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ABSTRACT
We formulate and answer a question of Zannier about elliptic curves over varying prime
fields. We then give some experimental findings. In a final section, we formulate some
analogous questions for curves of higher genus.
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1. Zannier’s question

We fix an integer N � 1 and an elliptic curve E over
Z½1=6N�, given by an equation

y2 ¼ f xð Þ
with f(x) a cubic in Z½1=6N�½x� whose discriminant is
invertible in Z½1=6N�. On E we have the differential
of the first kind x ¼ dx=y and the differential of the
second kind g ¼ xdx=y. For each prime p not dividing
6N, we look at this data mod p, and apply the Cartier
operator Cp. We get quantities ap; bp 2 Fp defined by

Cp xð Þ ¼ apx; Cp gð Þ ¼ bpx:

Zannier asked what one can say about ðap; bpÞ as
p varies.

One knows that ap is the reduction mod p of the
trace of Frobenius, or equivalently that ap is the
Hasse invariant of E mod p. Is there an interpret-
ation of bp?

It is straightforward, cf. [Achter and Howe 17, &3.1],
that one has the following “formulas” for ap and bp.

ap � the coef : of xp�1 in f xð Þ p�1ð Þ=2 mod p;

bp � the coef : of xp�2 in f xð Þ p�1ð Þ=2 mod p:

To draw information from these formulas, we will
assume our curve is given in Weierstrass form

y2 ¼ 4x3�g2x�g3;

coefficients g2; g3 2 Z½1=6N� with g32�27g23 invertible
in Z½1=6N�.

Recall that over an Z½1=6�-algebra R, a pair ðE;xÞ
consisting of an elliptic curve over R together with a
basis x of H0ðE;X1

E=RÞ can be written uniquely as a
Weierstrass equation

y2 ¼ 4x3�g2x�g3;

now with g2; g3 2 R and with g32�27g23 invertible in R.
Conversely, given g2; g3 2 R with g32�27g23 invertible in
R, the Weierstrass equation together with x :¼ dx=y is
such an ðE;xÞ. Viewed as functions of the input data
ðE;xÞ; g2 ¼ g2ðE;xÞ is a modular form over Z½1=6�
of weight 4, and g3 ¼ g3ðE;xÞ is a modular form over
Z½1=6� of weight 6. One knows [Deligne 75, 2.5] that
for any Z½1=6�-algebra R, the graded ring of modular
forms over R is the ring R½g2; g3�½1=ðg32�27g23Þ�. The
subring R½g2; g3� is the graded ring of those modular
forms over R whose q-expansion (value on the Tate
curve with its canonical differential) is holomorphic, cf.
the next section for a “baby” proof of this last fact.

If we attribute weight 2 to x, then f ðxÞ ¼
4x3�g2x�g3 is isobaric of weight 6. Thus f ðxÞðp�1Þ=2 is
isobaric of weight 3ðp�1Þ. Thus ap (respectively bp) is
an Fp polynomial in g2, g3 which is isobaric of weight
p – 1 (respectively isobaric of weight pþ 1). In other
words, ap is a mod p modular form of weight p – 1,
and bp is a mod p modular form of weight pþ 1.
There is an obvious guess, perhaps naive, as to what
these forms must be, which turns out to be correct. In
order to state it unambiguously, we must fix some
notation, which we do in the next section.
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2. Review of Eisenstein series

Over any Q-algebra R, given an ðE;xÞ ¼ ðy2 ¼
4x3�g2x�g3; dx=yÞ, there is a unique formal param-
eter z along the zero section in terms of which
x ¼ dz. The Weierstrass }-function is the formal
expansion of x in the parameter z, which we write as

x ¼ } E;xð Þ ¼ 1=z2 þ 2
X
k�2

G2kz
2k�2= 2k�2ð Þ!:

For each k, the coefficient G2k is a modular form
over Q of weigh 2k, whose q-expansion is

G2k ¼ �b2k=4kþ
X
n�1

qn
X
djn

d2k�1;

with b2k the Bernoulli number. One knows (Kummer
congruences) that b2k is p-integral except for those p
such that p – 1 divides 2k. If p�1j2k, then pb2k is p-
integral and is 1 mod p; in particular,
ordpð1=b2kÞ ¼ 1. One also knows that if p – 1 does
not divide 2k, then b2k=2k mod p depends only on the
congruence class of 2k mod p – 1.

