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In recent years, there has been an enormous interest in developing methods for the approximation of
manifold-valued functions. In this paper, we focus on the manifold of symmetric positive-definite (SPD)
matrices. We investigate the use of SPD-matrix means to adapt linear positive approximation methods
to SPD-matrix-valued functions. Specifically, we adapt corner-cutting subdivision schemes and Bern-
stein operators. We present the concept of admissible matrix means and study the adapted approximation
schemes based on them. Two important cases of admissible matrix means are treated in detail: the exp–
log and the geometric matrix means. We derive special properties of the approximation schemes based
on these means. The geometric mean is found to be superior in the sense of preserving more properties of
the data, such as monotonicity and convexity. Furthermore, we give error bounds for the approximation
of univariate SPD-matrix-valued functions by the adapted operators.

Keywords: approximation of matrix-valued functions; symmetric positive-definite matrices; matrix
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1. Introduction

The adaptation of approximation operators to manifold-valued data and the development of analysis
methods for such schemes have attracted a lot of attention in recent years (Xie & Yu, 2007, 2010;
Grohs, 2009, 2010b; Shingel, 2009; Dyn et al., 2010). These generalizations provide important tools
for application and initiated a rich mathematical theory that combines aspects of analysis, geometry and
algebra. We focus on adapting approximation methods for the manifold of symmetric positive-definite
(SPD) matrices.

As a main prototype for our adaptation process, we use corner-cutting subdivision schemes
(de Boor, 1987). These schemes are considered to be the most basic nontrivial subdivision schemes.
Nevertheless, those schemes have several important geometric properties and are popular in practice.
A specific corner-cutting scheme is the Chaikin (1974) scheme, which is also a special case of the
Lane & Riesenfeld (1980) schemes.

A real matrix A is an SPD matrix if A = A∗ and x∗Ax > 0 for any nonzero vector x (here X ∗ stands
for the standard transpose operator X ∗

i,j = Xj,i). The class of SPD matrices is ubiquitous in science and
engineering. SPD matrices have a unique spectral structure of real positive eigenvalues, orthogonal
eigenvectors and more. In spite of the fact that these matrices are well studied, approximating SPD-
matrix-valued functions within the class is still a challenge.

c© The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

 at T
E

L
 A

V
IV

 U
N

IV
E

R
SIT

Y
 on June 1, 2014

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


APPROXIMATION OF POSITIVE-DEFINITE MATRIX-VALUED FUNCTIONS 1437

Positive-definite matrices can be considered as a natural generalization of positive numbers.
Schaefer et al. (2008) adapted the Lane–Riesenfeld algorithm for positive numbers, by replacing any
arithmetic average 1

2 (a + b) by an average from the family of p-averages ( 1
2 (ap + bp))1/p for p |= 0 and

the geometric mean
√

ab for p = 0. A similar approach for constructing nonlinear subdivision schemes
by using nonlinear averages has been proved to be efficient also in the case of data on general manifolds
(see e.g. Wallner & Dyn, 2005).

In this paper, we use the means of SPD matrices in order to define approximation operators for
SPD-matrix-valued functions. We show that many of the algebraic and geometric properties of such
schemes are derived from the properties of the matrix means. Hence, we introduce a class of ‘good’
matrix means which will be referred to as admissible means.

Special attention is given to two particular admissible means: the exp–log mean and the geometric
mean for matrices. The first one gained popularity in recent years (Rahman et al., 2005; Grohs &
Wallner, 2008) due to the use of the Lie group structure. The second one was used by the authors
for interpolation in Itai & Sharon (2012). For the generated functions by the corner-cutting subdivision
schemes based on the latter, we prove monotonicity, order preservation, Schur and pinching properties.
In fact, it is easy to extend this result to every positive subdivision scheme. Furthermore, we show by
counterexamples that these properties do not hold for the exp–log mean.

A secondary prototype of a positive, linear, sampled-based operator is the class of Bernstein oper-
ators. We use the De Casteljau (1959) algorithm which evaluates Bernstein polynomials by repeated
binary means, and we replace the means of numbers by matrix means.

This paper is organized as follows. We present fundamental definitions and notation in Section 2.
In Section 3, we define matrix means and admissible matrix means and use them to adapt subdivi-
sion schemes to SPD-matrix data. In Section 4, we investigate subdivision schemes based on the exp–
log mean. Section 5 studies corner-cutting subdivision schemes based on the geometric matrix mean.
In Section 6, we present special properties of these subdivision schemes. We conclude this paper in
Section 7, where we adapt Bernstein operators to SPD-matrix-valued functions.

2. Preliminaries

The results of this paper involve some elementary notation and definitions. We denote an SPD matrix
A by A � 0; if A is only positive semidefinite, we denote it by A � 0. We use the Löwner partial order
(Hauke & Markiewicz, 1994) for symmetric matrices:

A � B if and only if A − B � 0. (2.1)

Löwner order is only partial since there exist SPD matrices A and B such that A �� B and B �� A. For
example,

A =
(

2 0
0 1

)
, B =

(
1 0
0 2

)
.

For any X � 0, we denote by λmax(X ) and λmin(X ) the maximal and minimal eigenvalue of X ,
respectively. For two matrices X , Y � 0, we use the notation λmax(X , Y) = max{λmax(X ), λmax(Y)} and
similarly λmin(X , Y) = min{λmin(X ), λmin(Y)}. We also denote the cone of n × n symmetric positive-
definite matrices by SPD(n).

We conclude this section with the following two definitions.
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1438 N. SHARON AND U. ITAI

Definition 2.1 Let F : SPD(n) → SPD(n) be a bijective map. If for every A, B ∈ SPD(n), we have
A � B if and only if F(A) � F(B), then F is called an order-preserving function. Similarly, if A � B and
only if F(A) 
 F(B), then F is called an order-reversing function.

Definition 2.2 Let A : R → SPD(n) be a matrix-valued function satisfying

lim
�x→0

‖A(x + �x) − A(x)‖ = 0, x ∈ I.

Then A(x) is called a continuous-matrix curve. If in addition, the limit

B(x) = lim
�x→0

A(x + �x) − A(x)

�x
, x ∈ I

exists and B(x) is continuous for every x, then A(x) is called a smooth matrix curve (C1).

Unless otherwise stated, we use the Frobenius matrix norm (see Golub & Van Loan, 1996, Chapter 2)

‖A‖ =
√∑

A2
i,j =

√
tr(AA∗),

where tr(X ) =∑i Xi,i is the standard trace operator on a matrix X . Some authors refer to this norm as
the Hilbert–Schmidt norm. The use of the Frobenius norm is arbitrary due to norm equivalence. Most
of the results of this paper can be generalized for an arbitrary norm.

3. SPD-matrix-valued subdivision schemes

Our adaptation of positive operators to SPD-matrix-valued functions is based on binary averages of
SPD matrices.

3.1 Matrix means

We start by defining the notion of an SPD-matrix mean.

Definition 3.1 A function Mt : SPD(n) × SPD(n) → SPD(n), where t ∈ [0, 1], is called an SPD-
matrix binary mean rule for SPD(n), or more simply a matrix mean, if for any A, B � 0 we have the
following properties.

(1) Mt(A, A) = A.

(2) Mt(A, B) = M1−t(B, A).

(3) M0(A, B) = A.

(4) (a) λmax(Mt(A, B)) � λmax(A, B).

(b) λmin(Mt(A, B)) � λmin(A, B).

Note that by using Definition 3.1(2,3), we get M1(A, B) = B.
We introduce a relatively simple construction to produce a matrix mean. This construction, which

generalizes the p-averages (Schaefer et al., 2008), is termed the quasi-arithmetic mean and used in the
solution of the Matkowski–Sutô problem (Daróczy et al., 2006).
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APPROXIMATION OF POSITIVE-DEFINITE MATRIX-VALUED FUNCTIONS 1439

Theorem 3.2 Let F be an order-preserving or -reversing function. Then

M F
t (A, B) = F((1 − t)F−1(A) + tF−1(B))

is a matrix mean.

Proof. Definition 3.1(1–3) are straightforward. Thus, it is enough to show property (4). For any SPD
matrices A and B,

A, B 
 λmax(A, B)I.

Since F is an order-preserving function,

(1 − t)F−1(A) + tF−1(B) 
 (1 − t)F−1(λmax(A, B)I) + tF−1(λmax(A, B)I).

Hence,
F((1 − t)F−1(A) + tF−1(B)) 
 λmax(A, B)I.

Since X 
 Y entails that λmax(X ) � λmax(Y), we get

λmax(M
F
t (A, B)) � λmax(A, B).

Similarly,
λmin(M

F
t (A, B)) � λmin(A, B).

The proof for an order-reversing function is analogous. �

Matrix means are a useful tool for constructing approximation operators for matrix-valued functions.
However, if one wishes to retain matrix properties such as inverse or determinant, additional conditions
for the matrix mean are required. Thus, we have the following definition.

Definition 3.3 Let Mt be a matrix mean for SPD matrices. We call Mt an admissible matrix mean if
we have the following properties.

P1 Commutativity with the inverse: Mt(A−1, B−1) = (Mt(A, B))−1.

P2 Invariance to orthogonal coordinate changes:

Q∗Mt(A, B)Q = Mt(Q
∗AQ, Q∗BQ), QQ∗ = I.

