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Abstract The class of symmetric positive definite matrices is an important class both
in theory and application. Although this class is well studied, little is known about
how to efficiently interpolate such data within the class.

We extend the 4-point interpolatory subdivision scheme, as a method of interpo-
lation, to data consisting of symmetric positive definite matrices. This extension is
based on an explicit formula for calculating a binary “geodetic average”. Our method
generates a smooth curve of matrices, which retain many important properties of the
interpolated matrices. Furthermore, the scheme is robust and easy to implement.

Keywords Nonlinear subdivision scheme · Interpolation · Positive definite matrix
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1 Introduction

Positive definite matrices are a well-known tool in pure mathematics, engineering,
scientific computation, physics, statistics and more. As a numerical tool they have
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several strengths, such as orthogonal decomposition, real positive eigenvalues, etc.
However, no standard approach exists for interpolating positive definite matrices.

Naturally, positive definite matrices take a key role in the representation of data
in many applications. A classic example in materials science is deformation tensors
where measurements of strain, stress and deformation are modeled as positive definite
matrices [12, 25, 27]. The interest in the field of deformation has continued, e.g.
see [14]. Another example are diffusion tensors (DMRI) used in medical imaging. In
DMRI, the spatial scans are also positive definite matrices [4, 20]. In addition, there
are several applications where sequences of positive definite matrices are in use at
the core of a calculation process, e.g., in the field of optimization processes [7]. Such
applications encourage us to further search for new analysis tools.

Subdivision schemes are common interpolation methods in approximation the-
ory. They are easy to implement, computationally efficient and have high approxima-
tion order [1, 23, 31]. In this paper we suggest adapting an interpolatory subdivision
scheme to positive definite matrices; our method is based on an extension of the geo-
metric mean of two positive numbers to positive definite matrices.

Goldman et al. [26] defined non-linear spline subdivision schemes for positive
numbers, by replacing the arithmetic mean a+b

2 , by the geometric mean
√

ab. We ex-
tend this work to interpolatory schemes, by using atb1−t instead of ta + (1 − t)b, for
any t ∈ R. Furthermore, we use an extension of this non-symmetrical geometric av-
erage [2] for positive definite matrices, to define an interpolatory subdivision scheme
for such matrices.

The set of positive definite real matrices is an open set and closed under matrix
addition and multiplication with positive scalar, yet it is not a vector space. Thus any
standard linear interpolatory scheme defined by matrix addition does not necessar-
ily generate positive definite matrices since any such C1 interpolatory scheme has
negative coefficients. So, a different adaptation of subdivision schemes is required.

Donoho et al. [24] proposed a solution, further studied by Yu [22]. It is based on
the operation A⊕B = exp(log(A)+ log(B)) for positive definite matrices. Under this
operation, the set of positive definite matrices is a Lie group. The scheme is defined
on the tangent plane, and retains convergence and smoothness by the analyticity of the
exp-log map. However, this scheme is not robust for small eigenvalues. Furthermore,
the scheme geometric interpretation holds only for dense sampling.

In this paper we suggest a new approach using the geometric mean, suggested

in [2]. This geometric mean is defined by G 1
2
(A,B) = A(A−1B)

1
2 , for any invertible

matrices A,B . It turns out that on the manifold of positive definite matrices, the
geometric mean G 1

2
(A,B) is the mid-point of the geodesic joining A and B , defined

by the Riemannian metric d(A,B) = ‖log(A− 1
2 BA− 1

2 )‖ (for more details see [18]).
Our subdivision scheme is based on the 4-point scheme [11], expressed in terms

of repeated binary averages and converges to a “smooth matrix curve”. We bound
the spectral radii of the matrices along the matrix curve. Moreover, the subdivision
operator commutes with common operators from linear algebra, and preserves the
spectral properties of the initial data. The scheme is robust and can be extended to
positive semidefinite matrices, under additional conditions.

This paper is organized as follows: in Sect. 2 we define interpolatory subdivision
schemes for the scalar case based on geometric mean for positive numbers. Next,
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in Sect. 3, we introduce a new subdivision scheme for positive definite matrix data,
based on a geometric mean for matrices. In Sect. 4 we prove the convergence of
this process to a smooth “matrix curve”. In Sect. 5 we describe algebraic and spec-
tral properties of the generated “matrix curve”. An extension to positive semidefinite
matrices is made in Sect. 6 along with the proof of robustness.

2 The Scalar Case

Goldman et al. [26] studied a class of non-linear subdivision schemes. These schemes
are based on replacing any binary linear average, e.g. the arithmetic mean, in lin-
ear subdivision algorithms by binary non-linear averages, e.g., the geometric mean,
xty1−t , for t ∈ [0,1]. We extend this approach in order to define a class of interpola-
tory subdivision schemes.

A subdivision scheme generates a sequence of refined points from a given se-
quence of points p0 = {p0,i}i∈Z according to the refinement rule,

pk+1,i =
∑

j∈Z

sjpk,i+j ,
∑

j∈Z

sj = 1. (2.1)

We assume that sj is nonzero for only a finite set of indices. The refinement operator
that generates {pk+1,i}i∈Z, k ∈ Z+ from {pk,i}i∈Z is called the refinement step, and is
denoted by S . In the case of convergence of the process, we denote the limit operator
by S ∞.

