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Abstract. This paper contains a first step towards extending the
Graph Minors Project of Robertson and Seymour to group-labelled
graphs. For a finite abelian group Γ and Γ-labelled graph G, we
describe the class of Γ-labelled graphs that do not contain a minor
isomorphic to G.

1. Introduction

Group-labelled graphs are a generalization of signed graphs. For a
group Γ, a Γ-labelled graph is an oriented graph with edges labelled
by elements of Γ. Here we are primarily interested in abelian groups,
so we will use additive notation. A minor of a group-labelled graph G
is any group-labelled graph obtained from G by any sequence of the
following operations: vertex deletion, edge deletion, contracting zero-
labelled edges, and shifting at a vertex, which, for a given vertex v and
group element γ, amounts to adding γ to the label of each edge entering
v and subtracting γ from the label of each edge leaving v.

We hope that the main results of the Graph Minors Project of
Robertson and Seymour will extend to group-labelled graphs over any
fixed finite abelian group. In particular, the following two conjectures,
if true, would generalize the two main results of the Graph Minors
Project; see [4] and [6].

Conjecture 1.1. For any finite abelian group Γ and any infinite se-
quence G1, G2, . . . of Γ-labelled graphs, there exist integers i < j such
that Gi is isomorphic to a minor of Gj.

Conjecture 1.2. For any finite abelian group Γ and any Γ-labelled
graph H, there is a polynomial-time algorithm to determine whether or
not a Γ-labelled graph G contains an H-minor.
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To avoid algorithmic complications in Conjecture 1.2, we assume that
the group Γ is given by its addition table. In the above conjectures the
finiteness of the group Γ is certainly necessary, however, there may be
extensions to non-abelian groups.

Group-labelled graphs (also known as biased graphs) are closely re-
lated with several interesting classes of matroids; see Zaslavsky [7,8].
Proving Conjecture 1.1 would prove that two interesting classes of ma-
troids are well-quasi-ordered with respect to taking minors and would
go a long way towards well-quasi-ordering binary matroids.

The workhorse of the Graph Minors Project is the Graph Minors
Structure Theorem [5], and the main result of this paper is an extension
of that result to group-labelled graphs over finite abelian groups. The
complete Γ-labelled graph on n vertices is denoted K(Γ, n). For a
subgroup Γ′ of an abelian group Γ, we say that G is Γ′-balanced if it is
shifting-equivalent to a Γ′-labelled graph.

Theorem 1.3. Let Γ be a finite abelian group, let Γ′ be a subgroup of
Γ, let n ∈ N, and let t = 8n|Γ|2. If G is a Γ-labelled graph and H is a
minor of G isomorphic to K(Γ′, 4t), then either

• there is a set X ⊆ V (G) with |X| < t such that the unique block
of G−X that contains most of E(H) is Γ′-balanced, or

• there is a subgroup Γ′′ of Γ properly containing Γ′ and a minor
H ′ of G with E(H ′) ⊆ E(H) such that H ′ is isomorphic to
K(Γ′′, n).

The specialization of Theorem 1.3 to signed graphs is implicit in [2]
and the proof of Theorem 1.3 is a routine extension of the proof given
in that paper.

We also prove the following easy result that is complementary to
Theorem 1.3. The graph that is obtained from a group-labelled graph

G by ignoring the orientation and the group-labels is denoted G̃.

Theorem 1.4. Let Γ be a finite group and let n ∈ N. Then there exists

l ∈ N such that if G̃ has a Kl-minor, then G has a K({0}, n)-minor.

Theorems 1.3 and 1.4 are particularly useful when applied in con-
junction with “tangles”. For the rest of the introduction we assume
that the reader is familiar with the definitions in Graph Minors X [3].