P3 Incompressibility: if det(A) = det(B) = 1, then

det(Mt(A, B)) = 1.

P4 Homogeneity:
Mt(αA, βB) = Mt(α, β)Mt(A, B), α, β > 0,

where Mt(α, β) is defined for the 1 × 1 (SPD) matrices α, β.

Admissible matrix means are at the centre of this paper. However, there exist many interesting
matrix means which do not agree with Definition 3.3. Next, we show two examples of matrix means for
matrices which are not admissible.
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1440 N. SHARON AND U. ITAI

Example 3.4 We introduce two common matrix versions for the well-known harmonic and the arith-
metic means.

(1) (Harmonic mean) Ht(A, B) = ((1 − t)A−1 + tB−1)−1. This mean is generated by F(X ) = X −1,
which is an order-reversing function. The harmonic mean satisfies Definition 3.1. However, one
can verify that it is not homogeneous. For example, let

A =
(

1 0
0 1

)
, B =

(
2 0
0 1

2

)
;

then

H1/2(A
−1, B−1) =

(
2
3 0
0 4

3

)
|=(H1/2(A, B))−1 =

(
3
4 0
0 3

2

)
.

Namely, P1 does not hold. Furthermore, we have det(A) = 1 and det(B) = 1 but det(Ht(A, B)) |= 1.
Thus, P3 does not hold.

(2) (Arithmetic mean) Lt(A, B) = (1 − t)A + tB. This mean is generated by the identity function
in the sense of Theorem 3.2. The commutativity of matrix addition implies that Lt satisfies
Definition 3.1. Nevertheless, P1 and P3 of Definition 3.3 are not satisfied; A and B introduced
in the harmonic case illustrate this.

Example 3.4 can be generalized to the matrix analogue of the p-averages,

( 1
2 (ap + bp))1/p, a, b > 0, p |= 0.

The first and useful conclusion about admissible mean is as follows.

Theorem 3.5 Let Mt be an admissible matrix mean. Then, for any A, B � 0,

det(Mt(A, B)) = Mt(det(A), det(B)).

Proof. Let α, β > 0 and n ∈ N. Reusing the homogeneity property,

Mt(α
n, βn) = Mt(α, β)Mt(α

n−1, βn−1) = · · · = Mt(α, β)n. (3.1)

For any nonsingular matrix X , det(det(X )−1/nX ) = 1. By the homogeneity property,

Mt(A, B) = Mt(det(A)1/n, det(B)1/n)Mt(A det(A)−1/n, B det(B)−1/n).

Taking the determinant, using (3.1) and the incompressibility property conclude the proof. �

The homogeneity property of admissible means, by reducing the mean to scalars, yields (3.1). In
many cases, this implies a common scalar version. In particular, we prove that any admissible matrix
mean satisfies an additional condition: when reduced to the scalar case, it has the form of the standard
geometric mean for numbers α1−tβ t. This condition is presented in the next lemma and is valid for the
means introduced in Theorem 3.2.
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APPROXIMATION OF POSITIVE-DEFINITE MATRIX-VALUED FUNCTIONS 1441

Lemma 3.6 Let M F
t be a matrix mean, constructed as described in Theorem 3.2 with a corresponding

order-preserving (or order-reversing) function F. Then

M F
1/2(M

F
t (A, B), A) = M F

t/2(A, B), A, B � 0, t ∈ [0, 1] . (3.2)

Proof. By the construction given in Theorem 3.2 and the correspondence function F,

M F
t/2(A, B) = F

(
t

2
F−1(B) +

(
1 − t

2

)
F−1(A)

)

= F

(
1

2
F−1(F((1 − t)F−1(A) + tF−1(B))) + 1

2
F−1(A)

)

= M F
1/2(F((1 − t)F−1(A) + tF−1(B)), A)

= M F
1/2(M

F
t (A, B), A). �

Note that (3.2) is a special case of the quasi-linear condition,

M1/2(Mt(A, B), A) = Mt/2(A, B), A, B � 0, t ∈ [0, 1], (3.3)

where Mt is a matrix mean. This condition is true for a wider class of means than the one presented in
Theorem 3.2. An example of such an admissible mean is provided in Section 5.

Matrix means that satisfy (3.3) are a generalization of the geometric scalar mean.

Theorem 3.7 Let Mt be a continuous, quasi-linear and admissible matrix mean for scalars, namely

M1/2(Mt(α, β), α) = Mt/2(α, β), α, β > 0, t ∈ [0, 1].

Then
Mt(α, β) = α1−tβ t, α, β > 0, t ∈ [0, 1].

Proof. The homogeneity property P4 implies Mt(α, β) = Mt(α, 1)Mt(1, β). Thus, it is sufficient to show
Mt(1, β) = β t. We prove by induction that

Mi/2n(1, β) = β i/2n
, i = 1, . . . , 2n, n ∈ N. (3.4)

For n = 1, by Definition 3.1(1,2) and homogeneity,

M1/2(1, β) = M1/2(1,
√

β)M1/2(1,
√

β)

= M1/2(
√

β, 1)M1/2(1,
√

β)

= M1/2(
√

β,
√

β) =
√

β.

For the induction basis, let (3.4) be true for n = m; we prove it for m + 1 in two steps. First, we con-
sider the case i = 1, . . . , 2m. By the quasi-linear property, the basis of the induction and the case n = 1,
respectively,

Mi/2m+1(1, β) = M1/2(Mi/2m(1, β), 1)

= M1/2(β
i/2m

, 1) = β i/2m+1
.
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1442 N. SHARON AND U. ITAI

Second, we consider i = 2m + 1, . . . , 2m+1. We use homogeneity, symmetry and the result of the first
step:

Mi/2m+1(1, β) = Mi/2m+1(β, β)Mi/2m+1(β−1, 1)

= βM1−i/2m+1(1, β−1)

= ββ i/2m+1−1 = β i/2m+1
.

Note that in the second step, 2m+1 − i < 2m+1 − 2m = 2m. Thus, (3.4) is valid, which implies that
Mt(1, β) = β t holds for all the dyadic points of [0, 1]. The continuity of Mt ensures that Mt(1, β) = β t is
true for all t ∈ [0, 1]. �

By the above, we can rewrite Theorem 3.5 for the construction introduced in Theorem 3.2.

Corollary 3.8 Let Mt be a continuous, quasi-linear admissible matrix mean. Then

det(Mt(A, B)) = det(A)1−t det(B)t, t ∈ [0, 1].

A noteworthy fact of an admissible matrix mean Mt is that for any given SPD matrix A, then
Mt(A, A−1) = I. The proof of this property is a direct result of P1 of Definition 3.3 and the fact that
the only SPD matrix which is equal to its inverse is the identity.

3.2 Adaptation of subdivision schemes to SPD-matrix-valued data

In Section 3.1, we introduced matrix means. Here, we use them to construct approximating subdivision
schemes for SPD matrices. Any such subdivision scheme consists of refinement operators. A refinement
operator S of an approximation subdivision scheme for scalar initial data P0 = {p0,i}i∈Z is of the form

(S (P0))2i =
∑

l

a2lp0,i−l,

(S (P0))2i+1 =
∑

l

a2l+1p0,i−l.
(3.5)

We assume that the set {an | n ∈ Z, an |= 0} is finite and consists of non-negative elements. A necessary
condition for convergence (Dyn, 2006) is

∑
i a2i =

∑
i a2i+1 = 1 and thus we can rewrite any refine-

ment rule of the form (4.2) as (finite) repeated weighted averages (Wallner & Dyn, 2005, Theorem 1).
Therefore, the adaptation for matrix-valued data using a matrix mean is plain sailing.

Our main prototype in this paper is the ‘corner-cutting’ subdivision schemes, which is the sim-
plest nontrivial representative of the subdivision splines schemes. Other generalizations are the Lane–
Riesenfeld schemes (Lane & Riesenfeld, 1980; Dyn & Goldman, 2011).

The corner-cutting schemes were first introduced by Chaikin (1974). Following de Boor (1987), the
corner-cutting refinement rules are defined using a generalized arithmetic mean:

pj+1,2i = (1 − μ)pj,i + μpj,i+1;

pj+1,2i+1 = μpj,i + (1 − μ)pj,i+1,
(3.6)

with i ∈ Z, j ∈ Z+ and 0 < μ < 1
2 . Note that (3.6) is a special case of (3.5) where all the nonzero coeffi-

cients are a−2 = a1 = μ and a−1 = a0 = 1 − μ. For further information, see Dyn & Levin (2002).
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APPROXIMATION OF POSITIVE-DEFINITE MATRIX-VALUED FUNCTIONS 1443

Applying the matrix mean for (3.6), we get the matrix corner-cutting schemes,

Aj+1,2i = Mμ(Aj,i, Aj,i+1),

Aj+1,2i+1 = M1−μ(Aj,i, Aj,i+1).
(3.7)

The subdivision process consists of repeating the refinement rule that generates a limit function S ∞

such that
lim

l→∞
S ∞(i2−j) − Aj+l,i2l = 0, i ∈ Z, j ∈ Z+.

Proving convergence of a scheme of the form (3.7) is done by finding a contraction factor, namely
a scalar 0 < γ < 1 such that

sup
i∈Z

d(Aj+1,i, Aj+1,i+1) = γ sup
i∈Z

d(Aj,i, Aj,i+1), j ∈ Z+, (3.8)

where d(·, ·) is a matrix metric. We construct such a proof in Section 5 for the admissible geometric
mean of a matrix.

