
A class of Laplacian multiwavelets bases for high-dimensional data

Nir Sharona,∗, Yoel Shkolniskya

aSchool of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

Abstract

We introduce a framework for representing functions defined on high-dimensional data. In

this framework, we propose to use the eigenvectors of the graph Laplacian to construct a

multiresolution analysis on the data. We assume the dataset to have an associated hierar-

chical tree partition, together with a function that measures the similarity between pairs of

points in the dataset. The construction results in a one parameter family of orthonormal

bases, which includes both the Haar basis as well as the eigenvectors of the graph Lapla-

cian, as its two extremes. We describe a fast discrete transform for the expansion in any of

the bases in this family, and estimate the decay rate of the expansion coefficients. We also

bound the error of non-linear approximation of functions in our bases. The properties of our

construction are demonstrated using various numerical examples.

Keywords: High dimensional data, graph Laplacian, multiwavelets, multiresolution

analysis

1. Introduction

Expanding a function in an orthonormal basis is one of the most basic tools in mathemat-

ics. Such an expansion transforms a given function, given either as a mathematical object or

as a set of samples stored in a computer, into a set of coefficients. Then, instead of analyzing

the original function, one analyzes the resulting expansion coefficients. This procedure arises

in many areas such as harmonic analysis, numerical analysis, partial differential equations,

and signal processing, to name a few. Examples for tasks that are easily implemented using

this approach include denoising, compression, and extrapolation. This approach goes back to

classical harmonic analysis, where the properties of a function are analyzed by inspecting its

expansion coefficients into a Fourier series. Other more modern bases include wavelet bases,

splines, and orthogonal polynomials.

Although this approach turned out to be very powerful, most tools and theory are only

∗Corresponding author
Email address: nirsharo@post.tau.ac.il (Nir Sharon)

Preprint submitted to Elsevier October 11, 2014

available in one dimension. Extensions to higher dimensions are commonly derived by tensor

products of one-dimensional elements, which usually do not exploit any special structure of

the underlying domain. Moreover, even the one-dimensional theory cannot be applied to

arbitrary sets on the line, and is typically restricted to an interval or the entire line. For

example, it cannot be applied when our domain is simply a finite scattered set of points on

the real line.

In recent years, the need to analyze data in high dimensions has grown rapidly. Moreover,

most often the data is simply some finite set of high-dimensional vectors, without any of the

rich Euclidean structure inherent into the classical tools. Analyzing functions defined on

such general datasets arises naturally, for example, in meteorology [17], gene research [32],

medical imaging [31], etc.

This practical need for analyzing large high-dimensional datasets has motivated extensive

research in past years. These studies resulted in many methods for data representation

and dimensionality reduction such as [6, 39]. In other cases, these studies gave rise to

generalizations of the Euclidean space construction of wavelets and wavelet packets. Such

a wavelets analogue on manifolds and graphs, based on the diffusion operator, is suggested

in [10, 15, 42]. These diffusion based constructions exploit the decay of the spectrum of

the diffusion operator and its powers. A different approach for graphs was introduced in

[27], where the wavelet operator is defined using the localization and scaling of the graph

Laplacian. Another construction for non-Euclidean setting is presented in [3] for general

spaces of homogeneous type.

The problem of basis construction is also known as dictionary learning in the machine

learning community, where one often uses a given hierarchy tree on the data to construct a

multiresolution analysis [8, 30]. Thus, constructing a basis is related to finding optimal trees

[9], and is also known as data-adaptive signal representation [22].

Two other important constructions available today for high-dimensional data in almost

arbitrary domains, modelled as graphs, are the graph Laplacian (e.g., [16, 38]) and the Haar

basis on graphs [24]. The graph Laplacian approach uses as basis functions the eigenvectors

of the graph Laplacian over the data. If the data are uniformly sampled from some Euclidean

domain, then, under certain conditions, as the number of data points goes to infinity, these

eigenvectors converge to the eigenfunctions of the Laplacian over the underlying domain

[41]. For example, if the data are sampled from the unit circle, then the eigenvectors would

converge to sine and cosine functions. Thus, this approach results in an analogue of Fourier

basis for general domains [37]. This approach is described in details in Section 2.1.

The second basis available for general data is the Haar basis on graphs. The continuous

Haar basis is considered as the simplest wavelet basis, and is defined using dilation and trans-

2

lation of a piecewise constant function. To extend the Haar basis to general datasets, one is

required to replace the standard dyadic partition of the interval with some hierarchical parti-

tion of the data (see Subsection 2.3). Once such a partition is given, the basis is constructed

by taking the characteristic functions over the elements of the partition, and applying an

orthogonalization procedure to these functions. Such a construction is described in [24].

On one hand we have the eigenvectors of the graph Laplacian whose support cannot be

controlled and can be shown to be “smooth” under an appropriate definition [4]. On the

other hand we have the Haar basis whose basis elements are localized piecewise constant

functions. An open question is whether there is any basis “in between”.

In this paper, we suggest a family of bases, named Laplacian multiwavelets, which can be

constructed for any set of N data points. We require the dataset to have an associated hier-

archical tree partition, together with a function that measures the similarity between pairs

of points in the dataset. These requirements will be made precise in Section 3. The family of

bases is parameterized by one integer parameter 1 ≤ k ≤ N , where k = 1 corresponds to the

Haar basis defined in [24], and k = N corresponds to the eigenvectors of the graph Laplacian

(Fourier basis). Intermediate values of k correspond to various degrees of “generalized van-

ishing moments” as explained in Section 5 and Subsection 6.1. In particular, we show that

generalized vanishing moments are related to the decay rate of the expansion coefficients in

our basis. We also show through numerical examples that by tuning the value of k , our basis

is capable of efficiently representing both slowly varying functions, just like the graph Lapla-

cian basis [37], as well as highly oscillatory functions, just like the Haar basis [24]. We also

present an algorithm that evaluates all N basis functions in O(k2N logN + T (N, k) logN)

operations, where N is the number of data points and T (N, k) is the runtime of extracting

the first k eigenvectors of the graph Laplacian over the data points.

The paper is organized as follows. Section 2 introduces the required mathematical back-

ground. Section 3 defines formally the basis construction problem, as well as the requirements

from such a basis. Section 4 provides an informal description of the Laplacian multiwavelets,

followed by a detailed description in Section 5. In Section 6 we discuss the notion of gener-

alized vanishing moments and study the relation between this notion and the decay of the

expansion coefficients. In addition, we define the smoothness of a function with respect to our

basis and deduce its approximation rate. In Section 7 we present a few numerical examples

to illustrate the Laplacian multiwavelet bases. Finally, we give some concluding remarks in

Section 8.

3

2. Mathematical preliminaries

In this section we briefly introduce the mathematical tools used in the construction of the

Laplacian multiwavelets. These tools are the graph Laplacian, multiresolution analysis, and

hierarchical data partitioning.

2.1. The graph Laplacian

As a main tool for our construction of the Laplacian multiwavelets we use the eigenvec-

tors of the graph Laplacian, which are widely used in machine learning for dimensionality

reduction, semi-supervised learning and spectral clustering [5].

Let X = {xi}Ni=1 be a set of N data points. For simplicity, we assume that xi ∈ RD ,

although this assumption can be easily removed to fit more general spaces. We also assume

that we are given a symmetric and non-negative function K : RD × RD → R+ . In the

machine learning community, K(x, y) is known as a kernel function, which is used to measure

the similarity between pairs of data points x and y . A popular choice is, for example,

K(x, y) = e−x−y
2/2ε , where ε is a parameter that determines the width of the kernel.

To construct the graph Lapacian, we start by defining the symmetric matrix W of size

N ×N given by

Wij = K(xj, xj).

The matrix W defines a complete undirected weighted graph on the points X , where the

weight on the edge between xi and xj is Wij . This matrix is known as the adjacency matrix

of the graph. Thus, whenever a function K : RD × RD → R is associated with the set X ,

we say that it induces a graph structure on X .

Next, we define the N ×N diagonal matrix B given by

Bii =
N∑
j=1

Wij.

The graph Laplacian L is then defined by

L = B−1W − I, (1)

where I is the N ×N identity matrix.

If the points in X are independent identically distributed samples from the uniform

distribution over a Riemannian manifold M , then, for any smooth function f :M→ R it

holds that [41],

1

ε

N∑
j=1

Li,jf(xj) = ∆Mf(xi) +O
(

1

N
1
2 ε

1
2

+ d
4

, ε

)
,

4

where ∆M is the Laplace-Beltrami operator on the manifold M . This theorem justifies the

name graph Laplacian given to the matrix L in (1). Moreover, we deduce that the graph

Laplacian depends only on the intrinsic dimension of the manifold, and not on the dimension

of the ambient space. In [7] Belkin and Niyogi proved that the first few eigenvectors of the

graph Laplacian are discrete approximations of the eigenfunctions of the Laplace-Beltrami

operator for data uniformly sampled from M . The pseudo-code for computing the first k

eigenvectors of the graph Laplacian is summarized in Algorithm 1.

Algorithm 1 GLE (Graph Laplacian Eigenvectors)

Input: A set X = {xi}Ni=1 of data points. An integer 1 ≤ k ≤ N .
Output: First k eigenvectors of the graph Laplacian over X .

1: for i, j = 1 to N do
2: Wi,j ← K(xi, xj)
3: end for
4: for i = 1 to N do
5: Bi,i ←

∑N
j=1 Wi,j .

6: end for
7: A← B−

1
2WB−

1
2 .

8: [U,Λ]← eig(A) {Diagonalize A s.t. A = UΛUT }
9: U ← B−1/2U(:, 1 : k).

10: return U

There are two implementation issues that need to be considered when implementing

Algorithm 1. First, as described in Algorithm 1, the graph Laplacian is a dense matrix.

This is computationally prohibitive if N is very large. To reduce the time and memory

complexity of the construction, one possible solution is to set Wij to be nonzero only for

some small predetermined number of nearest neighbours of xi . These nearest neighbours

can be found using a fast k -NN algorithm [28]. Choosing a fixed neighbourhood size results

in a number of nonzero entries in W which is linear in N , and thus constructing W in

Algorithm 1 would be linear in N . Second, the matrix L as defined in (1) is not symmetric.

Numerically, it is better to work with symmetric matrices, and thus, instead of computing

the eigenvectors corresponding to the smallest eigenvalues of the matrix L , we compute the

eigenvectors corresponding to the largest eigenvalues of the symmetric matrix B−
1
2WB−

1
2

(B is the diagonal matrix defined in line 5 of Algorithm 1). This matrix is similar to B−1W ,

and the eigenvectors of the matrix L can be computed from the eigenvectors of B−
1
2WB−

1
2

by multiplying the letter ones by the diagonal matrix B−
1
2 .

2.2. Multiresolution analysis (MRA)

The classical multiresolution analysis in signal processing is a framework for constructing

orthogonal wavelets. In this classical setting one uses a translation operator to define an

5

approximation space and a dilation operator to define details spaces. Obviously, this setting

is not applicable for general datasets, as it relies on the special geometry of the real line.