From the differential equation

d}=dzð Þ2 ¼ 4}3�g2}�g3

for

} ¼ 1=z2 þ 2
X
k�2

G2kz
2k�2= 2k�2ð Þ!;

one sees that G2k is an isobaric Q-polynomial in g2
and g3 of weight 2k. For example, one has

G4 ¼ g2
20

; G6 ¼ 3g3
7

; G8 ¼ 3g22
10

; G10 ¼ 108g2g3
11

;

G12 ¼ 756g32
65

þ 16200g23
91

; G14 ¼ 1296g22g3;

G16 ¼ 174636g42
85

þ 1166400g2g23
17

;

G18 ¼ 9471168g32g3
19

þ 256608000g33
133

;

G20 ¼ 25147584g52
25

þ 678844800g22g
2
3

11
;

G22 ¼ 10671720192g42g3
23

þ 103296384000g2g33
23

;

G24 ¼ 73581830784g62
65

þ 1410877440000g32g
2
3

13

þ 15547365504000g43
91

:

We will use the notation E2k for the modular form

E2k :¼ �4k=b2kð ÞG2k;

whose q-expansion is

E2k ¼ 1� 4k=b2kð Þ
X
n�1

qn
X
djn

d2k�1:

By the q-expansion principle, G2k is a modular
form over the ring Z½b2k=4k�, and E2k is a modular
form over the ring Z½4k=b2k�. In particular, for any
prime p � 5; Ep�1 is a modular form over Zp, as are
both Gpþ1 (whose constant term is conguent to
�1=24 mod p) and Epþ1.

In particular, we have

g2 ¼ E4=12; g3 ¼ �E6=216;

D :¼ g32�27g23 ¼ E34�E2
6

� �
=1728:

So over any Z½1=6�-algebra R, the graded ring of
modular forms is the polynomial ring
R½E4;E6�½1=ðE34�E26Þ�. To show that the subring
R½E4;E6� consists precisely of those modular forms
whose q-expansion is holomorphic, it suffices to show
that an isobaric element of R½E4;E6� whose q-expan-
sion has vanishing constant term is divisible by
E3
4�E26. Since both E4 and E6 have q-expansions with

constant term 1, the constant term of the q-expansion
of an element g ¼ P

i;j ai;jE
i
4E

j
6 is

P
i;j ai;j. If this elem-

ent is isobaric of weight w ¼ 2k, then 2iþ 3j ¼ k for
each monomial which occurs. Thus, j has the same
parity as k ¼ w=2 for each such monomial. Suppose
first k ¼ w=2 is even. Then j is even, and Ei

4E
j
6 is con-

gruent to Eiþ3j=2
4 ¼ Ew=44 modulo the ideal ðE34�E2

6Þ.
Thus, g is congruent to

P
i;j ai;jE

w=4
4 modulo this ideal.

So if,
P

i;j ai;j ¼ 0, then g is divisible by E3
4�E2

6. If k ¼
w=2 is odd, then our element g is of the form g0E6,
and we apply the previous argument to g0.

Although not modular forms, it will be convenient
to introduce the q-series

G2 ¼ �b2=4þ
X
n�1

qn
X
djn

d ¼ �1=24þ
X
n�1

qn
X
djn

d

and

E2 ¼ 1�24
X
n�1

qn
X
djn

d ¼ Ramanujan’s P:

3. Relation of ap and bp to Ep21 and Epþ1

Fix a prime p � 5. Define ap; bp 2 Fp½g2; g3� to be

ap � the coef : of xp�1 in 4x3�g2x�g3
� � p�1ð Þ=2

mod p;

bp � the coef : of xp�2 in 4x3�g2x�g3
� � p�1ð Þ=2

mod p:

Theorem 3.1. For any prime p � 5, ap is the reduction
mod p of Ep�1, and bp is the reduction mod p of
Epþ1=12. Moreover, ap and bp have no common zero.
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Proof. The first assertion is a congruence due to
Deligne, cf [Katz 73, 2.1]. One knows that ap, the
Hasse invariant in characteristic p, has q-expansion
identically 1, as does the reduction mod p, for any
p � 5, of Ep�1 (because, by the Kummer congruence,
ordpð4ðp�1Þ=bp�1Þ ¼ 1). So the first assertion results
from the q-expansion principle.

For the second assertion, we argue as follows. We
know that bp�Epþ1=12 is a modular form over Fp of
weight pþ 1. To show that it vanishes identically, it
suffices to show that

bp�Epþ1=12
� �6
g32�27g23
� � pþ1ð Þ=2 ;

which is an Fp polynomial in j ¼ 1728g32=ðg32�27g23Þ of
degree ðpþ 1Þ=2, vanishes identically. One knows that
the number of supersingular j values in the algebraic
closure Fp is ðp�1Þ=12; 1þ ðp�5Þ=12; 1þ
ðp�7Þ=12; 2þ ðp�11Þ=12 when p is respectively con-
gruent mod 12 to 1; 5; 7; 11, cf. [Washington 03, Cor.
4.40]. After checking low p by hand, one sees that for
any p � 5, there are strictly more than ðpþ 1Þ=2
ordinary (i.e., not supersingular) j-values in Fp. So, it
suffices to show that bp agrees with Epþ1=12 at every
pair ðE=Fp;xÞ with E=Fp ordinary. Since we already
know that ap is Ep�1 mod p, it suffices to show that
bp=ap agrees with the reduction mod p of Epþ1=12Ep�1

at every pair ðE=Fp;xÞ with E=Fp ordinary.
To see this, we must recall some facts about

H1
DRðE=FpÞ and the action of Frobp on it, for any

E=Fp, not necessarily ordinary, cf [Katz 73, A1.2.3].
First, the inclusion of the complex

OE ! X1
E=Fp

into the complex

I�1 0ð Þ ! X1
E=Fp

� I�2 0ð Þ
induces isomorphisms

H1
DR E=Fp
� � ffi H1 E; I�1 0ð Þ ! X1

E=Fp
� I�2 0ð Þ

� �
ffi H0 E;X1

E=Fp
� I�2 0ð Þ

� �
¼ Fpdx=y�Fpxdx=y:

In general cf. [Katz 70, 7.1.2, 7.2, 7.3.6], one has a
short exact sequence

0 ! H1 E;H0
DR E=Fp
� �� �

! H1
DR E=Fp
� �

! H0 E;H1
DR E=Fp
� �� �

! 0:

The first term is H1ðE;Op
EÞ, which is precisely the

image FrobpðH1
DRðE=FpÞÞ, and the sequence can be

rewritten, via the Cartier operator, as

0 ! Frobp H1
DR E=Fp
� �� �

! H1
DR E=Fp
� �!Cp H0 E;X1

E=Fp

� �
! 0:

In terms of the basis ðdx=y; xdx=yÞ of H1
DRðE=FpÞ,

and the basis dx/y of H0ðE;X1
E=Fp

Þ, the map

Cp : H1
DR E=Fp
� �

‡H0 E;X1
E=Fp

� �

sends dx/y to apdx=y and sends xdx/y to bpdx=y.
Because this map is surjective, at least one of ap or bp
must be nonzero, and the image FrobpðH1

DRðE=FpÞÞ is
the subspace KerðCpÞ, spanned by bpdx=y�apxdx=y.