The corner-cutting scheme (3.7) is not interpolatory, yet we can find some of the limit values by the
following lemma.

Lemma 3.9 Let S ∞ be the limit matrix curve for the scheme (3.7), for the initial data A0. Let M F
t be

the matrix mean defined by the construction in Theorem 3.2 with a function F. Then

M F
1/2(A0,i, A0,i+1) = S ∞(i + 1

2 ), i ∈ Z.

Proof. By the construction of M F
t in Theorem 3.2, we have

M F
1/2(M

F
t (A0,i, A0,i+1), M

F
1−t(A0,i, A0,i+1)) = M F

1/2(A0,i, A0,i+1).

We prove by induction that this property holds for each refinement step. Using continuity, the claim of
the theorem follows. �

For a better understanding of the importance of admissibility we need the following definition.

Definition 3.10 Let S be a subdivision refinement operator of the form (3.5), adapted for matrix
data A0 = {A0,i}i∈Z. We call S ∞ an admissible approximation scheme for a matrix if it satisfies the
admissibility conditions, analogous to P1–P4, i.e. for all x ∈ R, we have the following properties.

(1) Commutativity with the inverse:

S ∞(A0)(x) = (S ∞(A−1
0 )(x))−1,

where A−1
0 = {A−1

0,i }i∈Z.

(2) Invariance to orthogonal coordinate change:

Q∗S ∞(A0)(x)Q = S ∞(Q∗A0Q)(x), Q∗Q = I,

where Q∗A0Q = {Q∗A0,iQ}i∈Z.

(3) Incompressibility: if det(Ai) = 1 for all i, then det(S ∞(A)(x)) = 1.
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1444 N. SHARON AND U. ITAI

(4) Homogeneity:

S ∞(λA)(x) = S ∞(λ)(x)S ∞(A)(x),

where λ = {λi}i∈Z is a sequence of positive scalars.1

In the case of a convergent corner-cutting scheme, satisfying P1–P4 in every refinement level
ensures that the generated limit curve also satisfies this requirement. We have the following corollary.

Corollary 3.11 Subdivision schemes of the form (3.7), defined using an admissible matrix mean, are
admissible schemes for matrices.

Remark 3.12 We note three additional properties: according to the above.

(1) Theorem 3.5 implies that an admissible scheme with a refinement operator of the form (3.7)
commutes with the determinant:

det(S ∞({A0,i}i∈Z)(x)) = S ∞({det(A0,i)}i∈Z)(x), x ∈ R.

(2) Note that convergence does not guarantee that the limit is positive definite. Nevertheless, a con-
vergent corner-cutting scheme (3.7) which is based on an admissible, quasi-linear matrix mean
Mt has a positive-definite limit. The latter is true due to Theorem 3.5 and the positivity of the
scalar version of the corner cutting based on the geometric mean for numbers (for more details of
such schemes see Schaefer et al., 2008).

(3) P1 with the above observation implies commutativity with the adjoint operator:2

adj(S ∞({A0,i}i∈Z)(x)) = S ∞({adj(A0,i)}i∈Z)(x), x ∈ R.

3.3 Spectral properties of the adapted schemes

A major aspect of matrix theory is spectral information. We derive spectral properties of a limit of a
subdivision scheme, inherited from the data. The results of this section hold for a wider class of schemes
than the admissible schemes, e.g. schemes that are based on the harmonic and arithmetic means.

For the rest of this section, we denote by S an operator of a convergent subdivision scheme, adapted
by a matrix mean Mt from a linear subdivision scheme of the form (3.5). We assume that Mt preserves
a common eigenvector, i.e.

Mt(A, B)v = Mt(α, β)v, t ∈ [0, 1], (3.9)

for any A, B � 0 such that Av = αv and Bv = βv, v |= 0.

Theorem 3.13 Let Mt, t ∈ [0, 1] be a matrix mean that satisfies P2 (invariant to orthogonal coordinate
change) and condition (3.9). Then we have the following results.

(1) If v is a common eigenvector of the data, A0,iv = λiv, then

(S ∞({A0,i}i∈Z)(x))v = S ∞({λi}i∈Z)(x)v, x ∈ R.

1 The scheme is well defined for such scalars; see also P4 of Definition 3.3.
2 For X � 0, adj(X ) is defined as det(X )X −1.

 at T
E

L
 A

V
IV

 U
N

IV
E

R
SIT

Y
 on June 1, 2014

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


APPROXIMATION OF POSITIVE-DEFINITE MATRIX-VALUED FUNCTIONS 1445

(2) Let V be an invariant subspace of the data, namely v ∈ V implies A0,iv ∈ V . Then V is an invariant
subspace of the matrices

S ∞({A0,i}i∈Z)(x), x ∈ R.

(3) For a set of matrices J , we define

λmax(J ) = max
X∈J

λmax(X ) and λmin(J ) = min
X∈J

λmin(X ).

Then

λmax(S
∞({A0,i}i∈Z)(x)) � λmax({A0,i}i∈Z)

and

λmin(S
∞({A0,i}i∈Z)(x)) � λmin({A0,i}i∈Z).

Proof. The first part is a direct result of the convergence and definition of any subdivision of the form
(3.7). For the second part, by the theorem’s assumption, there exists an orthogonal matrix Q such that
A0,i = Q∗B0,iQ. B0,i is the block matrix

B0,i =
[

Ā1
0,i 0
0 Ā2

0,i

]
, i ∈ Z, (3.10)

with {Ā1
0,i}i∈Z a set of SPD k × k matrices, k = dim(V). The blocks on the diagonal are the restrictions

of the initial data for V and its orthogonal complement, i.e.

A0,i|V = Ā1
0,i, A0,i|V⊥ = Ā2

0,i.

By the P2 property,

S ({A0,i}i∈Z) =
[

S ({Ā1
0,i}i∈Z) 0
0 S ({Ā2

0,i}i∈Z)

]
.

This observation, when used repeatedly, leads to the claim of the second part of the theorem. The third
claim follows from similar arguments combined with the Definition 3.1(4) and the scheme definition.

�

Remark 3.14 The finite set of nonzero coefficients in (3.5) implies locality of the subdivision process.
Thus, we can update Theorem 3.13 as follows.

(1) Parts (1) and (2) of the theorem assumed a common eigenvector (or a common invariant sub-
space) for the whole data. We can relax the condition of Theorem 3.13 to get a local eigenvector
property (or local invariant space).

(2) For the corner-cutting schemes, one can tighten the boundaries to

λmax(S
∞({A0,i}i∈Z)(x)) � max

i=�x�−1,�x�,�x�+1,�x�+2
λmax({A0,i}i∈Z).

Analogously, we get the lower bound for λmin and for the condition number.
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1446 N. SHARON AND U. ITAI

3.4 Approximation order of an adapted corner-cutting scheme

The linear corner cutting for scalars reproduces any linear polynomial, sampled equidistantly. Thus, for
equidistant samples of a C1 function with a distance h, the approximation order is O(h2). We prove an
analogue for the matrix setting, assuming only Lipschitz continuity for the sampled matrix function. For
such functions, we have the approximation order O(h).

Let Mt be a continuous matrix mean associated with a metric d(·, ·) of SPD(n). Such metrics are
natural in many cases, as illustrated in Sections 4 and 5. Let Δj = supi∈Z

d(Aj,i, Aj,i+1); we assume Δ0 <

∞ and a contraction factor such as (3.8), in respect to the metric.
Consider the metric property,

d(Mt(A, B), A) = td(A, B), A, B ∈ SPD(n). (3.11)

For a given corner-cutting scheme and initial data A0 = {A0,i}i∈Z, we denote the sequence of continuous
matrix functions using the matrix mean Mt by

Fj(x) = M(x−i2−j)/((i+1)2−j−i2−j)(Aj,i, Aj,i+1), x ∈ [i2−j, (i + 1)2−j), j ∈ Z+. (3.12)

These matrix curves are the analogue of piecewise linear curves in the Euclidean setting. The use of
such curves is beneficial for proofs of convergence, e.g. the proof of Theorem 5.2. We use {Fj(·)}j∈Z+
for our proof of the approximation order as well.

Theorem 3.15 Assume that S is a corner-cutting scheme, based on a matrix mean Mt and which satis-
fies (3.8). Let A0 = {A0,i}i∈Z be initial data such that Ai,0 = F(ih), where F : R → SPD(n) is a Lipschitz
continuous function, namely there exists a constant LF such that

‖F(x) − F(y)‖ � LFh.

Then
E(h, x) = d(S ∞(A0)(x/h), F(x)) � CFh,

where CF is a constant independent of h and d(·, ·) is a metric satisfying the metric property introduced
in (3.11).

Proof. By the triangle inequality, for any x ∈ [ih, (i + 1)h),

E(h, x) � d(S ∞(A0)(x/h), F0(x/h)) + d(F0(x/h), A0,i) + d(A0,i, F(x)).

Using the contraction factor, one can deduce

d(Fj(x), Fj+1(x)) � 4γΔj, j ∈ Z+.

Therefore,

d(S ∞(A0)(x/h), F0(x/h)) � 4
1

1 − γ
LFh.

