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Abstract

We introduce and analyse univariate, linear, and stationary subdivision schemes
for refining noisy data by fitting local least squares polynomials. This is the first
attempt to design subdivision schemes for noisy data. We present primal schemes,
with refinement rules based on locally fitting linear polynomials to the data, and
study their convergence, smoothness, and basic limit functions. Then, we provide
several numerical experiments that demonstrate the limit functions generated by
these schemes from initial noisy data. The application of an advanced local linear
regression method to the same data shows that the methods are comparable. In
addition, several extensions and variants are discussed and their performance is
illustrated by examples. We conclude by applying the schemes to noisy geometric
data.
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1 Introduction

In recent years, subdivision schemes have become an important tool in many applications and research
areas, including animation, computer graphics, and computer aided geometric design, just to name a few
[1, 20]. A subdivision scheme generates values associated with the vertices of a sequence of nested meshes,
with a dense union, by repeated application of a set of local refinement rules. These rules determine the
values associated with a refined mesh from the values associated with the coarser mesh. The subdivision
scheme is convergent if the generated values converge uniformly to the values of a continuous function, for
any set of initial values.

The particular class of interpolatory schemes consists of schemes with refinement rules that keep the
values associated with the coarse mesh and only generate new values related to the additional vertices of
the refined mesh. An important family of interpolatory schemes is the family of Dubuc–Deslauriers (DD)
schemes [5].

Intensive studies have been carried out recently on the generalization of subdivision schemes to more
complicated data such as manifold valued data [22, 23], matrices [21], sets [10], curves [17], and nets of
functions [4]. In [6] subdivision schemes have been used in a multi-resolution fashion to remove heavy-tail
noise. In this paper, we propose a way how to approximate a function from its noisy samples by subdivision
schemes.

The linear and symmetric refinement rules of the DD schemes and their dual counterparts [11] are based
on local polynomial interpolation. These schemes are stationary in the sense that the same rules are applied
at all localities in all subdivision steps, and their approximation order is determined by the degree of the
local interpolating polynomials.

In this paper we generalize this approach and propose linear and symmetric refinement rules based on
local polynomial approximation, where the polynomial is determined by a least squares fit to the data. We
call these schemes least squares schemes. The least squares schemes are designed to fit noisy data. Indeed,
our numerical experiments indicate that in some cases these schemes outperform an advanced linear re-
gression method.

A very recent paper [18] computes refined values by local ℓ1 optimization rather than by local least
squares. The lack of explicit expressions for the refined values of the ℓ1 optimization enables experimental
results only, which are compared with the performance of our schemes.

The least squares schemes and their tensor-products can also deal with geometric data, consisting of
contaminated samples of curves and of surfaces. The performance of such schemes is demonstrated in the
last section on two examples of curves and two examples of surfaces.
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The paper is organized as follows. We start by introducing the simplest case of least squares schemes
in Section 2. These schemes are based on primal refinement rules and on best fitting linear polynomials
to symmetric data points. This is a one parameter family of schemes, with the number of data points as
the parameter. We prove convergence and smoothness of these schemes and investigate properties of their
basic limit functions. The construction of least squares schemes based on best fitting polynomials of higher
degrees and on dual refinement rules is postponed to Section 4. In Section 3 we review a statistical model
for fitting noisy data, analyse the suitability of the primal least squares schemes of degree 1 for dealing
with this kind of data, and provide several numerical examples. Further numerical examples for primal
schemes based on best fitting polynomials of higher degrees are presented in Section 4.4. Section 5 shows
the application of the least squares schemes and their tensor-product to geometrical data. Throughout this
paper we use several well-known properties of least squares polynomials. A short survey of these properties
and a method for the efficient evaluation of our schemes are given in Appendix A.

2 Primal least squares schemes of degree 1

In this paper we consider the univariate setting. We denote by f k = ( f k
i )i∈Z the data at refinement level

k ∈N0. We assume that the initial data f 0 = ( f 0
i )i∈Z is given at the integers Z and that f k

i is associated with
the dyadic point t k

i = 2−k i . The main idea of least squares subdivision is to generate the data at level k +1
by evaluating a polynomial that locally fits the data at level k in a symmetric neighbourhood.

In particular, we use polynomials that best fit the data in the least squares sense. That is, for given data
y1, . . . , ym at nodes x1, . . . , xm , we are interested in the polynomial pd of degree d that minimizes the sum of
squared residuals,

m∑
i=1

(pd (xi )− yi )
2. (1)

For d < m this problem has a unique solution and in Appendix A we provide a summary of the relevant
theory, which also includes the case d ≥m .

We start by considering the simplest least squares subdivision schemes corresponding to the case d = 1,
which we denote by Sn for n ≥ 1. Such a scheme generates the data at level k + 1 as follows. On the
one hand, the value f k+1

2i , which replaces f k
i , is determined by fitting a linear polynomial to the 2n − 1

data values in a symmetric neighbourhood around t k
i and evaluating it at the associated dyadic point

t k
i = t k+1

2i . On the other hand, the scheme computes the new value f k+1
2i+1 between f k

i and f k
i+1 by evaluating

at t k+1
2i+1 = (t

k
i + t k

i+1)/2 the linear least squares polynomial with respect to the data at the nearest 2n nodes.
In this construction the parameter n controls the locality of the scheme and we study its effect in Section 3.

For the case d = 1 and equidistant nodes xi = a +i h , let p ∗1 be the linear least squares polynomial which
minimizes (1). The value of p ∗1 at the centre c = (x1+ · · ·+ xm )/m of the nodes is

p ∗1 (c ) = (y1+ · · ·+ ym )/m .

Thus, the refinement rules of Sn turn out to be

f k+1
2i =

1

2n −1

n−1∑
j=−n+1

f k
i+ j and f k+1

2i+1 =
1

2n

n∑
j=−n+1

f k
i+ j . (2)

Consequently, the symbol [8] of the scheme is

an (z ) =
1

2n

n∑
j=−n+1

z 2 j−1+
1

2n −1

n−1∑
j=−n+1

z 2 j . (3)

It follows from the symmetry of the nodes determining the linear least squares polynomials, that an (z ) =
an (1/z ), hence the scheme is odd symmetric [12]. As the data at level k +1 depends on at most 2n values at
level k , we conclude that Sn is a primal 2n-point scheme. The masks of the first three schemes are

a 1 = [1, 2, 1] /2,

a 2 = [3,4, 3, 4, 3, 4, 3] /12,

a 3 = [5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5]/30.
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n 2 3 4 5 6 7 8 9 10
ρn 1.649 1.777 1.816 1.794 1.786 1.776 1.771 1.761 1.753

Table 1: Lower bounds ρn on the Hölder regularity of the schemes Sn .

Note that the scheme S1 is the interpolating 2-point scheme, which generates piecewise linear functions in
the limit.

2.1 Convergence and smoothness

Following the usual definition of convergence in [9, Chapter 2], we denote the limit of a convergent subdi-
vision scheme S for initial data f 0 by S∞ f 0.

