y | ≥ n − 5m ≥ 2, and so there exist distinct i, i′ with 1 ≤ i, i′ ≤ n such that
Pi ∪Pi′ meets no Qj . But then {Q1, . . . , Qm, Pi ∪Pi′} is a set of m+ 1 paths satisfying the theorem.
This proves 5.4.

We deduce

5.5 For any surface Σ and integer p ≥ 0, there exists θ ≥ 1 such that, if T ∗ is a tangle in a graph
G and there is a hairless animal with 1

2p(p − 1) horns and with strength ≥ (θ, 4p(p − 1)), then T ∗
controls a Kp-minor of G.

Proof. Let µ = 1
2p(p − 1), and choose θ1 ≥ 1 so that 5.2 is satisfied (with θ replaced by θ1). Let

θ = 2θ1: we claim that 5.5 is satisfied. For let T ∗ be a tangle in G, and let (H, T X) be a hairless
animal of strength ≥ (θ, 8µ) and with |X| = µ.

(1) For 0 ≤ m ≤ µ there are m H-paths Q1, . . . , Qm, mutually vertex-disjoint, such that
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• |V (Q1 ∪ · · · ∪Qm) ∩X| ≤ m, and

• d(u, v) ≥ θ1 for all distinct u, v ∈ {s1, t1, . . . , sm, tm}, where Qi has ends si, ti(1 ≤ i ≤ m).

Subproof. We proceed by induction on m. Certainly (1) holds if m = 0; we suppose that it holds for
some m < µ, and shall prove that it also holds for m+ 1. Let Q1, . . . , Qm, s1, t1, . . . , sm, tm be as in
(1).

Since |(V (Q1) ∪ · · · ∪ V (Qm)) ∩ X| ≤ m, and |X| = µ > m, there exists x ∈ X with x 6∈
V (Q1), . . . , V (Qm). Let {P1, . . . , P8µ} be a horn at x with breadth ≥ θ, and let Pi have ends
x, ui(1 ≤ i ≤ 8µ). Since |X| = µ, at most µ − 1 of P1, . . . , P8µ have a vertex in X different from x,
and so we may assume that P1, . . . , P7µ have no vertex in X\{x}. Let W = {s1, t1, . . . , sm, tm}. Now
for each w ∈ W there is at most one i(1 ≤ i ≤ 7µ) such that d(ui, w) < 1

2θ = θ1, since d(ui, uj) ≥ θ
for all distinct i, j. Consequently, we may assume that for 1 ≤ i ≤ 5µ, d(ui, w) ≥ 1

2θ for all w ∈ W .
Let n = 5µ and let G′ = P1 ∪ · · · ∪Pn ∪Q1 ∪ · · · ∪Qm. Now n = 5µ ≥ 5m+ 2, and so by 5.4 (with G
replaced by G′) there are m+ 1 mutually disjoint paths R1, . . . , Rm+1 of G′, each with distinct ends
both in {u1, . . . , un} ∪W , and we may assume that they have no internal vertex in this set. Each of
these paths Ri is therefore an H-path since V (G′ ∩H) = {u1, . . . , un} ∪W . But d(u, v) ≥ θ1 for all
distinct u, v ∈ {u1, . . . , un} ∪W . Moreover, |V (G′) ∩X| ≤ m+ 1, and so

|(V (R1) ∪ · · · ∪ V (Rm+1)) ∩X| ≤ m+ 1.

This completes the inductive argument, and hence proves (1).

Consequently, (1) holds with m = µ. Let Q1, . . . , Qµ be the corresponding paths, and let Qi
have ends si, ti(1 ≤ i ≤ µ). Since 5.2 is satisfied (replacing θ by θ1) and d(u, v) ≥ θ1 for all distinct
u, v ∈ {s1, t1, . . . , sµ, tµ}, it follows from 5.2 that T ∗ controls a Kp-minor. This proves 5.5.

Proof of 4.1, assuming 5.1
Let Σ be a surface and let p ≥ 0, φ ≥ 1. Let µ = 1

2p(p − 1), and choose θµ so that 5.5 holds
(with θ replaced by θµ). Let σµ = 8µ and κµ = ρµ = ζµ = 0. We define σi, θi, κi, ρi, ζi for 0 ≤ i ≤ µ
inductively as follows. Suppose that 0 ≤ i < µ and σi+1, θi+1 have already been defined. Choose
σi, θi, κi, ρi, ζi so that 5.1 is satisfied (with τ, χ, ψ, σ, κ, ρ, ζ, θ replaced by σi+1, i, θi+1, σi, κi, ρi, ζi, θi).
This completes the inductive definition.

Let κ = max(κ0, . . . , κµ), ρ = max(ρ0, . . . , ρµ), ζ = max(ζ0, . . . , ζµ), and let θ = θ0. We claim
that κ, ρ, ζ, θ satisfy 4.1. For let T ∗ be a tangle in G with a Σ-span of order ≥ θ = θ0, and hence
with a hairless animal with 0 horns, of strength ≥ (θ0, σ0). Choose i with 0 ≤ i ≤ µ maximum so
that there is a hairless animal with i horns, of strength ≥ (θi, σi). If i = µ then since θµ satisfies 5.5,
it follows that the third outcome of 4.1 holds. We assume then that i < µ. From the maximality of
i, there is no hairless animal with i+ 1 horns, of strength ≥ (θi+1, σi+1). By 5.1, we deduce that one
of outcomes 1,3,4 of 5.1 holds, and so 4.1 holds, as required.

6 Induction on hairs

Next, we show that 5.1 is implied by the following.
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6.1 Let Σ be a surface, and let ρ, τ, χ, δ ≥ 0 and φ, ψ ≥ 1. Then there exist σ, κ, ρ, ζ ≥ 0 and θ ≥ 1
such that if T ∗ is a tangle in a graph G, and there is an animal with χ horns and δ hairs, of strength
≥ (θ, σ), then either

1. there is a Σ′-span of order ≥ φ, for some surface Σ′ obtained from Σ by adding a handle or a
crosscap, or

2. there is an animal with χ horns and δ + 1 hairs, of strength ≥ (ψ, τ), or

3. there exists Z ⊆ V (G) with |Z| ≤ ζ, and a T ∗\Z-central segregation of G\Z of type (ρ, κ) with
a proper arrangement in Σ, or

4. T ∗ controls a Kp-minor of G.

To show that 6.1 implies 5.1 we need the following lemmas. (For the meaning of “λ-zone”, see
section 3 of [8], and for “λ-compression” see section 1 of [9].)

6.2 Let Σ be a surface and let σ ≥ 0 be an integer. Let T ∗ be a tangle in a graph G, and let H, T
be a Σ-span of order θ. Let λ ≥ 2 be an integer with θ ≥ 4λ + 3, let Λ ⊆ Σ be a λ-zone such
that H ∩ (Σ\Λ) is rigid, and let T ′ be the tangle in H ′ = H ∩ (Σ\Λ) of order θ − 4λ − 2 which is
a (4λ + 2)-compression of T . Let v ∈ V (G)\V (H), such that there is a horn at v over H, T with
cardinality σ + 1 and breadth ≥ θ. Then there is a horn at v over H ′, T ′ with cardinality σ and
breadth ≥ θ − 4λ− 2.

Proof. First, we remark that T ′ exists, by theorem 7.10 of [7]. Let {P1, . . . , Pσ+1} be a horn at v
over H, T , of breadth ≥ θ. For 1 ≤ i ≤ σ + 1 let Pi have ends v, ui. Now if ui, uj ∈ Λ where i 6= j,
then d(ui, uj) ≤ 2λ since Λ is a λ-zone, and yet d(ui, uj) ≥ θ > 2λ by hypothesis, a contradiction.
Thus, Λ contains at most one of u1, . . . , uσ+1, and hence we may assume that u1, . . . , uσ 6∈ Λ. Since
T ′ is the (4λ+ 2)-compression of T , it follows that for 1 ≤ i < j ≤ σ,

d′(ui, uj) ≥ d(ui, uj)− 4λ− 2 ≥ θ − 4λ− 2.