According to the Lipchitz condition and the metric property, we get

E(h, x) �
(

6 − 4γ

1 − γ

)
LFh, h � 1, x ∈ R. �
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Remark 3.16 Dyn & Farkhi (2001, Theorem 4.4) proved the approximation order of Lipschitz set-
valued functions. We used similar arguments analogues results for SPD matrices. In addition, we can
conclude as in Dyn & Farkhi (2001), that the matrix functions {Fj(·)}j∈Z+ are Lipschitz continuous
with the same constant. The contraction factor implies uniform convergence. Hence, the limit of the
corner-cutting scheme is Lipschitz continuous with the same constant as the approximant.

4. Subdivision schemes based on the exp–log mean

The space of SPD matrices under the operation exp(log(A) + log(B)) forms a Lie group (Arsigny et al.,
2007). Following this approach, we introduce the next class of approximation schemes, adapted for SPD
matrices, and based on the exp–log mean, i.e.

A �t B = exp((1 − t) log(A) + t log(B)), t ∈ [0, 1]. (4.1)

This mean is defined on the tangent plane of the space SPD(n), which is the space of symmetric matrices
(Rahman et al., 2005).

Based on the above, one can explain the popularity of adapting approximation operators for matrices
using (4.1) (e.g. Rahman et al., 2005; Navayazdani & Yu, 2010). This approach has been supported by
several studies concerning analysis tools for such schemes, especially the high-proximity conditions
(e.g. see Grohs & Wallner, 2008; Navayazdani & Yu, 2010). We refer to these schemes as exp–log-
based schemes. We show that (4.1) is a special case of the construction presented in Theorem 3.2 and
prove its admissibility and an additional property.

4.1 Basic properties of the exp–log mean

In the following, we introduce a fundamental characterization of the exp–log mean.

Lemma 4.1 The operation defined in (4.1) is a matrix mean.

Proof. The operation (4.1) is generated by F(X ) = exp(X ) which is an order-preserving function. Thus,
the claim follows by Theorem 3.2. �

Next we show the admissibility property of the exp–log.

Theorem 4.2 The exp–log matrix mean is an admissible mean for matrices.

Proof. The matrix exponential is invertible and (eX )−1 = e−X (Hall, 2003, Chapter 2). Thus, for P1, we
have

A−1 �t B−1 = exp((1 − t) log(A−1) + t log(B−1))

= exp(−(1 − t) log(A) − t log(B))

= (exp((1 − t) log(A) + t log(B)))−1

= (A �t B)−1.

For P2, we have

Q∗ exp(X )Q = exp(Q∗XQ), Q∗ log(X )Q = log(Q∗XQ).
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1448 N. SHARON AND U. ITAI

For P3, we show a stronger result on the determinants. A well-known theorem (e.g. Hall, 2003,
Chapter 2, Theorem 2.11) states that for any matrix X , we have det(exp(X )) = exp(tr(X )). Using the
above and the log rules on SPD(n), we get

det(A �t B) = exp(tr((1 − t) log(A) + t log(B)))

= exp(tr(log(A1−t) + log(Bt)))

= exp(tr(log(A1−t))) exp(tr(log(Bt)))

= det(A)1−t det(B)t.

We show P4 by using matrix–log rules (for more details see Hall, 2003, Chapter 2) and the fact that a
scalar matrix commutes with any other matrix. Thus,

αA �t βB = exp{log(αA)1−t + log(βB)t}
= exp{log α1−tI + log A1−t + log β tI + log Bt}
= exp{(1 − t) log A + t log B} exp{log α1−tI} exp{log β tI}
= α1−tβ tA �t B. �

In the above, we prove that the exp–log is admissible. In addition, in Lemma 4.1, we showed that
the exp–log mean can be constructed in the fashion of Theorem 3.2. Thus the following corollary holds.

Corollary 4.3 The exp–log matrix mean (4.1) satisfies the quasi-linear condition (3.3).

4.2 Properties of the exp–log subdivision schemes

The refinement operator S of an exp–log-based subdivision scheme is analogous to (3.5), adapted for
SPD matrices initial data A0 = {A0,i}i∈Z is of the form

(S (A0))2i = exp

(∑
l

a2l log(A0,i−l)

)
,

(S (A0))2i+1 = exp

(∑
l

a2l+1 log(A0,i−l)

)
.

(4.2)

The aspects of convergence and smoothness of the exp–log schemes are well studied (e.g. Grohs &
Wallner, 2008; Navayazdani & Yu, 2010). Thus, we omit these issues.

We start with a corollary deduced in the same arguments as Corollary 3.11 for the exp–log subdivi-
sion using the result of Theorem 4.2. Furthermore, by Corollary 4.3, we also have Theorem 3.13 for the
exp–log approximation schemes of the form (4.2).

Corollary 4.4 The matrix subdivision scheme (4.2) is an admissible scheme satisfying the spectral
claims of Theorem 3.13.

Next, we discuss the corner-cutting subdivision scheme (3.7), using the exp–log matrix mean (4.1).
As mentioned above, it is an admissible approximation scheme, for which Theorem 3.13 holds. Never-
theless, we have additional properties.
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APPROXIMATION OF POSITIVE-DEFINITE MATRIX-VALUED FUNCTIONS 1449

For the first property, the exp–log mean has an associated metric of the form

d(A, B) = ‖ log(A) − log(B)‖2 = λmax(A − B, B − A),

where ‖ · ‖2 is the induced norm (Golub & Van Loan, 1996, Chapter 2). For this metric, the metric
property (3.11) holds. Thus, the exp–log-based corner-cutting scheme obtains the approximation order
result of Theorem 3.15. The second property is stated in the following theorem.

Theorem 4.5 Let A, B � 0. Then

tr(A �t B) � (tr(A))1−t(tr(B))t, t ∈ [0, 1]. (4.3)

Moreover, for any initial data {A0,i}i∈Z and S ∞ a corner-cutting subdivision scheme (3.7) that is based
on the exp–log matrix mean (4.1),

tr(S ∞({A0,i}i∈Z)(x)) � S ∞({tr(A0,i)}i∈Z)(x), x ∈ R.

For the proof of the theorem, we use the following lemma.

Lemma 4.6 Let {ai}n
i=1, {bi}n

i=1, {ci}n
i=1 be sequences of numbers such that

k∑
i=1

bi �
k∑

i=1

ci, 1 � k � n

and a1 � a2 � · · · � an � 0. Then
n∑

i=1

aibi �
n∑

i=1

aici.

Proof. Let

dk =
k∑

i=1

bi − ci, 1 � k � n.

Then by the assumption of the lemma, dk � 0 for all k. We use induction to prove that

k∑
i=1

(bi − ci)ai � akdk .

The case k = 1 is trivially true. Now assume that the claim is true for k � m. Then

m+1∑
i=1

(bi − ci)ai =
m∑

i=1

(bi − ci)ai + (bm+1 − cm+1)am+1

� amdm + (bm+1 − cm+1)am+1

� am+1(dm + bm+1 − cm+1)

= am+1dm+1.

In the above, we used the basis of the induction, the monotonic decreasing of ai and that dk � 0. Since
ak , dk � 0, the claim follows. �
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1450 N. SHARON AND U. ITAI

Proof of Theorem 4.5. By Hölder’s inequality, for sequences of positive numbers {xi}n
i=1, {yi}n

i=1,
we have

n∑
i=1

xiyi �
(

n∑
i=1

xq
i

)1/q( n∑
i=1

yp
i

)1/p

,
1

p
+ 1

q
= 1.

On these grounds, for βi = yp
i , αi = xq

i ,

n∑
i=1

α
1/q
i β

1/p
i �

(
n∑

i=1

αi

)1/q( n∑
i=1

βi

)1/p

. (4.4)

For any X � 0 we denote the full set of its eigenvalues by

λmax(X ) = λ1(X ) � λ2(X ) � · · · λn(X ) = λmin(X ) > 0.

Let A, B � 0. Thus, for t = 1/p, we get from (4.4),

n∑
i=1

λi(A)1−tλi(B)t � (tr(A))1−t(tr(B))t, t ∈ [0, 1]. (4.5)

Recall P2 of admissibility for the exp–log mean and the fact the trace is invariant for orthogonal simi-
larity, namely that for any matrix M ,

tr(Q∗MQ) = tr M , QQ∗ = I.

Thus, when considering tr(A �t B), we can assume without loss of generality that A is a diagonal matrix.
The Golden–Thompson inequality (e.g. Petz, 1994) yields

tr(exp((1 − t) log A + t log B)) � tr exp((1 − t) log A) exp(t log B)

= tr(A1−tBt) =
n∑

i=1

A1−t
ii (Bt)ii

=
n∑

i=1

λ1−t
i (A)(Bt)ii.

We use the following claim by Schur (Horn & Johnson, 1990, Chapter 4, Section 3, p. 193). The claim
states that for any X ∈ SPD(n),

k∑
i=1

Xii �
k∑

i=1

λi(X ), k � n.

Recall that Bt ∈ SPD(n), hence, all its diagonal elements are strictly positive. By Lemma 4.6, we have

n∑
i=1

λ1−t
i (A)(Bt)ii �

n∑
i=1

λ1−t
i (A)λt

i(B), t ∈ [0, 1].
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APPROXIMATION OF POSITIVE-DEFINITE MATRIX-VALUED FUNCTIONS 1451

The above with (4.5) implies
tr(A �t B) � (tr(A))1−t(tr(B))t.