Thus, for high-dimensional or complicated domains, generalized definitions are needed.

Recent works [24, 30, 36] use a discrete generalization of the classical MRA, which fits

our construction as well. To use the generalized MRA method to derive an orthogonal basis

for a vector space V , we start by defining nested approximation spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vm = V . (2)

As in the classical MRA, approximating a function at resolution j means projecting it on

Vj . Thus, the approximation, also called the resolution of the function, is more accurate as

j increases.

Next, we construct the orthogonal complement spaces Wj that are given by

Vj ⊕Wj = Vj+1, Vj⊥Wj, (3)

and thus satisfy Wj ⊂ Vj+1 and Wj⊥Wj+1 . Hence, one gets inductively,

Vj = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj−1 . (4)

The latter suggests a basis for any prescribed resolution. In particular, for a full reconstruc-

tion in V we use j = m .

The term multiwavelets refers to the case where V0 is defined using several functions, and

not just one function as in classical wavelets. In our construction we use the eigenvectors of

the graph Laplacian to define V0 . Thus, we refer to our construction as a class of Laplacian

multiwavelets bases.

In the algorithm presented in the next sections, with a slight abuse of notation, we use the

notation Vj to denote a matrix whose columns span the approximation space Vj . Therefore,

the complement space Wj is calculated via an orthogonalization procedure applied to Vj . It

is worth mentioning here that the setting discussed in this subsection is also used to define the

so-called induced MRA when a hierarchy tree (see next subsection) is available [22, 30, 33].

2.3. Hierarchy tree partition

Hierarchical clustering is widely used to cluster images, biological data, networks data, etc.

into groups based on their similarity [44]. Such a hierarchy among data points is naturally

described using trees, and is defined as follows.

Given a set X of data points, a corresponding hierarchy tree TX = {Xl,n}n∈Ill=0,...,m is a

connected acyclic graph, where each node Xl,n ∈ T is a subset of X , Il is a finite set of

6

indices, and Xl,n stands for the n-th set at the l -th level of the tree. The index of the last

level m is called the depth of the tree, and is denoted by depth(TX). Any fixed level l of

the tree TX is a partition of X ,

X =
⋃
n∈Il

Xl,n .

In addition, we have the following conditions on TX :

1. The only node at the first level in the tree is the root, namely, X0,0 = X .

2. Nodes of the same level are disjoint, namely,

Xl,n1 ∩ Xl,n2 = ∅ , n1 6= n2 , n1, n2 ∈ Il . (5)

3. Edges in the tree exist only between nodes of adjacent levels. This connection between

levels defines the hierarchy of the data: a node Xl+1,i′ of the l + 1-th level that is

connected with an l -th level node Xl,i satisfies the inclusion relation Xl+1,i′ ⊂ Xl,i .
The nodes of level l+ 1 that are connected to Xl,i are termed the children of Xl,i . We

denote the set of all children of a certain node Xl,i by

child(Xl,i) = {Xl+1,i′ : Xl+1,i′ ⊂ Xl,i} . (6)

An hierarchy tree for data points on the real line is naturally given by the dyadic partition.

For domains of higher dimension, the task of partitioning the data into clusters becomes more

complicated. However, clustering algorithms became very popular and many recent studies

of data clustering can be applied to set up a hierarchy tree. For a survey see [19, 23] and

references therein.

There are a few properties which characterize a good tree for our algorithm. One desirable

property is that the partitions that are defined by the tree distinguish between different

features of the data. Namely, cluster the data in a reasonable way. Naturally, for general

data this property is hard to define rigorously, and so we avoid such a definition here; for

more details see, e.g., [13, 40]. Another desirable property is a balanced tree. Denote by |X|
the number of elements in a finite set X . Then, a tree TX = {Xl,n}n∈Ill=0,...,m is balanced if

there exist positive constants 1 < c ≤ C such that

0 ≤ | child(X0,0)| ≤ C,

c ≤ | child(Xl,n)| ≤ C, 0 < l < m, n ∈ Il,
child(Xm,n) = ∅, Xm,n 6= ∅, n ∈ Im.

(7)

The latter conditions (7) ensure that a dataset of N points leads to a tree whose depth is

7

O(logN). This tree depth is reflected in our runtime analysis (see Subsection 5.3).

Moreover, we require that the number of points in each set Xl,n is at least k , for some

fixed constant k (to be defined in Section 5), and at most γk for some small constant γ > 1.

We denote such a tree by TX = TX (k).

Throughout the paper we use the term “support of a vector” (or support of a discrete

function). This term stands for the set of data points outside of which the vector is zero. In

the context of a hierarchy tree, we often refer to vectors that are defined on a node Xl,n of

the tree. For the context of this paper, such vectors are understood as discrete functions on

the entire dataset with Xl,n as their support.

3. Problem setup

Let X = {xi}Ni=1 , xi ∈ RD , be a set of N points. In machine learning applications it is

typical to assume that xi are sampled from some manifoldM⊂ RD such that dim(M)� D .

In our construction we assume no such structure. Yet, in order to introduce some structure

into the space X , we pose two requirements. First, we require that the set X is associated

with a kernel function K : RD × RD → R+ , and thus with the graph structure induced by

K (see Subsection 2.1). This would allow us to define the graph Laplacian over subsets of

X . The second requirement is that X has an associated tree structure (see Subsection 2.3).

Under these assumptions, we are looking for an orthonormal basis defined on the set X ,

that is we are looking for N functions

{φn}Nn=1, φn : X → R,

such that

〈φn, φm〉 = δn,m,

where δn,m is the Kronecker delta. We use the standard Euclidean inner product

〈f, g〉 =
∑
x∈X

f(x)g(x), ∀f, g : X → R. (8)

Obviously, a trivial solution to this problem is to set φi to be the indicator function on the

point xi . This basis is excellent for representing very localized functions, that is, functions

that are nonzero on only small subsets of X , but requires many coefficients for representing

any other function.

We have already mentioned in Section 1 two other possible bases, namely the eigenvectors

of the graph Laplacian and the Haar basis. These two bases represent two extremes. The

eigenvectors of the graph Laplacian, under appropriate assumptions, can be shown to give

8

rise to sparse representations of smooth functions. On the other hand, the Haar basis, whose

most elements have compact support (they are nonzero on small subsets of the data points),

is not well suited for representing smooth functions, but represents sparsely functions with

local phenomena such as jumps or oscillations (as we show in Section 7). In addition, unlike

the eigenvectors of the graph Laplacian, the Haar basis has a fast transform with complexity

of O(N logN). These two solutions illustrate the well known trade-off from the classical

theory of wavelets, between smooth representation and compact support, e.g., [18, Chapter

7]. We aim to design a basis where the trade-off between localization and smoothness of its

elements can be controlled.

Thus, when designing a basis for the set X , we require the following. First, the construc-

tion must be applicable in cases where D (the dimension of each point in X) is very large.

Second, it should allow for a sparse representation of a large family of functions. And third,

it must have a fast and numerically stable algorithm.

We propose a family of bases parameterized by a single parameter 1 ≤ k ≤ N , which

controls the localization of the elements of the basis, that is, how many elements of the basis

have compact support. In our family of bases, the Haar basis and the basis of the graph

Laplacian’s eigenvectors are the two extreme members, corresponding to the values k = 1

and k = N , respectively. In other words, our construction defines a transition between the

Haar and the Laplacian bases.

4. Informal description of the construction

In this section we give an informal description of our construction to explain the intuition

behind it. The full details will be given in Section 5.

Let us consider a toy example, with a dataset X consisting of N = 17 equally spaced

points over the interval [0, 1], that is xj = (j−1)/N , j = 1, . . . , N . Points sampled from the

real line are well-ordered and we can use, for example, the dyadic partition over our interval

to define a tree partition. We start by choosing the parameter k = 4. This choice determines

that each node of the tree partition consists of at least 4 data points. Thus, we get the tree

partition as appears in Figure 1.

Our construction consists of two phases: defining the sequence of approximation spaces

(2) and orthogonalizing them to satisfy (4).

The first phase begins by defining V0 as the span of the first k = 4 eigenvectors of

the graph Laplacian of the data points x1, . . . , x17 (see Algorithm 1). Recall that the first

eigenvector is always the constant vector, which in our case is 1/
√

17(1, . . . , 1)T , and therefore

is always part of V0 , regardless of the value of k . We denote the eigenvectors that comprise

V0 by v1, . . . , v4 and present them in Figure 2. Clearly, dim(V0) = 4. The MRA structure (4)

9

X0,0 = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17}

X1,0 = {x1, x2, x3, x4, x5, x6, x7, x8, x9}

X2,0 = {x1, x2, x3, x4, x5} X2,1 = {x6, x7, x8, x9}

X1,1 = {x10, x11, x12, x13, x14, x15, x16, x17}

X2,2 = {x14, x15, x16, x17} X2,3 = {x10, x11, x12, x13}

Figure 1: Tree partition for our N = 17 example, based on the dyadic partition.

suggests that the basis of V0 is part of the orthogonal basis. However, these vectors are not

orthogonal and thus we will orthogonalize them later.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

v
1

v
2

v
3

v
4

Figure 2: The basis of V0 .

To define the next approximation space, V1 , we use a restriction operator. This operator

takes as an input a vector and a set, and zeros the coordinates of the vector outside the set.

At this point we use the partition of the data points given by the first level of the hierarchy

tree, that is, the sets X1,0 and X1,1 , and restrict each of the vectors of V0 to these two sets.

Restricting V0 to X1,0 results in 4 vectors, which are depicted in Figure 3(a), and restricting

it to X1,1 results in another 4 vectors, shown in Figure 3(b). The two sets of 4 vectors are

mutually orthogonal, as the sets X1,0 and X1,1 are disjoint. This gives a total of 8 vectors

spanning V1 . It is clear that the space V1 contains the space V0 . In our example, one can

easily verify numerically that the restricted vectors, on each set, are linearly independent,

10

and consequently the space V1 satisfies dim(V1) = 8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

restricted v
1

restricted v
2

restricted v
3

restricted v
4

(a) V0 after restriction to X1,0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

restricted v
1

restricted v
2

restricted v
3

restricted v
4

(b) V0 after restriction to X1,1

Figure 3: The basis of V1 .

To construct the next approximation space V2 , we observe that each of the subsets X1,0

and X1,1 has two children nodes in the given tree partition (see Figure 1); the children

of X1,0 are X2,0 and X2,1 and the children of X1,1 are X2,2 and X2,3 . Therefore, we can

repeat the procedure used to construct V1 for V2 by restricting the vectors of V1 to the sets

X2,0, . . . ,X2,3 . Restricting a given vector on a set and then again on its subset is equivalent to

restricting the original vector to the subset. Therefore, to avoid introducing excess notation

in this example, we consider the second procedure of restriction as restricting the vectors of

V0 to the sets X2,0, . . . ,X2,3 . The restriction of the 4 vectors of V0 to the 4 sets X2,0, . . . ,X2,3

results in 16 vectors whose union is defined as V2 . Clearly, the relation V0 ⊂ V1 ⊂ V2 holds.