Thus {P1, . . . , Pσ} is a horn at v over H ′, T ′ of breadth ≥ θ − 4λ− 2. This proves 6.2.

6.3 Let Σ be a surface, and let p, τ, χ ≥ 0 and ψ ≥ 1 be integers. Then there exists δ ≥ 0 and θ ≥ 1
such that if T ∗ is a tangle in a graph G, and there is an animal with χ horns and δ hairs of strength
≥ (θ, τ + 1), then either

• there is a hairless animal with χ+ 1 horns of strength ≥ (ψ, τ), or

• T ∗ controls a Kp-minor of G.

Proof. We may assume that p ≥ 2, for otherwise the result holds trivially. Let µ = 1
2p(p − 1),

and choose θ1 so that 5.2 holds (with θ replaced by θ1). We may assume, by increasing θ1, that
θ1 ≥ max(ψ, 3). Let θ = 5θ1 + 34, τ ′ = max(τ, 2), and δ = 2µ2τ ′2.

We claim that δ, θ satisfy the theorem. For let T ∗ be a tangle in a graph G, and let (H, T , X, Y )
be an animal of strength ≥ (θ, τ +1), with |X| = χ and |Y | = δ. For each y ∈ Y let Py be an H-path
with ends y, v(y), such that X ∩ V (Py) = ∅ and d(y, v(y)) ≥ θ where d is the metric of T . For each
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y ∈ Y let Qy = Py\{v(y)}, and let G0 = ∪(Qy : y ∈ Y ). Let G1 be the union of all components
of G0 which contain at least two vertices in Y , and let Y1 = Y ∩ V (G1). We may assume that T ∗
controls no Kp-minor of G. Since d(y, y′) ≥ θ ≥ θ1 for all distinct y, y′ ∈ Y1, it follows from 5.2 that:

(1) There do not exist µ disjoint paths of G1, each with distinct ends, both in Y1, and with no
internal vertex in Y1.

We may assume that:

(2) There do not exist v ∈ V (G1) and τ ′ paths of G1 each from v to Y1\{v}, mutually disjoint
except for v and with no internal vertex in Y1.

Subproof. Otherwise, v 6∈ V (H) since v has degree ≥ τ ′ ≥ 2 in G1 and every vertex of G1 in
V (H) has degree 1 in G1. Since d(y, y′) ≥ θ ≥ ψ for all distinct y, y′ it follows that there is a horn
at v over H, T with cardinality τ and breadth ≥ ψ. But v 6∈ X since v ∈ V (G1) and X ∩ V (G1) = ∅
(since X ∩ V (Py) = ∅ for each y ∈ Y ) and so (H, T , X ∪ {x}) is an animal of strength ≥ (ψ, τ) with
χ+ 1 horns. Thus we may assume (2).

From (1), (2) and 5.3 applied to G1, Y1, we deduce that |Y1| ≤ (µ− 1)τ ′, and so

|Y \Y1| ≥ δ − (µ− 1)τ ′ ≥ (2µ− 1)µτ ′.

We see that Qy1 is disjoint from Qy2 for all distinct y1, y2 ∈ Y \Y1.
Choose Y2 ⊆ Y \Y1 maximal such that the set W = {y, v(y) : y ∈ Y2} has cardinality 2|Y2| and

d(u, v) ≥ θ1 for any two distinct u, v ∈ W . By 5.2, we may assume that |Y2| ≤ µ − 1. From the
maximality of Y2 we deduce that for any y ∈ Y2 there exists w ∈W such that either d(y, w) < θ1 or
d(v(y), w) < θ1. Consequently there exist w ∈W and a set Y3 ⊆ Y \Y1 with

|Y3| ≥ |Y \Y1|/(2|Y2|) > µτ ′

such that for all y ∈ Y3, either d(y, w) < θ1 or d(v(y), w) < θ1. Now d(y, w) < θ1 for at most one
value of y ∈ Y since 2θ1 < θ and d(y, y′) ≥ θ for all distinct y, y′ ∈ Y . Consequently there exists
Y4 ⊆ Y3 with |Y4| ≥ µτ ′, such that d(v(y), w) < θ1 for all y ∈ Y4.

By theorem 9.2 of [8], there is a (θ1+2)-zone Λ1 around {w} such that x ⊆ Λ1 for every x ∈ A(H)
(A(H) is the set of atoms of H — see section 2 of [8]) with d({w}, x) < θ1, since 2 ≤ θ1 ≤ θ − 3.
Consequently v(y) ∈ Λ1 for all y ∈ Y4. By theorem 9.3 of [8] there is a (θ1 + 8)-zone Λ around
{w} such that H ∩ (Σ\Λ) is rigid and x ⊆ Λ for every x ∈ A(H) with d(z, x) < θ1 + 3, since
2 ≤ θ1 + 3 ≤ θ − 6. Consequently, Λ1 ⊆ Λ, and so every two vertices in Y4 are joined by a path P
of H with U(P ) ⊆ Λ. (For U(P ) see section 2 of [8].) Let H2 be a connected subgraph of H with
Y4 ⊆ V (H2) and U(H2) ⊆ Λ.

Let H ′ = H ∩ (Σ\Λ), and let T ′ be the (4(θ1 + 8) + 2)-compression of T in H ′ (this exists, by
theorem 7.10 of [7]). Then H ′, T ′ is a Σ-span of order θ − (4θ1 + 34) = θ − 1.

(3) Y4 ⊆ V (H ′).
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Subproof. Let y ∈ Y4. Then d(w, v(y)) < θ1, but d(y, v(y)) = θ1 and so d(w, y) > θ − θ1. Since
θ − θ1 ≥ θ1 + 8 and Λ is a (θ1 + 8)-zone, it follows that y 6∈ Λ, and so y ∈ V (H ′). This proves (3).

Let d′ be the metric of T ′. Since T ′ is a (4θ1 + 34)-compression of T , and d(y1, y2) = θ, it follows
that d′(y1, y2) = θ1 for all distinct y1, y2 ∈ Y4. Let G2 be the union of H2 and all Py(y ∈ Y4). From
5.2, since H ′, T ′ is a Σ-span of order θ1, it follows that there do not exist µ mutually disjoint paths
of G2 each with distinct ends both in Y4 and with no internal vertex in Y4.

Now G2 is connected and Y4 ⊆ V (G2) and |Y4| ≥ µτ ′ ≥ 2. From 5.3 (applied to G2, Y4), we
deduce there exists v ∈ V (G2) and τ ′ paths of G2 from v to Y4\{v}, mutually disjoint except for v,
and each with no internal vertex in Y4. Since each y ∈ Y4 has degree 1 in G2, and τ ′ > 1, it follows
that v 6∈ Y4 and so v ∈ V (G)\V (H ′), since V (G2 ∩H ′) = Y4. Consequently there is a horn at v over
H ′, T ′, with breadth ≥ θ1 and cardinality τ . But v 6∈ X since X ∩ V (G2) = ∅; and from 6.2, for
each x ∈ X there is a horn at x over H ′, T ′ with breadth ≥ θ1 and cardinality τ , since θ ≥ 4θ1 + 35.
Hence (H ′, T ′, X ∪ {v}) is a hairless animal with χ+ 1 horns, of strength ≥ (θ1, τ) ≥ (ψ, τ), and so
the first outcome of 6.3 holds. This proves 6.1.