Suppose that T is a tangle of order k in a graph (or group-labelled
graph) G. If X ⊆ V (G) with |X| ≤ k− 2, then it is straightforward to
show that there is a unique block B of G − X such that V (B) ∪ X is
not contained in the T -small side of any separation of order < k; we
call B the T -large block of G−X.
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Let Γ be a finite abelian group and let n ∈ N. Theorems 1.3 and 1.4
imply that there exist l, t ∈ N such that if G is a Γ-labelled graph and
T is a tangle in G of order ≥ t + 2, then either:

(1) T does not control a Kl-minor in G̃,
(2) there exists X ⊆ V (G) with |X| ≤ t such that the T -large block

of G−X is Γ′-balanced for some proper subgroup Γ′ of Γ, or
(3) T controls a K(Γ, n)-minor in G.

In the first case, we can use the Graph Minors Structure Theorem to

describe the structure of G̃.

2. Group-labelled graphs

Let Γ be an abelian group. A Γ-labelled graph is an oriented graph
with edges labelled by elements of Γ. More formally, if G is a Γ-labelled
graph, then G has a vertex set V (G) and an edge set E(G), and each
edge e ∈ E(G) is assigned a head, denoted headG(e), in V (G), a tail,
denoted tailG(e), in V (G), and a group-label, denoted γG(e), in Γ. The
head and tail of an edge are referred to as its ends.

Let G be a Γ-labelled graph. The graph obtained from G by ignoring

the orientation and the group labels is denoted by G̃. By a walk in

G, we mean a walk in G̃. If e ∈ E(G) and v is an end of e, then
we let γG(e, v) = γG(e) if v = headG(e) and γG(e, v) = −γG(e) if
v = tailG(e). Let W = (v0, e1, v1, e2, v2, . . . , ek, vk) be a walk of G. We
let γG(W ) = γG(e1, v1)+ · · ·+γG(ek, vk). The length of W is k; the ends
of W are v0 and vk; W is closed if v0 = vk; W is a path if v0, v1, . . . , vk

are distinct vertices; and W is a circuit if v0, . . . , vk−1 are distinct,
e1, . . . , ek are distinct, and v0 = vk. We let E(W ) = {e1, . . . , ek} and
V (W ) = {v0, . . . , vk}.

Shifting. Let v ∈ V (G) and let δ ∈ Γ. We obtain a new Γ-labelled
graph G′ from G by adding δ to the label of each edge with head v
and subtracting δ from the label of each edge with tail v. We say that
G′ is obtained from G by shifting at v. Any Γ-labelled graph that
is obtained from G by a sequence of shiting operations is said to be
shifting-equivalent to G. Note that, if G′ is shifting-equivalent to G
and W is a closed walk of G, then γG′(W ) = γG(W ). (Here we do
require that Γ is abelian, and this is one reason that we are restricting
our attention to abelian groups.)

We omit the elementary proof of the following result.

Lemma 2.1. If G is a Γ-labelled graph, for some abelian group Γ,

and T is a spanning tree of G̃, then G is switching-equivalent to some
Γ-labelled graph G′ with γG′(e) = 0 for each e ∈ E(T ).
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Balanced labellings. Let Γ′ be a subgroup of Γ. We say that G is
Γ′-balanced if γG(C) ∈ Γ′ for each circuit C of G. Note that, if Γ is
abelian and C1 and C2 are circuits of G with E(C1) = E(C2), then
γG(C1) = ±γG(C2).

Lemma 2.2. Let Γ be an abelian group and let G be a Γ-labelled graph.
If G is Γ′-balanced for some subgroup Γ′ of Γ, then G is switching-
equivalent to a Γ′-labelled graph.

Proof. By possibly adding edges, we may assume that G̃ is connected;

let T be a spanning tree of G̃. By Lemma 2.1, G is switching-equivalent
to some Γ-labelled graph G′ with γG′(e) = 0 for each e ∈ E(T ). Since Γ
is abelian, G′ is Γ′-balanced. Consider e ∈ E(G′)−E(T ) and a circuit
C with E(C) ⊆ E(T ) ∪ {e}. We have γG′(e) = ±γG′(C) ∈ Γ′. Hence
G′ is Γ′-labelled. �

Lemma 2.3. Let Γ be an abelian group and let G be a Γ-labelled graph.
If G is Γ′-balanced for some subgroup Γ′ of Γ, then for any closed walk
W of G we have γG(W ) ∈ Γ′.

