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How it started

Recently we learned from Ron Evans of some fascinating questions
raised by Wootters [A-S-S-W]. These questions, which concern expo-
nential sums, arose from his investigations of a particular quantum
state with special properties, where the underlying vector space is the
space of functions on the finite field Fp := Z/pZ, p a prime which is 3
mod 4. Due to our ignorance of the underlying physics, we concentrate
on the exponential sums themselves. In our approach, it costs us noth-
ing to work over an arbitrary finite field Fq of odd characteristic. [Thus
Fq is “the” finite field of q elements, q a power of some odd prime p.]
We also introduce a parameter a ∈ F×q . In the Wootters setup, where
q = p is 3 mod 4, the parameter a is simply a = −1. Ultimately we
end up proving identities among exponential sums, but not at all in
a straightforward way; we need to invoke the theory of Kloosterman
sheaves and their rigidity properties, as well as the fundamental results
of [De-Weil II] and [BBD]. It would be interesting to find direct proofs
of these identities.

1. Statement of the problem

In what follows, we fix a finite field Fq of odd characteristic p, a
nonzero element a ∈ F×q , and a nontrivial additive character ψ of Fq:

ψ : (Fq,+)→ µp(C) ⊂ C×.

For example, when q is a power of p, we might begin with the additive
character ψFp , x 7→ exp(2πix/p), of the prime field Fp, and then take
ψ(y) := ψFp(TraceFq/Fp(y)). Once we have one choice of nontrivial ψ,
any other is of the form

ψb(x) := ψ(bx)

for some unique b ∈ F×q . We denote by χ2 : F×q → ±1 the quadratic
character, which we extend to a function on all of Fq by decreeing that
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χ2(0) = 0. We denote by g(ψ, χ2) the Gauss sum

g(ψ, χ2) :=
∑
x∈Fq

ψ(x)χ2(x).

One knows that g(ψ, χ2)
2 = χ2(−1)q. [Recall that χ2(−1) is 1 if q ≡ 1

mod 4, and χ2(−1) is −1 if q ≡ 3 mod 4. One knows that when q = p
and ψ is the ψFp above, then g(ψFp , χ2) =

√
p if p ≡ 1 mod 4, and

g(ψFp , χ2) = i
√
p if p ≡ 3 mod 4.]

The basic sums which underlie the Wootters story are the following.
For j, k ∈ Fq, we define

S(j, k) :=
−
∑

x∈F×
q
χ2(ax− x3)ψ((j + k)2x+ (j − k)2(a/x))

−g(ψ, χ2)

=
−
∑

x∈F×
q
χ2(a/x− x)ψ((j + k)2x+ (j − k)2(a/x))

−g(ψ, χ2)

=
−
∑

uv=a;u,v∈F×
q
χ2(u− v)ψ((j + k)2v + (j − k)2u)

−g(ψ, χ2)
.

The third expression makes most visible various symmetries. We have
the identities

S(j, k) = S(k, j), S(j,−k) = χ2(−1)S(j, k).

Because the complex conjugate of g(ψ, χ2) is χ2(−1)g(ψ, χ2), the sums
S(j, k) are all real. For j, k ∈ Fq, we then define

P (j, k) := δj,k + χ2(−1)δj,−k + S(j, k).

Thus
P (j, k) := S(j, k), if j2 6= k2,

P (0, 0) = 1 + χ2(−1) + S(0, 0),

and for j 6= 0 we have

P (j, j) := 1 + S(j, j),

and
P (j,−j) := χ2(−1) + S(j,−j).

Thus the P (j, k) are real, and satisfy

P (j, k) = P (k, j), P (j,−k) = χ2(−1)P (j, k).

[When q = p, p ≡ 3 mod 4, a = −1 and we take ψ(x) := ψFp(x/4),
these P (j, k) are equal to p+ 1 times the Pj,k of Wootters.]

The key fact, that we learned from Wootters [A-S-S-W], and for
which Ron Evans supplied a direct, “exponential sum” proof that we
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reproduce later on for the reader’s convenience, is that if we view the
P (j, k) as forming a q × q matrix P , then

Trace(P ) = q − χ2(a),

and (1/(q − χ2(a)))P is idempotent, i.e.

P 2 = (q − χ2(a))P,

i.e.,

(q − χ2(a))P (j, k) =
∑
i∈Fq

P (j, i)P (i, k).

Thus (1/(q − χ2(a)))P is a real symmetric idempotent matrix of trace
1, so it is the orthogonal projection (for the usual inner product

∑
i xiyi

on Rq) onto some one-dimensional subspace of Rq. Let us choose a unit
vector

v := (vj)j∈Fq ∈ Rq

in the one-dimensional subspace Image(P ). The vector v is unique up
to sign. In terms of this vector v, the orthogonal projection onto its
span is given by the matrix vjvk. So we have the identity

(1/(q − χ2(a)))P (j, k) = vjvk.

Equivalently, if we introduce the q rescaled numbers

Vj := (q − χ2(a))1/2vj, j ∈ Fq,
we have the identities

P (j, k) = VjVk,

and these identities characterize 1 the vector

V := (Vj)j∈Fq ∈ Rq

up to sign as the unique, up to sign, vector in Image(P ) of square
norm q − χ2(a).

Wootters found experimentally in the situation he was considering,
namely q = p and a = −1, that the Vj all lie in the closed inter-
val [−2, 2], and are approximately equidistributed, (i.e., as p grows)
for the semicircle measure (1/2π)

√
4− x2dx on this interval [−2, 2].

Equivalently, if we write Vj = 2 cos θj, with θj ∈ [0, π], Wootters found
experimentally that the p angles {θj}j∈Fp are approximately equidis-
tributed for the Sato-Tate measure (2/π) sin2 θdθ on [0, π].