Theorem 1. The least squares subdivision scheme Sn is convergent for n ≥ 1.

Proof. The explicit form of the symbol in (3) implies that an (1) = 2 and an (−1) = 0, which are necessary
conditions for Sn to be convergent [8, Proposition 2.1]. In addition, since the coefficients of the symbol
in (3) are all positive, and there are at least three such coefficients, it follows from [2, Theorem 3.3] that the
scheme is convergent.

Following the analysis in [8], we define

qn (z ) =
an (z )
1+ z

=
1

2n (2n −1)

�
n−1∑

j=−n+1

(n − j )z 2 j−1+
n−1∑

j=−n+1

(n + j )z 2 j

�
, (4)

which is the symbol of the difference scheme associated with Sn . The norm of this scheme,

S[qn ]

∞ =max

¨
1

2n (2n −1)

n−1∑
j=−n+1

|n − j |, 1

2n (2n −1)

n−1∑
j=−n+1

|n + j |
«

=
1

2n (2n −1)

2n−1∑
j=1

j =
1

2
,

is the least possible, as in the case of the uniform B-spline schemes, indicating “quickest” possible conver-
gence. The structure of qn further reveals that the limit functions generated by Sn are C 1.

Theorem 2. The least squares subdivision scheme Sn generates C 1 limit functions for n ≥ 2.

Proof. It is known [8, Theorems 3.2 and 3.4] that in order to prove the theorem, it is sufficient to show that
the scheme with symbol 2qn is convergent. By (4),

2qn (1) = 2 and 2qn (−1) = 0,

hence S[2qn ] satisfies the necessary conditions for convergence. As in the proof of Theorem 1 we conclude
that the scheme S[2qn ], n ≥ 2 is convergent, and therefore Sn , n ≥ 2 generates C 1 limit functions.

The statement in Theorem 2 is confirmed by the numerical results presented in Table 1, which were ob-
tained by using 16 iterations of the algorithm in [13] to compute lower bounds on the Hölder regularity. In
addition, it is easy to verify that q ′n (−1)< 0 and therefore (1+ z )2 is not a factor of qn (z ) or equivalently that
(1+ z )3 is not a factor of an (z ). Thus, the scheme Sn does not generate C 2 limits from any initial data [12].

2.2 The basic limit function

Let us denote by δ the sequence which is zero everywhere except at 0, where it is 1. The basic limit function
of the convergent subdivision scheme Sn is then defined as

ϕn = S∞n δ. (5)

Some examples ofϕn for small values of n are shown in Figure 1.
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Figure 1: Basic limit functions of the schemes S2, S3, and S4.

Many properties of a linear subdivision scheme can be derived from its basic limit function. In particu-
lar, due to linearity, the limit function generated from the initial data f 0 = ( f 0

i )i∈Z by the scheme Sn has the
form

(S∞n f 0)(x ) =
∑
j∈Z

f 0
j ϕn (x − j ). (6)

Our first observation is that the support of ϕn is [−2n + 1, 2n − 1], because Sn is a primal 2n-point
scheme [5]. Moreover, ϕn is positive inside its support, because the coefficients of the mask a n are pos-
itive in the mask’s support, andϕn has the partition of unity property∑

j∈Z
ϕn (x − j ) = 1, (7)

due to the reproduction of constant polynomials by Sn .
The simple structure of a n further allows us to derive several interesting properties regarding the values

of the basic limit function ϕn at the integers. These values are of importance, because they constitute the
filter which operates on the initial data and generates the final values at the integers. Taking into account
thatϕn is continuous and therefore vanishes at the end points of its support, we conclude from (6) that the
limit at the integers k ∈Z is

(S∞n f 0)(k ) =
2n−2∑

j=−2n+2

f 0
k− jϕn ( j ). (8)

The non-zero values of ϕn at the integers constitute an eigenvector v =
�
ϕn (−2n + 2), . . . ,ϕn (2n − 2)

�
corresponding to the eigenvalue 1 of the transposed subdivision matrix [8], which in this case is the
(4n −3)× (4n −3) column stochastic, two-slanted band matrix

An =



r s 0 0 0 0 0 0
r s r s 0 · · · 0 0 0
r s r s r 0 0 0

...
...

...
r s r s r r s 0
r s r s r · · · r s r
0 s r s r r s r

...
...

...
0 0 0 0 0 · · · 0 s r


with entries r = 1/(2n −1) and s = 1/(2n ).

The odd symmetry of the mask a n guarantees thatϕn is a symmetric function. Thus, the eigenvector v
is also symmetric, as indicated by the structure of An . Taking these symmetries into account, we get that the
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vector ṽ =
�
ϕn (−2n+2), . . . ,ϕn (0)

�
is an eigenvector corresponding to the eigenvalue 1 of the (2n−1)×(2n−1)

matrix

Ãn =



r s 0 0 0 0 0 0 0 0
r s r s 0 · · · 0 0 0 0 0
r s r s r 0 0 0 0 0

...
...

...
r s r s r r s 0 0 0
r s r s r r s r s 0
r s r s r · · · r s r 2s r
r s r s r r 2s 2r 2s r
r s r s r 2r 2s 2r 2s r

...
...

...
r s r 2s 2r 2r 2s 2r 2s r
r 2s 2r 2s 2r · · · 2r 2s 2r 2s r

2r 2s 2r 2s 2r 2r 2s 2r 2s r



.

The particular structure of Ãn allows us to derive the following observation.

Proposition 3. The values ofϕn at the non-positive integers in its support are strictly increasing,

0<ϕn (−2n +2)<ϕn (−2n +3)< · · ·<ϕn (−1)<ϕn (0).

Moreover,

ϕn (−n ) =
n −1

2n −1
ϕn (0).

Proof. Note that each row of Ãn is equal to the previous row plus at least one positive term. Since ṽ satisfies
Ãn ṽ = ṽ and its components ṽi = ϕn (i − 2n + 1), i = 1, . . . , 2n − 1, are positive, the latter must be strictly
increasing.

To establish the second statement, consider the (n −1)-th and the last row of Ãn ,

α̃n−1 = (r, s , r, s , . . . , r, s ,0) and α̃2n−1 = (2r,2s ,2r, 2s , . . . , 2r,2s , r ),

and note that
α̃2n−1 = 2α̃n−1+ (0,0, . . . , 0, r ).

Then, since
ṽn−1 = α̃n−1ṽ

and
ṽ2n−1 = α̃2n−1ṽ = 2α̃n−1ṽ + r ṽ2n−1 = 2ṽn−1+ r ṽ2n−1,

the second statement follows directly from the definition of ṽ , because r = 1/(2n −1).

By the symmetry of ϕn , the statements of Proposition 3 hold analogously for the values of ϕn at the non-
negative integers. As an immediate consequence we have

ϕn ( j )<
1

2
ϕn (0), | j | ≥ n , (9)

as well as the following bounds onϕn (0).