The vectors of V2 are given in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(a) Restriction to X2,0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(b) Restriction to X2,1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(c) Restriction to X2,2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(d) Restriction to X2,3

Figure 4: The vectors of V2 that are generated by restriction to X2,0, . . . ,X2,3 .

Constructing the nested approximation spaces (2) solely by restriction leads to two prob-

lems. First, the last approximation space, defined on the leafs of the tree, namely V2 in our

case, may not have enough vectors to define a basis. In our example, the restriction results

in only 16 vectors in V2 , defined on X2,0, . . . ,X2,3 , while the last approximation space must

11

form a basis, due to (2) and as described in Subsection 2.2. In other words, it must have

N = 17 independent vectors. Second, repeating the restriction may lead to linearly depen-

dent vectors or nearly dependent vectors (for more details on numerical dependency see e.g.,

[25, Chapter 5]).

To overcome these problems, generally caused by an insufficient number of independent

vectors in the approximation spaces, we construct local graph Laplacians on each of the sets

defined by the tree and compute their first eigenvectors. These eigenvectors are added to

the sets of restricted vectors to assure two conditions. The first is that for any set in the

hierarchy tree, which is not a leaf, there are exactly k = 4 independent vectors that have

this set as their support. In our example, the sets X0,0,X1,0 and X1,1 satisfy this condition

using only their restricted vectors, and thus, no local graph Laplacian is needed. The second

condition is that the last approximation space forms a basis, or equivalently, the number of

independent vectors in each leaf is equal to the number of data points in the leaf. In our

example, the leaf nodes X2,1,X2,2 and X2,3 satisfy this condition as the vectors restricted

to each of these sets are linearly independent. However, X2,0 does not satisfy this second

condition. For X2,0 an additional independent vector is required since restriction results in

4 vectors while X2,0 has 5 data points and so requires 5 independent vectors. Therefore,

we construct the graph Laplacian on X2,0 and add its first eigenvector that is independent

with respect to the restricted vectors, that is, the second eigenvector. The restricted vectors

and the additional local eigenvector are presented in Figure 5. These vectors ensure that

dim(V2) = N = 17 as required.

The fact that we add to X2,0 the second eigenvector and not the first is not a coincidence,

and it is because the first eigenvector (over any set of points) is always the constant vector.

As a result, on one hand, the constant vector is an element of V0 , regardless the value of k .

On the other hand, for any subset Xj,n of the hierarchy tree, the restriction of the constant

vector (which is the characteristic function of Xj,n) is always an element of Vj . The meaning

of this observation is that adding the first eigenvector of the local graph Laplacian, defined

on Xj,n , to Vj does not increase dim(Vj). That is to say, the relevant set of eigenvectors to

add to Vj always starts with the second eigenvector of the local graph Laplacian.

Once the approximation spaces that satisfy (2) have been constructed, we need to obtain

the complement spaces Wj from (3). This is the second phase of our algorithm. In our

example, we have to calculate the complement spaces W0 and W1 that satisfy V0⊕W0 = V1 ,

where V0⊥W0 , and V1 ⊕W1 = V2 , where V1⊥W1 .

The structure of the MRA, given in (4), dramatically reduces the complexity of calculating

the complement spaces Wj due to two important principles. First, as described in Subsection

2.2, there is no need to directly orthogonalize two different complement spaces Wj1 and Wj2

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

restricted v
1

restricted v
2

restricted v
3

restricted v
4

local eigenvector

Figure 5: The vectors of V2 that are nonzero on X2,0 = {x1, . . . , x5} . These vectors are linearly independent
and derived from the restriction of the four vectors of V0 , and supplemented by the (second) eigenvector of
the local graph Laplacian, defined on X2,0 .

with j1 6= j2 . For instance, in our example, we calculate W0 using V0 and V1 without having

to consider W1 . In other words, it is guaranteed that W0 will automatically be orthogonal

to W1 . The second principle is local orthogonalization. Namely, due to the disjoint sets,

defined by each level of the hierarchy tree partition, we only need to orthogonalize vectors

that are defined on the same set, as the other ones are automatically orthogonal.

An orthogonalization process applied to sparse vectors typically does not preserve their

sparsity. Consequently, the supports of the vectors (the subsets of the data where outside

of these subsets the vectors are zero) of the complement spaces are determined as following.

The vectors of W1 have the same support as vectors of V1 , that is X1,0 or X1,1 . Moreover,

vectors from W0 are always supported on the entire dataset X0,0 , meaning they are global.

These observations are true in the general case as well, that is, vectors of W0 are always

globally supported and the vectors of Wj have the same support as the vectors of Vj .

In our example, the basis we get is given by V0 ⊕W0 ⊕W1 . It consist of 17 vectors –

4 vectors of V0 (after orthogonalization), shown in Figure 6(a), 4 vectors of W0 , shown in

Figure 6(b), and 9 vectors of W1 , shown in Figure 7. The support of the vectors in W1 ,

which is roughly half of the data, is clearly noticed.

In general, the resulting basis for a given (small enough) k consists of N orthogonal

vectors, where N − k of them are orthogonal to the first k eigenvectors of the global graph

Laplacian and N − 2k of them have support that is smaller than the entire data, which

depends on the hierarchy tree.

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

first

second

third

fourth

(a) V0 after orthogonalization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

first

second

third

fourth

(b) W0

Figure 6: The vectors of V0 and W0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

first

second

third

fourth

fifth

(a) Vectors of W1 having support X1,0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

first

second

third

fourth

(b) Vectors of W1 having support X1,1

Figure 7: The vectors of W1 . The supports correspond to X1,0 and X1,1 of the hierarchy tree (see Figure
1).

5. Detailed description of the construction

The input to the construction of the Laplacian multiwavelets (LMW) consists of N dis-

tinct points X = {xi}Ni=1 , a positive integer 1 ≤ k ≤ N , their associated hierarchy tree

TX (k), and an affinity kernel or metric. We will construct an orthonormal basis for the

N -dimensional space of functions defined on X . Inspired by [2, 15], we require the basis to

satisfy two fundamental properties:

1. All but k basis vectors have k “generalized vanishing moments”, that is, they are

orthogonal to the first k eigenvectors of the graph Laplacian on X . The notion of

generalized vanishing moments will be defined and explained in Subsection 6.1.

2. All but O(k) basis vectors have small support (that is, they are nonzero on a small set

14

of data points). The exact number of such vectors and their support size are determined

by TX (k), as will be explained in Subsections 5.1–5.2.

As described in Section 4, the construction consists of two phases, described in the fol-

lowing subsections.

5.1. Phase one - nested approximation spaces

We follow the framework of MRA (see Subsection 2.2). Accordingly, in the first phase we

construct the nested approximation spaces (2).

The first step is to define the first approximation space V0 . This space is important since

it determines the generalized vanishing moments property; the MRA conditions (3) and (4)

imply that every other vector in the basis is orthogonal to the elements of V0 .

Henceforth, in this section, with a slight abuse of notation, we denote by Vj a matrix

whose columns span the approximation space Vj (see also Subsection 2.2). Now, based on

Algorithm 1, that extracts the first eigenvectors of the graph Laplacian (GLE), we define V0 =

GLE(X , k), namely, V0 is an N × k matrix, whose columns are the eigenvectors computed

by Algorithm 1. Those eigenvectors are assumed to be ordered in increasing order of the

eigenvalues of the graph Laplacian, starting with the smallest zero eigenvalue. Therefore, the

first column of V0 is always the constant vector 1√
N

(1, . . . , 1)T ∈ RN . Note that the columns

of V0 are not orthogonal with respect to (8), thereby we will later orthogonalize them.

Next, we recursively define the approximation space Vj , j ≥ 1, based on Vj−1 and the

hierarchy tree TX (k) (see subsection 2.3). The space Vj−1 is defined to be the matrix whose

columns are the union of the columns of Vj−1,n , n ∈ Ij−1 . The columns of each matrix

Vj−1,n are vectors of length N that are zero outside Xj−1,n . This structure of Vj−1 and

Vj enables us to reduce the problem of defining Vj to the following one: given a node in

the tree (or equivalently a set of data points) Xj−1,n∗ , how to define Vj,n for j, n such that

Xj,n ∈ child(Xj−1,n∗), based on the vectors of Vj−1,n∗ .

The recurrence considered in the previous paragraph starts with the space V0 , whose

columns are globally supported, to wit, they have the entire dataset X0,0 as their support.

The set X0,0 is considered as the 0-level of the hierarchy tree.

Before proceeding to the general case, consider the special case where Xj−1,n∗ is a leaf (has

no children in the hierarchy tree). In such a case, all the vectors of Vj−1,n∗ are automatically

inherited to Vj . In addition, for consistency with our recursive definition, we regard Xj−1,n∗

as part of any j∗ -level of the tree for j∗ ≥ j .

For the general case, where Xj−1,n∗ is not a leaf, the basic requirement on the dimension

15

of each Vj,n , where Xj,n ∈ child(Xj−1,n∗), is

dim(Vj,n) =

|Xj,n| if Xj,n is a leaf ,

k otherwise.
(9)

Now, we define Vj,n using a restriction operator, that restricts functions to the subset Xj,n .

For any u ∈ RN and Xl,n ∈ TX (k), we define the restriction of u to Xl,n as RXl,nu where

RXl,n is an N ×N diagonal matrix given by

(
RXl,n

)
p,q

=

1 if p = q and xp ∈ Xl,n,

0 otherwise.
(10)

For example, to define V1 , we apply to all the vectors of V0 the operators (10), with l = 1

and n ∈ I1 . In other words, we restrict each of the first k eigenvectors of the graph Laplacian

on X0,0 to the sets X1,n , n ∈ I1 , of the hierarchy tree TX (k). The result of applying RX1,n

on V0 is a sparse matrix V1,n of size N × k with at most |X1,n| × k nonzeros.

There are two main advantages to using restriction. First, it guarantees that Vj−1 ⊂ Vj , as

required in (2). Second, it generates sparse matrices, with vectors that have known support.

Nevertheless, the restriction by itself is not sufficient to construct Vj since the requirement

(9) may be violated. The reason for this is two-folded; first, restriction of linearly independent

vectors may result in vectors are dependent. Second, if Xj,n ∈ child(Xj−1,n∗) is a leaf, we

may need to have dim(Vj,n) > dim(Vj−1,n∗), due to (9).

In cases where the requirement (9) is violated, we construct a local graph Laplacian on

Xj,n . The first eigenvectors of the local graph Laplacian are extracted and added to Vj,n .

The number of those eigenvectors added to Vj,n is such that (9) is satisfied. Obviously, we

use only eigenvectors of the local graph Laplacian that are linearly independent of the vectors

already in Vj . Note that adding vectors to Vj preserves the relation Vj−1 ⊂ Vj . For example,

the characteristic function of Xj,n is always an element of Vj,n , generated from repeatedly

restricting the constant function of V0 . Therefore, the first eigenvector of the local graph

Laplacian is never added to Vj . See also the example of Section 4.

