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Abstract

The paper presents a bivariate subdivision scheme interpolating data consisting of univariate functions
along equidistant parallel lines by repeated refinements. This method can be applied to the construction
of a surface passing through a given set of parametric curves. Following the methodology of polysplines
and tension surfaces, we define a local interpolator of four consecutive univariate functions, from which we
sample a univariate function at the mid-point. This refinement step is the basis to an extension of the 4-point
subdivision scheme to our setting. The bivariate subdivision scheme can be reduced to a countable number
of univariate, interpolatory, non-stationary subdivision schemes. Properties of the generated interpolant are
derived, such as continuity, smoothness and approximation order.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is motivated by the search for a subdivision-based solution to the problem of
bivariate interpolation in a rectangular domain of data consisting of univariate functions given
along parallel lines.

For an interval [a, b] and N ∈ N, let ∆ : a = x0 < x1 < · · · < xN = b denote a
partition of [a, b]. The rectangular domain is Ω = [a, b] × [−π, π] ⊂ R2, and fi (y) is a
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data function given along the partition line x = xi , i = 0, 1, . . . , N . The problem is to find
a smooth bi-variate interpolant u(x, y) over Ω satisfying u(xi , y) = fi (y), for y ∈ [−π, π],
i = 0, 1, . . . , N . We refer to this bivariate interpolation problem as BIUD problem (Bivariate
Interpolation of Univariate Data). To fit into the framework of subdivision schemes we consider
the BIUD problem with an equally-spaced partition ∆.

Subdivision schemes are used for the construction of smooth curves and surfaces in Geometric
Modelling (see e.g. [8,17]), and for the construction of wavelets (see e.g. [4,5]). These
schemes can generate/approximate efficiently curves and surfaces by relatively simple iterative
procedures.

The naive approach for solving the BIUD problem is to use a univariate interpolation method
and interpolate the values { fi (y0)}

N
i=0 for every y0 ∈ [−π, π]. The main disadvantage of this

approach is that at a given point (x, y), the interpolant depends on data values { fi (y)}N
i=0,

however it does not depend on available data in the neighbourhood of (x, y), such as fi (y + ϵ),
where y + ϵ ∈ [−π, π]. This geometric drawback leads to more sophisticated solutions such as
polysplines in [13, Chapters 1 and 3] and tension surfaces in [1]. A brief review of these methods
and their relation to our construction is given in Section 2.2.

We introduce a subdivision based approach to the solution of the BIUD problem for 2π -
periodic data functions, which yields interpolants depending on six local data functions at each
point. Our bivariate subdivision scheme extends the well known 4-point scheme [9,6], replacing
cubic polynomial interpolation by a solution of a PDE, obtained by the method of separation of
variables. The limit function of this subdivision scheme is a real Fourier series in the variable y,
with coefficients which are functions of x , obtained as the limits of univariate, interpolatory, non-
stationary subdivision schemes, applied to the Fourier coefficients of the data functions. These
univariate schemes reproduce functions from the tension spaces

Vm = Span{1, x, emx , e−mx
}, m ∈ Z+. (1)

We show that the subdivision based solution and its first partial derivatives are well defined
and continuous due to the decay rate of the coefficient functions, inherited from the decay rate
of the Fourier coefficients of the data functions. The proof of the decay rate of the coefficient
functions is based on a uniform bound on the basic limit functions {φm}m∈Z+

of the family of
univariate subdivision schemes, and on a slowly growing (with m) bound on

 d
dx φm


m∈Z+

.
The outline of this paper is as follows: Section 2 gives the scientific background, which

includes relevant notation, definitions and results on subdivision schemes and a brief view of
three known methods for the solution of the BIUD problem. We present our subdivision-based
solution to the BIUD problem in Section 3. Its existence and continuity is proven in Section 4.
In Section 5 we show the C1 smoothness of our interpolant, as a bivariate function. Most of the
proofs of the results in this section are postponed to Appendix A. The approximation order of
our method is investigated in Section 6. The proofs of the lemmas in this section are given in
Appendix B. We conclude the paper in Section 7 with a brief overall view of our method and
discuss several possible applications.

2. Preliminaries

In this section we introduce some definitions and notation, and review relevant material to our
problem and its solution. We start with univariate interpolatory subdivision schemes on which
our bivariate subdivision scheme is based.
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2.1. The 4-point non-stationary schemes and the Vm spaces

Non-stationary versions of the interpolatory 4-point subdivision scheme [9], are obtained
when its tension parameter depends on the refinement level k, namely with refinement steps
for k ∈ Z+ of the form

f k+1
2i = f k

i ,

f k+1
2i+1 = −wk( f k

i−1 + f k
i+2) +


1
2

+ wk


( f k
i + f k

i+1).
(2)

For a special choice of the tension parameters {wk
}k∈Z+

, these schemes are the exponentials
reproducing subdivision schemes studied in [11]. In [2] it is shown that the space reproduced by
(2) is Vm = Sp{1, x, emx , e−mx

}, m ∈ Z+, when

wk
:= wk

m =
1

2


e
m
2k + e

−m
2k
 

e
m
2k + e

−m
2k + 2

 . (3)

In fact, by (2) and (3) f k+1
2i+1 = g


i +

1
2


2−k


, where g is the unique function in Vm satisfying

g((i + j)2−k) = f k
i+ j , j = −1, 0, 1, 2.

We denote the refinement rule (2) with wk
= wk

m , as in (3), by Sk
m . The subdivision scheme,

defined by f k+1
= Sk

m f k , for all k ∈ Z+ is Sm = {Sk
m}k∈Z+

, and its limit, when applied to the
data f 0

= { f 0
i }i∈Z is denoted by S∞

m f 0. Note that 0 < wk
m ≤

1
16 for any m ∈ Z+.

The case m = 0 is special due to the fact that wk
=

1
16 for every k, and (2) becomes stationary.