We modify the linear scheme (2.1), using the geometric mean xty1−t for t ∈ R.
The refinement rules have the following form:

ak+1,i =
∏

j∈Z

a
sj
k,i+j ,

∑

j∈Z

sj = 1. (2.2)

We denote by Sl the refinement rule (2.1) of a linear scheme and by Sg the refine-
ment operator of the geometric counterpart (2.2). We refer to this scheme (2.2) as the
geometric averaging scheme.

Example 1 The simplest non-trivial interpolatory subdivision schemes is the 4-point
scheme [11],

pk+1,2i = pk,i,

pk+1,2i+1 = 9

16
(pk,i + pk,i+1) − 1

16
(pk,i−1 + pk,i+2),

(2.3)

with the geometric modification

ak+1,2i = ak,i ,

ak+1,2i+1 = (ak,iak,i+1)
9
16

(ak,i−1ak,i+2)
1
16

.
(2.4)
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a0 = {a0,i}i∈Z f (x) = exp
(
l(x)

) = S ∞
g a0

p0 = {loga0,i}i∈Z l(x) = S ∞
l p0

�Geometric averaging scheme

�
log

�
Linear scheme

�exp

Fig. 1 The log–exp diagram

a0 = {a0,i}i∈Z Sla0 = a1 = {a1,i}i∈Z = exp b1

p0 = {loga0,i}i∈Z Slp0 = p1 = {p1,i}i∈Z

�Geometric step

�
log

�
Linear step

�exp

Fig. 2 The single step log–exp diagram

For a full survey on scalar subdivision methods and their analysis see [10]. Next
we analyze the properties of the geometric averaging scheme.

2.1 Convergence and Smoothness of the Modified Schemes

All of the results in this section are derived by the commutativity of the diagram
presented in Fig. 1.

Theorem 2.1 The exp–log diagram given in Fig. 1 is commutative for any positive
initial data a0.

Proof We prove it for a single step, i.e.,

exp(p1,2i+1) = exp

{∑

j

sjp0,i+j

}

= exp

{∑

j

sj loga0,i+j

}

=
∏

j

a
sj
0,i+j = a2i+1,1.

The single step illustrated in Fig. 2. Inductively, one can prove the diagram in Fig. 1
for all dyadic points, due to the analytic property of the exponential map. Thus the
diagram is commutative for all points in the interval. �

The geometric averaging scheme inherits many of the properties of the linear
scheme; see, e.g., the following.
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Fig. 3 Positive and non-positive schemes

Theorem 2.2 Given a linear scheme in the form (2.1) and its modified geometric
version (2.2), then we have the following.

(1) If the linear scheme is Cn then so is the geometric averaging scheme.
(2) If the linear scheme is of approximation order of hd then so is the geometric

averaging scheme.

The proof follows straightforwardly from Theorem 2.1, and thus is omitted.
For the next property, we present a new definition.

Definition 2.3 A convergent subdivision scheme, with a refinement step S , is called
a positive scheme if for any given sequence of positive numbers a0 = {ai}i∈Z, the
limit function

f (x) = S ∞(
a0)(x) > 0, x ∈ R.

Another conclusion from Theorem 2.1 is

Corollary 2.4 The schemes defined by (2.2) is a positive scheme.

Corollary 2.4 is illustrated in Fig. 3 for the 4-point scheme (see Example 1). We
compare the linear 4-point scheme (2.3) with the geometric 4-point scheme (2.4) for
positive data (in Figs. 3(b) and 3(a), respectively). While the geometric averaging
scheme is clearly positive one can verify that the linear scheme is not positive.

2.2 The Differences Between the Linear and Geometric Averaging Schemes

An interesting question is the difference between the linear schemes and their geo-
metric counterparts. Due to convergence it suffices to consider only the first refine-
ment step.

Theorem 2.5 Let a0 = {a0,i}i∈Z be a sequence of positive numbers, bounded away
from zero, namely infi{a0,i} > c > 0. Denote Δ0 = supi |a0,i − a0,i+1|. If Δ0 < ∞
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then

sup
i

∣∣(Sl(a0)
)
i
− (

Sg(a0)
)
i

∣∣ < CΔ2
0,

where C is a constant that depends on a0.

Proof By Taylor expansion of fa(x) = atx1−t we get

atb1−t = ta + (1 − t)b − t (1 − t)
(b − a)2

a
+ O

(
(b − a)3),

or equivalently |atb1−t − (ta + (1 − t)b)| < 1
c
Δ2

0. Generalizing to n variables,

fan(x1, . . . , xn−1) = a
1−∑n−1

i=1 si
n

n−1∏

i=1

x
si
i .

The Taylor expansion around (an, . . . , an) yields

a
s1
1 a

s2
2 · · ·asn

n = fan(a1, . . . , an−1) = snan +
n−1∑

i=1

siai + O
(
Δ2).

Denote by I the finite set of nonzero indices in (2.1) and (2.4), and recall that∑
j∈I sj = 1. Then

(
Sg

({a0,i}i∈Z

))
i
=

∏

j∈I
a

sj
0,i+j = fajmax

(a0,i+jmin , . . . , a0,i+jmax−1)

= s0,jmaxa0,i+jmax +
jmax−1∑

j=jmin

sj a0,i+j + O
(
Δ2)

= (
Sl

({a0,i}i∈Z

))
i
+ O

(
Δ2

0

)
,

where jmax, jmin are the maximum and minimum indices in I , respectively. �

3 Subdivision Scheme for Positive Definite Matrices

One generalization of positive numbers is the positive definite matrices. A linear
scheme, e.g. the 4-point scheme (2.3), using matrix operations, does not necessary
retain the positive definite property. For example one can choose as initial data, the
diagonal matrices with the data in Fig. 3 at the diagonal values.