We remark that the eigenvectors of the local graph Laplacian are defined only on Xj,n ,

and thus, when considering them as vectors of Vj,n , we define any component outside Xj,n
to be zero. By doing so, the sparsity of the matrix Vj,n is preserved. In addition, observe

that since the sets Xj,n of the j -level are disjoint, any two vectors of two different matrices

Vj1,n and Vj2,n , with j1 6= j2 are orthogonal. Thus, we have dim(Vj) =
∑

n dim(Vj,n).

To summarize, the resulting spaces from this phase clearly satisfy (2), and for the deepest

16

(maximal) level m in the tree TX (k) we have

dim(Vm) =
∑
n∈Im

dim(Vm,n) =
∑
n∈LT

|Xm,n| = N, (11)

where LT denotes the indices of all leafs in TX (k). Furthermore, by construction, Vj,n has at

most |Xj,n| × k nonzero elements for every Xj,n which is not a leaf, and at most |Xj,n| × γk
nonzeros when Xj,n is a leaf, with a small constant γ > 1 (see Subsection 2.3). Thus, we

have O(Nk) nonzeros elements in each Vj . Note that for the case of a balanced hierarchy

tree we have m = O
(
log(N/k)

)
. Thus, in such a case we can pack the resulting vectors of

this phase in a sparse N ×N matrix containing O
(
N logN

)
nonzeros.

Algorithm 2 provides the pseudo-code for constructing the approximation spaces Vj .

We use Matlab notation for matrix concatenation and indexing. For example [A,B] is the

concatenation of A and B , and A(:, 1) stands for the first column in A . To orthogonalize

the columns of a given matrix, and to check for numerical linear dependencies of vectors,

we use an SVD procedure [25, Chapter 2]. In addition, to make all vectors of appropriate

length, we use two variants of the RXl,n matrix of (10). The first, Re
Xl,n is an N × |Xl,n|

matrix derived from RXl,n by using its |Xl,n| columns corresponding to the set of indices of

the data points xi such that xi ∈ Xl,n . This matrix is used to zero pad vectors defined on

Xl,n to be of length N . The second, Rs
Xl,n is a |Xl,n|×N matrix derived from RXl,n by using

its |Xl,n| rows corresponding to the set of indices of the data points xi such that xi ∈ Xl,n .

This matrix is used to truncate vectors to length |Xl,n| .

5.2. Phase two - fast orthogonalization

In this phase we construct the complement spaces Wj that satisfy (4) using fast orthogo-

naliztion. This fast orthogonaliztion follows from the MRA structure using two observations.

The first is that the computation of any Wj requires only Vj and the next approximation

space Vj+1 , and it is independent on any other space. In other words, the MRA structure

ensures that Wj is automatically orthogonal to Wj∗ , j
∗ 6= j . This is true since the nesting

property (2) implies that if Vj∗+1 ⊆ Vj and Wj⊥Vj then Vj∗+1⊥Wj , which together with

Wj∗ ⊆ Vj∗+1 results in Wj⊥Wj∗ for all 0 ≤ j∗ < j . The second observation is that the

calculation of any Wj can be done locally, since any two subsets at the same level of the

hierarchy tree are disjoint. Specifically, the columns of Wj span the complement space of

the columns of Vj with respect to the span of the columns of Vj+1 . However, we actually

calculate separately the complement space for each Vj,n∗ with respect to all Vj+1,n such that

Xj+1,n ∈ child(Xj,n∗). By doing so, we not only decrease the overall complexity (next to

follow), but also guarantee that any column of Wj has at the most Xj,n∗ nonzeros, just like

17

Algorithm 2 Approximation Spaces

Input: A set X = {xi}Ni=1 of data points, an integer 1 ≤ k ≤ N , and its corresponding
hierarchy tree TX (k).

Output: {Vl,n}ml=0,n∈Il .
1: V0 ← GLE(X , k)
2: V0,0ΣY ← svd(V0)
3: m← depth(TX)
4: for l = 1 to m do
5: for n ∈ Il do {Il is the set of indices of the l -th level of the tree.}
6: Vl,n ← RXl,nVl−1 {Restriction phase, see (10).}
7: if isleaf(Xl,n) then
8: k̃ ← |Xl,n|
9: else

10: k̃ ← k
11: end if
12: Ũl,n ← GLE(Xl,n, k̃) {Local Laplacian eigenvectors.}
13: XΣY ← svd(

[
Rs
Xl,nVl,n, Ũl,n

]
)

14: Vl,n ← Re
Xl,nX(:, 1 : k̃)

15: end for
16: end for

any column of Vj,n∗ . In other words, we preserve the sparsity of the matrix Vj in the matrix

Wj .

The orthogonalization process of the second phase is done iteratively using the nested

approximation spaces of the first phase. The resulting basis is extracted from the orthogo-

nalized vectors of V0 together with the orthogonal bases of Wj , j = 0, . . . ,m− 1, where m

is the index of the last approximation space Vm (see (11)). As mentioned above, the sparsity

of Vj is also preserved in Wj . Thus, the resulting basis can also be packed in a sparse N×N
matrix containing O

(
N logN

)
nonzeros.

The entire fast orthogonalization process is described in Algorithm 3.

5.3. Runtime analysis

One essential assumption for the following complexity analysis is that the given hierarchy

tree is balanced, as defined in (7). This property implies that the number of iterations in

the outer loops of Algorithms 2 and 3 (lines 4 and 2, respectively), or equivalently the tree

depth is m = O(logN). Note that C in (7) is the bound for the maximal degree of a node

in the tree and that a full binary tree satisfies c = C = 2.

We analyze each of the phases of our construction separately. We start with the analysis

of Algorithm 2 line by line. In line 1 we extract the first k eigenvectors of the graph Lapla-

cian on the data. The graph Laplacian is an N × N matrix, yet we can set up its nonzero

18

Algorithm 3 Fast Orthogonalization

Input: {Vl,n}ml=0,n∈Il (Vl,n is the output of Algorithm 2), TX (k).

Output: {Wl}m−1
l=0

1: m← depth(TX (k))
2: for l = 0 to m− 1 do
3: for n ∈ Il do {Il is the set of indices of the l -th level of TX .}
4: if not(isleaf(Xl,n)) then
5: XΣY ← svd(Rs

Xl,nVl,n)

6: for Xl+1,ñ ∈ child(Xl,n) do

7: W̃l,n ←
[
W̃l,n,

(
I −XXT

)
Rs
Xl,nVl+1,ñ

]
8: end for
9: W̃l,nΣY ← svd(W̃l,n) {Inner orthogonalization of columns.}

10: Wl,n ← Re
Xl,nW̃l,n

11: end if
12: end for
13: end for

entries in O(N) operations, using only local neighbourhoods (see Subsection 2.1). Comput-

ing the eigenvectors of the Laplacian corresponding to the first k eigenvalues is related to

the problem of sparse symmetric eigenvalues extraction [25, chapter 8]. This issue is still

an ongoing research. Generally, the time complexity of extracting the first k eigenvectors

depends on many factors, such as the separation of the eigenvalues (which is also related

to the ε parameter of the graph Laplacian), the geometry of the data points, and the de-

sired accuracy. A linear O(Nk) implementation of this procedure is suggested in [29] using

multigrid approaches. Other algorithms are variations on the Lanczos iterations [25, chapter

9]. We denote by T (N, k) the upper bound for the running time of extracting the bottom k

eigenvectors of the graph Laplacian constructed from N data points. Clearly, the complexity

of our algorithm depends on T (N, k) and hence we include it in our overall bound.

The bottom k eigenvectors of the graph Laplacian comprise V0 . These vectors are in-

dependent but not orthogonal and thus need to be orthogonalized. Line 2 computes an

orthonormal basis for V0 by applying an SVD procedure on the N × k matrix V0 . This line

requires O(Nk2) operations.

Next we analyze the complexity of lines 6-14 in Algorithm 2 for fixed n and l , that

is, for a single set Xl,n . Line 6 (the restriction) requires a total of O(|Xl,n|k) operations,

since we apply a matrix with |Xl,n| nonzero entries to k columns of Vl−1 . In line 12 we

extract the eigenvectors corresponding to the first k eigenvalues of the local graph Laplacian,

which requires T (|Xl,n|, k) operations. Lines 13 and 14 determine the vectors that span

the columns of Vl by applying an SVD procedure on a |Xl,n| × 2k matrix, which requires

19

O(|Xl,n|k2) operations. We note that a sophisticated implementation can improve this up to

O(|Xl,n|k log k) using random projections based procedures [26].

Now, given (5) and (7), we have that for a given level l the total runtime of lines 4-15 is

bounded by ∑
n∈Il

T (|Xl,n|, k) +O(k2|Xl,n|) ≤ O(k2N + T (N, k)),

and we conclude that an overall bound for the complexity of Algorithm 2 is

O(k2N + T (N, k))×m = O(k2N logN + T (N, k) logN), (12)

where usually N � k .

In the second phase, of fast orthogonalization, given in Algorithm 3, the complement

spaces (4) are calculated. We analyze the complexity of lines 5-9 in Algorithm 3 for fixed n

and l . In line 5 we use an SVD to compute an orthonormal basis for Vl,n , which requires

O(|Xl,n|k2) operations. In line 7 we project the vectors from Vl+1 with support in Xl,n onto

V ⊥l,n . The matrix X , calculated in line 5, is of size |Xl,n| × k and the matrix Vl+1,ñ is of

size |Xl+1,ñ| × k , with |Xl+1,ñ| < |Xl,n| . We omit the analysis of the case of a leaf, which

is essentially the same. Thus, the task of evaluating XTVl+1,ñ is bounded by O(|Xl,n|k2)

operations. The following (left) multiplication by X in line 7 involves the product of a

|Xl,n| × k matrix with a k × k matrix. Again, this requires O(|Xl,n|k2) operations. The

time complexity for subtracting two matrices is linear in the number of their elements. This

computation is repeated for at most C iterations (C is given in (7)). Line 9 has the same

complexity as line 5.

To conclude, under the assumption of a balanced hierarchy tree, the total complexity of

Algorithm 3 is O(k2N logN) operations, which together with (12) concludes the runtime

analysis.

To further examine the runtime of the fast orthogonalization procedure, we measure the

actual time in seconds needed to orthogonalize the nested approximation spaces for datasets

of various sizes. The data points for this experiment are distributed uniformly on the unit

cube in R3 and then normalized back to the unit sphere. We use a full binary tree based on

spectral clustering (more details in Subsection 7.1) and a fixed parameter of k = 5. Then,

we compare the running time with our theoretical bound of O(k2N logN) and present the

results in Figure 8. Indeed, it can be seen that the actual runtime agrees with our analysis.

20

200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Size of data set (N)

T
im

e
 i
n

 S
e

c
o

n
d

s

Measured runtime

Theoretical bound

Figure 8: Runtime measures of Algorithm 3 versus its theoretical bound of O(k2N logN) for different values
of N and a fixed k = 5.