Repeating the previous argument yields the second claim for the subdivision scheme. �

Using Theorem 4.5, we give a bound for the exp–log-based corner-cutting scheme in the Frobenius
norm.

Theorem 4.7 Let Mt be a matrix mean that agrees with

tr(Mt(A, B)) � Mt(tr(A), tr(B)), A, B � 0.

Then for any initial data A0 and for the corner cutting based on Mt,

‖S ∞(A0)(x)‖ � S ∞({‖A1/2
0,i ‖2}i∈Z)(x), x ∈ R.

Proof. For any X � 0,

tr(XX ∗) =
n∑

i=1

λi(X )2, (tr(X ))2 =
(

n∑
i=1

λi(X )

)2

.

Since λi(X ) > 0, we have
tr(XX ∗) � (tr X )2.

Thus,

‖Mt(A, B)‖ =
√

tr(Mt(A, B)Mt(A, B)∗)

� tr(Mt(A, B))

� Mt(tr(A), tr(B))

= Mt(‖A1/2‖2, ‖B1/2‖2).

By the definition of the corner-cutting scheme, the claim follows. �

It is worth mentioning that Theorem 4.7 holds for any scheme that is based on a mean which agrees
with (4.3).

5. Subdivision schemes based on the geometric mean

For the manifold of the SPD matrices, there exists a Riemann metric,

d(A, B) = ‖ log(A−1/2BA−1/2)‖. (5.1)

The geodesic line between A and B with respect to the Riemann metric (5.1) is

Gt(A, B) = A(A−1B)t = A1/2(A−1/2BA−1/2)tA1/2, 0 � t � 1. (5.2)

In this section, we investigate an admissible mean reduced by the geodesic line (5.2).
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1452 N. SHARON AND U. ITAI

5.1 The geometric mean for SPD matrices

The theory of means for positive operators was developed by Kubo & Ando (1980) and led to the study
of the special case of the geometric mean for SPD matrices (Ando et al., 2004; Bini et al., 2010).

An interesting special case is t = 1
2 , which is the midpoint of the geodesic line. We present three

alternative definitions for the midpoint, which emphasize the various interpretations of the geometric
mean (for more details, see Ando et al., 2004 and Bini et al., 2010).

The first is G1/2(A, B) = A1/2QB1/2, where Q is any orthogonal matrix that ensures that the product
is symmetric positive definite. Although the choice of Q is arbitrary, the value of A1/2QB1/2 is unique.

The second is the value of the integral

G1/2(A, B) = 1

Γ (1/2)2

∫ 1

0
(xB−1 + (1 − x)A−1)−1(x(1 − x))−1/2 dx,

where Γ (x) = ∫∞
0 wx−1e−w dw is the well-known gamma function.

The third is the solution of the following optimization problem:

G1/2(A, B) = max

{
X � 0:

(
A X
X B

)
� 0

}
. (5.3)

Equation (5.3) is equivalent to the existence and uniqueness of a solution to the matrix Riccati equation
XA−1X = B (Lawson & Lim, 2001, Lemma 2.4).

A list of fundamental properties of the geometric mean (5.2) can be found in Itai & Sharon (2012).
We note that there is no trivial choice of function to construct the geometric mean as suggested in
Theorem 3.2. Nevertheless, the quasi-linear condition (3.3) holds and Gt(x, y) = x1−tyt for all x, y > 0.

A fundamental result is as follows.

Theorem 5.1 The geometric mean for matrix Gt is an admissible matrix mean.

Proof. First, we show that Gt is a matrix mean. The symmetry property can be found in Itai & Sharon
(2012, Lemma 3.1(2)). Ando et al. (2004) show that3

Gt(A, B) 
 (1 − t)A + tB 
 λmax(A, B)I, t ∈ [0, 1].

Definition 3.3 follows by the same arguments as Itai & Sharon (2012, Theorems 5.3, 5.10, 5.2), respec-
tively. The homogeneity property follows by (5.2). �

5.2 The geometric corner-cutting schemes

Constructing a corner-cutting scheme (3.7) using the geometric mean for matrix (5.2) is well defined.
We name such a scheme a geometric corner-cutting subdivision scheme.

The next theorem ensures convergence and smoothness of the scheme.

Theorem 5.2 The geometric corner-cutting scheme (3.7) converges to a smooth C1 matrix curve, for
any initial data of SPD matrices with eigenvalues that are bounded away from zero.

3 Ando proved the matrix means inequality Ht(A, B) 
 Gt(A, B) 
 Lt(A, B).
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For the proof of the theorem, we use the following notation for given initial data {A0,i}i∈Z, as well
as for any refined set {Aj,i}i∈Z,

Δj = sup
i∈Z

d(Aj,i, Aj,i+1), j ∈ Z+.

We assume that our initial data satisfy Δ0 < ∞ and use two lemmas.

Lemma 5.3 The geometric corner-cutting scheme (3.7) satisfies

Δj+1 < γΔj, j ∈ Z+, 0 < γ < 1. (5.4)

Proof. The geometric corner cutting schemes (3.7) generate refined matrices on the geodesic line.
Therefore, for any initial data A0 = {Ai}i∈Z, we have

d(Aj+1,2i, Aj+1,2i+1) = (1 − 2μ)d(Aj,i, Aj,i+1), j ∈ Z+, i ∈ Z.

Following the same argument and the triangle inequality,

d(Aj+1,2i, Aj+1,2i−1) � 2μd(Aj,i, Aj,i+1).

By μ ∈ (0, 1
2 ), we get γ = max{1 − 2μ, 2μ} < 1. This completes the proof. �

The distance between the arithmetic matrix mean Lt (see Example 3.4) and the geometric mean for
matrices, for sufficiently close matrices is given in the next lemma. A similar result is partially proved
by the authors in Itai & Sharon (2012).

Lemma 5.4 Let A, B ∈ SPD(n) be bounded matrices m < λmin(A), λmin(B) with 0 < m, and such that

‖A−1B − I‖ < 1.

Then

‖Gt(A, B) − Lt(A, B)‖ < C‖A − B‖2, (5.5)

where C depends only on n and m.

Proof. Using the Taylor expansion,

(x + 1)t = 1 + tx + 1
2 t(t − 1)x2 + · · · , |x − 1| < 1,

implies (Mathias, 1993, Corollary 2) that for ‖A−1B − I‖ < 1, the truncated Taylor matrix approxima-
tion with a remainder R has the form

‖R‖ = ‖(A−1B)t − (I + t(A−1B − I))‖
= ‖(A−1B)t − ((1 − t)I + t(A−1B))‖
= 1

2 max
s∈[0,1]

‖(A−1B − I)2t(t − 1)((1 − s)I + s(A−1B))‖

= 1
2 |t(t − 1)| max

s∈[0,1]
‖(A−1B − I)2‖ ‖Ls(I, A−1B)‖.
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1454 N. SHARON AND U. ITAI

The sub-multiplication of the Frobenius norm entails

‖Gt(Ae, B) − Lt(A, B)‖ � 1

2
|t(t − 1)|‖A−1‖2

(
max
s∈[0,1]

‖Ls(I, A−1B)‖
)

‖A − B‖2.

Consider t ∈ [0, 1], and with ‖A−1B − I‖ < 1 implies ‖Ls(I, A−1B)‖ � 1 + √
n, one can set C =

n(1 + √
n)/8m2. Thus, the claim follows. �

Proof of Theorem 5.2. Let xj,i = 2−ji, j ∈ Z+, i ∈ Z and Fj(x), j ∈ Z be the continuous matrix functions
defined in (3.12). Similar arguments as in Lemma 5.3 imply

sup
x∈R

d(Fj+1(xj+1,2i(x)−1), Fj+1(x)) � 2μΔj, j ∈ Z+,

where i(x) = arg mink{d(Fj(x), Fj(xj,k))}. Moreover, by the definition of Fj, one gets Fj(xj+1,2i(x)−1) =
Fj+1(xj+1,2i(x)−1). Then

d(Fj(x), Fj+1(x)) � d(Fj(x), Fj(xj,i(x))) + d(Fj(xj,i(x)), Fj+1(xj+1,2i(x)−1))

+ d(Fj+1(xj+1,2i(x)−1), Fj+1(x))

� 1/2Δj + γΔj + 2γΔj � 4Δj.

Combining the latter with Lemma 5.3 and the triangle inequality, we have for any j1, j2 ∈ Z+ (without
loss of generality j2 > j1),

d(Fj+j1(x), Fj+j2(x)) �
j2−j1−1∑

l=0

d(Fj+j1+k(x), Fj+j1+k+1(x)) � 4
1

1 − γ
Δj.

Since Δj tends to zero and is independent of x, we get that {Fj(x)}j∈N is a Cauchy series under the
uniform norm. The completeness of R

n×n implies that the sequence {Fj(x)}j∈N converges uniformly to
a well-defined function F(x).

For the C1 smoothness, we use the notion of proximity, introduced by Wallner & Dyn (2005).
Lemma 5.4 guarantees the conditions for proximity. This is true due to locality and convergence of the
corner cutting. �

The geometric mean preserves common eigenvectors. Therefore, the claims of Theorem 3.13 hold
for the geometric corner cutting.

During the work on the paper, the authors learned about the work of Ebner (2012), which generalized
the proof of convergence given here. However, for the sake of making the paper as self-contained as
possible, we decided to include the full proof.