In this section we define the scheme on data consisting of positive definite matri-
ces. We start by updating our notation for the geometric mean of matrices. Next we
prove basic properties, which are important for the definition of the scheme.

Our construction is based on one common interpretation of the geometric mean
for matrices. This geometric mean [2, 6] is defined for any invertible matrices A,B



Found Comput Math

and t ∈ R as follows:

Gt(A,B) = A
(
A−1B

)t = A
1
2
(
A− 1

2 BA− 1
2
)t

A
1
2 . (3.1)

When 0 ≤ t ≤ 1, Gt(A,B) is the geodesic curve between A and B in the metric space
(P , d), where P is the collection of all positive definite matrices with the Riemann
metric [18],

d(A,B) = ∥∥log
(
A− 1

2 BA− 1
2
)∥∥, (3.2)

where ‖M‖ = √
tr(MM∗) is the Frobenius norm [13, Chap. 2], tr(·) is the standard

trace operator and X∗ is the standard transpose operator. Henceforth, we use this
norm, unless otherwise mentioned. Note that all norms are equivalent in the finite
space of n × n matrices. The next lemma presents fundamental properties of (3.1).

Lemma 3.1 Let A,B be positive definite matrices. Then for all t ∈ R

(1) Gt(A,B) of (3.1) is positive definite;
(2) Gt(A,B) = G1−t (B,A).

Proof Let X = (A− 1
2 BA− 1

2 ) = (A− 1
2 B

1
2 B

1
2 A− 1

2 ). First, we prove that X is a posi-
tive definite matrix. Using the positive definiteness of A,B ,

X = (
A− 1

2 B
1
2
)(

B
1
2 A− 1

2
) = (

A− 1
2 B

1
2
)((

B
1
2 A− 1

2
)∗)∗

= (
A− 1

2 B
1
2
)(

A− 1
2 B

1
2
)∗

.

Since the product of a full rank matrices is a full rank matrix we see that X is positive
definite. By the spectral decomposition of X it is clear that Xt is positive definite for
every t ∈ R. Secondly, we prove that Gt(A,B) is positive definite,

Gt(A,B) = A
1
2
(
A− 1

2 BA− 1
2
)t

A
1
2

= A
1
2 XtA

1
2

= (
A

1
2 X

t
2 X

t
2 A

1
2
)

= (
A

1
2 X

t
2
)(

A
1
2 X

t
2
)∗

.

Thus, Gt(A,B) is positive definite for every t ∈ R. To prove the second part of the
lemma,

Gt(A,B)G−1
1−t (B,A) = A

(
A−1B

)t(
B

(
B−1A

)1−t)−1

= A
(
A−1B

)t(
B−1A

)t−1
B−1

= A
(
A−1B

)t(
B−1A

)t(
B−1A

)−1
B−1

= A
(
A−1B

)t(
B−1A

)t
A−1

= A
(
A−1B

)t(
A

(
B−1A

)−t)−1 = I.
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Fig. 4 Geometric means of two matrices, at t = − 1
4 ,0, 1

2 ,1, 5
4

Thus, Gt(A,B) = G1−t (B,A). �

Real symmetric positive definite matrices have a geometrical interpretation. They
represent (hyper) ellipsoids in R

n. The eigenvectors of the matrix represent the di-
rections of the ellipsoid radii, while the corresponding eigenvalues represent their
lengths. We use this interpretation to demonstrate our definitions, for a 3 × 3 matri-
ces as ellipsoids in R

3.
In Fig. 4 we demonstrate the geometric mean (3.1), for two positive definite ma-

trices, represented by their correspondence ellipsoids. For

A =
⎛

⎝
3 1 1
1 5 1
1 1 7

⎞

⎠ , B =
⎛

⎝
8 2 1
2 4 1
1 1 3

⎞

⎠ ,

we show Gt(A,B) for t = − 1
4 ,0, 1

2 ,1, 5
4 .

Now we can define our subdivision scheme, in the form of (2.4).

Definition 3.2 For a sequence of positive definite matrices {A0,i}i∈Z, the refinement
step is defined as follows:

Ak+1,2i = Ak,i,

Ak+1,2i+1 = G− 1
8

(
G 1

2
(Ak,i ,Ak,i+1),G 1

2
(Ak,i−1Ak,i+2)

)
.

(3.3)

The subdivision scheme consist of repeated application of the refinement step, which
we denote by SG. Denote by {Aj,i}i∈Z the set of matrices after j refinement steps.

By Lemma 3.1 the subdivision scheme is well defined. In order to avoid ill-posed
problems from our settings, we assume the following.

Assumption 1 Let {A0,i}i∈Z be initial data. Then

sup
l∈Z

d(A0,l ,A0,l+1) < C,

where C is a positive constant.
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Fig. 5 The three central positive definite matrices, out of seven initial matrices

Remark 3.3 Note that a general modification to the 4-point scheme (2.3), can be done
by different refinement steps, using different repeated averages. For example consider

Ak+1,2i+1 = G 1
2

(
G 9

8
(Ak,i−1,Ak,i),G− 1

8
(Ak,i+1Ak,i+2)

)
.

The analysis of each of those different schemes is similar.