Corollary 4. The value ofϕn (0) satisfies

1

3n −2
<ϕn (0)<

1

n −1
. (10)

Proof. The upper bound follows from (7) and Proposition 3, because

1=
∑
| j |≤2n−2

ϕn ( j )>
∑
| j |≤n

ϕn ( j )> (2n +1)ϕn (−n ) =
(2n +1)(n −1)

2n −1
ϕn (0).
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Using (9), we further have

1=
∑

n≤| j |≤2n−2

ϕn ( j )+
∑
| j |<n

ϕn ( j )< (2n −2)
1

2
ϕn (0)+ (2n −1)ϕn (0),

leading to the lower bound.

Proposition 3 and its consequences clarify the properties of ϕn at the integers, which are confirmed by
the examples in Figure 1. A further analysis of ϕn reveals more details, in particular about the asymptotic
behaviour for large n as well as an improvement in the upper bound in (10).

Theorem 5. The basic limit function ϕn and its derivative ϕ′n converge uniformly to the zero function as n
grows. More specifically,

∥ϕn∥∞ ∼ 1

n

and

∥ϕ′n∥∞ ∼ 1

n 2
.

Proof. We first observe that the masks corresponding to the refinement rules (2) are positive. Thus, for
non-negative data such as δ we have ∥S k1

n (δ)∥∞ ≤ ∥S k2
n (δ)∥∞ for any integers k1 > k2 > 0. We can therefore

bound ∥ϕn∥∞ from above,

∥ϕn∥∞ = ∥S∞n (δ)∥∞ ≤ ∥S 1
n (δ)∥∞ = 1

2n −1
∼ 1

n
. (11)

A similar behaviour holds for the derivativeϕ′n , which exists since Sn generates C 1 limits by Theorem 2.
To see this, first recall the definition of qn in (4), which implies the relation [8, Section 2.3]

ϕ′n (x ) = S∞[2qn ]
(∆δ)(x ),

where ∆ is the forward difference operator with (∆δ)0 = −1, (∆δ)−1 = 1, and zero otherwise. This implies
∥ϕ′n∥∞ ≤ ∥S[2qn ]∆δ∥∞. Further note that S[2qn ] has a positive mask (2q n )with coefficients

(2q n )2 j−1 =
1

n (2n −1)
(n − j ) and (2q n )2 j =

1

n (2n −1)
(n + j ) (12)

for j =−n +1, . . . , n −1 and (2q n )2 j−1 = (2q n )2 j = 0 for | j | ≥ n .
A direct calculation yields

��(S[2qn ]∆δ) j
��=


1/n (2n −1), if −2n −1< j < 2n −2,

1/n , if j =−2n −1 or j = 2n −2,

0, otherwise.

(13)

From (12) and (13) we then conclude that each summand in

(S 2
[2qn ]
∆δ) j =
∑
i∈Z
(2q n ) j−2i (S[2qn ]∆δ)i (14)

is of order 1/n 3, except for at most one summand of order 1/n 2. Since there are at most 2n − 1 non-zero
terms in the sum (14), the order of the sum is 1/n 2. Thus, we have ∥ϕ′n∥∞ ≤ ∥S 2

[2qn ]
∆δ∥∞ ∼ 1/n 2.

Proposition 3 and Theorem 5 provide a good understanding of the basic limit function ϕn , which is sup-
ported by our numerical tests.

3 The schemes applied to noisy data

The schemes Sn for n > 1 are designed to deal with noisy data, which is confirmed by the following discus-
sions and experiments. We first introduce a statistical model and then compare the performance of our
schemes and an advanced local linear regression method.
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Figure 2: Plots of the functionsψn for n = 1, . . . , 5. Note the different scale in each plot.

3.1 Statistical considerations

Let f : R→R be a continuous scalar function and suppose we are given a discrete set of noisy samples

yi = f (i h )+ ϵi , i ∈Z,

where {ϵi }i∈Z are independent random variables, normally distributed with zero mean and varianceσ2. As
an estimator f̂ of f we use the limit (6) of Sn , that is,

f̂ (x ) =
∑
j∈Z

yjϕn (x − j ). (15)

Note that f̂ (x ) is a random variable and the estimation quality of f̂ is given by the expectation of the squared
error.

With E denoting the expectation operator, the “bias-variance decomposition” [16, Chapter 7] of the ex-
pected squared error for x ∈R is

E
�
( f̂ (x )− f (x ))2
�
=σ2
∑
j∈Z
ϕn (x − j )2+

�∑
j∈Z

f ( j h )ϕn (x − j )− f (x )

�2
. (16)

The first term in (16) is the product of the variance of the noiseσ2 and the function

ψn (x ) =
∑
j∈Z
ϕn (x − j )2. (17)

The second term is the square of the deterministic approximation error corresponding to data without
noise. We first studyψn and come back to the second term later.

It follows from (16) that the effect of the noise on the estimator f̂ is small ifψn is small, which motivates
us to further analyseψn and establish upper bounds. First note that by (7) and the positivity ofϕn we have

ψn ≤ 1, (18)

with strict inequality for n > 1, namely for non-interpolatory schemes. For the interpolatory scheme S1,
we have ψ1(x ) = 1 at x ∈ Z, which matches the common knowledge that interpolation is not appropriate
for noisy data. This behaviour is confirmed by Figure 2, which presents several numerical evaluations of
ψn and indicates that ψn becomes smaller and tends to be the constant zero function as n grows. This is
indeed the case, as the following summary of properties ofψn shows.
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Theorem 6. The functionψn in (17) is positive, symmetric, and periodic with period 1. Moreover,

∥ψn∥∞ ∼ 1

n

and

∥ψ′n∥∞ ∼ 1

n 2
.

Proof. By definition,ψn is positive, periodic, and finite. The symmetry of ϕn implies the symmetry ofψn .
In addition, we have thatψn is symmetric about 1/2 due to the periodicity ofψn .

The first asymptotic bound follows from the definition ofψn in (17) after noting that only 4n −2 terms
in the sum are non-zero, and that each term is of order 1/n 2 by Theorem 5. The second asymptotic bound
follows by similar arguments using the chain rule, the explicit bound on ϕn in (11), and the asymptotic
bound onϕ′n in Theorem 5,

|ψ′n (x )| ≤ 2
∑
j∈Z
|ϕn (x − j )ϕ′n (x − j )| ≤ 2

2

2n −1

∑
j∈Z
|ϕ′n (x − j )| ∼ 1

n 2
.

The second term of the expected squared error in (16) is the deterministic error or the approximation error.
We use the approximation order as a standard measure for the quality of the approximation [13, Chapter 7].
For the case of schemes based on linear least squares polynomials, the approximation order is h 2, where h
is the distance between the sampled points of the initial data. This observation follows from the polynomial
reproduction property of our schemes, that is, the reconstruction of any linear polynomial from its samples.