Proof of 5.1, assuming 6.1
Let Σ be a surface and let p, τ, χ ≥ 0 and φ, ψ ≥ 1 be integers. Choose δ and θδ so that

6.3 is satisfied (with θ replaced by θδ). Let κδ = ρδ = ζδ = 0 and σδ = τ + 1. For 0 ≤ i ≤
δ we define θi, σi, κi, ρi, ζi inductively, as follows. Suppose that 0 ≤ i < δ and σi+1, θi+1 have
already been defined. Choose θi, σi, κi, ρi, ζi so that 6.1 is satisfied (with τ, δ, ψ, σ, κ, ρ, ζ, θ replaced
by σi+1, i, θi+1, σi, κi, ρi, ζi, θi). This completes the inductive definition.

Let κ = max(κ0, . . . , κδ), ρ = max(ρ0, . . . , ρδ), ζ = max(ζ0, . . . , ζδ), σ = σ0 and θ = θ0. We claim
that σ, κ, ρ, ζ, θ satisfy 5.1. For let T ∗ be a tangle in a graph G, with a hairless animal with χ horns
of strength ≥ (θ, σ) = (θ0, σ0). Choose i with θ ≤ i ≤ δ maximum such that there is an animal with
χ horns and i hairs of strength ≥ (θi, σi). If i = δ then by 6.3, either

• there is a hairless animal with χ+ 1 horns, of strength ≥ (ψ, τ), or

• T ∗ controls a Kp-minor of G

and in either case 5.1 holds. We assume then that i < δ. From the maximality of i, there is no
animal with χ horns and i+ 1 hairs and strength ≥ (θi+1, σi+1). By 6.1, either

• there is a Σ′-span of order ≥ φ, for some surface Σ′ obtained from Σ by adding a handle or a
crosscap, or

• there exists Z ⊆ V (G) with |Z| ≤ ζi ≤ ζ, and a T ∗\Z-central segregation of G\Z of type
(ρi, κi) (and hence of type (ρ, κ)) with a proper arrangement in Σ, or

• T ∗ controls a Kp-minor of G.

In each case 5.1 holds, as required.

7 The Giant Steps application

The previous paper of this series contains a result designed to be used at this point. We apply it to
prove that 6.1 is implied by the following. (For “(λ, µ)-level”, see section 8 of [9].)
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7.1 Let Σ be a surface, and let τ, χ, δ, λ ≥ 0, θ′ ≥ 1 and φ, ψ ≥ 3. Then there exist θ ≥ 1 and σ ≥ 0
such that if T ∗ is a tangle in a graph G, and there is an animal with χ horns and δ hairs, of strength
≥ (θ, σ), then either

• there is a Σ′-span of order ≥ φ, for some surface Σ′ obtained from Σ by adding a handle, or

• there is an animal with χ horns and δ + 1 hairs, of strength ≥ (ψ, τ), or

• there exists Z ⊆ V (G) with |Z| ≤ χ+ 1
2δ

2φ2 such that some Σ-span of order ≥ θ′ in G\Z with
respect to T ∗\Z is (λ, 2ψ)-level.

To encourage the reader, let us point out that we are making progress. 7.1 no longer involves
segregations of type (ρ, κ) nor does it involve controlling minors, which were the two fundamental
ingredients of 3.1. Also, crosscaps have gone from the first outcome.

To show that 7.1 implies 6.1 we use the following, which is almost theorem 8.4 of [9].

7.2 Let Σ be a surface and let p, φ, µ ≥ 0. Then there exist κ, λ, ρ ≥ 0 and θ ≥ 1 such that if T ∗ is
a tangle in a graph G, and some Σ-span of order ≥ θ is (λ, µ)-level, then either:

1. there is a Σ′-span of order φ, for some surface Σ′ obtained from Σ by adding a crosscap, or

2. there is a T ∗-central segregation of G of type (ρ, κ) with a proper arrangement in Σ, or

3. T ∗ controls a Kp minor of G.

However, let us point out a discrepancy. We were not farsighted enough in [9], and omitted to
include the term “proper” in the statement of the theorem, although the proof in that paper does
yield a proper arrangement. (All the arrangements in [9] first come into being via the proof of
theorem 7.7 of that paper, so it is enough to check that they are proper at that stage; and they are,
as we can see from theorem 7.6 of [9], or from statement (i) of 7.5 in [9].) Alternately, we could
pay for the mistake by starting with a non-proper arrangement, and showing how to convert it to a
proper one; that is straightforward, but not very short, and it seems unnecessary to inflict it on the
reader.

We also need two other lemmas.

7.3 Let T ∗ be a tangle in a graph G, let Z ⊆ V (G) with |Z| < ord(T ∗), and let (A,B) be a
separation of G of order < ord(T ∗)− |Z|. Then (A,B) ∈ T ∗ if and only if

(A\(Z ∩ V (A)), B\(Z ∩ V (B))) ∈ T ∗\Z.

Proof. Choose a separation (A∗, B∗) of G such that Z ⊆ V (A∗)∩V (B∗), and A∗\Z = A, B∗\Z = B.
Then (A∗, B∗) has order at most |Z| more than that of (A,B), and hence less than ord(T ∗). By
theorem 2.9 of [6], (A,B) ∈ T ∗ if and only if (A∗, B∗) ∈ T ∗. But (A∗, B∗) ∈ T ∗ if and only if
(A∗\Z,B∗\Z) ∈ T ∗\Z. This proves 7.3.

7.4 Let T ∗ be a tangle in G, and let Z ⊆ V (G) with |Z| < ord(T ∗). If H, η, T is a Σ-span in G\Z
with respect to T ∗\Z then H, η, T is a Σ-span in G with respect to T ∗.
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Proof. For simplicity we assume that η is the identity. Let (A,B) ∈ T ∗ have order < ord(T ); it
suffices to show that (A ∩H,B ∩H) ∈ T . Now

|V (A ∩B)| < ord(T ) ≤ ord(T ∗\Z) = ord(T ∗)− |Z|

and so by 7.3, (A′, B′) ∈ T ∗\Z, where A′ = A\(Z ∩V (A)), B′ = B\(Z ∩V (B)). Since H, η, T is a Σ-
span in G\Z with respect to T ∗\Z and (A′, B′) has order < ord(T ), it follows that (A′∩H,B′∩H) ∈
T . But A∩H = A′∩H since Z∩V (H) = ∅, and similarly B∩H = B′∩H. Hence (A∩H,B∩H) ∈ T .
This proves 7.4.

Proof of 6.1, assuming 7.1.
Let Σ be a surface, and let p, τχ, δ ≥ 0 and φ, ψ ≥ 1. By increasing φ, ψ we may assume that

φ, ψ ≥ 3. Choose κ, λ, ρ ≥ 0 and θ′ ≥ 1 so that 7.2 is satisfied (with θ, µ replaced by θ′, 2ψ). Choose
θ, σ as in 7.1 and let ζ = b12δ

2φ2c+χ. We claim that 6.1 holds. For let T ∗ be a tangle in G, with an
animal with χ horns and δ hairs, of strength ≥ (θ, σ). Let us apply 7.1. If 7.1.1 or 7.1.2 holds then
6.1.1 or 6.1.2 holds, and so we may assume that 7.1.3 holds, that is,

(1) There exists Z ⊆ V (G) with |Z| ≤ ζ such that some Σ-span of order ≥ θ′ in G\Z with re-
spect to T ∗\Z is (λ, 2ψ)-level.

Let us apply 7.2 (with θ, T ∗, G, µ replaced by θ′, T ∗\Z,G\Z, 2ψ). By (1), the hypotheses of 7.2
are satisfied. We deduce that one of the outcomes of 7.2 holds. But if 7.2.1 holds, that is, there is a
Σ′-span of order ≥ φ in G\Z with respect to T ∗\Z, then 6.1.1 holds, by 7.4. If 7.2.2 holds then 6.1.3
holds, while if 7.2.3 holds then 6.1.4 holds, because it is easy to see that T ∗ controls every minor
controlled by T ∗\Z. The result follows.