Remark 3.4 A broader family of the 4-point scheme consists of the refinement
rules (2.3) with a varying parameter w parameter. In this paper we used w = 1

16 ,
which is well known in the classical scalar setup, because it reconstructs cubic poly-
nomials. This parameter, also known as a “tension” parameter, has been studied for
the linear (scalar) 4-point scheme [8]. In the matrix setting, we refer to

Ak+1,2i = Ak,i,

Ak+1,2i+1 = G−2w

(
G 1

2
(Ak,i ,Ak,i+1),G 1

2
(Ak,i−1,Ak,i+2)

)
,

(3.4)

for w ∈ (0,w∗), with w∗ ≈ 0.19273 (the unique real solution of the cubic equation
32w3 + 4w − 1 = 0), see [17]. This linear 4-point scheme has C1 continuity and thus
the smoothness as well as the rest of the results of this paper hold.

We demonstrate the scheme by three figures, representing data and the refinement
process. The data, in Fig. 5, are sampled on the integers x = 4,5,6 from the (smooth)
function f (x) = sin2(x)A + cos2(x)B , with positive definite matrices

A =
⎛

⎝
19 −3 −10
−3 10 0
−10 0 8

⎞

⎠ , B =
⎛

⎝
18 8 18
8 10 12
18 12 22

⎞

⎠ .

In Figs. 6 and 7 we present the first and second refinement, done by the geometric
averaging scheme (3.3), respectively.

In the next section we analyze the convergence and smoothness of this scheme.
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Fig. 6 First refinement step

4 Analysis of the Matrix Scheme

In this section we analyze the convergence and smoothness of the scheme defined
by (3.3). Furthermore we show a class of matrix functions which our scheme fully
reproduces. We begin by introducing the concept of a “matrix curve” and its deriva-
tive.

Definition 4.1 Let A(x) be a matrix valued function satisfying

lim
�x→0

∥∥A(x + �x) − A(x)
∥∥ = 0, x ∈ I.

Then A(x) is called a continuous matrix curve. If in addition the limit

lim
�x→0

A(x + �x) − A(x)

�x
, x ∈ I,

exists for every x, then A(x) is called a smooth matrix curve.

Henceforth, unless otherwise stated, we denote the initial data of positive defi-
nite matrices by A0 = {A0,i}i∈Z, and the limit matrix curve by A(x) = S ∞

G (A0)(x),
x ∈ R.

4.1 Convergence Analysis

We start the convergence analysis with a lemma.

Lemma 4.2 Let Δk = supi d(Ak,i ,Ak,i+1). Then Δk+1 < 7
8Δk .
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Fig. 7 Second refinement step. The initial matrices are framed

Proof Denote Bk,i = G 1
2
(Ak,i ,Ak,i+1) as the mid-point of the geodesic curve, be-

tween Ak,i and Ak,i+1. Then, by (3.1) and (3.2) d(Bk,i ,Ak,i) = 1
2d(Ak,i ,Ak+1,i ).

By the definition of Δk we deduce that d(Ak,i−1,Ak,i+2) ≤ 3Δk , which suggests
d(Ak,i−1,G 1

2
(Ak,i−1,Ak,i+2)) ≤ 3

2Δk . Then

d(Ak+1,2i ,Ak+1,2i+1)

≤ d(Ak,i ,Bk,i) + d(Bk,i ,Ak+1,2i+1)

= 1

2
Δk + ∥∥log

(
B

− 1
2

k,i

(
B

1
2
k,i

(
B

− 1
2

k,i G 1
2
(Ak,i−1,Ak,i+2)B

− 1
2

k,i

)− 1
8 B

1
2
k,i

)
B

− 1
2

k,i

)∥∥

= 1

2
Δk + 1

8

∥∥log
(
B

− 1
2

k,i G 1
2
(Ak,i−1,Ak,i+2)B

− 1
2

k,i

)∥∥

≤ 1

2
Δk + 1

8
d
(
Bk,i ,G 1

2
(Ak,i−1,Ak,i+2)

)
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≤ 1

2
Δk + 1

8

(
d(Bk,i ,Ak,i) + d(Ak,i ,Ak,i−1) + d

(
Ak,i−1,G 1

2
(Ak,i−1,Ak,i+2)

))

≤ 1

2
Δk + 1

8

(
3Δk

2
+ 3Δk

2

)
≤ 7

8
Δk.

Since the product inside the logarithm operator is a positive definite matrix, we can
use a regular logarithm power rule (see [28]).

The other symmetrical case is

d(Ak+1,2i+2,Ak+1,2i+1) ≤ d(Ak,i+1,Bk,i) + d(Bk,i ,Ak+1,2i+1).

Due to Assumption 1, taking the supremum is well defined and the lemma follows. �

Theorem 4.3 For any initial data A0 the scheme defined by (3.3) converges to a
continuous matrix curve A(x), x ∈ R.

Proof Let xj,i = 2−j i, j ∈ Z+, i ∈ Z. Then define the continuous matrix curves,

Fj (x) = G x−xj,i
xj,i−xj,i+1

(Aj,i ,Aj,i+1), x ∈ [xj,i , xj,i+1).

By the interpolatory property and Lemma 4.2 we have

sup
x

d
(
Fj (x),Fj+1(x)

) ≤ sup
x

d
(
Fj (x),Aj,kx

) + sup
x

d
(
Aj+1,2kx ,Fj+1(x)

)

≤ 1

2
Δj + Δj+1 ≤ 1

2
Δj + 7

8
Δj = 11

8
Δj ,

with kx = arg mink=i,i+1{d(Fj (x),Aj,k)}, x ∈ [xj,i , xj,i+1), the index of the closest
matrix in the j th refinement level to Fj (x). Using Lemma 4.2 we have

∞∑

m=1

Δm ≤ 7Δ0. (4.1)

Thus, for any p < l, p, l ∈ N

sup
x

d
(
Fj+p(x),Fj+l (x)

) ≤ 11

8

j+l∑

m=j+p

Δm ≤ 77

8
Δj .