When E=Fp is ordinary, the image FrobpðH1
DRðE=FpÞÞ

is precisely the “unit root subspace U”, spanned by

xdx=y� bp=ap
� �

dx=y:

Its “direction,” in the coordinates ðdx=y; xdx=yÞ, is
bp=ap. It is proven in [Katz 73, A2.4] that this direc-
tion is the reduction mod p of the p-adic modular
form of weight 2 given by P=12. Here P is
Ramanujan’s P, introduced at the end of Section 2. It
is the p-adic modular form whose q-expansion

P qð Þ ¼ 1�24
X
n�1

X
djn

dqn

is that of the Eisenstein series E2, which is not itself a
modular form, but which occurs as a period of the
second kind on the Tate curve, cf. [Katz 73, A1.3.9]. By
the Kummer congruences, P and Epþ1=Ep�1 have q-
expansions which are p-integral and congruent mod p.
By the q-expansion principle [Katz 73, 2.7.1], the reduc-
tion mod p of P is the reduction mod p of Epþ1=Ep�1,
the latter viewed as a p-adic modular form. Thus the dir-
ection of the unit root subspace, bp=ap, is the reduction
mod p of Epþ1=12Ep�1 at each ordinary ðE=Fp;xÞ. w

4. Experimental findings: the CM case

Suppose we start with a CM elliptic curve E=Z½1=6N�,
whose endomorphism ring is an order O ¼ Zþ dOK

in a quadratic imaginary field K, E given by an equa-
tion y2 ¼ f ðxÞ with f(x) a cubic in Z½1=6N� whose dis-
criminant is invertible in Z½1=6N�. Then

H :¼ H1
DR E=Z 1=6N½ �ð Þ

is the free Z½1=6N� of rank 2 with basis dx/y and xdx/y.
For each prime p not dividing 6N, H=pH ffi
H1

DRðE� Fp=FpÞ. If we extend scalars from Z½1=6N� to
OK ½1=6N�, the CM is defined on E�Z½1=6N�OK ½1=6N�,
and so acts on H�Z½1=6N�OK ½1=6N�. An element u 2 O
maps dx/y to udx/y; as u has eigenvalues u and �u, the
matrix of u in the basis dx=y; xdx=y must be of the
form

EXPERIMENTAL MATHEMATICS 3



u a
0 �u

� �

for some a 2 OK ½1=6N�.
Lemma 4.1. Suppose the discriminant of the order O
is invertible in Z½1=6N�. Then there exists a
Z½1=6N�-basis of H of the form

dx=y; xdx=y�Adx=y;

A 2 Z½1=6N�, which diagonalizes the action of O.
In other words, we have a Z½1=6N�-splitting H ¼
H1;0�H0;1 which over OK ½1=N� diagonalizes the CM,
and in which H1;0 is the Z½1=6N�-span of dx/y.

Proof. Take a Z-basis 1; u of O. It suffices to find an
A 2 Z½1=6N� such that the basis dx=y; xdx=y�Adx=y of
H diagonalizes the action of u on H�Z½1=6N�OK ½1=6N�.
This amounts to the requirement that

u½ �? xdx=y�Adx=y
� � ¼ �u xdx=y�Adx=y

� �
;

that is,

�uxdx=yþ adx=y�Audx=y ¼ �u xdx=y�Adx=y
� �

;

that is,

a�Au ¼ �A�u:

Thus, we get

A ¼ a
u� �u

:

The denominator u��u is purely imaginary. Its norm
down to Q is the discriminant of O, which is invertible
in Z½1=6N�. Hence u��u is invertible in OK ½1=6N�.
Thus A lies in OK ½1=6N�. To show that A lies in
Z½1=6N�, it suffices to show that the quantity a is itself
purely imaginary. For this, we argue as follows.

The matrix of �u is

�u �a
0 u

� �
:

The matrix of uþ �u is then

uþ �u aþ �a
0 uþ �u

� �
:

But uþ �u lies in Z, say uþ �u ¼ n, and n acts on
H by multiplication by n. Therefore aþ �a ¼ 0, i.e., a
is purely imaginary. w

For our CM curve E=Z½1=6N�, if we take a good
prime p which is ordinary for E, the unit root sub-
space in H1

DRðE� Fp=FpÞ ffi H=pH is the reduction
mod p of H0;1. In other words, for each good ordinary
prime, we have bp=ap � A mod p.