8 Non-level Σ-spans

Let T be a respectful tangle (see section 3 of [8]) of order θ in a rigid drawing H in a surface Σ, and
let Y ⊆ V (H). If γ ≥ 0, a γ-envelope around Y is a family (Λy : y ∈ Y ) such that:

• for each y ∈ Y,Λy is a γ-zone around y

• for all distinct y, y′ ∈ Y,Λy ∩ Λy′ = ∅

• for every subset Y ′ ⊆ Y , the drawing H ∩ (Σ\ ∪ (Λy : y ∈ Y ′)) is rigid.

(Actually, the third statement here is implied by the same statement for all singleton subsets Y ′, but
it is convenient to present it this way.)

In this section we show that 7.1 is implied by the following. (8.1 will be proved in the next
section.)

8.1 Let Σ be a surface and let δ ≥ 0 and φ, ψ ≥ 3. Then there exists γ ≥ 0 and θ > (4γ + 2)δ
such that if T ∗ is a tangle in a graph G and H, T is a Σ-span of order ≥ θ, and Y ⊆ V (H) satisfies
|Y | = δ and d(y, y′) ≥ θ for all distinct y, y′ ∈ Y (where d is the metric of T ), then either:

1. there is a Σ′-span of order ≥ φ for some surface Σ′ obtained from Σ by adding a handle, or
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2. there is an H-path in G with ends s, t, such that d(s, t) ≥ ψ and d(s, y) ≥ ψ for all y ∈ Y , or

3. there is a γ-envelope (Λy : y ∈ Y ) around Y , and there exists Z ⊆ V (G)\V (H ′) with |Z| ≤
1
2δ

2φ2, such that Z meets every H ′-path in G with ends s, t, satisfying d′(s, t) ≥ 2ψ, where
H ′ = H ∩ (Σ\ ∪ (Λy : y ∈ Y )) and d′ is the metric of the (4γ + 2)δ-compression of T in H ′.

To show that 8.1 implies 7.1, we need two lemmas. The first is a kind of converse of 7.4. If T is
a tangle in G and 1 ≤ θ ≤ ord(T ), the set of members of T of order < θ is called the truncation of
T to order θ.

8.2 Let T ∗ be a tangle in a graph G, and let H, T be a Σ-span. Let Z ⊆ V (G)\V (H) with |Z| <
ord(T ), let 1 ≤ θ′ ≤ ord(T ) − |Z|, and let T ′ be the truncation of T to order θ′. Then H, T ′ is a
Σ-span in G\Z with respect to T ∗\Z.

Proof. Since H is a subgraph of G\Z and

ord(T ′) = θ′ ≤ ord(T )− |Z| ≤ ord(T ∗)− |Z| = ord(T ∗\Z),

it suffices to show that (A ∩H,B ∩H) ∈ T ′ for all (A,B) ∈ T ∗\Z of order < θ′. Thus, let (A,B) ∈
T ∗\Z have order < θ′. By definition of T ∗\Z, there exists (A∗, B∗) ∈ T ∗ with Z ⊆ V (A∗ ∩ B∗),
such that A∗\Z = A and B∗\Z = B. Then (A∗, B∗) has order

|Z|+ |V (A ∩B)| < |Z|+ θ′ = ord(T )

and so (A∗ ∩H,B∗ ∩H) ∈ T , since H, T is a Σ-span with respect to T . Now (A∗ ∩H,B∗ ∩H) =
(A∩H,B∩H) since Z∩V (H) = ∅, and so (A∩H,B∩H) ∈ T ; and consequently (A∩H,B∩H) ∈ T ′,
since it has order ≤ |V (A ∩B)| < ord(T ′). This proves 8.2.

Our second lemma is the following.

8.3 Let Σ be a surface, and let τ, χ, δ, λ, ζ ≥ 0 and ψ ≥ 3. Then there exists θ > ζ such that if
T ∗ is a tangle in a graph G, and (H, T , X, Y ) is an animal with χ horns and δ hairs, of strength
≥ (θ, ζ + τ), and Z ⊆ V (G)\V (H) with X ⊆ Z and |Z| ≤ ζ, then either

• there is an animal with χ horns and δ + 1 hairs of strength ≥ (ψ, τ), or

• there is an H-path in G\Z with ends s1, s2 and there are distinct y1, y2 ∈ Y with d(s1, y1),
d(s2, y2) < ψ, where d is the metric of T , or

• H, T0 is a (λ, 2ψ)-level Σ-span of order θ − |Z| in G\Z with respect to T ∗\Z, where T0 is the
truncation of T to order θ − |Z|.

Proof. Let θ = 4ψ + 10λ+ 3ζ + 11. We claim that θ satisfies 8.3. For let T ∗, G,H, T , X, Y, Z be as
in the hypothesis of 8.3, and let d be the metric of T . We may assume that

(1) ord(T ) = θ.

Subproof. Let T ′ be the truncation of T to order θ. Then (H, T ′, X, Y ) is another animal sat-
isfying the same hypotheses, and since θ ≥ ψ, it is easy to see that if the theorem is true for

20



(H, T ′, X, Y ) then it is true for (H, T , X, Y ). Thus it suffices to prove the theorem for (H, T ′, X, Y )
and (1) follows.

Also, we may assume that

(2) If there is an H-path in G\Z with ends s1, s2 then d(s1, s2) < 2ψ.

Subproof. Suppose that d(s1, s2) ≥ 2ψ. If d(s1, y) ≥ ψ for all y ∈ Y , then (H, T , X, Y ∪ {s1})
is an animal with χ horns and δ+1 hairs of strength ≥ (ψ, τ), since X ⊆ Z, and so the first outcome
of 8.3 holds. We may assume then that d(s1, y1) < ψ for some y1 ∈ Y , and similarly d(s2, y2) < ψ
for some y2 ∈ Y . But y1 6= y2 since

2ψ ≤ d(s1, s2) ≤ d(s1, y1) + d(y1, y2) + d(y2, s2) < 2ψ + d(y1, y2)

and so the second outcome of 8.3 holds. Thus we may assume (2).
Let T0 be the truncation of T to order θ − |Z|. By 8.2, H, T0 is a Σ-span in G\Z with re-

spect to T ∗\Z, and we may assume that it is not (λ, 2ψ)-level, for otherwise the third outcome of
8.3 holds. But by (2), there is no H-path in G\Z with ends s1, s2 such that d0(s1, s2) ≥ 2ψ, for
d0(s1, s2) ≤ d(s1, s2) (where d0 is the metric of T0). Yet θ − |Z| ≥ 4λ + 2ψ + 2, and so from the
definition of (λ, 2ψ)-level we deduce the following. (For “rearranging”, see section 1 of [9].)

(3) There is a Σ-span H ′, η′, T ′′ in G\Z with respect to T ∗\Z, of order θ − |Z| − 4λ − 2, obtained
from H, T0 by rearranging within λ of some z ∈ A(H), and there is an η′(H ′)-path in G\Z with ends
η′(s), η′(t), such that d(z, s), d(z, t) ≤ λ and d′′(s, t) ≥ 2ψ, where d′′ is the metric of T ′′.

Let λ′ be an integer with

λ+
1

4
|Z| ≤ λ′ < λ+

1

4
|Z|+ 1.

Now T ′′ has order θ − |Z| − 4λ− 2; let T ′ be the truncation of T ′′ to order θ − 4λ′ − 2.

(4) H ′, η′, T ′ is a Σ-span in G with respect to T ∗, obtained from H, T by rearranging within λ′

of z, and d′(s, t) ≥ 2ψ where d′ is the metric of T ′.

Subproof. Now H ′, η′, T ′ is a Σ-span in G\Z with respect to T ∗\Z,and hence in G with respect
to T ∗ by 7.4. Let a ∈ A(H) with d(a, z) > λ′. Then

d0(a, z) = min(d(a, z), θ − |Z|) > λ′ ≥ λ

and so z ∈ A(H ′) (because H ′, η′, T ′′ is obtained from H, T0 by rearranging within λ of z). Similarly
if x is a vertex or edge of H with d(x, z) > λ′, then d0(x, z) > λ and so η′(x) = x. Since T ′ is the
(4λ′ + 2)-compression of T in H ′, the first claim follows. For the second, we observe that

d′(s, t) = min(d′′(s, t), θ − 4λ′ − 2) ≥ 2ψ.