Since Δj tends to zero we see that {Fj (x)}j∈N is a Cauchy series with the uniform
norm. The completeness of R

n×n implies that there exists a limit function A(x) such
that the sequence {Fj (x)}j∈N converges uniformly to A(x). �

Another conclusion from the last results is the boundedness of the generated curve
A(x). Denote by δj = supl mini d(Aj,l,A0,i ). According to (4.1) and the fact that the
scheme is interpolatory we get δj ≤ 7Δ0, for all j ∈ Z+. We infer the following
corollary.
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Corollary 4.4 The matrix curve A(x) is bounded,

min
i

d
(
A(x),A0,i

) ≤ 7Δ0, x ∈ R. (4.2)

Remark 4.5 Since A0 is a sequence of symmetric positive definite matrices we note
that the generated matrix curve A(x) consists of symmetric semidefinite matrices,
which is the closure of the set of positive definite matrices. Later we prove that A(x)

is positive definite for all values of x.

4.2 Smoothness Analysis

In this subsection, we prove the C1 smoothness of our geometric averaging scheme.
We follow Wallner and Dyn [30], and Grohs [15, 16], who studied the proximity
of a non-linear subdivision to the corresponding linear subdivision scheme. By the
proximity condition the smoothness analysis and approximation order are obtained.

In the context of our scheme, we denote by SL the refinement operator of the linear
4-point scheme, defined using matrix operations. The scheme is well defined and is
equal to an entry-wise linear 4-point subdivision for scalars. Thus, this subdivision
clearly converges to a C1 smooth parametric matrix curve.

Here we present the matrix analogue to Theorem 2.5, which guarantees the prox-
imity condition for our scheme.

Theorem 4.6 The scheme, defined by (3.3), satisfies a proximity condition with the
linear 4-point scheme of the form

∥∥SL(a0) − SG(a0)
∥∥ < O

(
Δ2

0

)
,

where Δ0 = supi d(A0,i ,A0,i+1).

Proof Let {Mi}i∈Z be a matrix sequence of differences, Mi = A0,i+1 − A0,i . Clearly
Mi is a symmetric matrix.

By the equivalence of norms over a finite dimensional space, ‖Mi‖ = O(Δ0),
i ∈ Z. Furthermore, using SL, for the linear scheme we get

SL(A0)2i+1 = A0,i + 1

2
Mi + 1

16
Mi−1 − 1

16
Mi+1. (4.3)

We use the big −O notation in the norm sense, i.e., we state X = Y + O(h) when
there exist universal positive constants h0 > 0 and C such that for each 0 < h < h0,
‖X − Y‖ < Ch. For the geometric averaging scheme using the fact that (I + X)t =
I + tX + O(‖X2‖), we get the auxiliary results

Gt(A0,i ,A0,i+1) = Gt(A0,i ,A0,i + Mi)

= A0,i

(
I + A−1

0,i+1Mi

)t

= A0,i + tMi + O
(
Δ2

0

)
. (4.4)
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Thus G 1
2
(A0,i ,A0,i+1) = A0,i + Mi

2 +O(Δ2
0) and G 1

2
(A0,i−1,Ai+2,0) = A0,i + Mi

2 +
Mi+1−Mi−1

2 + O(Δ2
0). By (3.3),

A1,2i+1 = G− 1
8

(
G 1

2
(A0,i ,A0,i+1),G 1

2
(A0,i−1,A0,i+2)

)

= A0,i + 1

2
Mi + 1

16
Mi−1 − 1

16
Mi+1 + O

(
Δ2

0

)
. (4.5)

Therefore, (4.3) together with (4.5) completes the proof. �

Based on Theorems 6 and 9 from [30] and [9], respectively, and the proximity
condition of Lemma 4.6 we conclude to the following.

Corollary 4.7 The geometric averaging scheme defined by (3.3) satisfies

(1) Convergence to a smooth C1 matrix curve.
(2) Approximation order of h2.

The next corollary relates the last result with Remark 3.3.

Corollary 4.8 Any rearrangement of the repeated averages of (3.3) determines a sub-
division scheme which generates a smooth matrix curve for any A0 with sufficiently
small Δ0. Furthermore, the distance of any two different limits, from the same initial
data, is O(Δ2

0).

4.3 Functions Reproduced by the Scheme

A great interest in approximation theory is the reproduction of classes of functions
[3]—i.e., functions that are perfectly reconstructed. We present two classes of matrix
functions which are reproduced by the scheme, under uniform sampling.

Trivially, when given a data set of constant positive definite matrices, namely
A0,i ≡ A, i ∈ Z, we generate a constant matrix curve, namely A(x) ≡ A for all x ∈ R.
Here we present a broader class of matrix functions which our scheme perfectly re-
constructs.

Theorem 4.9 Let F(x) be a matrix function such that

F(x) = G x−y1
y2−y1

(
F(y1),F (y2)

)
, x ∈ [y1, y2), y1, y2 ∈ R.

Let {A0,i}i∈Z be a sequence of positive definite matrices sampled uniformly from the
matrix function F(x), namely

d(A0,i ,A0,i+1) = d(A0,j ,A0,j+1), i, j ∈ Z.