This scheme is the 4-point Dubuc Deslauriers (DD) scheme [6,7].

2.2. Three known methods for solving the BIUD problem

We review shortly three known methods for the solution of the BIUD problem. The first
method, so-called the ‘naive’ approach, defines u(x, y0) by using a univariate interpolation
to the values {(xi , fi (y0))}

N
i=0. In this way we can evaluate the interpolant at every point of

Ω . The interpolation property is straightforward and the approximation order can be easily
derived from that of the univariate method. The main advantage, in addition to its simplicity,
is the use of a well studied univariate interpolation method. Yet, any value of the interpolant
u(x∗, y∗) for (x∗, y∗) ∈ Ω is determined solely by a subset of the data { f j (y∗)}N

j=0 (depending
on the univariate interpolation method), and there is no influence of other data values in the
neighbourhood of (x∗, y∗). The last observation is a major geometric drawback of the naive
method.

In the second method, suggested in [13], for 2π -periodic data functions, the interpolant
u(x, y) satisfies,

∆2u(x, y) =


∂2

∂x2 +
∂2

∂y2

2

u(x, y) = 0, (x, y) ∈ Ω j , j = 1, 2, . . . , N , (4)

where Ω j is the subdomain (x j−1, x j ) × [−π, π]. The solution is termed the bi-harmonic
polyspline and is a special case of the n-polyharmonic solution, corresponding to ∆n in (4).
The bi-harmonic polyspline solution is unique and defines a smooth interpolant for smooth data
functions. Moreover it minimizes I ( f ) =


Ω ( f 2

xx + 2 f 2
xy + f 2

yy) and reproduces bi-harmonic
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functions. Contrary to the naive approach, the bi-harmonic polyspline u(x, y) at (x, y) ∈ Ω ,
x ≠ x0, . . . , xN depends on the entire data. Yet it has a major geometric disadvantage, since due
to its high smoothness in each subdomain it oscillates in a very unnatural way. A good example
of such oscillations is observed when f j (y) = g(y), j = 0, . . . , N (see [1]).

Tension surfaces are proposed by Aylon in [1]. This method generates interpolants u(x, y)

satisfying

Lu(x, y) =
∂2

∂x2


∂2

∂x2 +
∂2

∂y2


u(x, y) = 0, (x, y) ∈ Ω j , j = 1, 2, . . . , N . (5)

The tension surface solution is unique and minimizes I ( f ) =

Ω f 2

xx + 2 f 2
xy , which is a

nonsymmetric functional in x and y, more appropriate for our nonsymmetric data. The value
of the interpolant at (x, y) ∈ Ω , x ≠ x0, . . . , xN depends on the entire data, and the interpolant
reproduces harmonic functions as well as functions of the form F(x, y) = g1(y) + xg2(y). The
operator L in (5) plays a significant role in our method of interpolation.

The solution of (4) and (5) for 2π -periodic data functions, is done by the method of separation
of variables. The solution is presented as a Fourier series in the variable y with coefficients
which are functions of x , and the differential operator is applied to each term in the series. This
construction influences heavily ours.

3. The bivariate interpolatory subdivision scheme for data along parallel lines

To solve the BIUD problem for an equally-spaced partition ∆, with h =
(b−a)

n , and for
2π -periodic data functions, we extend to this setting the 4-point interpolatory subdivision
scheme with w =

1
16 [9,6]. This scheme refines point values fi = f (ih), i = 0, . . . , N by

inserting the estimated values at


i +
1
2


h as P3,i


i +

1
2


h


for i = 1, . . . , N − 2. Here

P3,i (x) is a cubic polynomial


in the null space of d4

dx4


satisfying the interpolation conditions

P3,i ((i + j)h) = f ((i + j)h), j = −1, 0, 1, 2. By repeating the refinement step again and again
a C1 limit function is generated.

In analogy to this refinement, the bivariate scheme we construct, refines the data fi (y), i =

0, . . . , N to f̃ j (y), j = 2, . . . , 2N − 2 according to

f̃2i (y) = fi (y), i = 1, . . . , N − 1,

f̃2i+1(y) = Qi


i +

1
2


h, y


, i = 1, . . . , N − 2,

(6)

Here Qi (x, y) is a bivariate function in the null-space of the differential operator L in (5),
satisfying the interpolation conditions

Qi ((i + j)h, y) = fi+ j (y), j = −1, 0, 1, 2. (7)

We construct Qi by separation of variables. Assume

Qi (x, y) =

∞
m=0

{c̃i,m(x) cos(my) + s̃i,m(x) sin(my)}. (8)

If L can be applied to Qi term by term, then the coefficients must satisfy the ODEs

c̃(4)
i,m(x) − m2c̃(2)

i,m(x) = 0, s̃(4)
i,m(x) − m2s̃(2)

i,m(x) = 0, m ∈ Z+. (9)
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To impose the interpolation condition (7), the 2π -periodic data functions are expanded into
Fourier series

fi (y) =

∞
m=0

{ci,m cos(my) + si,m sin(my)}, i = 0, . . . , N , (10)

and the coefficients of Qi are required to satisfy

c̃(4)
i,m((i + j)h) = ci+ j,m, s̃(4)

i,m((i + j)h) = si+ j,m, j = −1, 0, 1, 2. (11)

From (9) it is clear that c̃i,m and s̃i,m are in Vm = span{1, x, emx , e−mx
}, where the solution to

(11) is unique.
Now we can write explicitly the refined functions. By (6) and (8) we get for i = 1, . . . , N − 2

f̃2i+1(y) =

∞
m=0


c̃i,m


i +

1
2


h


cos(my) + s̃i,m


i +

1
2


h


sin(my)


. (12)