This proves (4).
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(5) For each vertex w ∈ V (η′(H ′)))\V (H), there is a path Q of η′(H ′) from w to a vertex x ∈ V (H),
such that no vertex of Q belongs to H except x, and d(z, x) ≤ λ′ + 2.

Subproof. Let Q be a minimal path of η′(H ′) from w to V (H), and let its ends be w, x. Then
x ∈ V (H), and no vertex of Q belongs to H except x, by the minimality of Q. Suppose that
d(z, x) ≥ λ′+ 3. Then x ∈ V (H ′) and η′(x) = x by (4). Since x 6= w, there is an edge e of Q incident
with x; let e = η′(f) where f ∈ E(H ′). Since η′(f) is incident with η′(x) = x, it follows that f is
incident with x. Let a ∈ A(H), with x ∈ a and a ∩ f 6= ∅. Since x ∈ a, it follows that d(a, x) ≤ 2,
and so d(z, a) ≥ λ′+ 1, since d(z, x) ≥ λ′+ 3. By (4), we deduce that a ∈ A(H ′) and so a = f , since
a∩ f 6= ∅ and f ∈ E(H ′). Consequently f ∈ E(H) and d(z, f) ≥ λ′+ 1. By (4) again, e = η′(f) = f ,
and so e ∈ E(H), contrary to the minimality of Q. This proves (5).

Let v ∈ X, and let {P1, . . . , Pζ+τ} be a horn at v over H, T of breadth ≥ θ, and let Pi have ends
v, ui(1 ≤ i ≤ ζ + τ).

(6) P1, . . . , Pζ+τ may be numbered so that d(z, ui) ≥ λ′ + 2 + 2ψ and V (Pi)∩Z = {v} for 1 ≤ i ≤ τ .

Subproof. Since d(ui, uj) ≥ θ for 1 ≤ i < j ≤ ζ + τ , and since θ ≥ 2(λ′ + 2 + 2ψ), it follows
that d(z, ui) < λ′ + 2 + 2ψ for at most one value of i. Moreover, since |Z| ≤ ζ, there are at most
ζ − 1 values of i such that Z ∩ V (Pi) 6= {v}. This proves (6).

(7) For 1 ≤ i ≤ τ , no internal vertex of Pi belongs to V (η′(H ′)).

Subproof. Suppose that w is an internal vertex of Pi, where 1 ≤ i ≤ τ and w ∈ V (H ′). Let R
be the subpath of Pi between w and ui, and let Q be a path in η′(H ′) between w and some x ∈ V (H)
with d(z, x) ≤ λ′ + 2, such that no vertex of Q is in H except x (this exists by (5).) Then by (6),

λ′ + 2 + 2ψ ≤ d(z, ui) ≤ d(z, x) + d(x, ui) ≤ λ′ + 2 + d(x, ui)

and so d(x, ui) ≥ 2ψ. In particular, x 6= ui, and so Q∪R is an H-path. But Z ∩ V (Q∪R) = ∅ since
V (Q) ⊆ V (η′(H ′)) ⊆ V (G\Z) and V (R) ⊆ V (Pi)\{v} ⊆ V (G)\Z by (6). This contradicts (2), and
hence proves (7).

(8) For 1 ≤ i ≤ τ, ui ∈ V (H ′) and ui = η′(ui) ∈ V (η′(H ′)); and for 1 ≤ i < j ≤ τ, d′(ui, uj) ≥ ψ.

Subproof. By (6), d(z, ui) > λ′ and so by (4), ui ∈ V (H ′) and ui = η′(ui) ∈ V (η′(H ′)). For
the second claim, let 1 ≤ i < j ≤ τ . Then d(ui, uj) ≥ θ since {P1, . . . , Pζ+τ} has breadth ≥ θ, and so
d′(ui, uj) ≥ θ−4λ′−2 since T ′ is a (4λ′+2)-compression of T . Since θ−4λ′−2 ≥ ψ, this proves (8).

(9) For each v ∈ X there is a horn at v over H ′, η′, T ′ of cardinality τ and breadth ≥ ψ.

Subproof. This follows from (7) and (8), because v 6∈ V (η′(H ′) since v ∈ X ⊆ Z and V (η′(H ′)) ⊆
V (G\Z). This proves (9).

Let Y1 = {y ∈ Y : d(z, y) ≥ ψ + 5λ+ 2}.
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(10) |Y1| ≥ δ − 1, and Y1 ⊆ V (H ′), and η′(y) = y for all y ∈ Y1.

Subproof. Suppose that y, y′ ∈ Y \Y1 are distinct. Then d(z, y), d(z, y′) ≤ ψ + 5λ′ + 1, and so
d(y, y′) ≤ 2(ψ + 5λ′ + 1) < θ, a contradiction. Hence |Y ′| ≥ |Y | − 1 = δ − 1. Now if y ∈ Y1, then
d(z, y) ≥ ψ + 5λ′ + 2 ≥ λ′, and so y ∈ V (H ′) and η′(y) = y by (4). This proves (10).

Let Y ′ = Y ∪ {s, t} (we recall that s and t are defined in (3)). Then Y ′ ⊆ V (H ′), by (10).

(11) d′(y1, y2) ≥ ψ for all distinct y1, y2 ∈ Y ′.

Subproof. If {y1y2} = {s, t} this is true by (3). If y1, y2 ∈ Y1, then

d′(y1, y2) ≥ d(y1, y2)− 4λ′ − 2 ≥ θ − 4λ′ − 2 ≥ ψ

since T ′ is a (4λ′ + 2)-compression of T . Finally, if y1 ∈ Y1 and y2 ∈ {s, t}, then

d′(y1, y2) ≥ d′(y1, z)− d′(y2, z) ≥ d(y1, z)− 4λ′ − 2− d(y2, z) ≥ (ψ + 5λ′ + 2)− 4λ′ − 2− λ ≥ ψ

since d(y2, z) ≤ λ by (3). This proves (11).

(12) For all y ∈ Y ′ there is an η′(H ′)-path in G\X with ends η′(y), η′(x) say, where d′(x, y) ≥ ψ.

Subproof. If y = s or t this is true by (3), since d′(s, t) ≥ 2ψ ≥ ψ by (4). We assume then
that y ∈ Y1. Since Y1 ⊆ Y and (H, T , X, Y ) is an animal over H, T of strength ≥ (θ, ζ+τ), it follows
that there is an H-path Q in G\X with ends y, x say, where d(x, y) ≥ θ. Suppose first that some
vertex of Q different from y belongs to η′(H ′). Let w be the first such vertex, and let Q′ be the
subpath of Q between y and w. Let w = η′(y′) where y′ ∈ V (H ′). We claim that d′(y, y′) ≥ ψ. For
let a ∈ A(H) with y′ ∈ a. If d(a, z) > λ′ then by (4), a ∈ A(H ′) and so a = {y′}, and y′ ∈ V (H); and
by (4) again, w = η′(y′) = y′. Thus w ∈ V (H), and so w = x, since Q is an H-path. But d(x, y) ≥ θ,
and so d′(x, y) ≥ θ−4λ′−2, since T ′ is a (4λ+2)-compression of T ; that is, d′(y′, y) ≥ θ−4λ−2 ≥ ψ,
as claimed.

We may therefore assume that d(a, z) ≤ λ′, and so

d(a, y) ≥ d(z, y)− d(a, z) ≥ (ψ + 5λ′ + 2)− λ′ = ψ + 4λ′ + 2.