The problem posed by Wootters [A-S-S-W] was to prove this approx-
imate equidistribution. We will show that so long as the characteristic

1I am told by Wootters that this vector V is a “minimum-uncertainty state” in
the sense of [S-W], and that, at least when q is 3 mod 4, it may be the unique
eigenvector of the antiunitary operator of section 9 of [Ap].
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p satisfies p ≥ 5, then whatever the finite extension Fq of Fp, and what-
ever the value of a ∈ F×q , the Vj all lie in the closed interval [−2, 2], and
are approximately equidistributed, (i.e., as q grows) for the semicircle
measure (1/2π)

√
4− x2dx on this interval [−2, 2]. [The equidistribu-

tion statement is false in characteristic 3.]

2. Statement of the results: first formulation

We will define sums V (j), for j ∈ Fq. These V (j) will also have the
property that

V (−j) = χ2(−1)V (j).

We will first show that

V (j)2 = P (j, j).

We will then show that

V (j)V (k) = P (j, k)

for all j, k ∈ Fq.
The sums V (j) will be real, and lie in the closed interval [−2, 2]. It

will be a (known) theorem that the q sums {V (j)}j∈Fq , are approx-
imately equidistributed, (i.e., as q grows) for the semicircle measure
(1/2π)

√
4− x2dx on this interval [−2, 2]. Equivalently, if we write

V (j) = 2 cos θj, with θj ∈ [0, π], then the q angles {θj}j∈Fq are ap-
proximately equidistributed for the Sato-Tate measure (2/π) sin2 θdθ
on [0, π]. This known theorem then solves the problem posed by Woot-
ters.

3. Definition of the sums V (j), when q ≡ 1 mod 4

Recall that we have fixed both an element a ∈ F×q and a nontrivial
additive character of Fq. We now make two further auxiliary choices.

We choose a character χ4 of F×q . Concretely, since q ≡ 1 mod 4 and

F×q is cyclic, the set µ4(Fq) of solutions in F×q of the equation X4 = 1

is a cyclic group of order 4, and the map x 7→ x(q−1)/4 is a surjective
homomorphism of F×q onto µ4(Fq). If we then pick one of the two
possible group isomorphisms between µ4(Fq) and µ4(C), call it ω, then
we may take χ4(x) := ω(x(q−1)/4). We next choose a square root ε of
χ4(−a). These are our two auxiliary choices. We define

A := ε
√
q.

We next define, for j ∈ Fq, sums W (j) by

W (j) :=
−
∑

x∈F×
q
χ4(x)ψ(x+ aj4/x)

A
.
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We then define
V (j) := W (j) for j 6= 0.

For j = 0, W (0) is a rescaled quartic Gauss sum, so has absolute value
1, and we define

V (0) := 2Re(W (0)) = W (0) +W (0) = W (0) + 1/W (0).

Lemma 3.1. When q ≡ 1 mod 4, the sums V (j) are real, and satisfy

V (−j) = χ2(−1)V (j)(= V (j)).

Proof. The second assertion is obvious from the definition.For j = 0,
the reality is obvious from the definition. For j 6= 0, the complex
conjugate of of V (j) is

−
∑

x∈F×
q
χ4(1/x)ψ(−x− aj4/x)

A
.

Under the involution x 7→ at4/x, this sum becomes

−
∑

x∈F×
q
χ4(x/aj

4)ψ(−x− aj4/x)

A
,

and writing −x for x it becomes

−
∑

x∈F×
q
χ4(x/(−aj4))ψ(x+ aj4/x)

A
,

which is just

χ4(−aj4)(A/A)V (j) = χ4(−a)(A/A)V (j) = χ4(−a)ε2V (j) = V (j)

the last equality by the definition of ε as a square root of χ4(−a). �

4. Definition of the sums V (j), when q ≡ 3 mod 4

In this case, the definition of our sums involves the quadratic ex-
tension Fq2 of Fq, and the Trace and Norm maps from Fq2 down to
Fq,

Trace := TraceFq2/Fq and Norm := NormFq2/Fq .

Again we make two auxiliary choices. Since q2 ≡ 1 mod 8, we may
choose a character χ8 of order 8 of F×q2 .

In what follows, we will have to consider the quantity χ8(−a), where
we now view a as lying in the larger field Fq2 . But this is simple to
evaluate. For if x ∈ F×q and q ≡ 3 mod 4, then we can write

x(q
2−1)/8 = (x(q−1)/2)(q+1)/4.

So for χ2,Fq the quadratic character of F×q , we have

χ8(x) = χ2,Fq(x)(q+1)/4.
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Thus χ8(x) = 1 for all x ∈ F×q if q ≡ 7 mod 8, and χ8(x) = χ2,Fq(x)
for x ∈ F×q if q ≡ 3 mod 8. Our second choice is of a square root δ of
χ8(−a). We then define

A := δ
√
q.

With these choices, we define V (j) by

V (j) :=
−χ2,Fq(j)

∑
z∈Fq2 ,Norm(z)=aj4 χ8(z)ψ(Trace(z))

A
.

Notice that in this q ≡ 3 mod 4 case, we have

V (0) = 0.

Lemma 4.1. When q ≡ 3 mod 4, the sums V (j) are real, and satisfy

V (−j) = χ2(−1)V (j)(= −V (j)).

Proof. For j = 0 there is nothing to prove. For j 6= 0, the complex
conjugate of V (j) is

−χ2,Fq(j)
∑

z∈Fq2 ,Norm(z)=aj4 χ8(1/z)ψ(Trace(−z))

A
.

Denote by σ the nontrivial automorphism of Fq2/Fq. Then Norm(z) =
zσ(z) = aj4, so 1/z = σ(z)/aj4 in this sum, which is thus

−χ2,Fq(j)
∑

z∈Fq2 ,Norm(z)=aj4 χ8(σ(z)/aj4)ψ(Trace(−z))

A
.

Writing −z for z, which doesn’t change the norm of z, this sum is

−χ2,Fq(j)
∑

z∈Fq2 ,Norm(z)=aj4 χ8(σ(z)/(−aj4))ψ(Trace(z))

A
.

Now replacing z by σ(z), and remembering that z and σ(z) have the
same Trace, this sum is

−χ2,Fq(j)
∑

z∈Fq2 ,Norm(z)=aj4 χ8(z/(−aj4))ψ(Trace(z))

A
=

= χ8(−aj4)(A/A)V (j).