Repeating this refinement step we get in the limit an interpolant given by a Fourier series in y,
with coefficients which are functions of x . The coefficients of cos(my) and sin(my) are limits of
the non-stationary 4-point subdivision scheme Sm , obtained from the initial data

c0
m = {ci,m}

N
i=0, s0

m = {si,m}
N
i=0, m ∈ Z+, (13)

respectively. Thus the interpolant is of the form,

u(x, y) =

∞
m=0

{cm(x) cos(my) + sm(x) sin(my)}, (14)

with

cm(x) = (S∞
m c0

m)(x), sm(x) = (S∞
m s0

m)(x). (15)

Remark 1. Due to the finiteness of the data in (13), cm(x) and sm(x), for any m, are defined on
[x2, xN−2] only, and interpolate the data at the points xi , i = 2, . . . , N −2. Thus our subdivision-
based method solves the interpolation problem in Ω∗

= [x2, xN−2] × [−π, π].
In order to solve the original interpolation problem with our subdivision approach, either extra

data outside [a, b] should be given [2], or special refinement rules have to be employed near the
boundaries of [a, b] [18]. We assume from now on that N ≥ 5.

For the analysis of our method we further assume that the data functions satisfy

fi ∈ W 1
2 , W 1

2 = {g : g′
∈ L2[−π, π], g(−π) = g(π)}, i = 0, . . . , N . (16)

In the rest of the paper we prove the continuity, smoothness and approximation order the of the
solution (14), (15), (13) of the BIUD problem, under the condition (16).

4. Existence and continuity of the interpolant

A key result in the proof of the summability of (14) is a uniform bound on the basic limit
functions of the schemes {Sm}m∈Z+

.
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4.1. Uniform bound on the basic limit functions

The basic limit function of the subdivision scheme Sm is

φm = S∞
m δ[0]

= lim
k→∞


i∈Z

f k
i H(2k

· −i),

here f k
i =


Sk−1

m · · · S0
m(δ[0])


i , with δ[0]

= {δi,0}i∈Z, and H is the hat function supported on
[−1, 1] and given by H(x) = 1 −|x | there. By the linearity of Sm and its uniformity we have for
any initial data f 0

= { f 0
i }i∈Z,

(S∞
m f 0)(x) =


j∈Z

f 0
j · φm(x − j). (17)

Our first goal is to establish a uniform bound on {φm}m∈Z+
. As for the classical 4-point

scheme [10], it is straightforward to show

Lemma 1. For a fixed m ∈ Z+, let f k
= { f k

i }i∈Z be generated by the refinement rule (2) with
wk

= wk
m as in (3). Then

∆fk+1
:= max

j∈Z

 f k+1
j+1 − f k+1

j

 ≤


2wk

m +
1
2


∆fk

≤

k
j=0


2w

j
m +

1
2


∆f0.

Moreover, if fk denotes the polygonal line connecting the points {(i2−k, f k
i )}i∈Z, thenfk+1

− fk


∞

≤ (2wk)∆fk .

The next theorem is based on the last lemma,

Theorem 2. In the notation of Lemma 1fk


∞

≤

f0


∞

+
1
3
∆f0.

Proof. By Lemma 1,fk


∞

≤

f0


∞

+

k
n=1

fn
− fn−1


∞

≤

f0


∞

+

k
n=1

(2wn−1
m )∆fn−1

≤

f0


∞

+

k
n=1

2wn−1
m

n−1
j=1

(2w
j−1
m + 1/2) · ∆f0.

Since 0 < wk
m ≤ 1/16 we have

fk


∞
≤
f0


∞
+

1
8 (∆f0)

k
n=1


5
8

n−1
, which proves the

claim of the theorem. �

For the basic limit function f 0
i = δi,0, and

f0


∞
= ∆f0

= 1. This leads to,

Corollary 3. For every m ∈ Z+,

∥φm∥∞ ≤
4
3
. (18)
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By the uniform bound on the basic limit functions and by (17) we can show that the
subdivision-based interpolant exists and inherits important properties of the data functions.

Theorem 4. The subdivision-based interpolant of the form (14), (15), (13) is absolutely and
uniformly convergent whenever the data functions in (10) are.

Proof. By (17) the coefficients in (14) have the form

cm(x) =


i∈Ix

ci,mφm(x − i), sm(x) =


i∈Ix

si,mφm(x − i), (19)

where Ix = {i ∈ Z | |x − i | ≤ 3}, and thus |Ix | ≤ 6. Using (19) and (18) we can obtain a bound
on |u(x, y)|, by the uniform and absolute convergence of the series of the data functions,

|u(x, y)| =

 ∞
m=0

cm(x) cos(my) + sm(x) sin(my)

 (20)

≤
4
3


i∈Ix

∞
m=0

ci,m
+ si,m


≤ 8

∞
m=0

ci∗,m
+ si∗,m

 < ∞, (21)

where i∗ is the index of a data function with maximal sum of the absolute values of the
coefficients. Note that (20) is independent of (x, y), and is valid for every (x, y) ∈ Ω∗. Thus
we can use Weierstrass M-test which guarantees the absolute and uniform convergence of the
Fourier series in (20) [12, Chapter 2]. �

A direct consequence of the last theorem is

Corollary 5. The interpolant u(x, y) in (14), (15), (13) is continuous.

5. Smoothness of the interpolant

We cite here two results on Fourier series (see e.g. [12, Chapter 2]), which are needed in our
analysis.

Result 1. Let a function f ∈ Cn be 2π -periodic with an absolute continuous, 2π -periodic nth
derivative, then there exists a positive constant M such that

f (k) ≤
M

|k|
n+1 ,

for k large enough.

Result 2. Let the coefficients ck satisfy

|ck | ≤
M

|k|
n+1+ϵ

for k large enough, with constants M > 0, ϵ > 0, and n ∈ Z+. Then


k∈Z ckeikt is a 2π -
periodic function with a continuous nth derivative.