Then the generated curve A(x) is identical to F(x).
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Proof By the definition of {A0,i}i∈Z, it is clear that

G 1
2
(A0,k,A0,k+1) = G 1

2
(A0,k−1,A0,k+2) = F

(
i + 1

2

)
.

Therefore, by (3.3)

A1,2k+1 = G 1
2
(A0,k,A0,k+1).

Thus F coincide with SG({A0,i}i∈Z) at all dyadic points. By the continuity of both
functions the claim follows. �

Trivially, αAβB = αβAB with α,β scalars. Thus by Theorem 2.2, we expect the
geometric matrix scheme to reproduce any function of the form fA(x) = exp(p(x))A

where A is positive definite matrix and p(x) is a function in the space reproduced by
the scalar linear scheme. We now summarize.

Corollary 4.10 Let FA(x) = exp(p(x))A, with A a positive definite matrix. Assume
FA(i) = A0,i , i ∈ Z. Then the generated curve A(x) is identical with F(x).

Due to locality of the 4-point scheme, the result above is true also for a local set of
indices sampled from a local interval.

5 Properties of the Matrix Scheme

In this section we present properties that the scheme retains. These results indicate
that the geometric setting of the subdivision is suitable for positive definite matrices.

First we consider the algebraic properties, which concludes the determinant, in-
verse, and adjoint matrix [29, Chap. 5]. Then we consider the class of spectral prop-
erties. It includes bounds on the eigenvalues and condition number of the generated
matrix curve, and the properties of preserving local eigenvectors and invariant spaces.

5.1 Algebraic Properties

We start with a primary connection between the scalar scheme (2.4), which we denote
in this section by Sg , and the matrix scheme.

Theorem 5.1 For all real x,

det
(

S ∞
G

({A0,i}i∈Z

)
(x)

) = S ∞
g

({
det(A0,i )

}
i∈Z

)
(x).

Proof It is sufficient to prove the claim for a single refinement step, since by the
continuity of the limits of SG and Sg , if det(S k

G({A0,i}i∈Z)j ) = S k
g ({det(A0,i )}i∈Z)j

for all k ∈ N, the claim of the theorem follows. Note that

det
(
Gt(A,B)

) = det(A)1−t det(B)t .
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Thus

det
((

SG

({Ak,j }j∈Z

))
2i+1

) = det(Ak+1,2i+1)

= det(Ak,i)
9
16 det(Ak,i+1)

9
16

det(Ak,i−1)
1
16 det(Ak,i+2)

1
16

= (
Sg

({
det(Ak,j )

}
j∈Z

))
2i+1. �

Since the geometric scalar scheme is positive (see Corollary 2.4) Theorem 5.1
implies the following.

Corollary 5.2 The matrix curve A(x) of (3.3) is positive definite for any x ∈ R.

Now we show the commutativity of the scheme with inversion.

Theorem 5.3 Denote A−1 = {A−1
0,i }i∈Z, Then for all x ∈ R,

A−1(x) = S ∞
G

(
A−1)(x).

Proof As in Theorem 5.1, it is sufficient to show the result for one refinement step,
namely SG(A−1) = (SG(A0))

−1. Thus, we show that G−1
t (A,B) = Gt(A

−1,B−1),
for any positive definite matrices A,B and t ∈ R.

From Lemma 3.1, X = (A− 1
2 BA− 1

2 )t is a positive definite matrix, and, thus,

G−1
t (A,B) = (

A
1
2
(
A− 1

2 BA− 1
2
)t

A
1
2
)−1

= A− 1
2 X−1A− 1

2 = A− 1
2
(
A

1
2 B−1A

1
2
)
A− 1

2 = Gt

(
A−1,B−1).

Now, following the refinement rule (3.3), with initial data {(Ai,0)
−1}i∈Z and the last

result, we have

G− 1
8

(
G 1

2

(
A−1

k,i ,A
−1
k,i+1

)
,G 1

2

(
A−1

k,i−1,A
−1
k,i+2

))

= G− 1
8

(
G−1

1
2

(Ak,i ,Ak,i+1),G
−1
1
2

(Ak,i−1,Ak,i+2)
)

= G−1
− 1

8

(
G 1

2
(Ak,i ,Ak,i+1),G 1

2
(Ak,i−1,Ak,i+2)

)
.

Namely, after each refinement with the inverse data, we have an inverse result. Thus
the lemma follows. �

By (3.1) we can conclude that Gt(αA,βB) = α1−t βtGt (A,B), t ∈ R. Therefore,
by Theorems 5.1 and 5.3, we have for the standard adjoint operator, X adj(X) =
det(X)I , the following.

Corollary 5.4 For all x ∈ R,

adj
(

S ∞
G

({A0,i}i∈Z

))
(x) = S ∞

G

({
adj(A0,i )

}
i∈Z

)
(x).
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Fig. 8 Random matrices data

5.2 Spectral Properties

We begin with bounds on the spectral radius of the generated matrix curve. We update
our notation, for any positive definite matrix X we denote by λmax(X) and λmin(X)

the maximal and minimal eigenvalues of X, respectively.
The next theorem bounds from above and below, the eigenvalues of the matrices

on the limit matrix curve.

Theorem 5.5 Let i(x) = arg mini∈Z d(A(x),A0,i ). Then for all real x

(1) λmax(A(x)) ≤ λmax(A0,i(x)) exp(7Δ0);
(2) λmin(A(x)) ≥ λmin(A0,i(x)) exp(−7Δ0).