In conclusion, there is a trade-off between the deterministic approximation error and the effect of the
noise on the expected squared error. In particular, higher values of n decrease the effect of noise but in-
crease the deterministic error due to averaging of the values { fi }i∈Z by weights with a large support.

3.2 Numerical examples

We illustrate the performance of some of the schemes by several numerical examples, starting from noisy
data. We compare their performance with the algorithm of local linear regression (LLR) for local fitting of
noisy data. This local estimator around a given data point x ∗ is obtained by including kernel weights into
the least squares minimization problem in the neighbourhood of x ∗,

min
α,β

n∑
i=0

�
yi −α−β (xi − x ∗)

�2
Ker (xi − x ∗).

This approach can be generalized to higher degree polynomials as well (see [15, Chapter 4] for more details).
Although the concept of LLR is rather simple, it is one of the most important statistical approaches used.

We take the LLR variant which is based on the normal kernel with the kernel parameters chosen dy-
namically, and we compare it with the limits of several subdivision schemes with different support sizes,
for various types of functions and levels of noise. The noise we consider is normally distributed and meas-
ured using the signal-to-noise ratio (SNR). The SNR is defined as the ratio between the L2 norm of the signal
(true function and additional noise) and the L2 norm of the noise. Thus, when this ratio tends to one, the
noise becomes as significant as the signal itself. The standard unit is decibel (dB) which is calculated in a
logarithmic scale. We examine the range of (roughly) 1–20 dB and consider 1–5 dB a very high level, 5–7 a
high level, and 10–12 a low level of noise. Noise levels> 12 dB are considered negligible. In each example we
plot the relative approximation error of LLR and the subdivision scheme, as a function of the noise levels.
This relative error is defined as the ratio between the norm of the approximation error and the norm of the
function.

In the first examples we consider the slowly varying function

f1(x ) = sin
x

10
+
�

x

50

�2
and examine the three subdivision schemes S3, S5, and S7. Due to the dynamic implementation of LLR, we
can use it as a benchmark for all cases. As discussed in Section 3.1, the subdivision scheme S3 with smaller
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Figure 3: Comparison of S3 and LLR for f1. Left: Relative approximation error as a function of the SNR. Right: Recon-
struction of f1 from data with 6.5 dB noise.
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Figure 4: Comparison of S5 and LLR for f1. Left: Relative approximation error as a function of the SNR.. Right: Recon-
struction of f1 from data with 7 dB noise.
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Figure 5: Comparison of S7 and LLR for f1. Left: Relative approximation error as a function of the SNR. Right: Recon-
struction of f1 from data with 7.9 dB noise.

support is more sensitive to the variance of the noise than S5 and S7. We observe in Figure 3 (left) that for all
levels of noise, LLR gives a smaller reconstruction error. The difference in the actual function reconstruction
for a specific noise level is illustrated in Figure 3 (right). The same presentation is repeated for S5 and S7 in
Figures 4 and 5, respectively. For the slowly varying function f1, the subdivision scheme S5 behaves almost
identically to LLR, while S7 is even better. These trials match our theory which suggests that as the support
gets larger, the corresponding functionψn becomes smaller, resulting in a weaker response to noise.
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0 5 10 15
0.0

0.6

1.0

1.2

LLR

S5

0.8

0.4

0.2

data

LLR

S5

f2

50

{1

1

2

3

0

{2

10 20 30 40 60 70 80 90

Figure 7: Comparison of S5 and LLR for f2. Left: Relative approximation error as a function of the SNR. Right: Recon-
struction of f2 from data with 8 dB noise.

In our second example we sample the oscillatory function

f2(x ) = cos
2x

5
+
�

x

40
−1
�3

and compare LLR with S3 and S5. The results are presented in Figures 6 and 7 and show that the smaller
support of S3 makes it more suitable for these type of functions (except for extremely high noise), while S5

provides inferior results for any reasonable level of noise.
To conclude, we observe from the numerical examples that there is a range of parameters for which a

subdivision scheme outperforms LLR. Also, the numerical examples support our understanding about the
trade-off between the effect of noise and the deterministic approximation error, as discussed in Section 3.1.

4 Extensions and variants

The family of primal least squares schemes of degree 1 can be extended in several ways. We first discuss
the extension to dual schemes (Section 4.1), as well as minor variations of both primal and dual schemes
(Section 4.2). A further extension relies on fitting least squares polynomials of higher degree (Section 4.3)
and we provide a few numerical examples of such schemes (Section 4.4).

4.1 Dual least squares schemes of degree 1

The idea of the schemes Sn in Section 2 is to fit linear least squares polynomials and to evaluate them in
a primal way, that is, at the points and the midpoints of the current mesh. Another option is to design
subdivision schemes based on dual evaluation [12]. The dual least squares scheme S̄n is obtained by fitting a
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n 2 3 4 5 6 7 8 9 10
ρ̄n 2.285 2.647 2.729 2.677 2.664 2.633 2.616 2.594 2.577

Table 2: Lower bounds ρ̄n on the Hölder regularity of the schemes S̄n .

linear polynomial to the 2n data values at the points t k
i−n+1, . . . , t k

i+n at level k and evaluating this polynomial
at 1/4 and 3/4 between t k

i and t k
i+1 to compute the new data f k+1

2i and f k+1
2i+1 .

The refinement rules of S̄n are slightly more complicated to derive than those of the primal schemes,
but they still have a rather simple closed form,

f k+1
2i =

1

2n

n∑
j=−n+1

�
1− 6 j −3

8n 2−2

�
f k

i+ j and f k+1
2i+1 =

1

2n

n∑
j=−n+1

�
1+

6 j −3

8n 2−2

�
f k

i+ j . (19)

The corresponding symbol is

ān (z ) =
1

2n

n−1∑
j=−n

�
1+ z +

6 j +3

8n 2−2
(1− z )
�

z 2 j , (20)

and it is easy to verify that ān (z )z = ān (1/z ), which confirms that S̄n is an even symmetric scheme [12].
Overall we conclude that S̄n is a dual 2n-point scheme and the support of its basic limit function ϕ̄n is
[−2n , 2n −1]. The masks of the first three schemes are

ā 1 = [1, 3, 3, 1] /4,

ā 2 = [7,13, 9, 11, 11, 9, 13, 7] /40,

ā 3 = [55,85, 61, 79, 67, 73, 73, 67, 79, 61, 85, 55]/420,

and we recognize S̄1 as Chaikin’s corner cutting scheme [3].
The proofs of Theorems 1 and 2 carry over to the dual schemes, and so the limit functions generated

by S̄n are at least C 1 for n ≥ 1. But unlike the primal schemes, the symbols of the dual schemes are divis-
ible by (1+ z )3, and so they may potentially generate C 2 limits. However, there is no simple proof as for
C 1 in Theorem 2, because the symbol 4ān (z )/(1+ z )2 has negative coefficients. Table 2 lists lower bounds
on the Hölder regularity of the first few schemes, computed using 16 iterations of the algorithm in [13],
demonstrating that the limits of S̄n are in fact C 2, at least for 2≤ n ≤ 10.