5.3 Approximation order of the geometric corner cutting

In Section 3.4, we showed that for a scheme based on an admissible mean, the approximation order is
O(h). This result, however, was not tight for many adapted corner-cutting schemes. For example, we
show in this section that for the geometric corner cutting the approximation order is O(h2).

The manifold of SPD(n) matrices is locally Euclidean (Spivak, 2005, Chapter 9). Therefore, for
any compact set P ⊂ SPD(n), there exist two positive constants c and C depending only on P

 at T
E

L
 A

V
IV

 U
N

IV
E

R
SIT

Y
 on June 1, 2014

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/
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such that
c‖A − B‖ � d(A, B) � C‖A − B‖, A, B ∈ P . (5.6)

Here, d(·, ·) is the Riemannian metric (5.1). We denote by SL the corner-cutting refinement operator
based on the arithmetic matrix mean Lt (see Example 3.4). The next three lemmas study the connection
between the linear and geometric schemes.

Lemma 5.5 Let A0 and B0 be initial data sequences such that ‖A0,i − B0,i‖ < ε. Then

‖S ∞
L (A0)(x) − S ∞

L (B0)(x)‖ < ε, x ∈ R.

Proof. By the linearity of the scheme,

SL(A0)j − SL(B0)j = SL(A0 − B0)j, j ∈ Z.

Thus, for the first refinement step, we have

‖SL(A0)j − SL(B0)j‖ < ε, j ∈ Z.

With repetition of the last observation, the lemma follows. �

By using Lemma 5.4, we deduce the following Lemma 5.6.

Lemma 5.6 Let A0 be initial bounded data satisfying ‖A0,i − A0,i+1‖ � h and ‖A−1
0,i A0,i+1 − I‖ < 1. Then

‖SL(Ap)j − S (Ap)j‖ < C(γ ph)2, j ∈ Z, p ∈ Z+,

where Ap = S p(A0) and C is the constant of (5.5).

Proof. By the contraction factor (5.4) and Lemma 5.5, the claim follows. �

Note that Lemma 5.6 combined with Lemma 5.5 ensures that

‖S m+1
L (Ap)j − S m

L (Ap)j‖ < C(γ ph)2, j ∈ Z, ∀ m ∈ N.

Lemma 5.7 In the notation of Lemma 5.6,

‖S ∞(A0)(x) − S ∞
L (A0)(x)‖ < L h2, x ∈ R,

where L = C(1/(1 − γ 2)).

Proof. Denote by
Ik,j = ‖S k

M (A0)j − S k
L (A0)j‖, j ∈ R.

By Lemma 5.6, we have

Ik,j � ‖S k
M (A0)j − SL(Ak−1)j‖ + ‖SL(Ak−1)j − S 2

L (Ak−2)j‖
+ · · · + ‖S k−1

L (A1)j − S k
L (A0)j‖

� Ch2

⎛
⎝ k−1∑

p=0

γ 2p

⎞
⎠� L h2.

�
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Next is the main theorem of this section.

Theorem 5.8 Let A0 = {A0,i}i∈Z be initial data sampled uniformly from a smooth function F : R →
SPD(n), in the following fashion:

Ai,0 = F(ih), i ∈ Z.

Then for sufficiently small h,

E(h, x) = ‖S ∞(A0)(x/h) − F(x)‖ � CFh2, x ∈ R.

Proof. By the triangle inequality,

E(h, x) � ‖S ∞(A0)(x/h) − S ∞
L (A0)(x/h)‖ + ‖S ∞

L (A0)(x/h) − F(x)‖.

For the linear scheme, the differences are elementwise. Thus,

‖S ∞
L (A0)(x) − F(x)‖ < C1h2,

where C1 depends on the maximal elementwise differentiation of F and the order of the matrices. Next,
we use that ‖A0,i − A0,i+1‖ � LFh, where LF is a constant depending only on F. For a sufficiently small
h, we can apply Lemma 5.7 and the theorem follows. �

Remark 5.9 The properties of the geometric mean that we have used in this section are: a proximity
condition of the form given in Lemma 5.4, a contraction factor (see (3.8)), and a metric equivalence of
the form (5.6). Hence, any corner cutting scheme, based on a matrix mean that agrees with such proper-
ties, has an approximation order of O(h2). In addition, one can weaken the assumption of a contraction
factor to a proper uniform convergence condition. For further discussion on the approximation order of
nonlinear subdivision schemes using proximity conditions, see Dyn et al. (2010) and Grohs (2010a).

6. Special properties of the geometric corner-cutting schemes

Ando et al. (2004) introduced several important properties for the geometric mean of a matrix. In this
section, we show that those properties hold for the geometric corner cutting. We also prove additional
properties.

6.1 Properties related to the Löwner partial ordering

The Löwner partial order (2.1) is strongly related to the geometric mean for matrices (5.2). In the next
theorem, we introduce a list of properties relating the geometric corner-cutting scheme to the Löwner
partial order.

Theorem 6.1 Let A0 = {A0,i}i∈Z be initial data for the geometric corner-cutting scheme and denote by
S its refinement rule.

(1) Hierarchy preserving: let B0 = {B0,i}i∈Z be sequences of SPD matrices such that A0,i � B0,i for all
i ∈ Z. Then

(S ∞B0)(x) 
 (S ∞A0)(x), x ∈ R.
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(2) Monotonicity: if A0,i 
 A0,i+1 for all i ∈ Z, then

(S ∞A0)(x1) 
 (S ∞A0)(x2), x1 � x2.

(3) Schur complement: let X =
(

X11 X12
X ∗

12 X22

)
. Then4

Sc(S ∞({(A0,i)}i∈Z)) 
 (S ∞({Sc(A0,i)}i∈Z)).

(4) Pinching: let X =
(

X11 X12
X ∗

12 X22

)
be an SPD matrix. Denote the pinching operator by Φ(X ) = ( X11 0

0 X22

)
.

Then
Φ((S ∞A0)(x)) 
 S ∞({Φ(A0)}i∈Z)(x), x ∈ R.

(5) Trace:
tr(S ∞({A0,i}i∈Z)(x)) � S ∞({tr(A0,i)}i∈Z)(x), x ∈ R.

Proof. By Ando et al. (2004), we get for any SPD matrices X2 
 X1, Y2 
 Y1,

Gt(X2, Y2) 
 Gt(X1, Y1), t ∈ [0, 1]. (6.1)

Following (3.7), we have B1,i 
 A1,i.
For monotonicity, we show Aj,2i−1 
 Aj,2i 
 Aj,2i+1, based on the monotonicity of the (j − 1)th level.

According to (6.1), if A 
 B, then

A = Gt(A, A) 
 Gt(A, B) 
 Gt(B, B) = B, t ∈ [0, 1],

which yields
A 
 G1/4(A, B) = G1/2(G1/2(A, B), B) 
 G1/2(A, B).

Using induction over the dyadic values and the dyadic density yields

Gt1(A, B) 
 Gt2(A, B), 0 � t1 < t2 � 1.

By the above, for the initial data, we have

A0,i = Gt(A0,i, A0,i)


 Gt(A0,i, A0,i+1)


 Gt(A0,i+1, A0,i+1) = A0,i+1.

Thus, for any j ∈ Z+,

Aj+12i−1 = G1−μ(Aj,i−1, Aj,i)


 G1/2(Aj,i−1, Aj,i)


 Gμ(Aj,i−1, Aj,i) = Aj+1,2i.

The claim Aj,2i 
 Aj,2i+1 is similar.

4 Let Sc(X ) = X22 − X ∗
12X −1

11 X12 be the Schur complement of X . For more details on the Schur complement, see Boyd &
Vandenberghe (2004).
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1458 N. SHARON AND U. ITAI

For the Schur property, the Schur complement can be written as (Li & Mathias, 2000)

Sc(X ) = max

{
C | X �

(
0 0
0 C

)}
.

Hence, X � ( 0 0
0 Sc(X )

)
. Thus, according to claim (1),

S ∞({A0,i}i∈Z) � S ∞
({(

0 0
0 {Sc(A0,i)}i∈Z)

)}
i∈Z

)
.

Using the Schur complement on both sides implies (3).
For the pinching property, we recall that

Φ(X ) = (X + S∗XS)/2, S =
(

I 0
0 −I

)
.

Therefore, for X � 0,

Φ(X ) = 1
2 (X + (X 1/2S)∗(X 1/2S)) � 0.

The linearity of Φ entails that Φ is a monotonicity-preserving operator. By Ando et al. (2004),

Φ(Gt(X , Y) 
 Gt(Φ(X ), Φ(Y)).

Now by the monotonicity and the definition of the scheme (3.7), we have

Φ(Aj+1,i)) 
 S (Φ(Aj,i)), j ∈ Z+,

which concludes the case for the pinching property.
For the trace property, we apply the pinching operator �log(n)� + 1 times for any n × n matrices,

and use the pinching property. �

To emphasize some of the corner-cutting-scheme properties, we present a version of Lemma 3.9 for
geometric corner cutting.

Lemma 6.2 Let S ∞ be the limit matrix curve for the geometric corner-cutting schemes with the initial
data A0. Then

G1/2(A0,i, A0,i+1) = S ∞(A0)(i + 1
2 ), i ∈ Z.