6. Approximation analysis

We analyze the properties of our bases in two steps. First we recall the notion of general-

ized vanishing moments, discuss it, and derive decay rates of the expansion coefficients with

respect to elements of our basis that possess such a property. Then, we use the analogues

of Besov spaces to define the smoothness of a function on a graph, with respect to our ba-

sis. That being so, we derive the connection between that definition of smoothness and the

corresponding rate of approximation.

6.1. Generalized vanishing moments

The classical vanishing moments property of a function f over a domain Ω is defined as

the largest k ∈ N such that∫
Ω

tpf(t)dt = 0, p = 0, 1, . . . , k − 1.

Namely, f is orthogonal to all polynomials up to degree k . This definition is very natural

for several reasons. For instance, approximations with polynomials have many well-known

bounds (e.g., Taylor approximation) and the space of polynomials is shift and scale invariant.

This invariance is useful, for example, when constructing wavelets, and indeed, most classical

wavelets are defined using the scale and shift operators.

For the setting of discrete high-dimensional data, there is no natural interpretation for the

scale and shift operators. Moreover, the approximation with high-dimensional polynomials

is more complicated [20], and for data sampled from a smooth manifold, even the meaning of

21

high degree polynomials is not trivial [11]. Thus, there is a need to try to extend the concept

of vanishing moments to our setting.

Inspired by other papers such as [15], we propose to use the eigenfunctions of the Laplace-

Beltrami operator, corresponding to the smallest eigenvalues, to define a generalization of

the notion of vanishing moments. This approach has an advantage of being amenable to

discretization using the graph Laplacian.

Let X be a finite set of points, and denote by up , p = 0, 1, . . . , |X | − 1, the p−th

eigenvector (increasing eigenvalues order) of the graph Laplacian defined on X . We say that

f : X 7→ R has k (discrete) generalized vanishing moments if∑
x∈X

f(x)up(x) = 0, p = 0, 1, . . . , k − 1. (13)

We define the best approximation of a function f : X 7→ R using the first k eigenvectors

of the graph Laplacian by

Ek(f) = inf
g∈span{u0,u1,...,uk−1}

‖f − g‖. (14)

Equipped with (14) we have the following bound on the expansion coefficients in a basis

having k generalized vanishing moments.

Theorem 6.1. Let φ be an element in an orthonormal basis defined on X . Furthermore,

suppose that the basis has k generalized vanishing moments (13). Denote by J ⊂ X the

support of φ. Then, for f defined over X we have

| 〈f, φ〉 | ≤ Ek(f)
√
|J |,

where |J | is the number of elements in J .

Proof. Denote rk(f) = f −
∑k−1

i=0 〈f, ui〉ui = f − fk , that is Ek(f) = ‖rk‖ . Then, since

the basis has k generalized vanishing moments, we have 〈f, φ〉 = 〈fk + rk, φ〉 = 〈rk, φ〉 .
Therefore,

| 〈f, φ〉 | =

∣∣∣∣∣∑
x∈X

rk(x)φ(x)

∣∣∣∣∣ ≤∑
x∈J

|rk(x)φ(x)| ≤ max
x∈J
|rk(x)|

∑
x∈J

|φ(x)| .

By Hölder’s inequality we have

∑
x∈J

|φ(x)| ≤
√∑

x∈J

φ(x)2
√
|J | = ‖φ‖

√
|J |.

22

Since ‖φ‖ = 1 and maxx∈J |rk(x)| ≤ ‖rk‖ the proof follows.

Theorem 6.1 shows that the decay rate depends on two factors: the size of the support of

φ and the rate of best approximation. For the rate of best approximation we use the result

in [1], where the relation

‖∇f‖2 = 〈∆f, f〉 (15)

is used to derive

Ek(f) ≤ ‖∇f‖√
λk+1

. (16)

The bound (16) is also valid for the discrete Laplacian on graphs. The gradient ∇f of a

discrete function f can be defined as in [13, Chapter 13] such that (15) holds with respect

to the graph Laplacian.

Taking into account (16) and Theorem 6.1, we get an explicit decay rate for the expansion

coefficients of a function with a bounded gradient.

Corollary 6.1. Let φ and f be as in Theorem 6.1, where f satisfies ‖∇f‖ < M , M > 0.

Then,

| 〈f, φ〉 | ≤ M√
λk+1

√
|J |.

The bound of Corollary 6.1 is composed of three elements: M which is related to the

regularity of f on the graph, the size of the support of φ , and λ−1
k+1 where λk+1 grows

(slowly) as k increases, e.g., [14, Chapter 1]. Nevertheless, λk is ultimately bounded, and so

the decay of the coefficients depends solely on the support.

The supports of the elements of the LMW basis are defined using a hierarchy tree. As-

suming that the tree is balanced (see (7)), we have that the support |J | decays exponentially

with the levels of the tree. In this sense, this result is an analogue to the classical coefficients

decay of wavelets.

6.2. Smoothness of functions on discrete datasets

We presented the construction of orthonormal bases for the representation of functions de-

fined on discrete datasets. Next, we propose to use such a basis to measure the smoothness of

a given function. Using the theory of non-linear analysis [21], we suggest a discrete definition

of regularity and derive the relation between the function’s regularity and its approximation

rates.

For the clarity of this section, we focus on the L2 norm. However, most of the results

can be generalized to Lp , 1 < p <∞ using Minkowski’s inequality and the fact that (due to

23

Jensen’s inequality) for a function f defined on the domain I

‖f‖p = |I|
1
q
− 1
p‖f‖q,

1

q
+

1

p
= 1, p, q ∈ [1,∞].

Ideally, given a function to analyze, we hope to use only a small number of coefficients

in regions where the function is “smooth”. On other regions, we would have to use more

coefficients. The natural questions that arise are: how do we measure this smoothness for

our bases and how good is the approximation using our bases with only a partial set of the

coefficients?

Given an orthonormal basis Φ = {φj}Nj=1 , we recall the definition of its non-linear best

approximation (also known as n-term approximation)

σn(f) = min
φj1 ,...,φjn∈Φ

‖f −
n∑
i=1

〈f, φji〉φji‖ . (17)

We later use the non-linear approximation (17) in our numerical examples as well. The

characterization of this approximation can be done by considering the classical smoothness

spaces, namely Besov spaces [35].

Denote by

|f |τ =

(∑
j

| 〈f, φj〉 |τ
) 1

τ

(18)

a measure of smoothness of f in terms of a parameter τ > 0 and with respect to Φ. We

term this the τ -measure of f . It turns out [21] that for the case of orthonormal bases, the

classical Besov space can be reduced to the space

Bτ = {f | |f |τ <∞}, 0 < τ < 2.

In the classical smoothness analysis, we are especially interested in exploring how rich is

the space Bτ as τ decreases. However, this formal definition looses most of its meaning in

the discrete setting, since for N data points and a fixed τ we always have that

‖f‖ ≤ |f |τ ≤ N
1
τ
− 1

2‖f‖,

which implies that any function belongs to Bτ . Thus, to adapt the definition of Bτ to the

discrete setting we define

Bτ,M = {f | |f |τ < M and ‖f‖ = 1} , 0 < τ < 2, 1 ≤M ≤ N
1
τ
− 1

2 . (19)

24

Now, for a given function f , defined on our data points, and a fixed M , we look for the

smallest τ such that f ∈ Bτ,M . This value of τ determines the smoothness of f .

In the next theorem, we summarize the basic properties of the τ -measure, which we use

later to gain a better understanding of the discrete smoothness defined above.

Theorem 6.2. Let f be a real-valued function, defined over N data points, and assume

‖f‖ = 1. Given an orthonormal basis Φ = {φj}Nj=1 , the associated τ -measure (18) satisfies

1. Monotonicity,

|f |τ1 ≥ |f |τ2 , τ1 ≤ τ2.

2. |f |τ ≥ 1, where equality holds if and only if f ∈ Φ (that is, f is a basis function up to

a sign).

3. Given an integer s ≤ N , the maximal τ -measure for f of the form

f =
s∑
j=1

〈
f, φIj

〉
φIj , φI1 , . . . , φIs ∈ Φ,

where ‖f‖ = 1 is obtained with |
〈
f, φIj

〉
| = 1√

s
. In this case |f |τ = s

1
τ
− 1

2 .

The proof of Theorem 6.2 is given in Appendix A.

In the classical regularity of functions, one usually gets a hierarchy of smoothness classes.

For example, a twice-differentiable function is also differentiable, and a differentiable function

is continuous, so the class of twice-differentiable functions is contained in the class of differ-

entiable functions which is contained in the class of continuous functions. The monotonicity

property of Theorem 6.2 guarantees that the definition of Bτ,M also yields a hierarchy of

smoothness classes. Namely, if f ∈ Bτ1,M then f ∈ Bτ2,M for τ1 ≤ τ2 .

The third claim of Theorem 6.2 indicates that as the number s of nonzero coefficients

in the expansion of f in the basis Φ increases, the maximal value of the τ -measure may

increase as well, since it is bounded by s
1
τ
− 1

2 , with 1
τ
− 1

2
> 0, which grows with s . This

assertion also suggests that as we take functions whose energy spreads over more and more

expansion coefficients in the given basis, these functions may become less smooth according

to our definition. In particular, for a fixed M in (19), there exists at least one function for

which we may need to increase τ to satisfy s
1
τ
− 1

2 < M , namely, this function becomes less

smooth as τ decreases.

To further illustrate the latter claim, we consider an LMW basis, defined over data points

that are equally spaced on [0, 1], with parameters N = 150 and k = 8. Such a basis is

discussed in detail in Subsection 7.1 (a similar basis is also given in the informal description

of Section 4). Using this basis, we compare the τ -measure, |f |τ of (18), for three functions

25

having a different distribution of energy over their coefficients. This is presented in Figure 9.

The example is composed of the following functions. f1 is an element of the basis. Thus, by

the second claim of Theorem 6.2 it has a τ -measure of 1, which is the smallest possible. The

next two functions f2 and f3 are sampled from cos(x) and sin(10x), respectively. Recall

that the first k = 8 eigenvectors of the graph Laplacian (and thus the first k vectors of

the basis) are related to cos(2πnx), n = 0, . . . , k − 1 = 7, see e.g., [16], which results in

a sparser representation of f2 compared to that of f3 . The comparison between these two

representations is given in Figure 10, where the (sorted) absolute values of the most significant

coefficients are presented. Consequently, the τ -measure of f3 is larger than that of f2 . This

relation also demonstrates another interesting interpretation of the discrete smoothness; while

cos(x) and sin(10x) have essentially the same smoothness in the classical sense, their samples

may define discrete functions with different smoothness with respect to a given basis.

0.5 0.75 1 1.25 1.5
0

10

20

30

40

50

60

τ

|f|
τ

f
1

f
2

f
3

Figure 9: The τ -measure (18) of three different functions, with respect to an LMW basis with parameters
N = 150 and k = 8, for data points equally spaced on [0, 1]. The functions f1, f2 and f3 are an element
from the LMW basis, cos(x), and sin(10x), respectively.