Proof By Corollary 4.4 we have mini d(A(x),A0,i ) ≤ 7Δ0. Since λmax(A) ≤ ‖A‖
we have

λmax(B) = λmax
(
A

1
2 A− 1

2 BA− 1
2 A

1
2
) ≤ λmax(A) exp

(
d(A,B)

)
.

As for the second claim, by Definition 3.2 and the log rules on matrices,

d
(
A−1,B−1) = ∥∥log

(
A

1
2 B−1A

1
2
)∥∥

= ∥∥log
((

A− 1
2 BA− 1

2
)−1)∥∥ = d(A,B).

Therefore,

arg min
i

d
(
A(x),A0,i

) = arg min
i

d
(
A−1(x),A−1

0,i

)
. (5.1)

The second claim follows from the first claim, (5.1) and Theorem 5.3. �

In Fig. 9 we plot the largest eigenvalue λmax of each matrix along the matrix curve.
Each value of an interpolated matrix is marked. Clearly the curve is bounded by the
maximal element of the set of largest eigenvalues from the initial data. Thus the result
of Theorem 5.5 holds. The data taken from a random set of positive definite matrices
are presented in Fig. 8.

From Theorem 5.5 we bound the condition number ( λmax
λmin

) of the matrix curve
generated by the geometric averaging scheme.

Corollary 5.6 Let κ(A(x)) be the condition number of A(x) for x ∈ R. Using the
notation of Theorem 5.5 we have

κ
(
A(x)

) ≤ κ(A0,i(x)) exp(14Δ0).
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Fig. 9 Largest eigenvalues of
the generated matrix curve. We
mark the values of the
interpolated matrices which are
presented in Fig. 8

For the next property we use the following definition.

Definition 5.7 Let {Aj }j∈Z be a sequence of positive definite matrices. A vector v is
called a common eigenvector in the locality [m1,m2] if for all j ∈ Z, m1 ≤ j ≤ m2,
we have Ajv = λjv.

The 4-point scheme is a local interpolation scheme such that the matrix A(x) on
the generated matrix curve depends only on data inside the parametric segment [x −
3, x + 3]. The next theorem shows that the scheme preserved common eigenspaces
of the initial matrices.

Theorem 5.8 Let v be a common eigenvector in the locality [m1,m2] of A0, with
m2 − m1 > 6, and with the associated eigenvalues {λ0,i}i∈I , I = [m1,m2] ∩ Z. Then

S ∞
G

({A0,i}i∈Z

)
(x)v = S ∞

g

({λ0,i}i∈I

)
(x)v, x ∈ [m1 + 3,m2 − 3].

Proof As in the proof of Theorem 5.1, it is sufficient to focus on a single refinement
step. It is easy to verify that for any positive definite matrices A,B , if Av = αv and
Bv = βv, then Gt(A,B)v = α1−t βtv. For a single refinement step we get

A1,2i+1v = G− 1
8

(
G 1

2
(A0,i ,A0,i+1),G 1

2
(A0,i−1,A0,i+2)

)
v

= A0,i

(
A−1

0,i A0,i+1
) 1

2
([

A0,i

(
A−1

0,i A0,i+1
) 1

2
]−1

A0,i−1
(
A−1

0,i−1A0,i+2
) 1

2
)− 1

8 v

= (λ0,iλ0,i+1)
9
16

(λ0,i−1λ0,i+2)
1
16

v.
�

A basic result from linear algebra states that the sum of all the columns is equal
if and only if the vector (1,1, . . . ,1)∗ is an eigenvector and the sum is the associated
eigenvalue [19, Chap. 2]. This and Theorem 5.8 yield the following.
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Corollary 5.9 If for all initial matrices the sum of any column is the same then this
property is shared by all matrices in the limit matrix curves A(x).

For the next result we use the following lemma.

Lemma 5.10 Let M be an invertible matrix such that M−1A0,iM is a positive defi-
nite matrix for all i. Then for every real x

S ∞
G

({
M−1A0,iM

}
i∈Z

)
(x) = M−1 S ∞

G (A0)(x)M.

Proof For every positive definite matrix X we have (M−1XM)t = M−1XtM for all
t ∈ R. Therefore, for every pair of positive definite matrices X and Y ,

Gt

(
M−1XM,M−1YM

) = M−1Gt(X,Y )M, ∀t ∈ R.

Combining this with the scheme definition and convergence completes the proof. �

The results of Theorem 5.8 can easily be extended to local common eigen-
subspaces. One generalization of eigen-subspace is the invariant subspace. Namely,
a subspace V , such that for any v ∈ V , A0,iv ∈ V .

Theorem 5.11 Let V be a common invariant subspace in the locality J = [m1,m2]
with m2 − m1 > 6. Then V is an invariant subspace of the matrices

A(x) = S ∞
G

({A0,i}i∈Z

)
(x), x ∈ [m1 + 3,m2 − 3].

Proof By the assumption, we can find a matrix Q such that A0,i = Q∗B0,iQ, Q∗Q =
I , where B0,i is the block matrix

B0,i =
[

A
1
0,i 0

0 A
2
0,i

]
, (5.2)

for any i ∈ J , with {A1
i }i∈Z a set of positive definite k×k matrices, with k = dim(V ).

By Lemma 5.10,

SG

({A0,i}i∈J
) =

⎡

⎣ SG({A1
0,i}i∈J ) 0

0 SG({A2
0,i}i∈J )

⎤

⎦ .