We did computer experiments with convenient
Z½1=6N�-forms of elliptic curves over Q with each of

the thirteen CM j-values in Q, chosen using the table in
Silverman’s book [Silverman 94; Si-ATEC, Appendix
A&3]. Experimentally, the quantity A turned out to lie
in Z in each case. Here is the data, giving the discrimin-
ant of OK , the conductor of the order O, the equation
we used, and the A we found empirically (by computing
bp=ap for a few thousand ordinary p). [Of course that
A¼ 0 for y2 ¼ x3�1 and for y2 ¼ x3�x is obvious.]

Discrim: D Cond: d Equation A
�3 1 y2 ¼ x3�1 0
�3 2 y2 ¼ x3�15xþ 22 1
�3 3 y2 ¼ x3�30xþ 63þ 1=4 2
�4 1 y2 ¼ x3�x 0
�4 2 y2 ¼ x3�11xþ 14 1
�7 1 y2 ¼ x3� 3=4ð Þx2�2x�1 0
�7 2 y2 ¼ x3�595xþ 5586 9
�8 1 y2 ¼ x3 þ 4x2 þ 2x �1
�11 1 y2 ¼ x3�x2�7x þ 10þ 1=4 1
�19 1 y2 ¼ x3�38xþ 90þ 1=4 2
�43 1 y2 ¼ x3�860xþ 9707þ 1=4 12
�67 1 y2 ¼ x3�7370x þ 243528þ 1=4 38
�163 1 y2 ¼ x3�2174420xþ 1234136692þ 1=4 724

Each of these curves has good reduction over
Z½1=2D�, so the hypotheses of Lemma 4.1 are satisfied.

There is, of course, a transcendental way of com-
puting the constant A in the CM case. Suppose first that
our elliptic curve E is given over C by a Weierstrass equa-
tion y2 ¼ 4x3�g2x�g3, with dx=y :¼ x; xdx=y :¼ g.
Integrating over a positively oriented basis of H1ðEan;CÞ,
we denote the periods of x by x1;x2, with
Imðx2=x1Þ>0. The periods of g over this basis are
denoted g1; g2.The Legendre relation is

x1g2�x2g1 ¼ 2pi:

We first solve for constants u; v 2 C such that
ug�vx ¼ �x. Then, we have A ¼ v=u.

Concretely, we must solve the vector equation

u g1; g2ð Þ�v x1;x2ð Þ ¼ x1 ; x2ð Þ:ð
Written as the matrix equation

g1 �x1

g2 �x2

� �
u
v

� �
¼ x1

x2

� �
;

the solution is gotten using Legendre’s relation to
invert the period matrix, so we get

u
v

� �
¼ 1=2pið Þ �x2 x1

�g2 g1

� �
x1

x2

� �

¼ 1=2pið Þ �x1x2 þ x1x2

�x1g2 þ x2g1

� �

and the formula

A ¼ v=u ¼ x2g1�x1g2
x1x2 � x1x2

:
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When our curve is given in the form y2 ¼ x3�ax�b,
then the curve ð2yÞ2 ¼ 4x3�4ax�4b is its Weierstrass
form. The pairs of differentials ðdx=y; xdx=yÞ and
ðdx=ð2yÞ; xdx=ð2yÞÞ are proportional, so we may calcu-
late A on the Weierstrass model. When our curve E is
given as y2 ¼ ðx�cÞ3�aðx�cÞ�b, with the pair of dif-
ferentials ðdx=y; xdx=yÞ, the differentials on the model
EWeir : y2 ¼ X3�aX�b are ðdX=y ¼ dx=y;XdX=y ¼
ðx�cÞdx=yÞ. So the AEWeir tells us that

x�cð Þdx=y�AEWeirdx=y

is antiholomorphic. Thus on the original E it is

xdx=y� AEWeir þ cð Þdx=y
which is antiholomorphic. In other words,

AE ¼ AEWeir þ c:

For numerical calculation in the case of a
Weierstrass equation

y2 ¼ 4x3�g2x�g3;

the Mathematica function

2 �WeierstrassHalfPeriods g2; g3f g½ �
returns fx1;x2g for that curve. The periods g1 and g2
are gotten by translating the negative of the
Weierstrass zeta function, cf. [Katz 76, 1.2.4], so given
in Mathematica by

gi ¼ WeierstrassZeta z; g2; g3f g½ �
�WeierstrassZeta z þ xi; g2; g3f g½ �

for i¼ 1, 2, for any fixed z 2 C not in the period lat-
tice. For example, one could take z ¼ x1=2.

The transcendental calculations of A, done using
Mathematica, for the thirteen CM curves listed above,
agree with the experimentally found values of A up to
many digits.

For each of these thirteen curves, we also looked
what happened at supersingular primes p. At such a
prime, we have ap ¼ 0. We looked at the variation
with supersingular p of bp=p, viewed as an element of
R=Z. Empirically, it seemed in each case that the
sequence fbp=pgsupersingular p was equidistibuted in
R=Z for Haar measure of total mass one.

5. Experimental findings: the ordinary case

We took some non-CM curves over Q, and looked at
the distribution, as p varies over good primes of ordin-
ary reduction, at the two sequences in R=Z given by
fbp=pgordinary p and fðbp=apÞ=pgordinary p. Empirically, it

seemed that both of these sequences were equidistrib-
uted in R=Z for Haar measure of total mass one. [The
sequence fap=pgordinary p tends to 0 in R=Z by the Weil
bound, so is “not interesting” from this point of view.]

We also looked at an equicharacteristic version of
this question, again empirically. We fixed a large
prime p, and for each k 2 Fp n f0; 1g computed ap ¼
apðkÞ and bp ¼ bpðkÞ for each of the curves
y2 ¼ xðx�1Þðx�kÞ. It seemed that both the collections
fbpðkÞ=pgordinary k and fðbpðkÞ=apðkÞÞ=pgordinary k were
approximately equidistibuted in R=Z for Haar meas-
ure of total mass one.

6. How we computed ap and bp

We take a prime p � 5, and a cubic polynomial
f ðxÞ 2 Fp½x� with nonzero discriminant. Recall that ap
is the coefficient of xp�1 in f ðxÞðp�1Þ=2, and bp, the
coefficient of xp�2 in f ðxÞðp�1Þ=2, is also the coefficient
of xp�1 in xf ðxÞðp�1Þ=2 The polynomial f ðxÞðp�1Þ=2 has
degree 3ðp�1Þ=2<2p�3. Therefore xp�1 is the only
term xn with n � 0 mod p�1 which can occur in
either f ðxÞðp�1Þ=2 or in xf ðxÞðp�1Þ=2. For any polyno-
mial gðxÞ ¼ P

i aix
i 2 Fp½x�, the sum

P
t2Fp

gðtÞ is
�P

d�1 adðp�1Þ. We apply this to the polynomials
f ðxÞðp�1Þ=2 and xf ðxÞðp�1Þ=2.

ap ¼ �
X
t2Fp

f tð Þ p�1ð Þ=2; bp ¼ �
X
t2Fp

tf tð Þ p�1ð Þ=2:

For v2 the quadratic character of F	
p , extended to

all of Fp by decreeing v2ð0Þ ¼ 0, we have
v2ðf ðtÞÞ � f ðtÞðp�1Þ=2 mod p. So we have

ap ¼ �
X
t2Fp

v2 f tð Þ� �
; bp ¼ �

X
t2Fp

tv2 f tð Þ� �
:

It was these formulas we used for computing in
Mathematica.