Similar to the classical case, we can also obtain a Jackson type inequality for the non-linear

approximation in terms of the discrete smoothness spaces Bτ,M .

Theorem 6.3. Let f ∈ Bτ,M , 0 < τ < 2. Then,

σn(f) ≤ |f |τ
nα
≤ M

nα
,

where α = 1
τ
− 1

2
.

Proof. Let the expansion coefficients of f be ordered in a non-increasing order, that is

|
〈
f, φIj+1

〉
| ≤ |

〈
f, φIj

〉
|, 1 ≤ j ≤ N − 1.

26

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

cos(x)

sin(10x)

Figure 10: The absolute values of the most significant expansion coefficients of cos(x) and sin(10x), with
respect to an LMW basis with parameters N = 150 and k = 8, for data points equally spaced on [0, 1].

Then,

σn(f) =

(
N∑

j=n+1

〈
f, φIj

〉2

) 1
2

≤

(
| 〈f, φIn〉 |2−τ

N∑
j=n+1

|
〈
f, φIj

〉
|τ
) 1

2

= | 〈f, φIn〉 |1−
τ
2

(
N∑

j=n+1

|
〈
f, φIj

〉
|τ
) 1

2

= n−α

(
n| 〈f, φIn〉 |τ

) 1
τ
− 1

2
(

N∑
j=n+1

|
〈
f, φIj

〉
|τ
) 1

2

.

From [34], for any 0 < α ≤ s and a, b > 0 we have aαbs−α ≤ (a + b)s . Thus, using the

monotonicity of the expansion coefficients,

σn(f) ≤ n−α

(
n| 〈f, φIn〉 |τ +

N∑
j=n+1

|
〈
f, φIj

〉
|τ
) 1

τ

≤ n−α|f |τ .

Theorem 6.3 directly links the regularity of a function, given in terms of the basis, to

the best n-term approximation. The opposite direction of Theorem 6.3 is a Bernstein type

estimation, given by

|f |τ ≤ nα‖f‖.

27

The proof is merely an application of Hölder’s inequality, since ‖fg‖r ≤ ‖f‖p‖g‖q where
1
p

+ 1
q

= 1
r
, 0 < r < 2, 0 < p, q and r < p, q . This completes our discrete analogue for the

classical characterization of the non-linear n-term approximation.

One aspect of Theorem 6.3 is that knowing a bound on the coefficients of a given function,

immediately provides a bound on its best n-term approximation. For example, assume

| 〈f, φj〉 | ≤ ε , for all 1 ≤ j ≤ N . Then

|f |ττ =
N∑
j=1

| 〈f, φj〉 |τ ≤ ετN.

In other words, f ∈ B
τ,εN

1
τ

and thus Theorem 6.3 guarantees that

σn(f) ≤ εN
1
τ

nα
.

7. Numerical examples

In this section we demonstrate numerically our construction and its properties using

various examples. For these examples we use the kernel K(x, y) = e−x−y
2/2ε , where ε is

chosen by the criterion described in [16].

7.1. Approximating functions

Our class of bases includes two important cases with extreme values of k . The first is the

Haar basis where k = 1. In this case, all nested approximation spaces (2) consist only of the

constant vector. The second case is the basis that corresponds to k = N , where the nested

approximation spaces (2) include only V0 . In this case V0 comprises of all the eigenvectors

of the graph Laplacian on the data. We call the latter the graph Laplacian basis.

In this subsection we explore the representation of functions using four different bases

from our family of bases - the Haar basis, the graph Laplacian basis, and two intermediate

bases where 1 < k < N . The Haar basis represents well functions with highly localized

changes (e.g., the delta function). However, it typically doesn’t efficiently represent other

signals having more global behaviour. On the other hand, the graph Laplacian basis, which

is a generalization of the Fourier basis for general domains, is known to represent poorly

functions with local oscillations or “jumps”.

We study the different representations using three synthetic datasets. The first comprises

of equally spaced points on [0, 1], the second consists of points randomly distributed over the

unit sphere S2 ⊂ R3 , and the third consists of points in R1000 , which lie on an intrinsically

low-dimensional manifold.

28

Case 1 - equally spaced points on [0, 1]

For the first set of examples, we use 150 equally spaced points on [0, 1], that is the set

X = {xj}Nj=1, xj = (j − 1)/N, N = 150. (20)

We choose three functions with different properties: a smooth function, a function with large

local oscillations, and a smooth function with a simple jump discontinuity. In each case we

present the function and the relative error (L2 norm) associated with the best non-linear

approximation (17) (where we use the largest coefficients of the representation) versus the

number of coefficients in use.

Our intermediate cases in this example are k = 8 and k = 15, corresponding to 5%

and 10% of the dataset size N , respectively. As the tree partition we simply use the dyadic

partition over [0, 1]. The result is a full binary tree TX (k). Recall that the value of the

parameter k determines the depth of the tree TX (k) (see Subsection 2.3). Thus, higher

values of k lead to bases with many non-localized elements, which become inefficient for

practical use with large datasets. To demonstrate the last claim, we present in Figure 11 the

nonzero entries of 4 matrices corresponding to 4 bases with different values of k . In these

matrices, each column corresponds to one basis vector. Since the tree TX (k) is binary, all

but the first 2k columns are zero on at least half of the data. We can clearly see that the

sparsity of these matrices decreases as k grows. Note that for k = N the matrix is full, that

is 22, 500 nonzero entries, and for values just above k = 15, which is 10% of N , the matrix

has more nonzero elements than zeros.

0 50 100 150

0

50

100

150

nonzeros=1244

(a) k = 1 (Haar)

0 50 100 150

0

50

100

150

nonzeros=6414

(b) k = 8

0 50 100 150

0

50

100

150

nonzeros=10126

(c) k = 15

0 50 100 150

0

50

100

150

nonzeros=15750

(d) k = 30

Figure 11: The sparsity of the matrices corresponding to different LMW bases defined on X of (20). The

elements of each basis are given as columns.

Our first numerical example is of the representation of the smooth function sin(4x). This

function is presented in Figure 12(a). The relative approximation errors using a varying

number of expansion coefficients are displayed in Figure 12(b). As expected, for a smooth

29

function, the graph Laplacian basis gives the fastest decay of the error. However, despite the

small support of most of the elements in the bases corresponding to the intermediate cases

k = 8 and k = 15, the representation using these bases is almost as sparse as in the graph

Laplacian basis.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(a) The function sin(4x)

20 40 60 80 100 120 140

0.05

0.1

0.15

0.2

Number of coefficients

R
e

la
ti
v
e

 L
2

 E
rr

o
r

Haar (k=1)
k=8
k=15
Laplacian (k=N)

(b) L2 relative error in different bases

Figure 12: Representing a smooth function.

In the second one-dimensional example, we use samples from the function

g(x) = sin

(
1

0.01 + 2x

)
, (21)

shown in Figure 13(a). This function oscillates rapidly near zero. Thus, we expect the local

bases to give better results in terms of the relative approximation error. As illustrated in

Figure 13(b), the graph Laplacian basis provides the poorest approximation. As expected,

the more localized bases exhibit better results. The Haar basis starts well with only a few

coefficients in use, but then the intermediate case of k = 8 achieves the lowest approximation

error.

The last one-dimensional example is the piecewise smooth function

h(x) =

sin(4x) if x ∈ [0, 1
2
],

− sin(4x) if x ∈ (1
2
, 1],

(22)

presented in Figure 14(a). The relative errors are illustrated in Figure 14(b). Here, both

the k = 8 and k = 15 bases preform significantly better than the others. Note that in this

example the jump discontinuity is aligned with the dyadic partition. In the next scenario

30

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(a) The function g(x) from
(21)

20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

Number of coefficients

R
e
la

ti
v
e
 L

2
 E

rr
o
r

Haar (k=1)
k=8
k=15
Laplacian (k=N)

(b) L2 relative error in different bases

Figure 13: Representing an oscillatory function.

we will examine a case where the partition of the data is misaligned with the jump in the

function.

Case 2 - data points randomly distributed on S2

We choose 1000 data points in R3 , uniformly distributed on the unit sphere S2 . As in

the one-dimensional case, we compare the graph Laplacian and Haar bases, defined on S2 ,

with other LMW bases. As shown in the previous examples, lower values of k provide better

results than higher values of k . Thus, in the following set of experiments, we set k to be 1%

and 5% of N , namely, k = 10 and k = 50.

Henceforth, unless otherwise stated, for each dataset we construct a binary tree by using

a recursive spectral partition – at each node of the tree we construct the graph Laplacian on

the points in that node, compute the second eigenvector of the graph Laplacian, and partition

the points into the left and right children at the median value of the eigenvector [40, 43].

We study four functions defined on the sphere. Two smooth functions, a function with

a region of high oscillations, and a quadratic function restricted to two sub-domains on the

sphere. The latter is of special interest because we choose one sub-domain not to coincide

with any sub-domain of the hierarchy tree. This allows to demonstrate the effect of the

hierarchy tree on our representation.

Consider the Gaussian function,

G(x) = exp(−‖x− x0‖2) , (23)

31

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(a) The function h(x) from
(22)

20 40 60 80 100 120 140

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of coefficients

R
e

la
ti
v
e

 L
2

 E
rr

o
r

Haar (k=1)
k=8
k=15
Laplacian (k=N)

(b) L2 relative error in different bases

Figure 14: Representing a piecewise smooth function.

with a fixed x0 ∈ S2 . This function is presented in Figure 15(a) with its relative approxi-

mation errors in Figure 15(b). As G(x) is smooth and has global support, the Haar basis

performs poorly, while the graph Laplacian basis gives the best results. The intermediate

cases tend to behave as the graph Laplacian in this example. Another example for the

representation of a smooth function on the sphere is given by the function

C(x) = ‖ cos(2x)‖, (24)

where the cosine is calculated componentwise. The function and its approximation errors

are shown in Figures 16(a) and 16(b), respectively. The intermediate cases clearly show the

significance of the generalized vanishing moments in this case, as the errors decrease as k

grows.

In the next examples, we use functions with some local behaviour. In Figures 17(a) and

17(b) we present the results for the function

R(x) = sin
(
(xTx0 + 0.2)−1

)
, (25)

where x0 is a fixed point on the sphere. This function has global support, however, it

oscillates rapidly in regions on the sphere where x is close to being orthogonal to x0 . One

can observe the advantage of bases having elements with local support over the basis of the

graph Laplacian. For this example, the best choice for the parameter k is the intermediate

32

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) The function G(x) from
(23)

200 400 600 800
0

0.05

0.1

0.15

0.2

Number of coefficients

R
e

la
ti
v
e

 L
2

 E
rr

o
r

Haar (k=1)
k=10
k=50
Laplacian (k=N)

(b) L2 relative error in different bases

Figure 15: Representing a Gaussian function on the sphere.