Proof. By Lemma 2.2, G is switching-equivalent to a Γ′-labelled graph
G′. Now, for any closed walk W , we have γG(W ) = γG′(W ) ∈ Γ′. �

We call G balanced if it is {0}-balanced. A set F ⊆ E(G) is balanced
if the subgraph of G induced by F is balanced; that is, γG(C) = 0 for
each circuit C of G with E(C) ⊆ F .

Minors. A Γ-labelled graph H is a minor of G if it can be obtained
from G via any sequence of the following operations: edge deletion,
contraction of a zero-labelled edge, shifting at a vertex, and vertex
deletion. It is straightforward to see that if F is the set of edges that
are contracted in obtaining a minor H of G, then F is balanced in G.
Conversely, if F ′ ⊆ E(G) is balanced, then, by Lemma 2.2, we can
shift so that each edge in F ′ is zero-labelled and then contract these
edges. For any set A of zero-labelled edges of G we let G/A denote
the minor of G obtained by contracting A. For a set S ⊆ V (G), we
let G[S] denote the Γ-labelled subgraph of G induced by S and let
G− S = G[V (G)− S].

We will need to view minors in a more global way, as given by the
following result; we omit the easy proof.

Lemma 2.4. Let G be a Γ-labelled graph, for some abelian group Γ,
and let H be a minor of G. Then there is a Γ-labelled graph G′ that is
switching-equivalent to G and there exist vertex-disjoint trees (T (v) :
v ∈ V (H)) in G such that:
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• γG′(e) = 0 for each v ∈ V (H) and e ∈ E(T (v)),
• γG′(e) = γH(e) for each e ∈ E(H), and
• headG′(e) ∈ V (T (headH(e))) and tailG′(e) ∈ V (T (tailH(e))) for

each e ∈ E(H).

A-paths. Let A ⊆ V (G). An A-path in G is a path of length at least
one whose ends are both in A. The following result was proved by
Chudnovsky et al. [1].

Theorem 2.5. Let Γ be a abelian group, let G be a Γ-labelled graph,
and let A ⊆ V (G). Then for any k ∈ N either

• there exist vertex-disjoint A-paths P1, . . . , Pk with γG(Pi) 6= 0
for each i ∈ {1, . . . , k}, or

• there exists X ⊆ V (G) with |X| ≤ 2(k−1) such that γG(P ) = 0
for each A-path P in G disjoint from X.

We require the following elementary corollary.

Corollary 2.6. Let Γ′ be a subgroup of an abelian group Γ, let G be a
Γ-labelled graph, and let A ⊆ V (G). Then for any k ∈ N either

• there exist vertex-disjoint A-paths P1, . . . , Pk with γG(Pi) 6∈ Γ′

for each i ∈ {1, . . . , k}, or
• there exists X ⊆ V (G) with |X| ≤ 2(k−1) such that γG(P ) ∈ Γ′

for each A-path P in G disjoint from X.

Proof. Apply Theorem 2.5 to the quotient group Γ/Γ′. �

Blocks. A separation of G is an pair (G1, G2) of subgraphs of G such
that E(G) = E(G1) ∪ E(G2) and V (G) = V (G1) ∪ V (G2); the order
of the separation is |V (G1) ∩ V (G2)|. We say that G is 2-connected
if G is connected and for each separation (G1, G2) of G of order 1
either E(G1) = ∅ or E(G2) = ∅. Note that if G is 2-connected and
|V (G)| ≥ 2, then G has no loops. A block of G is a maximal 2-connected
subgraph of G.

Lemma 2.7. Let G be a 2-connected Γ-labelled graph, for some abelian
group Γ, and let Γ′ be a subgroup of Γ. If u and v are distinct vertices
of G such that γG(P ) ∈ Γ′ for each (u, v)-path P in G, then G is
Γ′-balanced.