7. Curves of higher genus: open questions

Take a hyperelliptic curve

C : y2 ¼ f xð Þ
with f ðxÞ 2 Z½x� monic of degree 2g þ 1; g � 2, with
discriminant Dðf Þ 6¼ 0. We denote by 1 the section
at infinity. The arithmetic version of the fact that
removing a single point from a projective, smooth
connected curve over C does not change its H1 is
that, over A :¼ Z½1=ð2Dðf ÞÞ�, we have an isomorph-
ism

H1
DR C=Að Þ :¼ H1 C;X


C=A

� � ffi H1 C;X

C=A log 1ð Þ� �

:
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[Recall that X

C=A log ð1ÞÞ is the two term complex

OC ! X1
C=A � I 1ð Þ�1:�

If we further invert ð2gÞ!, i.e. pass to
A :¼ Z½1=ðð2gÞ!Dðf ÞÞ�, then the inclusion

X

C=A log 1ð Þ � X


C=A log 1ð Þ � I 1ð Þ�1�2g

(the larger complex being

I 1ð Þ�1�2g ! X1
C=A � I 1ð Þ�2gÞ

is a quasi-isomorphism, so we get

H1
DR C=Að Þ ffi H1 C;X


C=A log 1ð Þ � I 1ð Þ�1�2g
� �

¼
¼ H0 C;X1

C=A � I 1ð Þ��2g
� �

;

the last equality because H1ðC; Ið1Þ�1�2gÞ vanishes.
The space

H0 C;X1
C=A � I 1ð Þ��2g

� �

is free of rank 2g on fxidx=xygi¼1;:::;2g , with
H0ðC;X1

C=AÞ the span of fxidx=xygi¼1;:::;g . For each
i ¼ 1; :::; g, we denote

xi :¼ xidx=xy; gi :¼ xgxi ¼ xgþidx=xy:

If we reduce mod a good prime p, we have the
Cartier operator, which now maps the entire H1 � Fp

onto H0ðC;X1
C=AÞ � Fp. In terms of the basis

fxidx=xygi¼1;:::;2g , we have the usual calculation

Cp xidx=xy
� � ¼ Xg

j¼1

Ajp�i pð Þxjdx=xy;

with matrix entries

An pð Þ :¼ the reduction mod p of the

coefficient of xn in f xð Þ p�1ð Þ=2:

Just as in the elliptic case, one has [Katz 70, 7.1.2,
7.2, 7.3.6] a short exact sequence

0 ! H1 C=Fp;H0
DR C=Fp
� �� �

! H1
DR C=Fp
� �

! H0 C=Fp;H1
DR C=Fp
� �� �

! 0:

The first term is H1ðC=Fp;Op
C=Fp

Þ, which is pre-
cisely the image FrobpðH1

DRðC=FpÞÞ, and the sequence
can be rewritten, via the Cartier operator, as

0 ! Frobp H1
DR C=Fp
� �� �

! H1
DR C=Fp
� �!Cp H0 C=Fp;X

1
C=Fp

� �
! 0:

The analog of ap in the elliptic case is the g	 g
Cartier-Manin matrix [Achter and Howe 17] (the
matrix of Cp on H0ðC=Fp;X

1
C=Fp

Þ), also the transpose,
under the cup product duality, of the Hasse-Witt
matrix (the matrix of the p’th power operation
Frobarith;p on H1ðC=Fp;OC=Fp

Þ), namely

Ap :¼ Ajp�i pð Þ� �
i;j¼1;:::;g

: Cp
x1

::
xg

0
@

1
A ¼ Ap

x1

::
xg

0
@

1
A:

The analog of bp is the g	 g matrix giving the
action of Cp, mapping fxidx=xygi¼gþ1;:::;2g to
fxidx=xygi¼1;:::;g , namely