As already noted, χ8(j) = ±1 (because j ∈ Fq), and so the factor
χ8(−aj4)(A/A) is just χ8(−a)δ2 = 1, this last equality by the definition
of δ as a square root of χ8(−a). �
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5. Definition of the sums S(j, k), P (j, k), V (j) over finite
extensions of Fq

Given a finite extension field E/Fq, we may view the element a ∈ Fq
as lying in E. We take for ψE the additive character of E given by
x 7→ ψ(TraceE/Fq(x)), and for χ2,E the quadratic character of E×; thus
χ2,E = χ ◦ NormE/Fq . We may then define, for j, k ∈ E, the sums
S(j, k) and P (j, k) over E, denoting them S(j, k, E) and P (j, k, E) to
show that we are now working over E.

In order to define the sums V (j) over E, which we will denote
V (j, E), we now specify how, given the choices we made in defining
them over Fq, we are to make the “correct” choices over E.

In the case when q ≡ 1 mod 4, then #E ≡ 1 mod 4. We take for χ4,E

the quartic character of E× given by x 7→ χ4(NormE/Fq(x)), and for εE
the square root of χ4,E(−a) given by εdeg(E/Fq). With these choices, for
an element j ∈ E we apply the #E ≡ 1 mod 4 recipe, now over the
ground field E, to define the sum V (j, E).

In the case when q ≡ 3 mod 4, the situation is a bit more complicated.
If E/Fq has odd degree d, then #E ≡ 3 mod 4. The quadratic extension
E2/E of E is a degree d extension of Fq2 . We take for χ8,E2 the octic
character of E2 given by x 7→ χ8(NormE2/Fq2 (x)), and we take for δE
the square root of χ8,E2(−a) given by δd. With these choices, for an
element j ∈ E we apply the #E ≡ 3 mod 4 recipe, now over the ground
field E, to define the sum V (j, E).

If, on the other hand, q ≡ 3 mod 4 and E/Fq has even degree d, then
#E ≡ 1 mod 4. We take for χ4,E either quartic character. [To fix one
system of choices, view E as an extension of Fq2 , take χ4,Fq2 := χ2

8, and

then take χ4,E to be the composition of χ4,Fq2 with the Norm from E

down to Fq2 .] Because −a ∈ Fq, we have χ4,E(−a) = 1; we take as its
square root δE := (−1)(#E−1)/8 = χ8,E(−1) (this last equality valid for
any octic character χ8,E of E×) and thus our new A over E is

A := χ8,E(−1)qdeg(E/Fq2 ).

With these choices, for an element j ∈ E we apply the #E ≡ 1 mod 4
recipe, now over the ground field E, to define the sum V (j, E). [The
fact that this sum does not depend on which choice of χ4,E we take
results from the fact, already noted, that as a ∈ Fq, we have χ8(a) =
±1, and hence χ4(a) = 1 for either choice of χ4. Hence also χ4,E(at4) =
1 for every t ∈ E×. The involution x 7→ at4/x then turns the χ4,E sum
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for V (j, E), namely

−
∑
x∈E×

χ4,E(x)ψE(x+ at4/x)/A,

into the χ4,E sum.]

6. Sheaf-theoretic reformulation of the V (j), via
Kloosterman sheaves

We choose a prime number ` 6= p (e.g., ` = 2 is always an allowed
choice, as p is odd), and an embedding of the cyclotomic field Q(ζp, ζ8)

into Q`. This allows us to view all of our sums as lying in Q`. In what
follows, we will make free use of the theory of Kloosterman sheaves,
cf. [Ka-ClausCar, Section 2] for a quick review, or [Ka-GKM, 4.1.1,
with all bi’s taken to be 1, and 4.1.2 (2)] for the relevant existence and
uniquenness theorems. We will also make free use of Kummer sheaves
Lχ, cf. [Ka-GKM, 4.3] for their definition and basic properties.

When q ≡ 1 mod 4, we have the Kloosterman sheaf Kl(ψ;χ4,1) on
Gm/Fq and its constant field twist Kl(ψ;χ4,1)⊗A−deg. This is a lisse
sheaf of rank two on Gm/Fq, which is pure of weight zero. We define
the lisse sheaf V0 on Gm/Fq as its pullback by t 7→ at4:

V0 := [t 7→ at4]?Kl(ψ;χ4,1)⊗ A−deg.
When q ≡ 3 mod 4, we have the additive character

ψFq2 := ψ ◦ TraceFq2/Fq

of the quadratic extension Fq2 , and the Kloosterman sheaf on Gm/Fq2
given by Kl(ψFq2 ;χ8, χ

q
8). As explained in [Ka-GKM, 8.8, esp. 8.8.7],

this sheaf has a canonical descent to a lisse sheaf denotedKl(Fq2 , ψFq2 , χ8)

on Gm/Fq. We first form its constant field twist Kl(Fq2 , ψFq2 , χ8) ⊗
A−deg. This is a lisse sheaf of rank two on Gm/Fq, which is pure of
weight zero. We then form its pullback by t 7→ at4, and tensor this
pullback with the Kummer sheaf Lχ2(t) for the quadratic character χ2.
The resulting sheaf we define to be V0.

V0 := Lχ2(t) ⊗ [t 7→ at4]?Kl(Fq2 , ψFq2 , χ8)⊗ A−deg.

[We remark in passing that with these definitions, the pullback of this
V0 to Gm/Fq2 is

Lχ2,F
q2

(t) ⊗ [t 7→ at4]?Kl(ψFq2 ;χ8, χ
q
8)⊗ (A2)−deg,

which is isomorphic to [t 7→ at4]?Kl(ψFq2 ;χ4,1)⊗ (χ8(−1)q)−deg. This

last isomorphism, on the level of character sums, is the identity that
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for t ∈ F×q2 , we have

−χ2,Fq2 (t)
∑
x∈F×

q2

χ8(x)χq8(at
4/x)ψFq2 (x+ at4/x)/(χ8(−a)q) =

−
∑
x∈F×

q2

χ4(x)ψFq2 (x+ at4/x)/(χ8(−1)q)

(and the analogous identity over all finite extensions E/Fq2).To see this,
write

χ2,Fq2 (t)/χ8(−a) = χ2,Fq2 (1/t)/χ8(−a) = χq8(1/at
4),

which then gives the first sum as being

−
∑
x∈F×

q2

χ8(x)χq8(1/x)ψFq2 (x+ at4/x)/(χ8(−1)q),

which, with the choice of χ4 := χ1−q
8 , is precisely the second sum.]