Since y′ ∈ a and T ′ is a (4λ′ + 2)-compression of T , it follows that d(y, y′) ≥ d(a, y)− 4λ′ − 2 ≥ ψ,
and so again our claim is true. Thus we have shown that d′(y, y′) ≥ ψ, and consequently y 6= y′ and
y, y′ are not adjacent in H ′ (since ψ ≥ 3). We deduce that Q′ is an η′(H ′)-path with ends y, y′ (for
no vertex of Q′ belongs to η′(H ′) except y, w, and E(Q′) ∩ E(η′(H ′) = ∅ even if |E(Q′)| = 1, since
y, y′ are not adjacent in H ′). Hence (12) holds in this case.

We may therefore assume that y is the only vertex of Q in η′(H ′). Since x ∈ V (H), there is a
minimal path R of H between x and V (η′(H ′)); let its ends be x,w where w = η′(x′) and x′ ∈ V (H ′).
Suppose that d′(y, x′) < ψ. Let a ∈ A(H) with x′ ∈ a; then d(y, a) < ψ + 4λ′ + 2 since T ′ is a
(4λ′+2)-compression of T . Since d(z, y) ≥ ψ+5λ′+2 (because y ∈ Y1) it follows that d(z, a) > λ′. By
(4), a ∈ A(H ′) and so a = {x′}, and x′ ∈ V (H), and d(z, x′) > λ′; and by (4) again w = η′(x′) = x′.
Let e be the edge of R incident with w. Then e ∈ E(H), and d(z, e) ≥ d(z, x′) > λ′. By (4),
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e ∈ E(H ′) and η′(e) = e, and so both ends of e belong to V (η′(H ′)), contrary to the minimality of
R. We deduce that d′(y, x′) ≥ ψ. Hence y 6= x′ and so Q∪R is an η′(H ′)-path, satisfying (12). This
proves (12).

From (9), (10), (11) and (12) we see that (H ′, η′, T ′, X, Y ′) is an animal with χ horns and ≥ δ+1
hairs, and so the first outcome of 8.3 holds. This proves 8.3.

Proof of 7.1, assuming 8.1
Let Σ be a surface, and let τ, χ, δ, λ ≥ 0, θ′ ≥ 1, and φ, ψ ≥ 3. Choose γ ≥ 0 and θ1 > (4γ + 2)δ

so that 8.1 holds (with θ replaced by θ1). Let ζ = b12δ
2φ2c+ χ, and choose θ2 > ζ so that 8.3 holds

(with θ replaced by θ2). We may assume that θ2 ≥ max(θ′ + ζ, 4ψ + 2). Let σ = δ + τ + ζ and
θ = χ+ θ1 + 3γ + (4γ + 2)δ + θ2.

We claim that σ, θ satisfy 7.1. For let T ∗ be a tangle in G, and let (H, T , X, Y ) be an animal
with χ horns and δ hairs, of strength ≥ (θ, σ). Let T ′ be the truncation of T to order θ−χ. By 8.2,
H, T ′ is a Σ-span in G\X with respect to T ∗\X. Let d′ be the metric of T ′. From 7.4 we deduce

(1) If there is a Σ′-span of order ≥ φ in G\X, for some surface Σ′ obtained from Σ by adding
a handle, then 7.1.1 holds.

Next, we observe

(2) If there is an H-path in G\X with ends s, t such that d′(s, t) ≥ ψ and d′(s, y) ≥ ψ for all
y ∈ Y , then 7.1.2 holds.

Subproof. Then d(s, t) ≥ d′(s, t), and d(s, y) ≥ d′(s, y) for all y ∈ Y , and so (H, T , X, Y ∪ {s})
is an animal (in G, with respect to T ∗) with χ horns and δ + 1 hairs, of strength ≥ (ψ, σ) ≥ (ψ, τ).
This proves (2).

Now T ′ has order θ − χ ≥ θ1, and for all distinct y1, y2 ∈ Y ,

d′(y1, y2) = min(d(y1, y2), θ − χ) ≥ min(θ, θ − χ) = θ − χ ≥ θ1

and so 8.1 may be applied (with T ∗, G, T , θ replaced by T ∗\X,G\X, T ′, θ1). From (1) and (2) we
may therefore assume that 8.1.3 holds, that is,

(3) There is a γ-envelope (Λy : y ∈ Y ) around Y , and there exists Z ⊆ V (G\X)\V (H ′′) with
|Z| ≤ 1

2δ
2φ2, such that Z meets every H-path in G\X with ends s, t satisfying d′′(s, t) ≥ 2ψ, where

H ′′ = H ∩ (Σ\(Λy : y ∈ Y )), and d′′ is the metric of the (4γ + 2)δ-compression T ′′ of T ′ in H ′′.

Now (H, T ′, X, Y ) is an animal of strength ≥ (θ − χ, σ), and H ′′, T ′′ is obtained from H, T ′ by
repeating δ times the operation of clearing a γ-zone (see section 3 of [8]). From δ applications of 6.2
we deduce

(4) For each v ∈ X there is a horn at v over H ′′, T ′′ of cardinality σ − δ = τ + ζ and breadth
≥ θ − χ− (4γ + 2)δ ≥ θ2.

For each y ∈ Y , let Py be a minimal path of H between y and V (H ∩ bd(Λy)), with ends y, p(y) say.
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(5) d′′(p(y1), p(y2)) ≥ θ2 for all distinct y1, y2 ∈ Y .

Subproof. Now

θ − χ ≤ d′(y1, y2) ≤ d′(y1, p(y1)) + d′(p(y1), p(y2)) + d′(p(y2), y2) ≤ 2γ + d′(p(y1), p(y2))

since for i = 1, 2,Λyi is a γ-zone around yi and p(yi) ∈ Λyi . But

d′(p(y1), p(y2)) ≤ d′′(p(y1), p(y2)) + (4γ + 2)δ

since T ′′ is a (4γ + 2)δ-compression of T ′. Consequently,

d′′(p(y1), p(y2)) ≥ θ − χ− 2γ − (4γ + 2)δ ≥ θ2.

This proves (5).

(6) For each y ∈ Y there is a H ′′-path in G\X with ends p(y), q(y) say, such that d′′(p(y), q(y)) ≥ θ2.

Subproof. Let Qy be an H-path in G\X with ends y, r(y) say, such that d′(y, r(y)) ≥ θ − χ.
Let Ry be a minimal path of H between r(y) and V (H ′), with ends r(y), q(y) say. Then for some
y′ ∈ Y,Λy′ contains both r(y) and q(y), and so

d′(y′, r(y)), d′(y′, q(y)) ≤ γ.

Hence d′(q(y), r(y)) ≤ 2γ. But d′(y, p(y)) ≤ γ since p(y) ∈ Λy, and so

θ − χ ≤ d′(y, r(y)) ≤ d′(y, p(y)) + d′(p(y), q(y)) + d′(q(y), r(y)) ≤ 3γ + d′(p(y), q(y)).

Thus d′(p(y), q(y)) ≥ θ−χ− 3γ ≥ θ2, and so Py ∪Qy ∪Ry is an H ′′-path satisfying (6). This proves
(6).

Let Y ′′ = {p(y) : y ∈ Y }. From (4), (5) and (6) it follows that (H ′′, T ′′, X, Y ′′) is an animal in
G with respect to T ∗ with χ horns and δ hairs, of strength ≥ (θ2, ζ + τ). By 8.3 (with θ,H, T , Y, Z
replaced by θ2, H

′′, T ′′, Y ′′, Z ∪X) we deduce that one of the outcomes of 8.3 holds.
If the first outcome of 8.3 holds, then 7.1.3 is true. Suppose that the second outcome of 8.3 holds,

that is, there is an H ′′-path P in G\(X ∪Z) with ends s1, s2 and there are distinct y1, y2 ∈ Y ′′ with
d′′(s1, y1), d

′′(s2, y2) < ψ. Then P is an H-path in G\X, not meeting Z, and so d′′(s1, s2) < 2ψ by
(3). Hence

d′′(y1, y2) ≤ d′′(y1, s1) + d′′(s1, s2) + d′(s2, y2) < 4ψ ≤ θ2
contrary to (5). Thus this case does not occur. We may therefore assume that the third outcome
of 8.3 holds, that is, there is a (λ, 2ψ)-level Σ-span H ′′, T0 of order θ2 − |X ∪ Z| in G\(X ∪ Z) with
respect to T ∗\(X ∪Z). But then 7.1.3 holds, since θ2−|X ∪Z| ≥ θ2− ζ ≥ θ′. In all cases, therefore,
7.1 holds, as required.
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9 The main proof

Now we complete the series of reductions by proving 8.1.