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

0.8

0.9

1

1.1

1.2

1.3

1.4

(a) The function C(x) from
(24)

200 400 600 800
0

0.05

0.1

Number of coefficients

R
e

la
ti
v
e

 L
2

 E
rr

o
r

Haar (k=1)
k=10
k=50
Laplacian (k=N)

(b) L2 relative error in different bases

Figure 16: Representing a smooth function on the sphere.

33

−0.5

0

0.5

−0.5
0

0.5

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) The function R(x) from
(25)

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Number of coefficients
R

e
la

ti
v
e

 L
2

 E
rr

o
r

Haar (k=1)
k=10
k=50
Laplacian (k=N)

(b) L2 relative error in different bases

Figure 17: Representing a rapidly changing function on the sphere.

value of k = 10.

A natural question is what is the effect of using a “bad” hierarchy tree. In some sense,

wrong partitions are the Achilles heel of wavelets theory. The next simple example illustrates

this phenomenon in our setting. We use a quadratic function of the form xTAx + xT b

restricted to two different subsets of 250 data points (25% of the data). The first subset,

denoted by A1 , coincides with one of the subsets in the hierarchy tree. The second subset,

denoted by A2 , consists of the 250 data points that are closest to a fixed x0 ∈ S2 . This

subset does not coincide with any subset in the hierarchy tree. The function and its two

restrictions are presented in Figure 18. The approximation results are presented in Figure

19. Obviously, the graph Laplacian is not affected by the hierarchy tree, and thus produces

the same results when restricting the function to either A1 or A2 . For the subset A1 , the

three bases with k = 1, 10, 50 provide almost zero error when using about 200 coefficients,

where the k = 10 basis exhibits the lowest approximation error. The Haar basis also exhibits

low approximation errors but reveals again its difficulties in representing smooth functions

(even on a local scale). For the subset A2 , we get error rates which seem to grow as k

increases. Both k = 10 and k = 1 bases show almost identical best results.

Case 3 - large dataset on R1000

We next apply the algorithm to a large dataset consisting of N = 100000 data points in

R1000 . To introduce structure into this high-dimensional example, we design the samples to

have low intrinsic dimension. Specifically, we take N points uniformly distributed on S2 ,

34

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Original function

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

 0

0.5

1

1.5

2

2.5

(b) Restriction to A1

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

 0

0.5

1

1.5

2

2.5

3

3.5

(c) Restriction to A2

Figure 18: A quadratic function on the sphere (a) and its two restrictions to the subsets (b) A1 , which
coincides with one of the subsets of the tree, and (c) A2 , which is not compatible with the tree partition.

and use them as coordinates in a coordinate system whose axes are three random orthogonal

vectors in R1000 .

We compare the Haar basis with an intermediate one. As shown in previous examples, the

value of k can be relatively small compared to N and still have an advantage over the Haar

basis in representing smooth functions. Therefore, we choose k = 15. The graph Laplacian

is constructed based on 30 nearest neighbours using a fast k -NN algorithm [28]. The kernel

is K(x, y) = e−x−y
2/2ε , where ε is chosen by the criterion described in [16].

We consider two test functions on this data. The first is a smooth function where the value

at each point equals the point’s first intrinsic coordinate (1 out of 3). The error comparison

is presented in Figure 20(a), where the k = 15 basis clearly outperforms the Haar basis.

Note that using the k = 15 basis for that smooth function yields about 1% relative error

using only 50 largest coefficients, that are merely 0.05% of the coefficients. The second test

function is the function R(x) of (25), applied over the coordinates of the data, which contains

a region of high oscillations (see above). The results are shown in Figure 20(b). The Haar

basis exhibits better results up to 20 coefficients, after which the k = 15 basis outperforms

it quickly, reaching an error of less than 2%.

Note that a few computational considerations become significant for such a large dataset.

On one hand, a large value of k leads to a less sparse basis matrix (see Figure 11) and thus it

increases the storage and the complexity of any calculation done with this basis. Furthermore,

the runtime also grows due to the many eigenvectors calculated during the construction. On

the other hand, a small value of the parameter k results in a deeper and larger tree (almost

twice as large for Haar than for k = 15). This requires more storage space and also increases

the runtime as the number of approximation levels grows.

35

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

Number of coefficients

R
e

la
ti
v
e

 L
2

 E
rr

o
r

Haar (k=1)
k=10
k=50
Laplacian (k=N)

(a) Results on restriction A1

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

Number of coefficients

R
e

la
ti
v
e

 L
2

 E
rr

o
r

Haar (k=1)
k=10
k=50
Laplacian (k=N)

(b) Results on restriction A2

Figure 19: The relative approximation error in representing a quadratic function on the sphere using two
different trees: (a) the support of the function corresponds to one of the subsets of the tree partition (subset
A1) (b) the support of the function is not compatible with the tree partition (subset A2). The results show
the effect of the tree partition for bases with k < N .

7.2. Compression of hyperspectral images

Next, we demonstrate our algorithm on a real dataset of a hyperspectral image. Hy-

perspectral data analysis has become increasingly popular in the last few years due to the

growing number of applications that produce or use such data, such as earth monitoring

applications.

A hyperspectral image is an image where each pixel is associated with a vector of mea-

surements at various wavelengths [12]. The rationale behind measuring many wavelengths

is that different materials have different signatures at different wavelengths. Typically, this

type of data is collected by a remote sensing platform such as a satellite or an aircraft.

The data which we use to construct our bases consist of a hyperspectral image of the

visible spectral region. The function defined on the image is the surface temperature at each

pixel. Our goal is to compress the image of the surface temperature which was derived from

sensors in the non-visible LWIR (long-wave infrared) spectral region.

The image data for our example consists of 400 rows and 400 columns, with 12 different

wavelengths per pixel. In other words, the input dataset for our algorithm includes 160, 000

vectors in R12 . The 12 different wavelength measurements are presented as images in Figure

21.

As a conclusion from the large dataset example in the previous subsection we choose

the parameter k = 20. We use a hierarchy tree partition based on spectral clustering,

and the graph Laplacian is constructed based on 30 nearest neighbours using a fast k -NN

algorithm [28] and with the kernel K(x, y) = e−x−y
2/2ε , where ε is chosen by the criterion

36

20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

Number of coefficients

R
e
la

ti
v
e
 L

2
 E

rr
o
r

Haar (k=1)

k=15

(a) Representing a smooth function

20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

Number of coefficients

R
e
la

ti
v
e
 L

2
 E

rr
o
r

Haar (k=1)

k=15

(b) Representing a rapidly changing function

Figure 20: The relative approximation error in representing two functions defined on a low-dimensional
manifold embedded in R1000 .

Figure 21: The 12 wavelength bands of the input hyperspectral image.

described in [16]. The algorithm was implemented in Matlab and was executed on a dual

Intel Xeon(R) CPU X5560 @ 2.8GHz with 96GB of memory.

We compare our compression results with two (non-adaptive) image compression schemes.

The first is the discrete cosine transform (DCT) and the second is the JPEG2000 compression.

For compression using our basis we apply the best non-linear approximation (17).

The full image of surface temperature appears in Figure 22. The temperature was rescaled

linearly to the range [0, 255] for ease of manipulation. One can easily spot the urban islands

which appear as high valued points. Other areas consist of a variety of surfaces including

forests, roads and open fields.

The compression results are presented in Figures 23–25. In Figure 23 we show the com-

pression using 0.125% of the coefficients, that is, 200 coefficients. The LMW based compres-

37

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400 0

50

100

150

200

250

Figure 22: The image of surface temperature, acquired by long-wave infrared sensors. High values indicate
warm locations and lower values indicate colder locations.

sion is shown in Figure 23(a), the DCT in Figure 23(b), and the JPEG2000 in Figure 23(c).

As can be seen from these figures, almost none of the original image features are preserved

when using the non-adaptive compressions.

Another comparison is shown in Figure 24 for the LMW and JPEG2000 compressions,

where we use 0.5% of coefficients, that is, 800 expansion coefficients. To highlight the

differences, we present the results for a small part of the image.

To further quantify the results of the LMW based compression, we present the accumu-

lated energy (L2 norm) of the non-linear approximation, that is, the ratio between the energy

of the compressed image and the original image, as a function of the number of coefficients

we use. This measure complements the relative error measure of our approximation. These

two measures are displayed in Figure 25 and indicate that compression using less than 1%

of the coefficients retains up to 90% of the total energy with a relative error of about 8%.

The code of all examples, including the full implementation of the LMW algorithm and

the scripts for producing the examples, is available at the author’s website www.tau.ac.il/

~nirsharo.

8. Conclusions and discussion

We presented a construction of a family of bases for representing functions defined on dis-

crete scattered data. The bases of this family are characterized by a single integer parameter,

which corresponds to the number of generalized vanishing moments on one hand, and deter-

mines the locality of the elements of the bases on the other hand. This parameter provides

the flexibility of choosing the most appropriate basis to use, depending on the application.

38

www.tau.ac.il/~nirsharo
www.tau.ac.il/~nirsharo

100 200 300 400

50

100

150

200

250

300

350

400 0

50

100

150

200

250

(a) LMW based compression

100 200 300 400

50

100

150

200

250

300

350

400 0

50

100

150

200

250

(b) DCT

100 200 300 400

50

100

150

200

250

300

350

400

50

100

150

200

(c) JPEG2000

Figure 23: Compression using 0.125% of the coefficients.

We proved the connection between generalized vanishing moments and the decay of the

expansion coefficients, and demonstrated it with numerical examples. In addition, we showed

that multiscale elements (having varying support sizes) lead to a fast transform and enable

to apply our construction to large datasets. Specifically, we illustrated our construction using

a hyperspectral image. The resulting basis gives rise to sparse representations of a function

on the data (an image of new modality) and enables the compression of such a function. We

believe that this example reveals some of the potential of the LMW bases, for example, for

compressing and denoising of large scale data, for calculating the inverses of operators, and

for prediction tasks in machine learning.

During our study we encountered several theoretical issues to be addressed in future work.

One such issue is related to the partition trees used. In particular, how to characterize or

construct an optimal tree to be used as an input to the LMW algorithm. Another issue is to

draw general guidelines for fine tuning the parameter k for a given a dataset.

Acknowledgement

We wish to express our gratitude to Prof. Nira Dyn, Prof. Raphy Coifman, and Prof.

Pencho Petrushev who shared their vast knowledge during many fruitful discussions. We

also thank the anonymous reviewers for their valuable comments which helped improving

39

20 40 60 80 100

80

100

120

140

160
0

50

100

150

200

250

(a) Original subimage

20 40 60 80 100

80

100

120

140

160
0

50

100

150

200

250

(b) LMW based compression

20 40 60 80 100

80

100

120

140

160
0

50

100

150

200

250

(c) JPEG2000

Figure 24: Compression using 0.5% of the coefficients. Only a small region of the image is shown.