4.2 Variants of linear least squares schemes

In addition to the dual 2n-point schemes S̄n , it is also possible to define dual (2n+1)-point schemes. These
schemes fit a linear polynomial to the 2n + 1 data values in a symmetric neighbourhood around f k

i and
evaluate it at 1/4 the distance to the left (right) neighbour to define the new data f k+1

2i−1 ( f k+1
2i ). The resulting

refinement rules are

f k+1
2i−1 =

1

2n +1

n∑
j=−n

�
1− 3 j

4n (n +1)

�
f k

i+ j and f k+1
2i =

1

2n +1

n∑
j=−n

�
1+

3 j

4n (n +1)

�
f k

i+ j ,

and the support of the corresponding basic limit function is [−2n − 1, 2n ]. The masks of the first three
schemes of this kind are

n = 1 : [5,11, 8, 8, 11, 5] /24,

n = 2 : [6,10, 7, 9, 8, 8, 9, 7, 10, 6] /40,

n = 3 : [13, 19, 14, 18, 15, 17, 16, 16, 17, 15, 18, 14, 19, 13]/112.

Similarly, we can define primal (2n + 1)-point schemes as variants of the primal 2n-point schemes Sn .
We simply replace the refinement rule for f k+1

2i in (2) by

f k+1
2i =

1

2n +1

n∑
j=−n

f k
i+ j

11



and keep the rule for f k+1
2i+1 . For these schemes, the support of the basic limit function is [−2n ,2n ], and the

masks of the first three schemes are

n = 1 : [2, 3, 2, 3, 2] /6,

n = 2 : [4,5, 4, 5, 4, 5, 4, 5, 4] /20,

n = 3 : [6,7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6]/42.

Adapting the proofs of Theorems 1 and 2, one can show that both variants generate C 1 limit functions,
and our numerical results demonstrate that the dual (2n +1)-point schemes are even C 2 for 1≤ n ≤ 10.

4.3 Least squares schemes of higher degree

The least squares schemes of degree 1 reproduce linear polynomials by construction, but they do not repro-
duce polynomials of any higher degree. So, their approximation order is only h 2, unless the data is being
pre-processed [12]. We can improve this by using least squares polynomials of higher degrees d > 1.

To derive the refinement rules at level k , let p d
n ,i be the least squares polynomial of degree d for the 2n−1

data
(t k

i+ j , f k
i+ j ), j =−n +1, . . . , n −1

in a symmetric neighbourhood of t k+1
2i , and let p̃ d

n ,i be the polynomial of degree d that fits the 2n data

(t k
i+ j , f k

i+ j ), j =−n +1, . . . , n

in a symmetric neighbourhood of t k+1
2i+1. The polynomials p d

n ,i and p̃ d
n ,i are well-defined for d < 2n − 1 and

d < 2n , respectively (see Appendix A.1).
The primal 2n-point least squares scheme of degree d is then characterized by the refinement rules

f k+1
2i = p d

n ,i (t
k
i ) and f k+1

2i+1 = p̃ d
n ,i

�
(t k

i + t k
i+1)/2
�
, (21)

which simplifies to the rules in (2) for d = 1. The resulting subdivision scheme S d
n reproduces polynomials of

degree d by construction, and thus has approximation order h d+1. It is well-defined for d < 2n , even though
for d = 2n−1 the rule for f k+1

2i is based on an underdetermined problem. In that case we get f k+1
2i = f k

i (see
Remark 9 in Appendix A.1), hence S 2n−1

n is the interpolating Dubuc–Deslauriers 2n-point scheme.
As shown in Remark 12 in Appendix A.3, it is sufficient to consider only primal 2n-point least squares

schemes of even degree, because S 2d
n and S 2d+1

n are identical. This also means that the schemes of degree 2d
reproduce polynomials of one degree more than expected by construction. This is in accordance to the ob-
servation in [12] that the reproduction of odd degree polynomials comes “for free” by the primal symmetry.
In particular, this shows that the refinement rule of the interpolating 4-point scheme [7] for f k+1

2i+1 can be
derived not only from fitting a cubic polynomial to the data f k

i−1, . . . , f k
i+2, but also by fitting a quadratic

polynomial in the least squares sense to the same data.
We can also generalize the construction in Section 4.1 and define the dual 2n-point least squares scheme

of degree d by the refinement rules

f k+1
2i = p̃ d

n ,i

�
(3t k

i + t k
i+1)/4
�

and f k+1
2i+1 = p̃ d

n ,i

�
(t k

i +3t k
i+1)/4
�
, (22)

which simplify to the rules in (19) for d = 1. Like S d
n , the scheme S̄ d

n reproduces polynomials of degree d
by construction and its approximation order is h d+1. Moreover, the scheme S̄ 2n−1

n is the dual 2n-point
scheme [11].

Similar constructions lead to primal and dual (2n +1)-point least squares schemes of degree d , but we
omit the details as they are straightforward. Apart from the increased approximation order, these schemes
also tend to have a higher smoothness. For example, we verified numerically that the schemes S̄ 3

n generate
C 3 limit functions for n = 4 and n = 5, but we do not recommend using them, because the rules become
more complicated and the benefit of using them for reconstructing functions from noisy data is marginal,
as shown in the next section.
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d ,n ∥ψd
n∥∞ n∥ψd

n∥∞ ∥(ψd
n )
′∥∞ n 2∥(ψd

n )
′∥∞

1,1 1.0000 1.0000 1.9844 1.9844
1,3 0.1489 0.4468 0.0018 0.0163
1,5 0.0849 0.4249 0.0010 0.0256
1,7 0.0592 0.4144 0.0005 0.0245
3,2 1.0000 2.0000 1.0926 4.3704
3,3 0.4156 1.2469 0.0296 0.2661
3,5 0.2254 1.1273 0.0007 0.0195
3,7 0.1565 1.0957 0.0005 0.0280
5,3 1.0000 3.0000 0.9048 8.1432
5,5 0.3793 1.8968 0.0022 0.0561
5,7 0.2574 1.8020 0.0003 0.0148

Table 3: Maxima of ψd
n and its derivative for several values of the degree d and the support size n . Note that scaling

these maxima with n and n 2, respectively, gives approximately constant values, matching the rates in Conjecture 7.
More results are shown in Figure 8.
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Figure 8: Behaviour of n∥ψd
n∥∞ (left) and n 2∥(ψd

n )
′∥∞ (right) as a function of n for three values of the degree d . Both

quantities become approximately constant as n increases, as predicted in Conjecture 7.

4.4 Numerical examples for the primal least squares schemes of higher degree

The statistical model presented in Section 3.1 is also valid for schemes based on higher degree least squares
polynomials, due to the linearity of the schemes (see also Appendix A.2), but proving asymptotic bounds
for ψd

n becomes difficult, because the mask of S d
n is no longer positive and not given explicitly for d > 1.

