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1 Algebraic Hypersurfaces in (C∗)n

Let ∆ ⊂ Zn be a convex lattice polytope. Let

X∆ :=

{∑
α∈∆

cαz
α = 0

}
⊂ (C∗)n

be a smooth hypersurface, for some coefficients cα ∈ C∗. We use the notation

zα := zα1
1 . . . zαnn .

The diffeomorphism type of X∆ is independent of the coefficients cα. We can study it by

making a cunning choice of coefficients:

cα := tv(α)

for some v : ∆→ Z. Call the resulting hypersurface X t
∆, and consider the tropical limit

t→∞.
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We define affine functions (tropical monomials)

fα : Rn → R.
fα(r) := v(α) + α · r,

and a Log map

Logt : (C∗)n → Rn,

Logt(z) :=
1

log(t)
(log |z1|, . . . , log |zn|) .

Observe that

log
∣∣∣tv(α)zα

∣∣∣ = log(t)fα(Logt(z)).
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If one of the functions fα(Logt(z)) dominates the others, then for sufficiently large t the

corresponding term dominates the sum∑
α∈∆

tv(α)zα,

and in particular the sum is not zero. Thus, the image Logt(X
t
∆) (the amoeba) must

converge, as t → ∞, to the locus where two monomials fα are tied for largest. This is a

polyhedral complex, called the tropical amoeba of the degeneration.

Consider the function (a tropical polynomial)

f : Rn → R,
f := max

α∈∆
fα.

The tropical amoeba is the non-smooth locus of f .
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Let vc denote the concave hull of v, defined on the whole polytope ∆R ⊂ Rn. f is the

Legendre dual of vc. It follows that the tropical amoeba is dual to the decomposition of

∆ induced by the non-smooth locus of vc. We choose v so that it induces a decomposition

of ∆ into primitive simplices (i.e., ones of minimal volume).

Example: ∆ = {(0, 0), (1, 0), (0, 1)} and v ≡ 0. Then X∆ = CP1 \ {3 points}, the

1-dimensional pair of pants. We have

f (x, y) = max(0, x, y)

and the tropical amoeba looks like this:
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Figure 1: On the left, the tropical amoeba of the pair of pants {1 + x+ y = 0} ⊂ (C∗)2; on the right, the amoeba for some
finite t together with the tropical amoeba.
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Figure 2: On the left, ∆ = {(0, 0), (1, 0), (0, 1), (1, 1)}, with v as shown. On the right, the corresponding amoeba and
tropical amoeba.
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Figure 3: On the left, a more complicated ∆ and v. On the right, the corresponding tropical amoeba.
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Example: ∆ = {0, e1, . . . , en} and v ≡ 0. Then

X∆ = {1 + z1 + . . . + zn = 0} ⊂ (C∗)n,

which is isomorphic to CPn \ {n + 2 hyperplanes}. This manifold is called the (n − 1)-

dimensional pair of pants.

We have

f (r1, . . . , rn) = max(0, r1, . . . , rn).

When n = 2, the tropical amoeba looks like:
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Figure 4: The tropical amoeba of the 2-dimensional pair of pants, {1 + x+ y + z = 0} ⊂ (C∗)3.
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Because v induces a maximal triangulation, there are at most n + 1 dominant tropical

monomials fα at any point. So for sufficiently large t, all of X t
∆ looks locally like a pair

of pants. We obtain a decomposition of X t
∆ into pairs-of-pants, encoded by the tropical

amoeba.

This gives useful topological data already: when n = 2, it becomes clear that the genus of

a curve X∆ is equal to the number of internal points of ∆. For example, a degree-d curve

in CP2 has genus (d− 1)(d− 2)/2.

11



Consider the argument map

Arg : (C∗)n → (S1)n.

In the same way that the amoeba

Logt(X
t
∆) ⊂ Rn

Hausdorff converges to the tropical amoeba, the image

(Logt,Arg)(X t
∆) ⊂ (C∗)n

Hausdorff converges to a certain subset X trop
∆ , which projects to the tropical amoeba.

The fibre over a point r is the set of all θ ∈ (S1)n such that∑
α:fα(r) maximal

zα = 0

for some z such that Arg(z) = θ.
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Since everything locally looks like a pair of pants, it suffices to understand what X trop
∆ looks

like for the pair of pants. Consider the case n = 2 first. The fibre over a point on the leg

0 = x > y, for example, is the set{
(θ1, θ2) ∈ (S1)2 : 1 + er1+iθ1 = 0 for some r1

}
,

which is obviously the circle {θ1 = π}. Thus there is a cylinder lying above this leg, and

similarly for the others.

Over the central point (0, 0), where all three monomials tie for largest, the fibre is{
(θ1, θ2) ∈ (S1)2 : 1 + er1+iθ1 + er2+iθ2 = 0 for some r1, r2

}
.

It’s called the tighty-whiteys of the pair of pants, and it looks like this:
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Figure 5: On the left, the tighty-whiteys of the 1-dimensional pair of pants, sitting in the torus. On the right, the
corresponding X trop

∆ .
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Now let’s look at n = 3. The tighty-whiteys of the 2-dimensional pair of pants look like

this:

Figure 6: The tighty-whiteys of the 2-dimensional pair of pants. They are the complement in the 3-torus of the ‘crystal’
shape shown.

In general, the tighty-whiteys of the n-dimensional pair of pants are the complement in

Rn+1/(2πZ)n+1 of the interior of the ‘zonotope’ centred at (0, 0, . . . , 0) generated by the

vectors

πe1, πe2, . . . , πen+1, and − πe1 − . . .− πen+1.

The Arg projection is a homotopy equivalence from the pants onto the tighty-whiteys.
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Figure 7: Diagram of X trop
∆ for the 2-dimensional pair of pants, as a fibration over its tropical amoeba. The fibres over

the 2-cells of the amoeba are 2-tori, parallel to the cell they lie over (drawn as squares on an angle). The fibres over the
1-cells look like the tighty-whiteys of the 1-dimensional pair of pants crossed with a circle (the one on the upper right is
tricky to draw, but is equivalent to the others). The fibre over the 0-cell is the tighty-whiteys of the 2-dimensional pair of
pants. The arrows denote gluing maps.
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The tighty-whiteys are homotopy equivalent to the pair of pants, and have the homotopy

type of a torus with a point removed. Hence n-dimensional pants are homotopy equivalent

to a cell complex of dimension n. Can we obtain a more symmetric-looking cell complex?
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Figure 8: The tropical thong for n = 2: three segments attached to two points.
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Figure 9: The tropical thong for n = 2 is the preimage of the red curve.
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Figure 10: The tropical thong for n = 3 is obtained by stitching four disks onto three mutually intersecting circles, using
all possible stitching maps that cover the circles exactly once and move clockwise (one example is shown on the right).
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