Given the definition of Kloosterman sheaves and their canonical de-
scents, the following theorem is a tautology.

Theorem 6.1. The trace function of the lisse sheaf V0 on Gm/Fq is
given as follows. For E/Fq a finite extension, and t ∈ Gm(E) = E×,

Trace(Frobt,E|V0) = V (t, E).

From the known [Ka-GKM, 7.4.1] local monodromy at 0 of Kloost-
erman sheaves, we see that

Lemma 6.2. For j : Gm ⊂ A1 the inclusion, the sheaf

V := j?V0
is lisse on A1. It is the unique lisse sheaf on A1 whose restriction to
Gm is V0.
Proof. That j?V0 is lisse at 0 is a geometric statement. Geometrically,
i.e. over Fq, V0 is [t 7→ at4]?Kl(ψ;χ4,1). Geometrically, the local
monodromy of Kl(ψ;χ4,1) at 0 is the direct sum χ4⊕1, whose pullback
by t 7→ at4 is geometrically 1 ⊕ 1. If we interpret lisse sheaves as
representations of the fundamental group π1, uniqueness is simply the
statement that π1(Gm) maps onto π1(A1). �

We have the following fundamental result on the geometric and arith-
metic monodromy groups of V .

Theorem 6.3. The sheaf V on A1 is lisse of rank two and pure of
weight zero. If p ≥ 5, its geometric and arithmetic monodromy groups
on A1 are given by Ggeom = Garith = SL(2).
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Proof. We have proven that V is lisse of rank two on A1. Its restriction
to Gm is pure of weight zero. Then V [1] on A1 is a lisse perverse sheaf
which is the middle extension of its restriction V0[1] to Gm. As a per-
verse sheaf on Gm, V0[1] is pure of weight one. One knows that middle
extension preserves purity [BBD, 5.3.2] of a given weight, hence V [1]
as perverse sheaf is pure of weight one, which in turn means precisely
that V is pure of weight zero.

We now turn to showing that Ggeom = Garith = SL(2) when p ≥ 5.
We will first show that the identity component G0

geom is SL(2). By
a general result of Deligne [De-Weil II, 3.4.1 (iii), 1.3.9 and the sec-
ond sentence of its proof], G0

geom is a connected semisimple subgroup
of GL(2), so it must be either SL(2) or the trivial group. Of the
two choices, it is SL(2) precisely when G0

geom acts irreducibly in the
given two-dimensional representation, i.e., precisely when V is geomet-
rically Lie-irreducible. Now V and V0 have the same Ggeom (again
because πgeom1 (Gm) maps onto πgeom1 (A1), and Ggeom is the Zariski clo-
sure of the image of the corresponding πgeom1 ). So it is equivalent
to show that V0 is geometrically Lie-irreducible. Geometrically, V0
is the pullback by a finite morphism (here t 7→ at4) of the Klooster-
man sheaf Kl(ψ;χ4,1), and under finite pullback the group G0

geom does
not change. So it is equivalent to show that Kl(ψ;χ4,1) is geometri-
cally Lie-irreducible.This sheaf is geometrically irreducible, because its
I(∞)-representation, having both slopes 1/2, is irreducible. Whatever
the odd characteristic p, Kl(ψ;χ4,1) is not Kummer induced. When
p > 5, it then results from [Ka-ESDE, 7.2.6 (4)] that Kl(ψ;χ4,1) is
Lie-irreducible.

We now treat the case p = 5 by a separate argument. The group
Ggeom does not change if we make a multiplicative translation of our
sheaf, and in particular is independent of the particular choice of ψ,
which we may therefore take to be a character of the prime field F5.
The arithmetic determinant formula [Ka-ESDE, 7.4.1.3]

det(Frobt,E|Kl(ψ;χ4,1)) = qχ4,E(−t)
shows that Kl(ψ;χ4,1) ⊗ (

√
p)−deg, which is pure of weight zero, has

determinant which is arithmetically of finite order (four). To show
that G0

geom is SL(2) (and not the trivial group), it is equivalent to
show that Ggeom is not a finite group. By [Ka-ESDE, 8.14.4], Ggeom is
finite for this sheaf Kl(ψ;χ4,1)⊗ (

√
p)−deg if and only if all its traces

are algebraic integers. This is not the case for p = 5, already for
Frob1,F5 . We see this by computing in the field Q5(ζ5). If we take 2 as
a multiplicative generator of F×5 , and denote by i ∈ Q5 the fourth root
of unity which is its Teichmuller representative, then there is a unique
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χ4 with χ4(2) = i. [The other choice of χ4 comes from using 3 as a
generator of F×5 .] We readily compute

Trace(Frob1,F5 |Kl(ψ;χ4,1)) = −
∑
x∈F×

5

χ4(x)ψ(x+ 1/x) =

−(1ψ(2) + iψ(0) + (−i)ψ(0) + (−1)ψ(3)) = −(ζ25 − ζ35 ) = −ζ5(1− ζ5).
The quantity (1− ζ5) has ord5(1− ζ5) = 1/4, so the quantity

Trace(Frob1,F5|Kl(ψ;χ4,1)⊗ (
√

5)−deg) = −ζ5(1− ζ5)/
√

5

has ord5 = −1/4, so is not an algebraic integer. This single calculation
then shows that in characteristic 5 as well, Kl(ψ;χ4,1) has G0

geom =
SL(2).