Proof. The proof is a direct consequence of the fact that the geometric mean is the geodesic line in the
Riemann metric (5.1) for t ∈ [0, 1]. �

In Section 4, we described the exp–log-based subdivision scheme. This setting provides many fruit-
ful properties, e.g. Theorem 4.5, which is the analogue of the trace property of Theorem 6.1. Neverthe-
less, for this class of subdivision schemes, Properties (1–4) of Theorem 6.1 do not hold. We now supply
counterexamples.
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Example 6.3 By Lemma 3.9, we can construct a counterexample based on the fact that

A0,k �1/2 A0,k+1 = S ∞({A0,i}i∈Z)(k + 1
2 ), k ∈ Z,

where S is the refinement operator of the corner-cutting scheme for matrices (3.7) under the exp–log
mean (4.1). For the first two examples, we use the matrices

A =
(

3 1
1 2

)
, B =

(
2 0
0 1

)
.

Clearly A � B.

(1) Consider the initial data

A0,i = A, B0,i =
{

A if i � k,
B otherwise.

Then

A = (A0,k �1/2 A0,k+1) �� (B0,k �1/2 B0,k+1) = (A �1/2 B) ≈
(

2.40 0.39
0.39 1.38

)
.

This is a counterexample for the hierarchy-preserving property.

(2) Let the initial data be

C0,i =
{

A if i � k,
B otherwise.

Clearly, C0,i � C0,i+1. However, C0,k �� (A �1/2 B) which violates the monotonicity property.

(3) By calculation, for a counterexample of the Schur property for the exp–log corner cutting, let

A =
⎛
⎝1.0744 1.3925 0.5498

1.3925 1.8048 0.7127
0.5498 0.7127 0.3507

⎞
⎠ , B =

⎛
⎝1.0342 0.7715 0.5365

0.7715 0.5911 0.4960
0.5365 0.4960 1.1395

⎞
⎠ .

Thus,
Sc(A �1/2 B) �� (Sc(A) �1/2 Sc(B)).

(4) For the pinching property, let

A =
⎛
⎝0.5729 0.3775 0.7131

0.3775 0.3748 0.3884
0.7131 0.3884 1.0861

⎞
⎠ , B =

⎛
⎝1.5520 1.0121 2.0427

1.0121 0.8086 1.2249
2.0427 1.2249 2.9252

⎞
⎠ .

Similarly to the above, we have Φ(A �1/2 B) �
 (Φ(A) �1/2 Φ(B)).

6.2 The convex hull property

Convex properties are fundamental in the field of geometric analysis. A generalization to manifolds
is made by replacing the straight line by geodesic lines. As in the classical case of corner cutting (de
Boor, 1987), there exists a strong relation between the convex hull of the data and the convex hull of
the generated curve.
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1460 N. SHARON AND U. ITAI

Definition 6.4 Let K be a nonempty closed set of SPD matrices. If A, B ∈ K implies Gt(A, B) ∈ K,
t ∈ [0, 1], then K is a convex set. For any nonempty set P of SPD matrices, we denote by conv(P) the
minimal convex set containing P and call it a convex hull.

Theorem 6.5 Let A0 = {A0,i}i∈Z be initial data for the geometric corner-cutting scheme (3.7) and denote
by S its refinement rule. Then the following conditions hold.

(1) conv(S ∞(A0)) ⊆ conv(A0).

(2) conv(S ∞(A0)) =
∞⋂

j=0

conv(Aj), where Aj = S j(A0), j ∈ N.

Proof. By the scheme definition (3.7), it is clear that

A1,i ∈ conv(A0), i ∈ Z.

Thus,
conv(S j(A0)) ⊆ conv(A0), i ∈ Z, j ∈ Z+.

The convex hull is a closed set and therefore the first part follows.
For the second part, we note that

conv(Aj) ⊇ conv(Aj+1), j ∈ Z+.

Hence, {conv(Aj)}j∈Z+ is a nested sequence of closed sets. Cantor’s lemma yields that⋂
j∈Z+

conv(Aj) |= ∅.

Therefore, the right-hand side of the second claim is well defined. Next, we show the equality. On the
one hand,

conv(S ∞(A0)) ⊆ conv(Ak) =
k⋂

j=0

conv(Aj), k ∈ Z+;

by taking the limit, we get

conv(S ∞(A0)) ⊆
∞⋂

j=0

conv(Aj).

On the other hand,

conv(Ak) ⊇
∞⋂

j=0

conv(Aj), k ∈ Z+.

Following the above,

conv(S ∞(A0)) ⊇
∞⋂

j=0

conv(Aj). (6.2)

The convergence of the scheme implies the existence of the right-hand side of (6.2). �
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6.3 Extension to positive-semidefinite matrix data

The closure of the set of SPD matrices is the closed set of symmetric positive-semidefinite (SPSD)
matrices. Let us consider initial data consisting of SPSD matrices. These matrices are singular and thus
the definition (5.2) of the geometric mean is not valid.

We suggest using a modified version of the geometric mean,

G†
s (A, B) = A1/2((A†)1/2B(A†)1/2)sA1/2, s ∈ (0, 1]. (6.3)

Here, A† is the generalized inverse or ‘pseudo’ inverse matrix, also known as the Moore–Penrose
inverse. For further information, see Ben-Israel & Greville (2003) and Itai & Sharon (2012) and refer-
ences within. Hence, a generalized geometric mean is defined for any A, B � 0.

For any symmetric matrix X = Q∗DQ, with

D =

⎛
⎜⎜⎜⎝

d1 0
. . .

0 dn

⎞
⎟⎟⎟⎠ ,

we have (Penrose, 1955) X † = Q∗D†Q, where

D† =

⎛
⎜⎜⎜⎝

d†
1 0

. . .

0 d†
n

⎞
⎟⎟⎟⎠ , d†

i =
{

d−1
i if di |= 0,
0 otherwise.

Therefore, X † � 0, which yields that Definition 3.1(1,4) hold for (6.3). However, the symmetry condi-
tion does not hold. A counterexample for that is

A =
(

1 1
1 1

)
, B =

(
1 0
0 0

)
.

Then (
0.5 0.5
0.5 0.5

)
= G1/2(A, B) |= G1/2(B, A) = B.

Moreover, one can verify that G†
1(A, B) |= B. Thus, Definition 3.1(3) does not hold either. The above

example illustrates that for an arbitrary set of SPSD matrices, the use of (6.3) as a matrix mean is not
well defined. Thus, an additional condition is required.

A sufficient condition for (6.3) to become a matrix mean is to define it over the set of SPSD matrices
with a common kernel. Henceforth, we consider initial data of SPSD matrices A0 such that

ker(A0,i) = ker(A0,k), i, k ∈ Z. (6.4)

We note that a detailed consideration of computational issues concerning the construction of such a
matrix mean is available in Bonnabel & Sepulchre (2009).

Extending the admissible mean concept to SPSD is done using the pseudo-inverse and the pseudo-
determinant, that is the product of all nonzero eigenvalues (Minka, 2000). Thus, we have the following
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1462 N. SHARON AND U. ITAI

theorem, i.e.

Theorem 6.6 The geometric scheme (3.7) using (6.3) is well defined and admissible for initial data of
SPSD matrices satisfying (6.4).

Proof. As in the proof of Theorem 3.13 and using the common kernel, the properties follow from the
geometric mean properties. �

We note that similarly to the geometric corner cutting defined by (5.2), the scheme defined by (6.3)
converges to a smooth matrix curve A(x) such that A(x) is an SPSD matrix for any real x. Furthermore,
this implies that Theorem 3.13 holds. The next theorem points out the connection between the two
geometric corner-cutting schemes.

Theorem 6.7 Let A0 be initial data consisting of SPSD matrices satisfying (6.4). Then the corner-
cutting scheme defined by (6.3) and denoted by S satisfies

lim
ε→0

S ∞({A0,i + εMi}) = S ∞({A0,i}),

where {Mi}i∈Z is a sequence of SPD matrices with λmin(Mi) � m > 0.

To prove Theorem 6.7, we use the following two lemmas. First is the Löwner partial-order version
for the squeeze theorem.

Lemma 6.8 Let {An}∞n=0, {Bn}∞n=0 and {Cn}∞n=0 be an SPD-matrix sequence such that

An 
 Bn 
 Cn, n ∈ Z+.

Assume that

lim
n→∞ An = lim

n→∞ Cn = L.

Then

lim
n→∞ Bn = L.

Proof. On the one hand, we have

lim
n→∞ Cn − Bn 
 lim

n→∞ Cn − An = 0.

On the other hand,

lim
n→∞ Bn − An 
 lim

n→∞ Cn − An = 0.

Thus,

0 
 lim
n→∞ Bn − L 
 0. �

The second lemma is as follows.
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Lemma 6.9 Let A and B be two positive-semidefinite matrices such that

ker(A) = ker(B).

In addition, MA and MB are two SPD matrices. Then

G†
t (A, B) = lim

ε→0
Gt(A + εMA, B + εMB), t ∈ (0, 1].

Proof. First, we note that A + εMA, B + εMB are clearly SPD. We have

A + ελmin(MA, MB)I � A + εMA � A + ελmax(MA, MB)I,

B + ελmin(MA, MB)I � B + εMB � B + ελmax(MA, MB)I.

By (6.1), we get that

Gt(A + ελmin(MA, MB)I, B + ελmin(MA, MB)I) � Gt(A + εMA, B + εMB)

� Gt(A + ελmax(MA, MB)I, B + ελmax(MA, MB)I).