716 N. Sharon, N. Dyn / Journal of Approximation Theory 164 (2012) 709–730

5.1. The first partial derivative in the direction of the subdivision

Consider a series of the form (14), with coefficients given by (15), (13) and its term-by term
differentiated series,

U (x, y) =

∞
m=0


d

dx
cm(x) cos(my) +

d

dx
sm(x) sin(my)


. (22)

Each of the coefficients in (22) has the form

d

dx
cm(x) =


i∈Ix

ci,m
d

dx
φm(x − i),

d

dx
sm(x) =


i∈Ix

si,m
d

dx
φm(x − i),

with |Ix | = 6, and with {ci,m, si,m}
N
i=0 the Fourier coefficients of the data functions as given

in (10).
Note that the 4-point subdivision scheme Sm , reproducing Vm , generates C1-limit functions

from any initial set of data [14], and thus the first derivative of φm exists for all m ∈ Z+.
Our first goal is to find a bound of the form

 d
dx φm


∞

≤ g(m), where g has a relatively slow
growth rate with m. Using this bound, we show that the coefficients of (22) have a decay rate,
inherited from the decay rate of the Fourier coefficients of the data functions, sufficient for the
series in (22) to converge. The next theorem presents our result for such a bound on

 d
dx φm


∞

,

Theorem 6. For every m ∈ Z+, the derivative of the basic limit function satisfies

d

dx
φm = O(log2(m)).

We prove this theorem by a series of lemmas.
We begin by several important notation and identities. For a fixed m consider the divided

differences of fk
= Sk−1

m · · · S0
mf0

= { f k
i | i ∈ Z}

dk
i =

f k
i+1 − f k

i

2−k , i ∈ Z, k ∈ Z+. (23)

As in the case of the stationary 4-point scheme, we have,

dk+1
2i = dk

i + 2wk
mdk

i−1 − 2wk
mdk

i+1, (24)

dk+1
2i+1 = dk

i − 2wk
mdk

i−1 + 2wk
mdk

i+1,

for each i ∈ Z, k = 0, 1, 2, . . .. Let dk
m be the polygonal line through the points {(i2−k, dk

i )},
and let σ k+1

m =
dk+1

m − dk
m


∞

. Then

σ k+1
m = max

i∈Z

dk+1
2i − dk

i

 , dk+1
2i+1 −

dk
i + dk

i+1

2




.

By (24),

σ k+1
m = max

i∈Z

2wk
m(dk

i+1 − dk
i ) + 2wk

m(dk
i − dk

i−1)

 ,
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m −

1
2


(dk

i+1 − dk
i ) + 2wk

m(dk
i − dk

i−1)




. (25)

In the following lemma we derive a relation between dk
m and σ k

m .

Lemma 7. Let {dk
i | i ∈ Z} be defined by (23), and let

∆dk
m = max

i∈Z

dk
i+1 − dk

i

 =

dk
i+1 − dk

i


∞

.

Then

σ k+1
m ≤

1
2
∆dk

m .

Proof. Since wk
m ∈


0, 1

16


, we have

2wk
m − 1/2

 = 1/2 − 2wk
m . This combined with (25)

suggests that σ k+1
m ≤ max


4wk

m∆dk
m, 1

2∆dk
m


, which proves the lemma. �

To prove the uniform convergence of dk
m we bound σ k+1

m by an element of a convergent series.
For that we prove in the next lemmas a relation of the form ∆dk+1

m ≤ µ∆dk−l
m with l ≥ 0 and

µ ∈ (0, 1). The proofs of these lemmas are deferred to Appendix A.

Lemma 8. In the notation of Lemma 7,

1. |dk+1
2i+1 − dk+1

2i | ≤ 8wk∆dk
m .

2. For i even, |dk+1
2i+2 − dk+1

2i+1| ≤ 3/4∆dk−1
m .

3. For i odd, |dk+1
2i+2 − dk+1

2i+1| ≤ |32wkwk−1
− 4wk

+ 1|∆dk−1
m .

From Lemma 8 we conclude that the only problematic case is 3, since by (3) limm→∞ wk
m =

0, which indicates that for fixed k, 4wk
m(8wk−1

m − 1) is negative and close to 0 for large enough
m. Thus for every m ∈ Z+, 32wk

mwk−1
m − 4wk

m + 1 > 0, but it cannot be bounded from above by
a constant less than 1. To improve the bound in 3 of Lemma 8, we denote

Bk
m = 32wk

mwk−1
m − 4wk

m + 1 = 4wk
m(8wk−1

m − 1) + 1. (26)

A conclusion from Lemma 8 is

∆dk
m ≤ max


8wk−1

m ∆dk−1
m ,

3
4
∆dk−2

m , Bk−1
m ∆dk−2

m


≤ Bk−1

m ∆dk−2
m . (27)

Lemma 9. Let Bk
m be defined by (26). Then

Bk
m ≤


CB, k ≥ log2(m),

1, otherwise,

where CB = 4α(8α − 1) + 1 ≈ 0.905, with α = [8 cosh(1)(cosh(1) + 1)]−1
≈ 0.0318.

Lemmas 8 and 9 lead to

∆dk
m ≤ C


k−log2(m)

2


B 1 · 1 · 1 · . . . · 1  

log2(m)

2 times

∆d0
m,
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which together with Lemma 7 yields

σ k+1
m ≤

(1/2)∆d0
m(CB)


k−log2(m)

2


, k > log2(m),

(1/2)∆d0
m, otherwise.

(28)

The next step is to obtain the rate of growth of the bound on the first divided differences as m
increases.

Lemma 10. The divided difference polygon dk satisfiesdk


∞

≤
1
2
(M + log2(m)),

where M is a constant, independent of m and k.

Since d
dx φm is the limit of dk as k → ∞, Theorem 6 follows from Lemma 10.

In view of Result 1, the decay of the Fourier coefficients of the data functions (see (10)) is
a consequence of the smoothness of the data functions, which leads to the smoothness of the
interpolant, as stated in the next theorem.