However, our numerical tests, which are summarized in Table 3 and Figure 8, indicate that the bounds in
Theorem 6 for the special case d = 1 also hold for d > 1.

Conjecture 7. Letψd
n be defined as in (17) for schemes based on least squares polynomials of degree d . Then,

∥ψd
n∥∞ ∼ 1

n

and

∥(ψd
n )
′∥∞ ∼ 1

n 2
.

The deterministic error in (16) is strongly related to d . This can be seen by the polynomial reproduction
property of our schemes, that is, the reconstruction of any polynomial of degree d from its values at the
integers by the limit of S d

n . The latter property implies that the approximation order is at least h d+1. Thus,
for larger d the contribution of the deterministic error decreases, while we conjecture that the effect of the
noise increases. This relates to the following predicted behaviour of ψd

n with respect to d and n and is
supported by the results shown in Figure 9.

Conjecture 8. For any fixed support size n and different degrees d1 and d2 with d1 > d2,

ψd1
n (x )≥ψd2

n (x ), x ∈ [0, 1].

For any fixed degree d and different support size n1 and n2 with n1 < n2,

ψd
n1
(x )≥ψd

n2
(x ), x ∈ [0,1].
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Figure 9: Comparison ofψd
n for several values of the degree d and the support size n . Note howψd

n increases pointwise
with d for fixed n (left) and decreases as n increases for fixed d = 3 (right), as predicted by Conjecture 8.
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Figure 10: Comparison of S 1
5 and S 3

5 for f3. Left: Relative approximation error as a function of the SNR. Right: Recon-
struction of f3 from data with 8.2 dB noise.
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Figure 11: Comparison of S 1
5 and S 3

5 for f4. Left: Relative approximation error as a function of the SNR. Right: Recon-
struction of f4 from data with 7.2 dB noise.

To further back up this conjecture, let us consider some numerical experiments, similar to those in Sec-
tion 3.2. We first compare the schemes S 1

5 and S 3
5 , applied to noisy data taken from the slowly varying func-

tion

f3(x ) = cos
x

10
−
�

x

50
−1
�3

, (23)

for which the deterministic error is expected to be small. Figure 10 shows that S 1
5 , which is based on locally

fitting linear polynomials, gives better reconstructions, as long as the noise is significant. However, as the
noise decays, the deterministic error becomes more relevant and the scheme S 3

5 , which is based on locally
fitting cubic polynomials and therefore has approximation order h 4, manages to estimate the function more
accurately than S 1

5 , whose approximation order is only h 2. This example emphasizes the trade-off between
the deterministic approximation error and the effect of noise on the expected squared error, and this effect
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9 for f3. Left: Relative approximation error as a function of the SNR. Right: Recon-
struction of f3 from data with 8.4 dB noise.
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Figure 13: Comparison of S 3
6 and S 3

9 for f4. Left: Relative approximation error as a function of the SNR. Right: Recon-
struction of f4 from data with 9.5 dB noise.

becomes even clearer if we consider the function

f4(x ) = cos
2x

5
−
�

x

50
− 4

5

�3
. (24)

Due to the oscillations of this function, the deterministic error is dominant and the results in Figure 11
confirm that S 3

5 outperforms S 1
5 for all noise levels.

Finally, we repeat the experiments with the test functions f3 and f4 for the schemes S 3
6 and S 3

9 , which are
both based on locally fitting cubic polynomials but have different support sizes. Figure 12 shows that the
larger support helps to smooth out noise if the deterministic error is small. But if the deterministic error is
more relevant than the noise, than the smaller support leads to smaller reconstruction errors for all noise
levels, as illustrated in Figure 13.

5 Application to noisy geometric data

We conclude the paper by presenting applications of our least squares subdivision schemes to noisy samples
of curves and of surfaces. We measure the level of the noise by SNR, although this measure in the geomet-
rical setting is less informative than in the functional setting, because the significance of the noise also
depends highly on the geometry.

5.1 Examples of curves

The parametrization of a curve enables us to apply our univariate subdivision schemes to each of its com-
ponents. By doing so, we can construct an approximation to the curve from its noisy samples. We introduce
two such examples.

15



{2 0 2 4 6 8 10 12 14 16

{6

{4

{2

0

2

4

6

(a)

{2 0 2 4 6 8 10 12 14 16

{6

{4

{2

0

2

4

6

(b)

{2 0 2 4 6 8 10 12 14 16

{6

{4

{2

0

2

4

6

(c)

{2 0 2 4 6 8 10 12 14 16

{6

{4

{2

0

2

4

6

(d)

Figure 14: The alpha-like curve (a) from Equation (25) and its sample points (b), contaminated by low level noise of
about 17 dB (c) and by high level noise of about 4 dB (d).
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Figure 15: Limits of the two least squares subdivision schemes S3 and S5, applied to noisy samples from the alpha-like
curve in Figure 14 (a). The two curves on the left (a,b) correspond to the samples with low level noise in Figure 14 (c)
and the two curves on the right (c,d) correspond to the samples with high level noise in Figure 14 (d).

The first example consists of an alpha-like curve, given by

x (t ) = 3t 4+ t 2+1, y (t ) = t 5−2t , (25)

sampled equidistantly over [−1.4,1.4], that is, with samples taken at ti = −7/5+ i h , where h = 14/145 and
i = 0, . . . , 29. This curve and its sample points are shown in Figure 14 (a,b). The first set of noisy samples
with a relatively low level of noise is shown in Figure 14 (c). We apply S3 and S5 (both based on linear fitting,
see Section 2) to these samples, giving the limit curves in Figures 15 (a) and 15 (b), respectively. The limits
of both schemes retain the general shape of the curve, but a minor artifact appears on the limit curve gen-
erated by S3 since it closely fits the noisy samples. Perturbing the samples with high level noise, as seen in
Figure 14 (d), reveals an overfitting by the limit curve of S3 in Figure 15 (c), while the limit curve generated
by S5 in Figure 15 (d) preserves the topology of the original curve.

In the second example we apply four different least squares schemes to noisy samples of a star-shaped
curve, given by

x (t ) = 4 cos(t )+ cos(4t ), y (t ) = 4sin(t )− sin(4t ), (26)

We sample this curve at ti = i/(100π) for i = 0, . . . , 49. This curve and its sample points are shown in Fig-
ure 16 (a,b). In this example we compare the performance of four schemes: two schemes based on linear
fitting, S3 and S5, and two schemes based on cubic fitting, S 3

4 and S 3
6 . As in the first example, we start by

investigating the case of low level noise, with the samples shown in Figure 16 (c). The limits of all schemes
are presented in the upper row of Figure 17. They all have the shape of a star, except for the limit of S5, which
is more similar to a pentagon than to a star. By zooming in, it can be seen that the limit curve generated
by S 3

4 suffers from a minor artifact next to its lowest vertex, this being consequence of trying to fit the noisy
data. For the set of samples with high level noise in Figure 16 (d), the results confirm our previous obser-
vation. Namely, both S3 and S 3

6 generate reasonable results, while the limit curves generated by S5 and S 3
4

suffer from geometrical artifacts caused by oversmoothing and overfitting, respectively. These limits are
presented in the lower row of Figure 17.