Proof of 8.1
Let Σ be a surface, and let δ ≥ 0 and φ, ψ ≥ 3 be integers. Let κ = b12φ

2δ2c + 1, let β be even
with κ(ψ + 6) ≤ β ≤ κ(ψ + 6) + 1, let γ = 3β + 3, and let θ = 12(δ + 3)(β + 1). We claim that γ, θ
satisfy 8.1. For let T ∗ be a tangle in a graph G, let H, T be a Σ-span of order ≥ θ with metric d,
and let Y ⊆ V (H) with |Y | = δ, such that d(y, y′) ≥ θ for all distinct y, y′ ∈ Y . We may assume
that 8.1.2 is false, that is,

(1) There is no H-path with ends s, t such that d(s, t) ≥ ψ and d(s, y) ≥ ψ for all y ∈ Y .

Let Y = {y1, . . . , yδ}. For 1 ≤ i ≤ δ there is a battlefield (Λi, Ci, Xi) around yi of size β (see
section 9 of [8]), by theorem 9.5 of [8], since β ≥ 4 is even and θ ≥ 16β + 17. We may assume that
|Xi| = β for each i.

For 1 ≤ i < j ≤ δ, if σ ∈ Λi ∩ Λj then d(y1, σ), d(yj , σ) ≤ 3β + 3, and so

θ ≤ d(yi, yj) ≤ d(yi, σi) + d(yj , σj) ≤ 6β + 6,

a contradiction. Thus the discs Λ1, . . . ,Λδ are mutually disjoint.

For i = 0, 1, . . . , δ, let Hi = H ∩ (Σ\(Λ1 ∪ · · · ∪ Λi)).

(2) For 0 ≤ i ≤ δ,Hi is a rigid drawing in Σ.

Subproof. Certainly H0 = H is rigid, and so we may assume that i ≥ 1. Let F ⊆ Σ be an O-
arc with F ∩ U(Hi) ⊆ V (Hi) and |F ∩ V (Hi)| ≤ 2. Since the circuits H ∩ bd(Λ1), . . . ,H ∩ bd(Λi)
are mutually disjoint and |F ∩ V (Hi)| ≤ 2, and i ≥ 1, it follows that for some j(1 ≤ j ≤ i), the sets
F ∩ Λ1, . . . , F ∩ Λi are all empty except possibly F ∩ Λj . Consequently, if H ′ denotes H ∩ (Σ\Λj),
then F ∩ U(H ′) ⊆ V (H ′) and |F ∩ V (H ′)| ≤ 2. But H ′ is rigid, since (Λj , Cj , Xj) is a battlefield,
and so there is a dial ∆ for F,H ′ (see section 4 of [8]). Now ∆ includes none of bd(Λ1), . . . , bd(Λi)
since it includes no circuit of H ′, and F meets none of Λ1, . . . ,Λi except possibly Λj , and it follows
that ∆ is disjoint from all of Λ1, . . . ,Λi except possibly Λj . Consequently, ∆ is a dial for F,Hi. This
proves (2).

Let T0 = T , and for i = 1, . . . , δ let Ti be the tangle obtained from Ti−1 by clearing the (3β + 3)-
zone Λi. (We observe that Λi is indeed a (3β + 3)-zone with respect to Ti−1 since it is for T0, and
thus this clearing operation is possible since Ti−1 has order ≥ θ − (12β + 14)(i− 1) > 12β + 14. We
see that Ti has order ord(T )− (12β + 14)i and is the (12β + 14)i-compression of T in Hi.

For “free”, see section 3 of [8].

(3) For 1 ≤ i ≤ δ, X1 is free with respect to Ti.

Subproof. This is true for i = 1, since (Λ1, C1, X1) is a battlefield. We proceed by induction on
i, and suppose that 1 < i ≤ δ, and that X1 is free with respect to Ti−1. Let di−1 be the metric of
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Ti−1. Then for each v ∈ X1,

di−1(yi, v) ≥ di−1(yi,Λ1)−1 ≥ d(yi, y1)−(12β+14)(i−1)−1 ≥ θ−(12β+14)(δ−1)−1 > 2β+5(3β+3)+2

and so X1 is free with respect to Ti, by theorem 4.7 of [9] (with T , H, z, λ,X,H ′ replaced by
Ti−1, Hi−1, yi, 3β + 3, X1, Hi). This proves (3).

By theorem 4.1 of [9] there is at most one (12β+14)i-compression of T in Hi, and so Ti is unique.
In particular, Ti does not depend on the order in which Λ1, . . . ,Λi are cleared. From this observation
and (2),(3), we deduce that for 1 ≤ i ≤ j ≤ δ,Xi is free with respect to Tj , and (Λi : 1 ≤ i ≤ δ) is a
γ-envelope around Y . Let H ′ = Hδ, T ′ = Tδ.

(4) For 1 ≤ i < j ≤ δ, if there are φ2 mutually disjoint H ′-paths in G with one end in Xi and
the other in Xj, then 8.1.1 holds.

Subproof. Let P1, . . . , Pφ2 be such a set of paths, and let Pk have ends ak ∈ Xi, bk ∈ Xj where
a1, . . . , aφ2 are in order in bd(Λi). By a theorem of Erdös and Szekeres [3] there exist 1 ≤ i1 <
i2 < · · · < iφ ≤ φ2 such that bi1 , bi2 , . . . , biφ are in order in bd(Λ2) (under one of the orientations of
bd(Λ2)). The claim follows from theorem 3.5 of [9], since φ ≥ 3. This proves (4).

In view of (4), we may assume that there exists Z0 such that

(5) Z0 ⊆ V (G), Z0 ∩ V (H ′) ⊆ X1 ∪ · · · ∪ Xδ, |Z0| < κ, and Z0 meets every H ′-path with ends in
distinct Xi, Xj.

Subproof. Let 1 ≤ i < j ≤ δ. By (4) and Menger’s theorem, we may assume that there exists
Zij ⊆ V (G) with Zij ∩ V (H ′) ⊆ Xi ∪Xj and |Zij | ≤ 1

2φ
2, such that Zij meets every H ′-path with

ends in Xi and Xj . Set Z0 = ∪(Zij : 1 ≤ i < j ≤ δ); then Z0 satisfies (5).

We suppose, for a contradiction, that setting Z = Z0∩(V (G)\V (H ′) does not satisfy 8.1.3. Conse-
quently, if d′ is the metric of T ′, it follows that there is an H ′-path P0 in G with ends x1, s2, such that:

(6) Z0 ∩ V (P0) ⊆ {s1, s2} ∩ (X1 ∪ · · · ∪Xδ) and d′(s1, s2) ≥ 2ψ.

For i = 1, 2 let ti be the second vertex of P0 in V (H) as P0 is traversed from si (si is the first).

(7) d(s1t1) < ψ and d(s2, t2) < ψ.

Subproof. If s1, t1 are adjacent in P0, joined by an edge of H, then d(s1, t1) ≤ 2 < ψ, so we assume
not. Then the subpath of P0 between s1 and t1 is an H-path. But for 1 ≤ i ≤ δ, since s1 6∈ Λi it
follows from the definition of a battlefield that d(s1, yi) ≥ β ≥ ψ. Consequently, d(s1, t1) < ψ by (1).
This proves (7).