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

Number of coefficients

e
rr

o
r

n
o
rm

 /
 o

ri
g
in

a
l
im

a
g
e
 n

o
rm

(a) Relative error

0 200 400 600 800 1000 1200 1400 1600
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of coefficients

a
p
p
 n

o
rm

 /
 o

ri
g
in

a
l
im

a
g
e
 n

o
rm

(b) Accumulate energy

Figure 25: Evaluating LMW based compression using up to 1% of the expansion coefficients.

the paper.

The data for this study (Subsection 7.2) was supported by the FP7-project EO-Miners,

grant agreement no. 2442242 and EUFAR under Transnational Access program - DeMinTIR

project.

Appendix A. Proof of Theorem 6.2

Proof. First, one observes that the exponential function cx , x > 0 is monotonically increasing

for c > 1, a constant function for c = 1, and monotonically decreasing for c < 1, since its

derivative is ln(c)cx .

Denote the expansion coefficients of f in the orthonormal basis {φj} by αj = 〈f, φj〉 .
Then, since ‖f‖ = 1, the orthogonality of the basis functions {φj} yields

∑N
j=1 |αj|2 = 1,

and thus 0 ≤ |αj| ≤ 1. By the monotonicity of cx we get that τ1 ≤ τ2 < 2 leads to

40

|αj|2 ≤ |αj|τ2 ≤ |αj|τ1 . Therefore,

1 =
N∑
j=1

|αj|2 ≤
N∑
j=1

|αj|τ2 ≤
N∑
j=1

|αj|τ1 .

Similarly, 0 < 1
τ2
≤ 1

τ1
results in 1 ≤ |f |τ2 ≤ |f |τ1 , which proves the first claim and first part

of the second claim.

For the second claim, if f = ±φj∗ for some index j∗ , then |αj∗ | = 1 and αj = 0 for

j 6= j∗ . In this case, |f |τ = 1 for any 0 < τ < 2. Conversely, if f 6= ±φj for all j , then,

there exist 2 ≤ s ≤ N nonzero coefficients 0 < |αjk | < 1 such that

f =
s∑

k=1

αjkφjk .

By using again the monotonicity of cx , we get that for τ < 2 it holds that |αjk |2 < |αjk |τ for

k = 1, . . . , s . Summing over k gives

1 =
s∑

k=1

|αjk |2 <
s∑

k=1

|αjk |τ = |f |τ ,

which concludes the proof of the second claim.

For the third claim, we look for max (ατ1 + · · ·+ ατs) such that α1, . . . , αs > 0 and α2
1 +

· · ·+ α2
s = 1. To resolve this problem, we define the Lagrangian,

L(α1, . . . , αs, λ) = ατ1 + · · ·+ ατs + λ(
s∑
j=1

α2
j − 1)

and deduce that the extremum is achieved for λ = − τ
2
ατ−2
j . Since we have the lower bound of

the second claim, the extremum is a maximum, and is obtained for α1 = α2 = · · · = αs = 1√
s
.

Given a function f with such expansion coefficients, a direct calculation gives |f |τ = s
1
τ
− 1

2

where 1
τ
− 1

2
> 0.

[1] Aflalo, Y., Kimmel, R., Brezis, H., 2013. On the optimality of the Laplace Beltrami

eigenfunction to represent function of H1 . Tech. rep., Technion University, Haifa 3200,

Israel.

[2] Alpert, B., Beylkin, G., Coifman, R., Rokhlin, V., 1993. Wavelet-like bases for the fast

solution of second-kind integral equations. SIAM J. Sci. Comput. 14 (1), 159–184.

41

[3] Auscher, P., Hytönen, T., 2013. Orthonormal bases of regular wavelets in spaces of

homogeneous type. Applied and Computational Harmonic Analysis 34 (2), 266–296.

[4] Belkin, M., Niyogi, P., 2001. Laplacian eigenmaps and spectral techniques for embedding

and clustering. Advances in neural information processing systems (NIPS) 14, 585–591.

[5] Belkin, M., Niyogi, P., 2002. Using manifold structure for partially labeled classification.

Advances in neural information processing systems (NIPS) 15, 929–936.

[6] Belkin, M., Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and data

representation. Neural computation 15 (6), 1373–1396.

[7] Belkin, M., Niyogi, P., 2008. Convergence of Laplacian eigenmaps. preprint.

[8] Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V., 2005. Universal al-

gorithms for learning theory part I: piecewise constant functions. Journal of Machine

Learning Research 6 (2), 1297–1321.

[9] Binev, P., DeVore, R., 2004. Fast computation in adaptive tree approximation. Nu-

merische Mathematik 97 (2), 193–217.

[10] Bremer, J. C., Coifman, R. R., Maggioni, M., Szlam, A. D., 2006. Diffusion wavelet

packets. Applied and Computational Harmonic Analysis 21 (1), 95–112.

[11] Camarinha, M., Silva Leite, F., Crouch, P., 2001. On the geometry of Riemannian cubic

polynomials. Differential Geometry and its Applications 15 (2), 107–135.

[12] Chang, C.-I., 2007. Hyperspectral data exploitation: theory and applications. Wiley-

Interscience.

[13] Chapelle, O., Schölkopf, B., Zien, A., et al. (Eds.), 2006. Semi-Supervised Learning.

MIT Press, Cambridge, MA.

[14] Chung, F. R., 1997. Spectral graph theory. Vol. 92. AMS Bookstore.

[15] Coifman, R., Maggioni, M., 2006. Diffusion wavelets. Applied and Computational Har-

monic Analysis 21 (1), 53–94.

[16] Coifman, R., Shkolnisky, Y., Sigworth, F., Singer, A., oct. 2008. Graph Laplacian to-

mography from unknown random projections. IEEE Transactions on Image Processing

17 (10), 1891 –1899.

42

[17] Daley, R., 1994. Atmospheric data analysis. Cambridge Atmospheric and Space Science

Series. Cambridge University Press.

[18] Daubechies, I., 1992. Ten lectures on wavelets. CBMS-NSF Regional Conference Series in

Applied Mathematics (Book 61). SIAM: Society for Industrial and Applied Mathematics.

[19] David, G., Averbuch, A., 2012. Hierarchical data organization, clustering and denoising

via localized diffusion folders. Applied and Computational Harmonic Analysis 33 (1),

1–23.

[20] De Boor, C., Ron, A., 1990. On multivariate polynomial interpolation. Constructive

Approximation 6 (3), 287–302.

[21] DeVore, R. A., 1998. Nonlinear approximation. Acta numerica 7, 51–150.

[22] Donoho, D. L., 1997. CART and best-ortho-basis: a connection. Ann. Statist. 25 (5),

1870–1911.

[23] Gan, G., Ma, C., Wu, J., 2007. Data clustering. SIAM: Society for Industrial and Applied

Mathematics.

[24] Gavish, M., Nadler, B., Coifman, R. R., 2010. Multiscale wavelets on trees, graphs

and high dimensional data: Theory and applications to semi supervised learning. In:

Fürnkranz, J., Joachims, T. (Eds.), Proceedings of the 27th International Conference

on Machine Learning (ICML-10). Omnipress, pp. 367–374.

[25] Golub, G. H., Van Loan, C. F., 1996. Matrix Computations, 3rd Edition. Johns Hopkins

University Press, Baltimore, MD, USA.

[26] Halko, N., Martinsson, P., Tropp, J., 2011. Finding structure with randomness: Prob-

abilistic algorithms for constructing approximate matrix decompositions. SIAM review

53 (2), 217–288.

[27] Hammond, D., Vandergheynst, P., Gribonval, R., 2011. Wavelets on graphs via spectral

graph theory. Applied and Computational Harmonic Analysis 30 (2), 129–150.

[28] Jones, P. W., Osipov, A., Rokhlin, V., 2013. A randomized approximate nearest neigh-

bors algorithm. Applied and Computational Harmonic Analysis 34 (3), 415 – 444.

[29] Kushnir, D., Galun, M., Brandt, A., 2010. Efficient multilevel eigensolvers with appli-

cations to data analysis tasks. IEEE Transactions on Pattern Analysis and Machine

Intelligence 32 (8), 1377–1391.

43

[30] Lee, A. B., Nadler, B., Wasserman, L., 06 2008. Rejoinder of: Treelets - an adaptive

multi-scale basis for spare unordered data. The Annals of Applied Statistics 2 (2), 494–

500.

[31] Lenglet, C., Rousson, M., Deriche, R., Faugeras, O., 2006. Statistics on the manifold

of multivariate normal distributions: Theory and application to diffusion tensor MRI

processing. Journal of Mathematical Imaging and Vision 25 (3), 423–444.

[32] Michalewicz, Z., 1996. Genetic algorithms+ data structures. Springer.

[33] Murtagh, F., 2007. The Haar wavelet transform of a dendrogram. J. Classification 24 (1),

3–32.

[34] Narcowich, F., Petrushev, P., Ward, J., 2006. Decomposition of Besov and Triebel–

Lizorkin spaces on the sphere. Journal of Functional Analysis 238 (2), 530–564.

[35] Petrushev, P. P., 1988. Direct and converse theorems for spline and rational approxima-

tion and Besov spaces. In: Function spaces and applications. Springer, pp. 363–377.

[36] Ram, I., Elad, M., Cohen, I., 2011. Generalized tree-based wavelet transform. IEEE

Transactions on Signal Processing 59 (9), 4199–4209.

[37] Saito, N., 2008. Data analysis and representation on a general domain using eigenfunc-

tions of Laplacian. Applied and Computational Harmonic Analysis 25 (1), 68–97.

[38] Saito, N., Woei, E., 2009. Analysis of neuronal dendrite patterns using eigenvalues of

graph Laplacians. Japan SIAM Letters 1, 13–16.

[39] Saul, L., Roweis, S., 2003. Think globally, fit locally: unsupervised learning of low

dimensional manifolds. The Journal of Machine Learning Research 4, 119–155.

[40] Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence 22 (8), 888–905.

[41] Singer, A., 2006. From graph to manifold Laplacian: The convergence rate. Applied and

Computational Harmonic Analysis 21 (1), 128–134.

[42] Szlam, A. D., Maggioni, M., Coifman, R. R., BremerJr, J. C., 2005. Diffusion-driven

multiscale analysis on manifolds and graphs: top-down and bottom-up constructions. In:

Optics & Photonics 2005. International Society for Optics and Photonics, pp. 59141D–

59141D.

44

[43] Von Luxburg, U., 2007. A tutorial on spectral clustering. Statistics and computing 17 (4),

395–416.

[44] Xu, R., Wunsch, D., 2009. Clustering. Wiley-IEEE Press.

45

	Introduction
	Mathematical preliminaries
	The graph Laplacian
	Multiresolution analysis (MRA)
	Hierarchy tree partition

	Problem setup
	Informal description of the construction
	Detailed description of the construction
	Phase one - nested approximation spaces
	Phase two - fast orthogonalization
	Runtime analysis

	Approximation analysis
	Generalized vanishing moments
	Smoothness of functions on discrete datasets

	Numerical examples
	Approximating functions
	Compression of hyperspectral images

	Conclusions and discussion
	Proof of Theorem 6.2