5.2 Examples of surfaces

Equipped with univariate least squares subdivision schemes, we use tensor-product bivariate schemes
based on them. These bivariate schemes are applied to noisy samples of surfaces, given at vertices of quad-
rilateral grids. Two examples are provided to illustrate the application of these bivariate schemes to noisy
data.
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Figure 16: The star-shaped curve (a) from Equation (26) and its sample points (b), contaminated by low level noise of
about 19 dB (c) and by high level noise of about 10 dB (d).
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Figure 17: Limits of four least squares subdivision schemes, applied to noisy samples from the star-shaped curve in
Figure 16 (a). The curves in the upper row correspond to the samples with low level noise in Figure 16 (c) and the curves
in the lower row correspond to the samples with high level noise in Figure 16 (d).

The first surface we examine is a torus surface, given by

x (u , v ) = cos(u )(10+5 cos(v )),

y (u , v ) = sin(u )(10+5cos(v )),

z (u , v ) = 5sin(v ),

(27)

sampled every 15 degrees, that is, at ui = iπ/12 and v j = jπ/12 for i , j = 0, . . . , 23. This surface and its sample
points are shown in Figure 18 (a,b). We investigate the limits of the bivariate tensor-product schemes S3⊗S3

and S5 ⊗ S5. First, we study the application of these schemes to the samples with low level noise in Fig-
ure 18 (c). The limits of both schemes in Figures 19 (a) and 19 (b) are fairly good. For the samples with
high level noise in Figure 18 (d), the limit of S3 ⊗ S3 in Figure 19 (c) keeps the general shape but is a poor
approximation to the torus, while the limit of S5⊗S5 in Figure 19 (d) provides a better approximation.

The surface of the second example is not a mathematical surface but a scan of a mechanical element,
parameterized by a quadrilateral grid, and given in terms of 49×81= 3969 vertices. Figures 20 (a) and 20 (b)
show the surface and its sample points, respectively. Similarly to the second example in the curve case, we
investigate the limit surfaces generated by the four tensor product schemes: S3 ⊗ S3, S5 ⊗ S5, S 3

4 ⊗ S 3
4 , and

S 3
6 ⊗S 3

6 . We compare their limits from a set of samples with a low level of noise and a set of samples with
a high level of noise. These sets of samples are given in Figures 20 (c) and 20 (d), respectively. The limit
surfaces for the samples with low level noise, shown in the upper row of Figure 21, indicate that S3⊗S3 and
S 3

6 ⊗S 3
6 outperform the other two schemes. For the samples with high level noise, the performance of S5⊗S5

is superior to that of the other three, as can be seen in the lower row of Figure 21.
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Figure 18: The torus surface (a) from Equation (27) and its sample points (b), contaminated by low level noise of about
15 dB (c) and by high level noise of about 6 dB (d).
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Figure 19: The limits of two bivariate tensor-product schemes, applied to noisy samples from the torus surface in
Figure 18 (a). The two surfaces on the left (a,b) are obtained from the samples with low level noise in Figure 18 (c) by
S3 ⊗S3 and S5 ⊗S5, respectively. The two surfaces on the right (c,d) are obtained from the samples with high level noise
in Figure 18 (d) by S3 ⊗S3 and S5 ⊗S5, respectively.
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Figure 20: The surface of a mechanical element (a) and its sample points (b), contaminated by low level noise of about
24 dB (c) and by high level noise of about 18 dB (d).
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Figure 21: Limits of four bivariate tensor-product schemes, applied to noisy samples from the surface of the mechanical
element in Figure 20 (a). The surfaces in the upper row correspond to the samples with low level noise in Figure 20 (c)
and the surfaces in the lower row correspond to the samples with high level noise in Figure 20 (d).
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A Least squares schemes and orthonormal polynomials

In this appendix we derive several properties of least squares polynomials used throughout this paper. Some of the
properties can be considered common knowledge, but we present them here in order to keep the paper as self-contained
as possible.

A.1 Least squares polynomials in terms of orthonormal polynomials

Our subdivision schemes are based on least squares polynomial fitting. We denote by Πd the space of polynomials of
degree at most d . Fitting data y1, . . . , ym given at the nodes x1, . . . , xm by a polynomial p ∈Πd with d <m requires finding
the polynomial p ∗ which minimizes the sum of squared errors,

m∑
i=1

�
p (xi )− yi )
�2

, (A.1)
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among all p ∈Πd . The coefficientsβ = (β0, . . . ,βd ) of p ∗(x ) =
∑d

j=0β j x j are typically determined by setting the gradient
of the functional in (A.1) to zero, resulting in the normal equations

AT Aβ = AT y ,

where A is the m×(d +1) Vandermonde matrix with entries Ai , j = (xi ) j and y = (y1, . . . , ym ) is the data vector. The matrix
AT A is invertible for any set of distinct nodes x1, . . . , xm and the solution of the normal equations is given by

β = A†y , (A.2)

where A† = (AT A)−1AT is the Moore–Penrose pseudoinverse [19] of A.

Remark 9. If d = m − 1, then p ∗ is the unique interpolating polynomial to the data. Furthermore, this ansatz can
also be used in the case d ≥m to pick among all interpolating polynomials the one with the smallest ℓ2-norm of the
coefficientsβ . This can be achieved by using1 A† = AT (AAT )−1 in (A.2), but then the solution depends on the particular
basis of Πd chosen to represent p ∗. However, p ∗(xi ) = yi , i = 1, . . . , m , independently of that choice.

Let us now express the solution p ∗ which minimizes (A.1) for d <m in terms of orthonormal polynomials. Recall the
notion of orthonormal polynomials with respect to a discrete inner product. Let X = {x1, . . . , xm} be a set of distinct
nodes and define for any two functions f , g : R→R the discrete inner product

〈 f , g 〉X =
m∑

i=1

f (xi )g (xi ). (A.3)

A family L= {L 0, . . . , L k } of k +1 polynomials in Πd with k ≤ d , is orthonormal over X if

〈L i , L j 〉X =δi , j , i , j = 0, . . . , k , (A.4)

where δi , j is the standard Kronecker delta, that is, δi , j = 1 for i = j and δi , j = 0, otherwise. Under the assumption that
L j ∈Π j , j = 0, . . . , k , there exists a unique family L satisfying (A.4). The coefficients of the least squares solution p ∗ with
respect to this unique family for k = d are simply

γ j = 〈L j (X ), y 〉=
m∑

i=1

L j (xi )yi , j = 0, . . . , d ,

that is,

p ∗(x ) =
d∑

j=0

γ j L j (x ). (A.5)

For more details, see [14] and the references therein.