Theorem 11. For C1 data functions (10), the coefficients of U (x, y) in (22) satisfy d

dx
cm(x)

 ≤
K1

m2−ϵ
,

 d

dx
sm(x)

 ≤
K2

m2−ϵ
,

for any ϵ > 0, with K1, K2 constants independent of m. Moreover U (x, y) is a continuous
Fourier series.

Proof. We prove the result for d
dx cm(x), the case of d

dx sm(x) is similar. From Result 1 and the
assumption on the data functions, there exist Ci > 0 and mi > 0, i = 0, . . . , N such that,ci,m

 ≤
Ci

m2 , m > mi .

Since d
dx cm(x) =


i∈Ix

ci,m
d

dx φm(x − i), where Ix ⊂ {0, 1, . . . , N }, d

dx
cm(x)

 ≤ (C · log2(m)) max
i∈Ix

Ci

m2

≤ (C · log2(m)) max
i∈{0,...,N }

Ci

m2 ≤
K

m2−ϵ
,

for every m > maxi∈{0,...,N }{mi } and for all small ϵ > 0. �

The next theorem summarizes the main result of this section.

Theorem 12. For C1 data functions (10), satisfying the conditions of Result 1 with n = 1, the
subdivision-based interpolant has a continuous first derivative in the subdivision direction.

Proof. The data functions are in W 1
2 ∩ C1 and thus converge absolutely and uniformly. Hence

Theorem 4 asserts the convergence of the subdivision-based interpolant, u(x, y), given in (20).
Obviously each term of u(x, y) is in C1. Result 2 and Theorem 11 imply that the series (22)
converges to a continuous function. The convergence is independent of the point (x, y) ∈ Ω∗

and hence is uniform. This guarantees the convergence of the term by term differentiated series
(22) to d

dx u(x, y). �
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5.2. The first partial derivative in the direction of the Fourier expansion

Let the term-by-term differentiated series of (14), in the direction of the Fourier expansion be

V (x, y) =

∞
m=1

{m · sm(x) cos(my) − m · cm(x) sin(my)}.

As in the proof of Theorem 4, we get

|V (x, y)| ≤

∞
m=1

|m · sm(x)| + |m · cm(x)| ≤ 8
∞

m=1

m(|si,m | + |ci,m |).

Since each data function is in W 1
2 ∩ C1, then {msi,m, −mci,m}

∞

m=1 are the Fourier coefficients of
d

dy fi (y), i = 0, . . . , N . Thus

|V (x, y)| ≤ 8
∞

m=1

m(|s j∗,m | + |c j∗,m |),

where j∗ is the index of the data function with maximal sum of the moduli of Fourier coefficients
of its derivative in y.

The above discussion leads to,

Theorem 13. For C1 data functions (10), where each function in


d
dy fi (y)

N

i=0
has an

absolutely and uniformly convergent Fourier expansion, the subdivision-based interpolant has
a first continuous derivative in the direction of the Fourier expansion. This derivative has an
absolutely and uniformly convergent Fourier series.

6. Approximation order

6.1. Approximation of infinite Fourier series

We start with the main result,

Theorem 14. Let the two Fourier series
∞

m=0

{am(x) cos(my) + bm(x) sin(my)} (29)

and
∞

m=0


d2

dx2 am(x) cos(my) +
d2

dx2 bm(x) sin(my)


(30)

be uniformly convergent in Ω = [a, b]×[−π, π]. Given a partition ∆, xi = a+ih, i = 0, . . . , N,
with h =

b−a
N , let the data functions be

fi (y) = F(xi , y), i = 0, . . . , N ,

where F(x, y) is the sum in (29). Then the subdivision-based interpolant of this data, u(x, y)

of (14), satisfies

∥F(x, ·) − u(x, ·)∥L2([−π,π ]) ≤ C · h
3
2 , x ∈ [a∗, b∗

]

with C a constant depending on F but not on h. Here a∗
= a + 2h, b∗

= b − 2h.
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Before proving the theorem we state a lemma about the uniform approximation order of the
family of subdivision schemes {Sm}m∈Z+

, presented in Section 2.1. The proof of the lemma is
given in Appendix B.

Lemma 15. Let ∆, h be as in Theorem 14. For f twice differentiable s.t. d2

dx2 f ∈ L p([a, b]) for
some p ≥ 2,

| f (x) − (S∞
m f |∆)(x)| < c · h1+

1
q , x ∈ [a∗, b∗

]

with q ∈ (1, ∞) such that 1
p +

1
q = 1, and c = 36

 d2

dx2 f


L p([a,b])
.

Proof of Theorem 14. By the assumptions on the Fourier series (29) and (30), the latter is the
second partial derivative in x of the first, which we denote by Fxx . The uniform convergence of
(29) and Theorem 4 imply that the interpolant

u(x, y) =

∞
m=0

{cm(x) cos(my) + sm(x) sin(my)},

is uniformly convergent. This together with Parseval equality leads to

∥F(x, ·) − u(x, ·)∥2
L2([−π,π ])

=

 π

−π

(F(x, y) − u(x, y))2dy

= π


∞

m=0

[(am(x) − cm(x))2
+ (bm(x) − sm(x))2

]


. (31)

Recall that cm(x) and sm(x) are limits of Sm applied to {am(xi )}
N
i=0 and {bm(xi )}

N
i=0, respectively.

By the assumptions on Fxx , we get in view of the last lemma,

(am(x) − cm(x))2
≤ 362h

2


1+
1
2

  b

a

 d2

dx2 am(t)

2 dt


, x ∈ [a∗, b∗

],

(bm(x) − sm(x))2
≤ 362h

2


1+
1
2

  b

a

 d2

dx2 bm(t)

2 dt


, x ∈ [a∗, b∗

]. (32)

Thus by (31) and (32)

∥F(x, ·) − u(x, ·)∥2
L2([−π,π ])

≤ π362h3
∞

m=0

 d2

dx2 am

2

L2([a,b])

+

 d2

dx2 bm

2

L2([a,b])


.