We next show that Ggeom = SL(2) for V , or equivalently for V0.
The question is geometric, so we may extend scalars to reduce to the
case when q ≡ 1 mod 4. Then the arithmetic determinant formula
[Ka-ESDE, 7.4.1.3]

det(Frobat4,E|Kl(ψ;χ4,1)) = qχ4,E(−at4) = qχ4,E(−a)

shows that V0 := Kl(ψ;χ4,1)⊗A−deg has arithmetically trivial deter-
minant. So after such an extension of scalars, we have Garith ⊂ SL(2).
Since in any case we have inclusions

SL(2) = G0
geom ⊂ Ggeom ⊂ Garith ⊂ SL(2),

it follows that Ggeom = SL(2).
It remains to show that Garith = SL(2). If we are over an Fq with q ≡

1 mod 4, the previous paragraph proves this. In the general case, we
argue as follows. Because V0 has real traces and is pure of weight zero, it
is (isomorphic to) its own dual. Because it is arithmetically irreducible
(because already geometrically irreducible), its autoduality is unique
up to a nonzero scalar factor, and is either of sign −1 (:= symplectic)
or of sign +1 (:= orthogonal). This autoduality gives by restriction a
geometric autoduality, again unique up to a nonzero scalar factor, of the
same sign. But Ggeom = SL(2) = Sp(2), so the geometric autoduality
has sign −1. Therefore the arithmetic autoduality is of sign −1, i.e.
symplectic, which is to say that Garith ⊂ SL(2). So from the inclusions
of the previous paragraph, we get Ggeom = Garith = SL(2). �

In view of Theorem 6.1 and Lemma 6.2, it is natural to ask whether
we have the identity Trace(Frob0,Fq |V) = V (0).This is indeed the case,
as we show in the next two lemmas.

Lemma 6.4. If q ≡ 1 mod 4, then Trace(Frob0,Fq |V) = V (0).
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Proof. Suppose that q ≡ 1 mod 4. Then

V0 := [t 7→ at4]?Kl(ψ;χ4,1)⊗ A−deg.
One knows [Ka-ClausCar, 2.6.1] that for the sheaf Kl(ψ;χ4,1)⊗A−deg,
its space of I(0)-invariants is one dimensional, with Frob0,Fq acting as
the scalar −g(ψ, χ4)/A, the quantity called W (0) in section 3. After
we pull back by t 7→ at4, the space of inertial invariants can only grow.
Since we know that this pullback has trivial action of I(0), it follows
that of the two eigenvalues of Frob0,Fq |V , one is W (0). But as Garith =
SL(2), we have det(Frob0,Fq |V) = 1. Hence the other eigenvalue is
1/W (0), so Trace(Frob0,Fq |V) = W (0) + 1/W (0) := V (0). �

When q ≡ 3 mod 4, we have, by definition, V (0) = 0.

Lemma 6.5. If q ≡ 3 mod 4, then Trace(Frob0,Fq |V) = V (0) = 0.

Proof. Suppose that q ≡ 3 mod 4. Let the two eigenvalues of Frob0,Fq |V
be denoted ω and 1/ω. [The eigenvalues have this form because V has
Garith ⊂ SL(2).] We will show that V (0)2 = 0. Now

V (0)2 = 2 + ω2 + 1/ω2,

so we must show that ω2 = −1. For this, we argue as follows. The
quantities ω2 and 1/ω2 are the eigenvalues of Frob0,Fq2 |V , so they are

the quantities

W (0) := −
∑
x∈Fq2

χ4(x)ψF2
q
(x)/χ8(−1)q

and 1/W (0). Thus we must show that W (0) = −1, i.e., we must show
that when q ≡ 3 mod 4, then for any nontrivial additive character ψ of
Fq, and for any quartic character of F×q2 , the quartic gauss sum is given
by the formula

−
∑
x∈Fq2

χ4(x)ψF2
q
(x) = −χ8(−1)q.

As already noted, for any a ∈ F×q , we have χ4(a) = 1. Therefore
this sum is independent of the particular choice of nontrivial additive
character ψ of Fq. Because of this independence, we write simply

−g(Fq2 ;χ4) := −
∑
x∈Fq2

χ4(x)ψF2
q
(x)

for this quartic Gauss sum. It will be convenient to pick some nontrivial
additive character ψFp of the prime field, and then take the particular
choice

ψ := ψFp ◦ TraceFq/Fp .
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There are unique quartic and octic characters χ4,Fp2 and χ8,Fp2 of F×p2
whose compositions with the Norm NormFq2/Fp2 are our characters χ4

and χ8 of F×q2 .
Because q ≡ 3 mod 4, Fq is an odd degree, say degree d, extension

of Fp, and p ≡ 3 mod 4. By Hasse-Davenport, we have the relation

−g(Fq2 ;χ4) = (−g(Fp2 ;χ4,Fp2 ))d.

Because d is odd and −1 ∈ Fp, NormFq2/Fp2 (−1) = (−1)d = −1, so we

have
χ8(−1) := χ8,Fp2 ((−1)d) = (χ8,Fp2 (−1))d.

So it suffices to prove that

−g(Fp2 ;χ4,Fp2 ) = −χ8,Fp2 (−1)p,

i.e., to prove that (when p ≡ 3 mod 4) we have

g(Fp2 ;χ4,Fp2 ) = p if p ≡ 7 mod 8,

g(Fp2 ;χ4,Fp2 ) = −p if p ≡ 3 mod 8.

This was proven by Stickelberger in 1890, see [Be-Ev, (10.3)], [Be-Ev-Wi,
Thm. 11.6.1] and [Stick, 3.6 and 3.10]. �

We now elaborate and then exploit the I(∞)-structure of V . The
question is geometric, so we may assume that q ≡ 1 mod 8 and that
the parameter a ∈ F×q is a square, a = α2, for some α ∈ F×q .

Lemma 6.6. The I(∞)-representation attached to [t 7→ t2]?Kl(ψα;χ4,1)
is (the restriction to I(∞) of the sheaf on the x-line)

Lχ4(x) ⊗ Lψ(2αx)
⊕
Lχ4(x) ⊗ Lψ(−2αx).