A.2 The masks in terms of orthonormal polynomials

A naive implementation of the refinement rules in (21) and (22) for the least squares schemes of higher degree is compu-
tationally expensive, because the solution of each least squares problem is equivalent to the solution of a linear system,
and it needs to be solved for every new data value f k+1

i . However, it turns out that the subdivision schemes S d
n and S̄ d

n

for d > 1 are stationary, just like the schemes of degree d = 1, so that

f k+1
i =
∑

j

αi−2 j f k
j , (A.6)

where the coefficients {αℓ}ℓ∈Z are independent of i and k and only a finite number of these coefficients are non-zero.
To see this, we first prove that least squares polynomials are invariant under affine transformations.

Proposition 10. Let p ∗ be the least squares polynomial of degree d for the data y = (y1, . . . , ym ) given at the nodes
X = {x1, . . . , xm } and let φ(x ) = a x + b with a ̸= 0 be an affine transformation. Then p̄ ∗ = p ∗ ◦φ−1 is the least squares
polynomial of degree d for the same data y given at the transformed nodes X̄ = φ(X ) = {x̄1, . . . , x̄m} with x̄i = φ(xi ),
i = 1, . . . , m.

Proof. Let L = {L 0, . . . , L d } be the unique family of orthonormal polynomials over X . Then the family of polynomials
L̄= {L̄ 0, . . . , L̄ d }with L̄ j = L j ◦φ−1, j = 0, . . . , d is orthonormal over X̄ , because

〈L̄ i , L̄ j 〉X̄ =
m∑

k=1

L̄ i (x̄k )L̄
j (x̄k ) =

m∑
k=1

L i (xk )L
j (xk ) = 〈L i , L j 〉X =δi , j ,

according to (A.3) and (A.4). The statement then follows using (A.5), since

p̄ ∗(x ) =
d∑

j=0

m∑
i=1

L̄ j (x̄i )yi L̄ j (x ) =
d∑

j=0

m∑
i=1

L j (xi )yi L j
�
φ−1(x )
�
= p ∗
�
φ−1(x )
�
.

1Note that the published version of this article contains a typo, as it incorrectly states to use A† = (AAT )−1
AT in this case.
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For the derivation of the masks of S d
n we introduce for n ≥ d ≥ 1 two sets of points

X n = {−2n +2,−2n +4, . . . , 2n −2}, X̂ n = {−2n +1,−2n +3, . . . , 2n −1},
and denote the corresponding families of d +1 orthonormal polynomials by

Ld
n = {L 0

n , . . . , L d
n }, L̂d

n = {L̂ 0
n , . . . , L̂ d

n }.
Corollary 11. For any n ≥ 1 and d ≥ 1 with d < 2n, the subdivision scheme S d

n is stationary and the coefficients of its
mask [α−2n+1, . . . ,α2n−1] are

α2i =
d∑

j=0

L j
n (−2i )L j

n (0), i =−n +1, . . . , n −1 (A.7)

and

α2i+1 =
d∑

j=0

L̂ j
n (−2i −1)L̂ j

n (0), i =−n , . . . , n −1.

Proof. Let L 0, . . . , L d be the orthonormal polynomials over {t k
i−n+1, . . . , t k

i+n−1}. Then, by (21) and (A.5),

f k+1
2i =

d∑
j=0

�
n−1∑

l=−n+1

L j (t k
i+l ) f

k
i+l

�
L j (t k

i ),

Since these nodes relate to the nodes X n by the affine transformation φ(x ) = 2−k−1(x + 2i ), that is, t k
i+ j = φ( j ),

j =−2n +2,−2n +4, . . . , 2n −2, we can apply Proposition 10 to get

f k+1
2i =

d∑
j=0

�
n−1∑

l=−n+1

L j
n (2l ) f k

i+l

�
L j

n (0) =
n−1∑

l=−n+1

�
d∑

j=0

L j
n (2l )L j

n (0)

�
f k

i+l .

Substituting l by l − i and comparing terms with f k+1
2i as given in (A.6) we get the coefficients in (A.7). The coefficients

with odd indices can be found similarly, replacing X n by X̂ n .

Explicit formulas for the mask coefficients of the dual schemes S̄ d
n and the other variants mentioned in Section 4.3 can

be derived analogously.

A.3 Computation of the masks

Corollary 11 suggests computing the mask coefficients of S d
n by evaluating the orthonormal polynomials L i

n and L̂ i
n ,

which can be derived from the explicit formulae for orthonormal polynomials over equidistant nodes in [14, Proposi-
tion 2], using Proposition 10 and suitable affine transformations. For example,

L 0
n (x ) =

1p
2n −1

, L 1
n (x ) =

xp
(2n −2)(2n −1)2n/3

and

L̂ 0
n (x ) =

1p
2n

, L̂ 1
n (x ) =

xp
(2n −1)2n (2n +1)/3

.

Note that L 1
n and L̂ 1

n are odd polynomials. Therefore, L 1
n (0) = L̂ 1

n (0) = 0, and Corollary 11 confirms that the coefficients
of the least squares schemes of degree d = 1 are α2i = 1/(2n −1) and α2i−1 = 1/(2n ), as stated in (2).

Remark 12. More generally, it follows from the formula in [14] that L i
n and L̂ i

n are odd polynomials for odd i and even
polynomials otherwise. Thus, L 2i+1

n (0) = L̂ 2i+1
n (0) = 0, and so by Corollary 11 the coefficients of the schemes S 2d

n and
S 2d+1

n are identical .

However, a direct algorithm for computing the mask coefficients of S d
n , independent of the orthonormal polynomials,

is given by the following observation.

Proposition 13. For any n ≥ 1 and d ≥ 1 with d < 2n, let A and Ã be the Vandermonde matrices with d +1 columns for
the nodes X n and X̂ n , respectively. Further let A†

1,• and Â†
1,• be the first rows of the pseudo-inverses A† and Â†. The mask

coefficients of the subdivision scheme S d
n are then given by

(α2n−2,α2n−4, . . . ,α−2n+2) = A†
1,• and (α2n−1,α2n−3, . . . ,α−2n+1) = Â†

1,•.
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Proof. For any i ∈ {−n + 1, . . . , n − 1}, observe that by (A.5) the least squares polynomial over X n for the data y i =
(y i−n+1, . . . , y i

n−1)with y i
j =δi , j is of the form

ℓi
n (x ) =

d∑
j=0

L j
n (2i )L j

n (x ) =
d∑

j=0

β i
j x j ,

where according to (A.2) β i = (β i
0 , . . . ,β i

d ) = A†y i . The statement on the coefficients with even indices then follows
from (A.7), because

α2i = ℓ
−i
n (0) =β

−i
0 = A†

1,n−i .

The statement regarding the coefficients with odd indices can be derived analogously.

Overall, this means that the main cost for computing the mask of S d
n is the inversion of the two (d +1)× (d +1)matrices

AT A and ÂT Â. The masks of the dual schemes S̄ d
n and the other variants mentioned in Section 4.3 can be computed

similarly.
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