Proof. Let C be a circuit of G. Since G is 2-connected, there exist
two vertex-disjoint paths P and P ′ from {u, v} to V (C). We may
assume that P connects u to a ∈ V (C) and P ′ connects v to b ∈ V (C).
Furthermore, we may assume that P and P ′ each only meet C in one
vertex. Let C ′ be a circuit of G starting at a with E(C ′) = E(C).
Let Q be the (u, v)-path obtained by following P from u to a then
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following C ′ to b, and then following P ′ backward to v. Now let Q′ be
the (v, u)-path obtained by following P ′ from v to b then following C ′

to a, and then following P backward to u. Note that

γG(C) = ±γG(C ′) = ±(γG(Q) + γG(Q′)) ∈ Γ′.

Hence G is Γ′-balanced. �

Complete graphs. The complete Γ-labelled graph on n vertices, de-
noted K(Γ, n), has vertex set {1, . . . , n} and edge set {e(i, j, σ) : i, j ∈
V (K(Γ, n)), i 6= j, σ ∈ Γ} where each edge e(i, j, σ) has tail i, head j,
and label σ.

We can now prove Theorem 1.4, which we restate here for conve-
nience.

Theorem 2.8. Let Γ be a finite abelian group and let n ∈ N. Then

there exists l ∈ N such that if G̃ has a Kl-minor, then G has a
K({0}, n)-minor.

Proof. By Ramsey’s Theorem there exists an l such that, if we colour
the edges of a clique on l vertices with 2|Γ| colours, then there is a

monochromatic subclique on 2n vertices. We may assume that G̃ is
isomorphic to Kl and that V (G) = {1, . . . , l}. We partition E(G) into
2|Γ| sets according to the label γG(e) of the edge e and to the sign of
headG(e)−tailG(e). By our choice of l, there exists a set X ⊆ {1, . . . , l}
with |X| = 2n, an element γ ∈ Γ, and a sign σ ∈ {−1, 1} such that for
each edge e of G[X] we have γG(e) = γ and headG(e)−tailG(e) = σ. By
symmetry, we may assume that X = {1, . . . , 2n} and that σ = 1. Let
H be the subgraph of G[X] with all edges of G having tail in {1, . . . , n}
and head in {n + 1, . . . , 2n}. Now we obtain a K({0}, n)-minor of H
by shifting at each of {n + 1, . . . , 2n} so that all labels in H become
zero, and then contracting a perfect matching. �

3. The main theorem

We need one more preliminary result.

Lemma 3.1. Let Γ be a finite abelian group, let Γ′ be a subgroup of
Γ, let n ∈ N, and let l = n|Γ|2. If G is a Γ-labelled graph and M is a

matching of size l in G̃ such that G−M is isomorphic to K(Γ′, 2l) and
for each e ∈ M we have γG(e) 6∈ Γ′, then there is a subgroup Γ′′ of Γ
properly containing Γ′ and a minor H ′ of G with E(H ′) ⊆ E(G−M)
such that H ′ is isomorphic to K(Γ′′, n).
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Proof. There exists M ′ ⊆ M with |M ′| = n|Γ| and an element σ ∈
Γ − Γ′ such that γG(e) = σ for each e ∈ M ′. Let Γ′′ be the subgroup
of Γ generated by Γ′ and σ and let g be the order of σ.

Now we can easily find a minor G′ of G with V (G′) = {vi
k : 1 ≤ i ≤

n, 0 ≤ k ≤ g} and with the following edges:

• For each i ∈ {1, . . . , n} and k ∈ {1, . . . , g}, we have an edge
ei

k ∈ M ′ with head vi
k, tail vi

k−1, and label σ.
• For each i, j ∈ {1, . . . , n} with i 6= j, k ∈ {1, . . . , g}, and γ′ ∈ Γ′,

we have an edge e ∈ E(G)−M with tail vj
0, head vi

k, and label
γ′.