This observation, when used repeatedly leads to the claim of the theorem. �

The last theorem leads to the diagram of Fig. 10.

6 Extension to Positive Semidefinite Matrices

The results of Theorems 5.8 and 5.11 allow us to weaken our assumptions in order
to fit a broader range of applications and data. For a general sequence of semidefinite
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{A0,i}i∈Z A(x)

{
A

1
0,i

}
i∈Z

S ∞
G

({
A

1
0,i

}
i∈Z

)

�
S ∞

G

�
Restricted to V

�
Restricted to V

�
S ∞

G

Fig. 10 Geometric averaging scheme restricted to invariant subspace V

matrices the geometric averaging scheme is not well defined. However, in special
cases the scheme can be modified in order for it to be well defined and retain most of
the properties of the scheme for the positive definite matrices. The last result of this
section guarantees the robustness of this extension.

We use the following generalized inverse or “pseudo” inverse matrix definition,
also known as Moore–Penrose inverse and denote it by A†. For further information
see [5].

Using the notion of the Moore–Penrose inverse, we see for any semidefinite matrix
A with a spectral decomposition

A = Q∗DQ, Q∗Q = I, D = diag{λ1, . . . , λk,0, . . . ,0}, λ1 ≥ · · · ≥ λk > 0

that

A† = Q∗D†Q, (6.1)

where D† = diag{λ−1
1 , . . . , λ−1

k ,0, . . . ,0}. Note that (6.1) defines a unique pseudo
inverse matrix A†. In the spirit of (6.1) we define A0 = AA† and At = (A†)−t for
t < 0.

Now we can extend the analysis given in Sect. 4, namely convergence and smooth-
ness, for this case of semidefinite matrices as well.

In this section A0 consists of positive semidefinite matrices. Furthermore, we as-
sume

Ker(A0,i ) = Ker(A0,j ) i, j ∈ Z. (6.2)

Many classes of matrices have a common kernel, e.g. the class of discrete Lapla-
cian matrices [21], and for these classes we can use the following modified geometric
averaging scheme.

Definition 6.1 For A,B positive semidefinite matrices, we define

(
G†)

t
(A,B) = A

(
A†B

)t = A
1
2
((

A†) 1
2 B

(
A†) 1

2
)t

A
1
2 .

Moreover, we denoted by SG† the geometric refinement step (3.3), using (G†)t in-
stead of Gt .

Theorem 6.2 The refinement step SG† is well defined. Furthermore S ∞
G† converges

to a smooth matrix curve A(x), such that A(x) is a semidefinite matrix for any x, and
Ker(A(x)) = Ker(A0,i ), i ∈ Z.
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Proof Due to the symmetry of the matrices, the orthogonal complement of the kernel
Ker(A0,i ) is Image(A0,i ), which is an invariant subspace, for any i ∈ Z. Thus we
combine (6.1) and arguments similar to those in the proof of Theorem 5.11 to get

SG†

({A0,i}i∈Z

) =
[ SG({ImageA0,i}i∈Z) 0

0 0

]
. (6.3)

�

Remark 6.3 Note that in view of (6.3),

S ∞
G†

({A0,i}i∈Z

) =
[ S ∞

G ({ImageA0,i}i∈Z) 0

0 0

]
.

The extension of all the results in the previous sections is straightforward. In par-
ticular we mention this:

A†(x) = S ∞
G

({
A

†
0,i

}
i∈Z

)
.

It is well known that the pseudo inverse in the general case does not preserve conti-
nuity. However, by the factorization of the form of (6.3), it is clear that our scheme
preserves continuity. The next theorem proves the robustness of our extension to pos-
itive semidefinite matrices.

Theorem 6.4 Let A0 be a sequence of positive semidefinite matrices satisfies (6.2).
Then for any x ∈ R,

lim
ε→0

S ∞
G

({A0,i + εI }i∈Z

)
(x) = S ∞

G†

({A0,i}i∈Z

)
(x).

The theorem follows immediately from the next lemma about matrix geometric
means.

Lemma 6.5 Let A and B be positive semidefinite matrices such that Ker(A) =
Ker(B). Then

(
G†)

t
(A,B) = lim

ε→0
Gt(A + εI,B + εI).

Proof Since A and B are symmetric with Ker(A) = Ker(B), every vector v has a
unique decomposition,

v = v1 + v2, v1 ∈ Image(A), v2 ∈ Ker(A), v1⊥v2.

Thus it is enough to show that
(
G†)

t
(A,B)v1 = lim

ε→0
Gt(A+ εI,B + εI)v1 and lim

ε→0
Gt(A+ εI,B + εI)v2 =�0.

For v1 ∈ Image(A) we have

lim
ε→0

Gt(A + εI,B + εI)v1 = lim
ε→0

(A + εI)
(
(A + εI)−1(B + εI)

)t
v1.
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Using the representation as in (6.3) and the continuity of matrix operators we have

lim
ε→0

(A + εI)
(
(A + εI)−1(B + εI)

)t
v1 = A

(
A†B

)t
v1 = (

G†)
t
(A,B)v1.

For v2 ∈ Ker(A) we get

lim
ε→0

Gt(A + εI,B + εI)v2 = lim
ε→0

(A + εI)
(
(A + εI)−1(B + εI)

)t
v2

= lim
ε→0

εI
(
(εI )−1(εI )

)t
v2

= lim
ε→0

εv2 = −→
0 .

Thus, the proof is complete. �
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