Again, by the assumptions on Fxx we have for x ∈ [a, b]

∥Fxx∥
2
L2(Ω)

=

 b

a

 π

−π

(Fxx (x, y))2dydx

= π

 b

a


∞

m=0


d2

dx2 am(x)

2

+


d2

dx2 bm(x)

2
dx < ∞. (33)
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All of the terms in the series above are non-negative and hence, we can apply Lebesgue monotone
convergence theorem to obtain b

a

∞
m=0


d2

dx2 am(x)

2

+


d2

dx2 bm(x)

2
dx

=

∞
m=0

 b

a


d2

dx2 am(x)

2

+


d2

dx2 bm(x)

2
dx

=

∞
m=0

 d2

dx2 am

2

L2([−π,π ])

+

 d2

dx2 bm

2

L2([−π,π])


.

Thus by (31)–(33)

∥F(x, ·) − u(x, ·)∥L2([−π,π ]) ≤ C · h
3
2 , x ∈ [a∗, b∗

],

with C = C(F) = 36π
1
2 ∥Fxx∥L2(Ω). �

6.2. Approximation of finite Fourier sums

In this section we consider the case when the approximated function can be represented by a
finite Fourier sum.

F(x, y) =

M
m=0

{am(x) cos(my) + bm(x) sin(my)}, M < ∞. (34)

Thus, our data functions are trigonometric polynomials,

fi (y) =

M
m=0

{am cos(my) + bm sin(my)}, i = 0, . . . , N . (35)

For this case we can give pointwise error bounds.

Theorem 16. Let F(·, y) ∈ C4
[a, b] for any y ∈ [−π, π] be of the form (34). Given a partition

∆, xi = a + ih, i = 0, . . . , N with h =
b−a

N , let the data functions be

fi (y) = F(xi , y), i = 0, . . . , N .

Then the subdivision-based interpolant of this data, u(x, y) of (14) satisfies

∥F(x, y) − u(x, y)∥∞,Ω∗ ≤ C · h4, (x, y) ∈ Ω∗

with C a constant depending on F but not on h. Here Ω∗
= [a∗, b∗

] × [−π, π], with a∗
=

a + 2h, b∗
= b − 2h.

Again, we start the proof of the theorem with a lemma. This lemma is about the approximation
order of the subdivision scheme Sm , m ∈ Z+, of Section 2.1. The proof of the lemma is given in
Appendix B.

Lemma 17. Let ∆, 0 < h < 1 be as in Theorem 16. Then for f ∈ C4([a, b]),

| f (x) − (S∞
m f |∆)(x)| < C f,m · h4, x ∈ [a∗, b∗

]

with C f,m , a constant independent of h but dependent on m and f .
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Fig. 1. Data for the BIUD problem.

Proof of Theorem 16. Recall that F(·, y) ∈ C4
[a, b] for any y ∈ [−π, π], and has the form

(34). We apply the last lemma to the coefficients and obtain for every (x, y) ∈ Ω∗,

|F(x, y) − u(x, y)| =

 M
m=0

{(am(x) − cm(x)) cos(my) + (bm(x) − sm(x)) sin(my)}


≤

M
m=0

{(|am(x) − cm(x)| + |bm(x) − sm(x)|)}

≤

M
m=0

(Cam ,m · h4
+ Cbm ,m · h4)

=


M

m=0

{Cam ,m + Cbm ,m}


h4. �

7. Numerical examples

We present two examples. The first compares the effect of the differential operators; (5) in
the subdivision based interpolant and (4) in the biharmonic polyspline. The second example
illustrates the locality of the subdivision based interpolant in comparison with the methods
suggested in [1,13].

7.1. The differential operators

As explained in Section 2.2, the differential operator plays a significant role. We demonstrate
this by interpolating a function which is linear in the x axis. In this example the problem defined
on the domain Ω = [2, 20] × [0, 2π ] and the data functions are given over the partition

∆ : x0 = 2 < 4 < · · · < 20 = x10.

The data functions consist of samples from the bivariate function

F(x, y) =
x

8
+

x

4
cos(y) + cos(2y) + sin(y) + sin(2y).

The samples are given in Fig. 1.
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(a) The biharmonic polyspline.

(b) The subdivision based interpolant.

Fig. 2. Comparison of the biharmonic polyspline and the bivariate subdivision surface for the data in Fig. 1.

The biharmonic polyspline interpolant of [13] is given in Fig. 2(a) and one can clearly
see the wiggles of this interpolant. On the other hand, the subdivision based interpolant fully
reproduces the function, given in Fig. 2(b). Similar behaviour is observed in the tension surface
interpolant [1] due to the use of the same differential operator (5).

7.2. Locality of the subdivision based interpolant

In the next example we compare the three (non-trivial) solutions of the BIUD problem for
locality. Obviously, for data consisting of zero functions, all three solutions produce the zero
bivariate function. Here we change one data function to be different from zero.

Two important issues must be considered. First the computational effort required for obtaining
the new interpolant. The biharmonic polyspline solution [13] and the tension surface [1] require
the solution of a new BIUD problem, while for the subdivision based solution we only need to
update a small segment which contains three data functions from each side of the new sampled
function.

A second issue is the geometric effect of such a function. To demonstrate this issue we
introduce the next figures. The problem defined on the domain Ω = [1, 10] × [0, 2π ]. The
data functions,

fi (y) =


0, i ≠ 6,

sin(y), i = 6,
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(a) The biharmonic polyspline.

(b) Maximum over y.

Fig. 3. The biharmonic polyspline interpolant.

are given over the partition

∆ : x0 = 1 < 2 < · · · < 10 = x10.

We depict the three solutions together with the graph of maxy∈[0,2π ] u(·, y) for each
interpolant u.