The I(∞)-representation attached to V is (the restriction to I(∞) of
the sheaf on the x-line)

Lχ2(x) ⊗ Lψ(2αx2)
⊕
Lχ2(x) ⊗ Lψ(−2αx2).

Proof. In terms of the additive character ψα(x) := ψ(αx), we have
[t 7→ at]?Kl(ψ;χ4,1) = Kl(ψα;χ4,1). Hence we have a geometric
isomorphism

V0 = [t 7→ t4]?Kl(ψα;χ4,1).

If we pick an octic character χ8 such that χ2
8 = χ4, then we have

Kl(ψα;χ4,1) ∼= Lχ8(x) ⊗Kl(ψα;χ8, χ8).

Pulling back by t 7→ t2, we get

[t 7→ t2]?Kl(ψα;χ4,1) ∼= Lχ4(x) ⊗ [t 7→ t2]?Kl(ψα;χ8, χ8).
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One knows [Ka-ClausCar, 2.5, the d=2 case] that the I(∞)-representation
of [t 7→ t2]?Kl(ψα;χ8, χ8) is given by

Lχ2(x) ⊗ Lψ(2αx)
⊕
Lχ2(x) ⊗ Lψ(−2αx).

Tensoring with Lχ4(x) gives the first assertion.
Geometrically, V0 is [t 7→ t4]?Kl(ψα;χ4,1), so we get the second

assertion as the t 7→ t2 pullback of the first. �

Corollary 6.7. Let F be a lisse sheaf of rank two on A1/Fq whose
I(∞)-representation is isomorphic to (the restriction to I(∞) of the
sheaf on the x-line)

Lχ2(x) ⊗ Lψ(2αx2)
⊕
Lχ2(x) ⊗ Lψ(−2αx2).

Then F is geometrically irreducible.

Proof. If F were geometrically reducible, its geometric semisimplica-
tion would contain as direct summand a sheaf N which is lisse of rank
one on A1/Fq and whose I(∞)-representation is Lχ2(x)⊗Lψ(2αx2). But
no such N can exist, for by tensoring it with Lψ(−2αx2) we would obtain

a lisse rank one sheaf on A1/Fq whose local monodromy at ∞ is tame
but nontrivial (namely Lχ2(x)). �

Theorem 6.8. We have the following rigidity results concerning the
geometrically irreducible lisse sheaf V on A1/Fq.

(1) The sheaf V is cohomologically rigid, i.e. for j : A1 ⊂ P1 the
inclusion,

χ(P1 ⊗Fq Fq, j?End(V)) = 2.

(2) If F is a lisse sheaf on A1/Fq whose I(∞)-representation is
isomorphic to that of V, then F is geometrically isomorphic to
V.

(3) If F is a lisse sheaf on A1/Fq with Garith ⊂ SL(2), whose
I(∞)-representation is isomorphic to that of V, then F is arith-
metically isomorphic to either V or to its constant field twist
V ⊗ (−1)deg.

Proof. To prove (1), we use the fact that V is geometrically self dual
to write End(V) ∼= V ⊗ V . Thus End(V) is lisse of rank 4 on A1, and
its I(∞)-representation is given by

(Lχ2(x) ⊗ Lψ(2αx2)
⊕
Lχ2(x) ⊗ Lψ(−2αx2))⊗2 =

Q` ⊕Q` ⊕ Lψ(4αx2) ⊕ Lψ(−4αx2).



RIGID LOCAL SYSTEMS AND A QUESTION OF WOOTTERS 15

Thus j?End(V) has a two-dimensional stalk at∞, and Swan∞(End(V)) =
4. The Euler-Poincaré formula then gives

χ(P1 ⊗Fq Fq, j?End(V)) = 2 + χ(A1 ⊗Fq Fq, End(V)) =

2 + 4− Swan∞(End(V)) = 2.

That (1) implies (2) is standard, cf. [Ka-RLS, 5.0.2]. To prove (3),
we argue as follows. By (2), F is geometrically isomorphic to V . As
both are geometrically irreducible, Homgeom(V ,F) is a one-dimensional

Gal(Fq/Fq)-representation, i.e. it is Bdeg for some B ∈ Q`, so

F ∼= V ⊗ Homgeom(V ,F) ∼= V ⊗Bdeg.

Both F and V are lisse of rank two with arithmetically trivial deter-
minants, hence B = ±1.

�

What can we say about the situation in characteristic p = 3? It
follows from a result of Kubert [Ka-G2Hyper, 13.2 and 13.3 (2)] that
in characteristic 3, the sheaf Kl(ψ;χ4,1) has finite Ggeom. [The Kubert
result we are using is that if q is a power of a prime p, and if we take all
but two of the characters of order dividing q+1, then the Kloosterman
sheaf of rank q − 1 formed with those characters has finite Ggeom. We
are applying it with q = 3.]

Theorem 6.9. In characteristic 3, the sheaf V is geometrically irre-
ducible, we have

Ggeom ⊂ Garith ⊂ SL(2),

and both Ggeom and Garith are finite primitive irreducible subgroups of
SL(2).

Proof. The geometric irreducibility results from Lemma 6.6 and Corol-
lary 6.7. We know from Kubert that V has finite Ggeom (as geometri-
cally it is a pullback of Kl(ψ;χ4,1)). The arithmetic determinant for-
mula argument in the proof of Theorem 6.3 shows that Ggeom ⊂ SL(2).
Thus Ggeom is an irreducible subgroup of SL(2), and hence the larger
group Garith is also irreducible. The fact that V has real traces and
is pure of weight zero shows that V is arithmetically self dual. the
irreducibility of Garith shows that this autoduality has a well defined
sign. The irreducibility of Ggeom shows that this sign is the same as
that of the induced geometric autoduality of V . This last autoduality
must have sign −1. If the sign were +1, we would have Ggeom ⊂ O(2).
But Ggeom ⊂ SL(2), so we would get Ggeom ⊂ SO(2). But SO(2)
is abelian, so Ggeom would be abelian, which it is not, since it is an
irreducible subgroup of SL(2). So V is symplectically self dual, and
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hence Garith ⊂ SL(2). That Garith is finite results from the fact that
it lies in SL(2) and normalizes a finite irreducible subgroup (namely
Ggeom) of SL(2). Indeed, for N the order of the automorphism group
Aut(Ggeom), every element γ ∈ Garith has γN acting trivially on Ggeom

by conjugation, i.e., commuting with the irreducible group Ggeom, so
scalar, so ±1. Thus Garith, and hence Lie(Garith), is killed by 2N , so
Lie(Garith) = 0, i.e., Garith is finite.