We may assume that

(8) t1 ∈ Λ1 and t2 ∈ Λ2.
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Subproof. Now t1 6= s2 since d(s1, s2) ≥ d′(s1, s2) ≥ 2ψ and d(s1, t1) < ψ. Consequently, t1 ∈
Λ1 ∪ · · · ∪ Λδ since P0 is an H ′-path. Similarly, t2 ∈ Λ1 ∪ · · · ∪ Λδ. If for some i, {t1, t2} ⊆ Λi, then
by (7), d′(s1,Λi) ≤ d(s1, t1) < ψ and similarly d′(s2,Λi) < ψ, and so d′(s1, s2) < 2ψ contrary to (6).
Thus t1, t2 belong to distinct members of Λ1, . . . ,Λδ, and we may assume from the symmetry that
t1 ∈ Λ1 and t2 ∈ Λ2. This proves (8).

We may assume that

(9) There is no path Q of H from X1 to V (P0) with V (Q) ∩ V (H ′) ⊆ X1 and with Z0 ∩ V (Q) = ∅.

Subproof. Suppose that for i = 1, 2, Qi is a path of H from Xi to V (P0) with V (Qi) ∩ V (H ′) ⊆ Xi

and with Z0 ∩ V (Qi) = ∅. The union of Q1, Q2 and P0 includes a path P of G from X1 to X2 with
V (P ) ∩ V (H ′) ⊆ X1 ∪X2 and with Z0 ∩ V (P ) = ∅. But this contradicts (5). Thus either Q1 or Q2

does not exist, and without loss of generality we may assume the former. This proves (9).

For 3 ≤ i ≤ β−3 there is an (i+2)-zone Mi around y1 including every x ∈ A(H) with d(y1, x) < i,
since θ > β.

(10) There are κ mutually disjoint paths of H between V (H) ∩ bd(Mκ) and V (H) ∩ bd(Λ1).

Subproof. Suppose not. By a form of Menger’s theorem for planar graphs, there is a circuit C
of a radial drawing (see section 2 of [8]) K of H, of length < 2κ with U(C) ⊆ Λ1, bounding an open
disc in Λ1 including Mκ. By theorem 7.5 of [8], ins(C) ⊆ Λ1 since

|E(C)| < 2κ < 2(θ − (3β + 3)).

Let r be a region of H with r ∩ U(C) 6= ∅ (see section 2 of [8]]). Then d(r, y1) ≤ 1
2 |E(C)| < κ since

r ∩ U(C) 6= ∅ and y1 ∈ ins(C); and so r ⊆ Mκ by the choice of Mκ. But then r is a subset of the
open disc bounded by U(C), and so r ∩ U(C) = ∅, a contradiction. This proves (10).

(11) There is a path P1 of H between V (H) ∩ bd(Mκ) and X1, with only one vertex in V (H ′)
and such that Z0 ∩ V (P1) = ∅.

Subproof. We recall that (Λ1, C1, X1) is a battlefield of size β, and hence Mκ is included in the
open disc in Λ1 bounded by U(C1). Moreover, the regional distance between U(C1) and bd(Λ1) (see
section 5 of [8]) is at least 1+ 1

2β, and so from (10) and theorem 10.5 of [5], there are κ disjoint paths
of H between V (H) ∩ bd(Mκ) and X1, each with only one vertex in V (H ′). Since |Z0| < κ, one of
these paths is disjoint from Z0. This proves (11).

(12) For 3 ≤ i < j ≤ β − 3 if j − i ≥ 3 then M i ⊆Mj.

Subproof. Now d(y1, x) ≤ i+ 2 for every x ∈ A(H) with x ⊆M i, and since i+ 2 < j it follows that
x ⊆Mj . This proves (12).

Let i be such that 3 ≤ i ≤ β−ψ−5. Then Mi and Mi+ψ+2 are both defined, and M i ⊆Mi+ψ+2 by
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(12). Consequently Σi = M i+ψ+2\Mi is homeomorphic to a closed cylinder. Let Ji be the subdraw-
ing of H formed by the vertices and edges of H in Σi. Now the cylinders Σκ+r(ψ+5)(r = 0, . . . , κ− 1)
all exist since κ+ (κ− 1)(ψ + 5) ≤ β − ψ − 5, and by (12) they are mutually disjoint. Consequently
the graphs Jκ+r(ψ+5)(r = 0, . . . , κ− 1) are mutually disjoint, and since |Z0| < κ, there exists i with
κ ≤ i ≤ β − ψ − 5 such that Z0 ∩ V (Ji) = ∅.

(13) Mκ ⊆Mi+ψ+2, and M i+ψ+2 ⊆ Λ1.

Subproof. Now i ≥ κ and ψ ≥ 1, so the first inclusion follows from (12). For the second, let
x ∈ A(H) with x ⊆M i+ψ+2. Then d(y1, x) ≤ i+ψ+ 4 by definition of Mi+ψ+2; and so x ⊆ Λ1 since
Λ1, C1, X1 is a battlefield of size β around y1 and i+ ψ + 4 < β. This proves (13).

We recall that P0 was defined before (6).

(14) P0 ∩ Ji is null.

Subproof. Now H is connected, and both O-arcs in bd(Σi) correspond to circuits of Ji, and so
Ji is connected. Let P1 be as in (11); then P1 has one end in bd(Mκ) and the other in bd(Λ1), and so
from (13), P1 meets H ∩ bd(Mi+ψ+2) ⊆ Ji. Suppose that P0 also meets Ji. Now U(Ji) ⊆ Λ1 by (13),
and so there is a path of P1∪Ji from X1 to V (P0) with only one vertex in H ′. But V (P1∪Ji)∩Z0 = ∅,
contrary to (9). This proves (14).

Let v be the first vertex of P0 (as P0 is traversed from s1) such that v ∈ V (H), v 6= s1 and
v 6∈ Λ1\Mi. (Such a vertex exists, because s2 ∈ V (H), s2 6= s1 and s2 6∈ Λ1\Mi.) Let u be the last
vertex of P0 in V (H) before v. (This exists, because s1 ∈ V (H) is before v.) Let P be the subpath
of P1 between u and v.

(15) i+ ψ + 2 ≤ d(u, y1) ≤ 3β + 3 + ψ.

Subproof. Now u 6∈ Mi and hence u 6∈ Mi+ψ+2 by (14). The first inequality follows from the
choice of Mi+ψ+2. For the second, it follows from (7) and (8) if u = s1, because

d(s1, y1) ≥ d(s1, t1) + d(t1, y1) < ψ + 3β + 3.

If u 6= s1, then u ∈ Λ1 by the choice of v and so d(v, y1) ≤ 3β + 3. This proves (15).

From (15), d(u, y1) ≥ ψ; and for 2 ≤ j ≤ δ,

d(u, yj) ≥ d(y1, yj)− d(u, y1) ≥ θ − (3β + 3 + ψ) ≥ ψ

by (15). Since P is an H-path with ends u, v, it follows from (1) that d(u, v) < ψ. Now if v ∈ Mi

then d(y1, v) ≤ i+ 2, and so

d(u, y1) ≤ d(u, v) + d(y1, v) < ψ + i+ 2,

contrary to (15). Thus v 6∈ Mi, and so v 6∈ Λ1 from the definition of v. But v 6= s2 by (1), and so
v ∈ Λj for some j with 2 ≤ j ≤ δ, since P0 is an H ′-path. Consequently d(v, yj) ≤ 3β + 3. Hence

θ ≤ d(y1, yj) ≤ d(y1, u) + d(u, v) + d(v, yj) < (3β + 3 + ψ) + ψ + (3β + 3) < θ,

a contradiction. Thus, our assumption that 8.1.3 is not satisfied was false. This proves 8.3.
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