Moreover,

G†
t (A, B) = lim

ε→0
Gt(A + ελmin(MA, MB)I, B + ελmin(MA, MB)I)

= lim
ε→0

Gt(A + ελmax(MA, MB)I, B + ελmax(MA, MB)I).

Lemma 6.8 (the Löwner squeeze lemma) completes the proof. �

Remark 6.10 For a sequence of SPSD matrices with a common kernel, it is possible to extend the
exp–log operation (4.1) to

A � B = lim
ε→0

exp((1 − t) log(A + εI) + t log(B + εI)), A, B � 0.

One can show that the limit exists by using the common kernel property and the identities

exp

(
X 0
0 Y

)
=
(

exp(X ) 0
0 exp(Y)

)
,

and exp(log(εI)) = εI. However, this approach has a major numerical drawback. Due to floating-point
representation, for sufficiently small ε, the output of exp(log(εI)) is not εI.

7. Bernstein operators for SPD-matrix-valued functions

Up to now, we have used matrix means to construct subdivision schemes for SPD matrices. This
approach can be generalized to additional classes of positive linear approximation operators. Consider
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1464 N. SHARON AND U. ITAI

sample-based approximation operators for real-valued functions,

A (f )(x) =
k∑

i=0

ai(x)f (xi), ai(x) � 0,
k∑

i=0

ai(x) = 1. (7.1)

Such operators can be rewritten as repeated weighted (binary) averages and thus can be adapted to SPD
matrices using the matrix mean. As a representative, we use Bernstein operator (Lorentz, 1953). These
operators, unlike the subdivision operators, are not local and depend on the entire data.

7.1 Definition of Bernstein operators

The classic Bernstein operator to approximate f : [0, 1] → R is

BN (f ; x) =
N∑

i=0

bN ,i(x)f

(
i

N

)
, x ∈ [0, 1],

where

bN ,i(x) =
(

N

i

)
xi(1 − x)N−i.

For an easy evaluation of BN (f ; x), the De De Casteljau (1959) algorithm is needed:

β0
i = f

(
i

N

)
, i = 0, . . . , N ,

and
β

j+1
i = (1 − x)β j

i + xβ j
i+1, i = 0, . . . , N − j, j = 0, . . . , N − 1.

The output is βN
0 = BN (f ; x). The proof of the correctness of the algorithms is based on the recursive

relation
bk,i(x) = (1 − x)bk−1,i(x) + xbk−1,i−1(x), x ∈ [0, 1].

Since β
j+1
i = (1 − x)β j

i + xβ j
i+1 is the x-weighted average of β

j
i and β

j
i+1, one can replace it with any

desired x-weighted mean.
For the matrix case, we assume initial data {A0,i}N

i=0 sampled uniformly from

F : [0, 1] → SPD(n), F

(
i

N

)
= A0,i, i = 0, . . . , N .

By using an admissible matrix mean, the Bernstein operator for an SPD matrix at x ∈ [0, 1] can be
evaluated with the De Casteljau recurrence relation,

Aj,i = Mx(Aj−1,i, Aj−1,i+1), j = 1, . . . , N , i = 0, . . . , N − j, (7.2)

and the required result is obtained in BN (F; x) = AN ,0, i.e. after N steps. We call the result a Bernstein
operator for matrices.

The De Casteljau algorithm requires only a finite number of calculations. Thus, by using similar
arguments as in the previous sections, one can deduce the following two corollaries.
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Corollary 7.1 Bernstein operators for matrices based on an admissible matrix mean satisfy the admis-
sible conditions of Definition 3.10, adjusted to operators of the form (7.1).

In addition, for a matrix mean that satisfies the conditions of Theorem 3.13, the spectral results of
the theorem are valid for the Bernstein operator as well.

In Section 6, we proved several special properties for the operator of geometric corner cutting for
a matrix. We call the geometric Bernstein operator the Bernstein operator for a matrix, based on a
geometric mean for matrix (5.2). Then the following corollary holds.

Corollary 7.2 The results of Theorems 6.1 and 6.5 hold for the geometric Bernstein operator.

Remark 7.3 We show the results over the interval [0, 1]. However, they are valid for a general interval
by replacing the De Casteljau algorithm with the de Boor algorithm (Cohen et al., 2001, Chapter 4).

7.2 Error bounds for the approximation by Bernstein operators

The classical Bernstein operator converges to the sampled function as the uniform samples get denser.
Next, we present a similar result for SPD-matrix Bernstein operators under two mild assumptions on
the matrix mean.

The first assumption is true for the geometric mean and proved in Lemma 5.4. It is also true for any
twice-differentiated average for numbers (Dyn & Goldman, 2011, Proposition 2.6). We generalize this
approach for a general matrix mean.

Assumption 7.4 Let A, B ∈ SPD(n), Δ = ‖A − B‖ and Mt be an admissible matrix mean. Then there
exists a constant CM , independent of Δ, such that

‖Mt(A, B) − Lt(A, B)‖ < CM Δ2, t ∈ [0, 1].

The second assumption is the metric property (3.11) in respect of the Euclidean distance, d(X , Y) =
‖X − Y‖. Note that the exp–log mean (4.1) and the geometric mean for matrix (5.2) both satisfy this
assumption.

Assumption 7.5 For any A, B ∈ SPD(n),

‖Mt(A, B) − A‖ = t‖A − B‖, t ∈ [0, 1].

The error bound is as follows.

Theorem 7.6 Let F : [0, 1] → SPD(n) be a Lipschitz (elementwise) continuous matrix function,
namely there exists a constant CF such that

‖F(x) − F(y)‖ < CF |x − y|, x, y ∈ R.

Then

‖F(x) − BN (F; x)‖ � O

(
1√
N

)
,

where BN is a Bernstein operator, defined using any admissible matrix mean and obtained by the De
Casteljau algorithm.

To prove Theorem 7.6, we use the following two lemmas.
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Lemma 7.7 Let {Ai}N
i=0, {Bi}N

i=0 ⊂ SPD(n) and Δ = maxi∈{0,...,N} ‖Ai − Bi‖. Then

‖Lt(Ai, Ai+1) − Lt(Bi, Bi+1)‖ < Δ, t ∈ [0, 1].

Proof. By the definition of the arithmetic mean,

‖Lt(Ai, Ai+1) − Lt(Bi, Bi+1)‖ = ‖(1 − t)Ai + tAi+1 − ((1 − t)Bi + tBi+1)‖
� (1 − t)‖Ai − Bi‖ + t‖Ai+1 − Bi+1‖ < Δ. �

Lemma 7.8 Let A, B, C ∈ SPD(n) such that

‖A − B‖, ‖A − C‖ � δ, δ > 0.

Assume that Mt satisfies Assumptions 7.4 and 7.5. Then

‖Mt(A, B) − Mt(B, C)‖ � δ.

Proof. By the triangle inequality and Assumption 7.5,

‖Mt(A, B) − B + B − Mt(B, C)‖ � (ξ1−t + ξt)δ � δ. �

A result of the previous lemma is that if we start the De Casteljau algorithm with data sampled
uniformly, each of the levels withholds the same uniform distance.

In Theorem 7.6, we show that Assumption 7.4 is in fact a proximity condition to the case of lin-
ear arithmetic means of matrices. In the latter, the convergence is entrywise. Thus, one can apply the
theorems of the Bernstein polynomials theory.

Proof of Theorem 7.6. We use the notation of (7.2) with a minor addition: we denote by AL
j,i the refined

jth level, using the arithmetic matrix mean Lt. The key argument is

‖AL
N ,0 − AN ,0‖ < CM NΔ2, N ∈ N. (7.3)

Proof by induction. For the initial step, Assumption 7.4 ensures that ‖AL
1,0 − A1,0‖ < CM Δ2. For N = 2

we use the following:

‖Lt(A
L
1,0, AL

1,1) − Lt(A1,0, A1,1)‖ < CM Δ2.

Thus, the quantity ‖Lt(AL
1,0, AL

1,1) − Mt(A1,0, A1,1)‖ is bounded by

‖Lt(A
L
1,0, AL

1,1) − Lt(A1,0, A1,1) + Lt(A1,0, A1,1) − Mt(A1,0, A1,1)‖ < 2CM Δ2.

Consider the claim to be true for N = m:

‖AL
m,0 − Am,0‖ < mCM Δ2.

Then for N = m + 1, ‖AL
m+1,0 − Am+1,0‖, we have

‖Lt(A
L
m,0, AL

m,1) − Lt(Am,0, Am,1) + Lt(Am,0, Am,1) − Mt(Am,0, Am,1)‖ < mCM Δ2 + CM Δ2,
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which proves (7.3). By using the argument of Lemma 7.8, we get

Δ = ‖Ak,i − Ak,i+1‖, k = 0, . . . , N .

The Lipschitz condition of F combined with norm equivalence yields an entrywise Lipschitz condition.
Therefore, we can use the classical Bernstein convergence (Mathé, 1999) to get

‖F(x) − AN ,0‖ � O

(
1√
N

)
.

The data are sampled uniformly from a univariate parametric curve of matrices. Thus, we deduce that
Δ = O(1/N). Hence, for sufficiently large N ,

‖F(x) − AL
N ,0 + AL

N ,0 − AN ,0‖ � O

(
1√
N

)
+ O

(
1

N

)
= O

(
1√
N

)
. �
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