The biharmonic polyspline interpolant is given in Fig. 3. Note the oscillations which occur
along the whole domain. The tension surface is presented in Fig. 4, and as expected from spline-
based interpolation, the changes decay very fast. The subdivision based interpolant is given in
Fig. 5, where we easily observed that the effect of f6(y) is local.

8. Conclusions and possible applications

This paper presents a solution of the BIUD problem on equidistant partitions for 2π -periodic
data functions, based on a bivariate subdivision scheme refining univariate functions. The
bivariate subdivision scheme is reduced to a family of univariate, non-stationary interpolatory
subdivision schemes reproducing certain spaces of exponentials. Our interpolant inherits the
decay rate of its Fourier coefficients from that of the data functions and thus is smooth when
the data functions are. We derive its approximation order, for functions which are either finite or
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(a) The tension surface.

(b) Maximum over y.

Fig. 4. The tension surface interpolant.

infinite Fourier series, using the approximation properties of the family of univariate subdivision
schemes. Note that the main result for periodic data functions can be extended to non-periodic
data (see [16]).

Several real life problems, where the data is given as functions along lines, are listed in
[13, Chapter 6]. Our method can be applied to these problems as well as to discrete data collected
along parallel lines. Such data can be first interpolated along the lines by a univariate method to
provide data functions.

Another possible application is the approximation of a “simple” closed surface from sampled
closed curves on it, for example from a set of its parallel cross-sections. Since each component of
a closed curve is a periodic function, our method can approximate each component of the surface
separately, yielding a parametric representation of the surface. Obviously such an application
cannot cope with general topologies. Moreover, the method depends on the parametrization of
the sampled curves. Nevertheless, it will benefit from all the good properties of our method such
as localization, approximation order and easy implementation.
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(a) The bivariate subdivision surface.

(b) Maximum over y.

Fig. 5. The bivariate subdivision surface interpolant.

Appendix A. Proofs of results in Section 5

A.1. Proof of Lemma 8

Proof. By (24) we get

dk+1
2i+1 − dk+1

2i = 4wk
m(dk

i+1 − dk
i−1),

and claim 1 follows. The second and third claims are proved together. Again by (24)

dk+1
2i+2 − dk+1

2i+1 = −2wk
m(dk

i+2 − dk
i+1) + (1 − 4wk

m)(dk
i+1 − dk

i ) − 2wk
m(dk

i − dk
i−1). (A.1)

Thus

|dk+1
2i+2 − dk+1

2i+1| ≤ (4wk
m + (1 − 4wk

m))∆dk
m ≤ ∆dk

m,

and

∆dk+1
m ≤ ∆dk

m . (A.2)
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This bound is not good enough and a second recursion on k is required. For i even we obtain
from (A.1), (A.2) and claim 1.

|dk+1
2i+2 − dk+1

2i+1| ≤ (4wk
m)∆dk−1

m +

(1 − 4wk
m)(8wk−1

m )

∆dk−1
m

=

8wk−1
m − 32wk−1

m wk
m + 4wk

m

∆dk−1
m .

Since 8wk−1
m − 32wk−1

m wk
m > 0,

|dk+1
2i+2 − dk+1

2i+1| ≤

8wk−1
m + 4wk

m

∆dk−1
m ≤ 12

1
16

∆dk−1
m =

3
4
∆dk−1

m .

Similarly for i odd, we get by (A.1) and (A.2)

|dk+1
2i+2 − dk+1

2i+1| ≤ (32wk
mwk−1

m + 1 − 4wk
m)∆dk−1

m . � (A.3)

A.2. Proof of Lemma 9

Denote by x =
m
2k , and consider 0 < x ≤ 1. Then wk

m defined in (3) has the form wk
m = h(x)

where h(x) =
1
2 ((ex

+ e−x )(ex
+ e−x

+ 2))−1, which can be rewritten as

h(x) = [8 cosh(x)(cosh(x) + 1)]−1, (A.4)

with h(0) =
1

16 . Since the hyperbolic cosine is monotone increasing for 0 < x ≤ 1, h(x) is
monotone decreasing for 0 < x ≤ 1, and satisfies [8 cosh(1)(cosh(1) + 1)]−1

≤ h(x) < 1
16 . For

a fixed m, let k ≥ ⌈log2(m)⌉, namely 2k
≥ m. Then 0 < x < 1 and

wk
m ∈


α,

1
16


, (A.5)

with α = [8 cosh(1)(cosh(1)+1)]−1
≈ 0.0318. Notice that for a fixed m we have limk→∞ wk

m =
1

16 . From the above analysis we deduce that the sequence

wk

m


with k ≥ ⌈log2(m)⌉, increases

monotonically with k to 1
16 , namely wk−1

m ≤ wk
m . Therefore, in case of k ≥ ⌈log2(m)⌉ we have,

Bk
m = 32wk

mwk−1
m − 4wk

m + 1 ≤ 32(wk
m)2

− 4wk
m + 1.

The bound above is a quadratic polynomial in wk
m which attains its maximum in the interval

(A.5) at the end point α. Thus

Bk
m ≤ 32α2

− 4α + 1 ≈ 0.905.

The other case is trivial due to 0 < wk
m ≤

1
16 .

A.3. Proof of Lemma 10

Proof. It is obvious from the definition of σ k
m that ∥dk

m∥ ≤ σ k
m + · · · + σ 0

m + ∥d0
m∥, which for

k > log2(m) becomes, in view of (28),

∥dk
m∥ ≤

k
j=⌈log2(m)⌉+1

(1/2)∆d0
m(CB)


j−log2(m)

2


+

⌈log2(m)⌉
j=0

(1/2)∆d0
m + ∥d0

m∥. (A.6)
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We start by bounding the first sum in (A.6).

k
j=⌈log2(m)⌉+1

(1/2)∆d0
m(CB)


j−log2(m)

2


≤


1
2
∆d0

m

 k−⌈log2(m)⌉−1
j=0

(CB)


j+1
2



≤


1
2
∆d0

m

 k−⌈log2(m)⌉−1
j=0


C j+1

B .