It remains to explain why both Ggeom and Garith, finite irreducible
subgroups of SL(2), are primitive. It suffices to show that Ggeom is
primitive, for then Garith is “even more” primitive. The group Ggeom,Kl

for Kl(ψ;χ4,1) is primitive, because Kl(ψ;χ4,1) is geometrically ir-
reducible and not induced (because not Kummer induced, cf. Pink’s
lemma [Ka-MGF, Lemma 11]). Since geometrically V0 is the pullback
of Kl(ψ;χ4,1) by a finite etale galois cover (namely [t 7→ t4]), it fol-
lows that Ggeom is an irreducible normal subgroup of the primitive
irreducible group Ggeom,Kl. But if Ggeom were imprimitive, there would
be a unique pair of lines, say L1 and L2, in the two-dimensional rep-
resentation space, which are either stabilized or interchanged by each
element of Ggeom. By normality, for each g ∈ Ggeom,Kl, the two lines
gL1 and gL2 would also be either stabilized or interchanged by each
element of Ggeom. By the unicity of such a pair of lines, we find that
Ggeom,Kl itself is imprimitive. �

To end this section, let us make explicit how Deligne’s general equidis-
tribution theorem applies to the sheaf V . Recall that for the group
SU(2), the trace map

Trace : SU(2)→ [−2, 2]

is an isomorphism of the space SU(2)# of conjugacy classes in SU(2)
with [−2, 2], an element x ∈ [−2, 2] representing the conjugacy class
of elements A ∈ SU(2) whose characteristic polynomial is det(T −
A) is T 2 − xT + 1. In this picture, the Sato-Tate measure, i.e., the
direct image of (total mass one) Haar measure on SU(2) is the measure
(1/2π)

√
4− x2dx on [−2, 2]. If we use the bijection

2 cos : [0, π] ∼= [−2, 2], θ ∈ [0, π] 7→ 2 cos(θ) ∈ [−2, 2],

then we get [0, π] as the space of conjugacy classes, with an angle θ ∈
[0, π] representing the conjugacy class whose eigenvalues are eiθ, e−iθ.
In this picture, the Sato-Tate measure is the measure (2/π) sin2 θdθ on
[0, π].

Now let us turn to the lisse sheaf V on A1/Fq. Recall that its def-
inition depends on the choice of an element a ∈ F×q . Given a finite
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extension E/Fq, and a point t ∈ A1(E) = E, we denote by

θa,t,E ∈ [0, π]

the unique angle for which Trace(Frobt,E|V) = 2 cos(θa,t,E).
For each integer n ≥ 1, SU(2) has exactly one irreducible represen-

tation of dimension n, namely Symn−1(std2), whose character is the
function

sn(θ) := sin(nθ)/ sin(θ).

Here s1 is the constant function 1. By Peter-Weyl (or by trigonome-
try), the functions sn, n ≥ 1 form an orthonormal basis of the space
L2([0, π], (2/π) sin2 θdθ).

Theorem 6.10. For Fq of characteristic p ≥ 5, and E/Fq a finite
extension, with #E “large”, the angles {θa,t,E}t∈E are approximately
equidistributed in [0, π] for the Sato-Tate measure (2/π) sin2 θdθ on
[0, π] in the following sense. For each n ≥ 2, and each finite exten-
sion E/Fq, we have the estimate

|(1/#E)
∑
t∈E

sn(θa,t,E)| ≤ 2n/(#E)1/2.

Proof. For each n ≥ 2, we form the lisse sheaf Symn−1(V), which is
geometrically irreducible nontrivial, lisse on A1 of rank n, and pure of
weight zero on A1/Fq. So the compact cohomology groups

H i
c(A1/Fq, Symn−1(V))

vanish for i 6= 1, the H1
c is mixed of weight ≤ 1, and of dimension

Swan∞(, Symn−1(V)). Because V has both its∞-slopes 2, Symn−1(V)
has each of its n ∞-slopes ≤ 2, so we have

dimH1
c (A1/Fq, Symn−1(V)) = Swan∞(Symn−1(V)) ≤ 2n.

By the Lefschetz trace formula, the sum we are estimating is given by∑
t∈E

sn(θa,t,E) = −Trace(FrobE|H1
c (A1/Fq, Symn−1(V))).

The H1
c here is mixed of weight ≤ 1, and of dimension ≤ 2n, so the

right hand side is bounded in absolute value by 2n(#E)1/2. �

Corollary 6.11. In any sequence of pairs (ki, ai) with ki a finite field
of (possibly varying) characteristic ≥ 5 , ai ∈ k×i such that the sequence
#ki tends archimedeanly to ∞, the measures

µi := (1/#ki)
∑
t∈ki

δθai,t,ki
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on [0, π] tend weak ? to the Sato-Tate measure: For any continuous
function f on [0, π],

(2/π)

∫ π

0

f(θ) sin(θ)2dθ = lim
i→∞

(1/#ki)
∑
t∈ki

f(θai,t,ki).

We have the more precise estimate that for each n ≥ 2, we have

|(1/#ki)
∑
t∈ki

sn(θai,t,ki)| ≤ 2n/(#ki)
1/2.