Now we construct a minor H ′ of G′ by shifting each vertex vi
k by −kσ

(so that each ei
k is zero-labelled) and then contracting the edges {ei

k :
1 ≤ i ≤ n, 1 ≤ k ≤ g}. It is straightforward to verify the H ′ is
isomorphic to K(Γ′′, n) and that E(H ′) ⊆ E(H). �

We are now ready to prove the main result which we restate here for
convenience.

Theorem 3.2. Let Γ be a finite abelian group, let Γ′ be a subgroup of
Γ, let n ∈ N, and let t = 8n|Γ|2. Then if G is a Γ-labelled graph and
H is a minor of G isomorphic to K(Γ′, 4t), then either

• there is a set X ⊆ V (G) with |X| < t such that the unique block
of G−X that contains most of E(H) is Γ′-balanced, or

• there is a subgroup Γ′′ of Γ properly containing Γ′ and a minor
H ′ of G with E(H ′) ⊆ E(H) such that H ′ is isomorphic to
K(Γ′′, n).

Proof. Let l = n|Γ|2 and m = 4t.
We assume that:

3.2.1. there is no set X ⊆ V (G) with |X| < t such that the block of
G−X that contains most of E(H) is Γ′-balanced.

By possibly shifting we may assume that there exist vertex-disjoint
trees (T (v) : v ∈ V (H)) in G such that:

• γG(e) = 0 for each v ∈ V (H) and e ∈ E(T (v)),
• γG(e) = γH(e) for each e ∈ E(H), and
• headG(e) ∈ V (T (headH(e))) and tailG(e) ∈ V (T (tailH(e))) for

each e ∈ E(H).

Consider any v ∈ V (H). For each u ∈ V (H) − {v} we choose
an edge e ∈ E(H) with u = tailH(e) and v = headH(e) and we let
fv(u) = headG(e); thus fv(u) ∈ V (T (v)). For each X ⊆ V (T (v)) we
let f−1

v (X) = {u ∈ V (H)− {v} : fv(u) ∈ X}.
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We leave it to the reader to verify that we can choose a vertex av ∈
V (T (v)) satisfying:

3.2.2. for each edge e ∈ E(T (v)) we have |f−1
v (X)| ≤ m−1

2
where X is

the vertex set of the component of T (v)− e that does not contain av.

Now we let A = {av : v ∈ V (H)}. Our particular choice of A is
motivated by the following claim.

3.2.3. Let S ⊆ V (H) with |S| > m+1
2

, let L ⊆ ∪(E(T (u)) : u ∈ S),
let G′ is the Γ-labelled subgraph of G induced by ∪(V (T (v)) : v ∈ S),
and let B be the block of G′/L that contains E(H[S]). If v ∈ S and
L ∩ E(T (v)) = ∅, then av ∈ V (B).

Subproof. Let G′′ = G′/L. If av 6∈ V (B), then there is a separation
(G1, G2) of G′′ of order 1 with E(B) ⊆ E(G2) and av ∈ V (G1)−V (G2).
Let w be the vertex in V (G1)∩V (G2). Since E(H[S]) ⊆ E(B) ⊆ E(G2)
and since some edge in E(H[S]) has an end in V (T (v)), we have w ∈
V (T (v)). Let e be the edge on the (av, w)-path in T (v) that is incident
with w and let X be the vertex set of the component of T (v)− e that
contains w. Note that, for each u ∈ S−{v}, we have fv(u) ∈ X. Thus
|f−1

v (X)| ≥ |S| − 1 > m−1
2

, contradicting our choice of av. �

3.2.4. There exist vertex-disjoint A-paths P1, . . . , P4l such that
γG(Pi) 6∈ Γ′ for each i ∈ {1, . . . , 4l}.
Subproof. Suppose otherwise; then, by Corollary 2.6, there is a set
X ⊆ V (G) with |X| < 8l such that γG(P ) ∈ Γ′ for each A-path P
in G that is disjoint from X. Let S = {v ∈ V (H) : V (T (v))∩X = ∅}
and let H ′ = H[S]. Now let B be the block of G − X that contains
E(H ′) and let x and y be distinct vertices in {av : v ∈ S}. Note that
|S| ≥ m+1