By Lemma 9, 0 < CB < 1 hence 0 < γ =
√

CB < 1, and

k−⌈log2(m)⌉−1
j=0

γ j+1
≤

∞
j=0

γ j+1
=

γ

1 − γ
= M1.

Note that M1 is a constant independent of m and k. The second sum in (A.6) can be bounded
straightforwardly

⌈log2(m)⌉
j=0

(1/2)∆d0
m ≤


1
2
∆d0

m


· (log2(m) + 1).

Recall that we consider here the basic limit function, namely using the initial data δ[0]
= {δi,0}i∈Z

for which ∥d0
m∥ = 1 and ∆d0

m = 1. Thus we get

∥dk
m∥ ≤


1
2
∆d0

m


(M1 + (log2(m) + 1)) + ∥d0

m∥ ≤
1
2
(M + log2(m)),

with M = M1 + 3. �

Appendix B. Proofs of results in Section 6

B.1. Proof of Lemma 15

We use the notation of Theorem 14.

Proof. Let T1,ξ be the linear Taylor expansion of f about the point ξ and let R1,ξ be the
corresponding remainder. By the reproduction property of Sm in [a∗, b∗

], we get for x ∈ [a∗, b∗
]

| f (x) − (S∞
m f |∆)(x)| = | f (x) − T1,ξ (x) + T1,ξ (x) − (S∞

m f |∆)(x)|

= |R1,ξ (x) + (S∞
m T1,ξ |∆)(x) − (S∞

m f |∆)(x)|,

choosing ξ = x and using the linearity of the subdivision operator, we get

| f (x) − (S∞
m f |∆)(x)| = |(S∞

m T1,x |∆)(x) − (S∞
m f |∆)(x)|

= |(S∞
m R1,x |∆)(x)|

=


j∈Ix

R1,x (x j ) · φm(x − x j )


≤ ∥φm∥∞ ·


j∈Ix

|R1,x (x j )|.
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By the compact support of φm the set Ix is finite with at most 6 elements, and |x − x j | ≤ 3h.
Consider the integral formula for the remainder,

R1,x (x j ) =

 x j

x


d2

dx2 f (t)(x j − t)dt


.

Then by Hölder inequality, x j

x


d2

dx2 f


(t)(x j − t)dt

 ≤

 t2

t1

 d2

dx2 f (t)

p

dt

 1
p  t2

t1
|x j − t |qdt

 1
q

,

with 1
p +

1
q = 1, p, q ∈ (1, ∞) and t1 = min{x, x j }, t2 = max{x, x j }. Since

 t2
t1

|x j − t |qdt ≤

(3h)q+1

q+1 ,

 x j

x

 d2

dx2 f


(t)(x j − t)dt

 ≤

 b

a

 d2

dx2 f


(t)

p

dt

 1
p

· cq h
q+1

q ,

with cq =


3q+1

q+1

 1
q

. Evidently 1 < q ≤ 2, since p ≥ 2. It is easy to check that cq is

monotonically decreasing over [1, 2] and therefore cq ≤ c1 =
9
2 . The claim follows from the

assumption d2

dx2 f ∈ L p([a, b]). �

B.2. Proof of Lemma 17

Proof. Let x̃ ∈ (xn, xn+1), for 2 ≤ n ≤ N − 3.
Since Vm is an ECT-space (for more details see [15]) one can find g ∈ Vm , for any f ∈ C4

[a, b], such that [3],

f ( j)(x̃) = g( j)(x̃), j = 0, 1, 2, 3. (B.1)

The subdivision operator Sm is a linear operator reproducing Vm . Hence

| f (x̃) − (S∞
m f |∆)(x̃)| = | f (x̃) − g(x̃) + g(x̃) − (S∞

m f |∆)(x̃)|

= |(S∞
m g|∆)(x̃) − (S∞

m f |∆)(x̃)|

= |(S∞
m (g − f )|∆)(x̃)|

≤ ∥φm∥∞Σi∈Ix̃ |(g − f )(xi )|. (B.2)

Note that |Ix̃ | ≤ 6. Writing R = g − f as a Taylor expansion at x̃ , and using (B.1), we obtain

R(x) = R(4)(ξ)
(x̃ − x)4

4!
,

with ξ inside the segment between x̃ and x . The explicit form of R(4)
= g(4)

− f (4) can be
obtained from the solution of the following linear system, implied by (B.1),

1 x̃ emx̃ e−mx̃

0 1 memx̃
−me−mx̃

0 0 m2emx̃ m2e−mx̃

0 0 m3emx̃
−m3e−mx̃




a
b
c
d

 =


f0
f1
f2
f3

 . (B.3)
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Here f j = f ( j)(x̃) for j = 0, 1, 2, 3 and g(x) = a + bx + cemx
+ de−mx

∈ Vm . Since
g(4)(x) = m4cemx

+ m4de−mx , we obtain from (B.3)

g(4)(ξ) = m sinh(m(x̃ − ξ)) f (3)(x̃) + m2 cosh(m(x̃ − ξ)) f (2)(x̃).

Due to the finite support of the basic limit function φm, |x̃ − ξ | ≤ 3h, and for h < 1,

|g(4)(ξ)| ≤ m sinh(3m)∥ f (3)
∥∞,[a,b] + m2 cosh(3m)∥ f (2)

∥∞,[a,b] = K f,m .

This leads to the bound

∥R(4)
∥∞ ≤ K f,m + ∥ f (4)

∥∞,[a,b],

and thus by (B.2)

| f (x̃) − (S∞
m f |∆)(x̃)| ≤ ∥φm∥∞|Σi∈Ix̃ R(xi )|

≤ ∥φm∥∞ · 6(K f,m + ∥ f (4)
∥∞,[a,b])

(3h)4

4!

≤ C f,m · h4. �
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