Bp :¼ Ajp�i pð Þ� �
i¼1;:::;g; j¼gþ1;:::;2g

: Cp
g1
::
gg

0
B@

1
CA ¼ Bp

x1

::
xg

0
@

1
A:

When Ap is invertible, then BpA
�1
p is the

“direction” of the unit root subspace KerðCpÞ; the map

g1
::
gg

0
B@

1
CA7!

g1
::
gg

0
B@

1
CA�BpA

�1
p

x1

::
xg

0
@

1
A

is an isomorphism of the span of the gi with KerðCpÞ.
There are any number of equidistribution questions

which cry out to be investigated. In genus two, Sawin
[Sawin 16] has proven that if the ‘-adic galois repre-
sentation on H1 has open image in GSp(4), then C is
ordinary (meaning that Ap is invertible) for a set of
primes of density one. Thanks to Zarhin [Zarhin 02],
we know that this “open image” condition is satisfied
when the quintic polynomial f has galois group either
A5 or S5. Known quintics with galois group S5 include
5!
P5

i¼0 x
i=i! (Schur, cf. [Coleman 87] for a nice

exposition) and x5�x�1 [Osada 87, Cor. 3]. [Schur’s
result is that the trucation of the exponential series
through degree n (for any n � 5) has galois group Sn
unless n is divisible by 4, in which case the galois
group is An. Osada proves that xn�x�1 has galois
group Sn for every n � 5. And Zarhin’s result [Zarhin
02, Thm. 2.6] is that for any n � 5, if f of degree n
has galois group either Sn or An, then for the hyperel-
liptic curve y2 ¼ f ðxÞ, the galois representation on its
H1 has open image in GSp(2g).

It is plausible that whatever the genus g � 2, if
the galois representation on H1 has open image in
GSp(2g), then the curve is ordinary at a set of
primes of density one. In any case, suppose for the
rest of this section that we have a curve C of genus
g � 2 which is ordinary at a set of primes of dens-
ity one.
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At each ordinary prime p, we form the g	 g
matrices

1=p
� �

Ap and 1=p
� �

BpA
�1
p ;

in which we think of the entries as lying in

1=p
� �

Z=pZ
� � ¼ 1=p

� �
Z=Z � R=Z:

We also form the quantity

1=p
� �

det Ap
� � � R=Z:

As p varies over ordinary primes, the sequence

1=p
� �

BpA
�1
p

n o
ordinary p

is not equidistributed in ðR=ZÞg2 for Haar measure in
general. For hyperelliptic curves of the form

y2 ¼ x2gþ1 þ polynomial of degree � gð Þ;
the (1, 1) entry is, experimentally, 2g�1 times the (g,
g) entry in R=Z (and in the mod p matrix BpA

�1
p ,

these entries are, experimentally, related this way in
Fp). Is this the only obstruction to equidistribution?

For the sequence

1=p
� �

Ap
� 	

ordinary p;

there is the obvious constraint that its trace is small
(Weil bound); is it true that if we omit any single
diagonal entry, this sequence is equidistributed in
ðR=ZÞg2�1 for Haar measure? Numerical experiments
with y2 ¼ x5�x�1, omitting the bottom diagonal
entry, are compatible with this.

Finally, is it true that the sequence

1=p
� �

det Ap
� �n o

ordinary p

is equidistributed in R=Z for Haar measure? For this
last question, at least, it is easy to do experiments.
The EulerFactorModChar(J) function in Magma, for J
the Jacobian of the hyperelliptic curve C, returns the
mod p polynomial

det 1�TCpjH0 C=Fp;X
1
C=Fp

� �� �

¼ det 1�TFrobarith;pjH1 C=Fp;OC=Fp

� �� �
;

whose leading coefficient is detð�ApÞ, amazingly
quickly. Numerical experiments with the curves y2 ¼

xn�x�1 for n ¼ 5; 7; 9; 11; 13 are compatible with this
equidistribution. In fact, what seems plausible is that
in genus g � 3, the points in ðR=ZÞg�1 given by

1=p
� �

the coefficients of x2; x3; :::; xg
� ��

in det 1�TCpjH0 C=Fp;X
1
C=Fp

� �� �

are equidistributed in ðR=ZÞg�1 for Haar measure.
Much remains to be done.
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