2
. So, by 3.2.3, we have x, y ∈ V (B), and, by our choice of

X, γB(P ) ∈ Γ′ for each (x, y)-path P in B. Then, by Lemma 2.7, B
is Γ′-balanced. However |S| > 3

4
|V (H)| so |E(H ′)| > 1

2
|E(H)| and,

hence, B is the unique block of G − X that contains most of E(H),
which contradicts 3.2.1. �

Let F = ∪(E(T (v)) : v ∈ V (H)). We choose vertex-disjoint A-
paths P1, . . . , P4l

• minimizing |E(P1)− F |+ · · ·+ |E(P4l)− F |,
• subject to γG(Pi) 6∈ Γ′ for each i ∈ {1, . . . , 4l}.

Let A0 ⊆ A be the set of ends of the paths P1, . . . , P4l, let W = {v ∈
V (H) : A0 ∩ V (T (v)) 6= ∅}, and let A1 = V (H)−W .

3.2.5. For each v ∈ A1 and i ∈ {1, . . . , 4l}, we have V (T (v))∩V (Pi) =
∅.
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Subproof. Suppose that T (v) meets one or more of P1, . . . , P4l. Then,
for some path Pi and w ∈ V (Pi) ∩ V (T (v)), the (av, w)-path Q in
T (v) is internally disjoint from each of P1, . . . , P4l. Suppose that Pi

is an (ax, ay)-path. Let Qx denote the (av, ax)-path with E(Qx) ⊆
E(Q)∪E(Pi) and let Qy denote the (av, ay)-path with E(Qy) ⊆ E(Q)∪
E(Pi). Note that γG(Pi)−γG(Qy)+γG(Qx) = 0. Then, since γG(Pi) 6∈
Γ′, either γG(Qx) 6∈ Γ′ or γG(Qy) 6∈ Γ′. Moreover, |E(Qx) − F | <
|E(P )−F | and |E(Qy)−F | < |E(P )−F |; this contradicts our choice
of P1, . . . , P4l. �

Let G1 be the minor of G obtained by contracting each of (E(T (v)) :
v ∈ A1); we may assume that the vertices of G1 are labelled so that
H[A1] is a subgraph of G1; thus G1[A1] is isomorphic to K(Γ′, 16l).

3.2.6. If X ⊆ V (G1) and γG(P ) ∈ Γ′ for each A1-path P in G1 − X,
then |X| ≥ 2l.

Subproof. Suppose that |X| < 2l. For i ∈ {1, . . . , 4l} let Wi =
V (T (x)) ∪ V (T (y)) where T (x) and T (y) are the trees that con-
tain the ends of Pi. Since |X| < 2l, there is a path Pi such that
X ∩ (V (Pi) ∪ Wi) = ∅. Suppose that Wi = V (T (x)) ∪ V (T (y)) and
that Pi is an (ax, ay)-path. There is an (ay, ax)-path P ′ in G1 such that
E(P ′) ⊆ E(T (x)) ∪ E(T (y)) ∪ E(H); thus γG1(P

′) ∈ Γ′. Let B be the
block of G1 −X that contains G1[(A1 ∪ {x, y})−X]. By Lemma 2.7,
B is Γ′-balanced. By 3.2.3, B contains ax and ay. Hence, Pi and P ′

are both contained in B. Let W ′ be the closed walk obtained by ap-
pending P ′ to Pi. Thus γB(W ) = γB(P ′) + γB(Pi) 6∈ Γ′, contradicting
Lemma 2.3. �

By the above claim and Corollary 2.6, there exist vertex-disjoint A1-
paths Q1, . . . , Ql in G1 such that γG1(Qi) 6∈ Γ′ for each i ∈ {1, . . . , l}.
Now the result follows immediately from Lemma 3.1. �
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