7. Sheaf-theoretic reformulation of the S(j, j)

On the open set U of A1 where ax − x3 is invertible, we have the
lisse rank one sheaf Lχ2(ax−x3), which we prefer to write as Lχ2(a/x−x).
For j : U ⊂ A1 the inclusion, we form the sheaf j?Lχ2(a/x−x). This
sheaf has vanishing stalk at 0 and at the two square roots ±α of a.
Its shift j?Lχ2(a/x−x)[1] is a perverse sheaf on A1 which is geometrically
irreducible. Denoting by ψ4 the additive character x 7→ ψ(4x), we form
the Fourier Transform

T0 := FTψ4(j?Lχ2(a/x−x) ⊗ (−g(ψ, χ2))
−deg).

This is a single sheaf, indeed T0[1] is a perverse sheaf on A1 which
is geometrically irreducible (being the Fourier Transform of such an
input). The trace function of T0 is given as follows: for E/Fq a finite
extension, and t ∈ E,

Trace(Frobt,E|T0) =
−
∑

x∈E× χ2,E(a/x− x)ψE(4tx)

−g(ψE, χ2,E)
.

We then define

S0 := [t 7→ t2]?T0.
The following lemma is then a tautology.

Lemma 7.1. For E/Fq a finite extension, and t ∈ E,

Trace(Frobt,E|S0) = S(t, t, E).

The geometric structure of T0 is given as follows.

Theorem 7.2. We have the following results on the sheaf T0 on A1.

(1) The I(∞)-representation of T0 is

Lχ2(t)

⊕
Lχ2(t) ⊗ Lψ(4αt)

⊕
Lχ2(t) ⊗ Lψ(−4αt).

(2) The sheaf T0 is lisse of rank three, pure of weight zero, and
geometrically irreducible on Gm.
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(3) The I(0)-representation of T0|Gm is

Q` ⊕Q` ⊕ Lχ2(t).

(4) For j0 : Gm ⊂ A1 the inclusion, we have an isomorphism T0 ∼=
j0?(T0|Gm).

(5) The sheaf T0|Gm is cohomologically rigid, i.e., for j : Gm ⊂ P1

the inclusion,

χ(P1 ⊗Fq Fq, j?End(T0)) = 2.

(6) Any lisse rank 3 sheaf on Gm/Fq whose I(0) and I(∞)-representations
are isomorphic to those of T0 is geometrically isomorphic to
T0|Gm.

Proof. Assertion (1) is an instance of Laumon’s stationary phase theo-
rem [Ka-ESDE, 7.4.2 and 7.4.4 (2)], in which the input sheaf j?Lχ2(a/x−x)
is tame at ∞ and has three finite singularities 0, α,−α. At these
three points, the stalk vanishes. The local monodromies are Lχ2(x),
Lχ2(x− α), and Lχ2(x+ α) respectively.

That T0 has generic rank three is visible from (1). That T0 is lisse
on Gm holds because the input sheaf j?Lχ2(a/x−x) is tame at ∞, so
in particular has all ∞-slopes < 1, cf. [Ka-ESDE, 7.4.5 (1)]. The
purity is equivalent to the statement that as perverse sheaf, T0[1] is
pure of weight one. This follows from the fact that that the input
j?Lχ2(a/x−x)⊗(−g(ψ, χ2))

−deg[1] as perverse sheaf is pure of weight zero,
and the fact that Fourier Transform preserves purity, but increases the
weight by one.

Assertion (3) results from the fact that the I(∞)-representation of
the input sheaf (j?Lχ2(a/x−x) is Lχ2(x), Laumon’s results [Ka-ESDE,
7.4.4 (2) and 7.4.3 (1)], and the fact that T0|Gm has rank three. That
T0|Gm is geometrically irreducible results from the geometric irreducibil-
ity of the (nonpunctual) perverse sheaf T0[1] on A1

Assertion (4) is simply the fact that the input sheaf, shifted by [1],
is geometrically perverse irreducible, so it Fourier Transform shifted by
[1], namely T0[1], is geometrically perverse irreducible; this implies in
particular that T0 is the extension by direct image from any open set
on which is it lisse.

The cohomological rigidity of T0|Gm results from T0’s being, geomet-
rically, the Fourier Transform of a middle extension sheaf of generic
rank one (namely (j?Lχ2(a/x−x))). Such an input is cohomologically

rigid (indeed, its j?End sheaf is just the constant sheaf Q` on P1⊗FqFq),
and one knows [Ka-RLS, 3.0.2] that Fourier Transform preserves coho-
mological rigidity. That (5) implies (6) is again [Ka-RLS, 5.0.2]. �
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Theorem 7.3. We have geometric isomorphisms on Gm

Sym2([t 7→ t2]?Kl(ψα;χ4,1) ∼= T0|Gm

and
Sym2(V0) ∼= S0|Gm.

Proof. The I(0)-representation of [t 7→ t2]?Kl(ψα;χ4,1) is visibly

Q` ⊕ Lχ2(x),

and its I(∞)-representation is, by Lemma 6.6,

Lχ4(x) ⊗ Lψ(2αx)
⊕
Lχ4(x) ⊗ Lψ(−2αx).

The I(0) and I(∞)-representations of Sym2([t 7→ t2]?Kl(ψα;χ4,1) are
thus isomorphic to those of T0|Gm, thanks to Theorem 7.2, parts (1)
and (3). The first result now follows from part (6) of Theorem 7.2.
The second result is the t 7→ t2 pullback of the first. �

We now define a sheaf S on A1 which agrees with S0 on Gm, but
which has the “correct” stalk at 0. For j : Gm ⊂ A1 the inclusion, we
define

S := j?j
?S0 = j?(S0|Gm).

Lemma 7.4. The sheaf S on A1 is lisse of rank 3, pure of weight zero
and we have a geometric isomorphism

Sym2(V) ∼= S.
The sheaf S on A1 is geometrically irreducible. If the characteristic
p ≥ 5, its Ggeom is SO(3). [In characteristic p = 3, its Ggeom is one of
the groups A4, S4, A5.]

Proof. By Theorem 7.2, part (3), the I(0)-representation of T0|Gm is

Q` ⊕Q` ⊕ Lχ2(t),

which becomes trivial after pullback by t 7→ t2. Hence S is lisse of rank
3 on A1. It is pure of weight zero because it is lisse on A1 and is the
middle extension of its (pure of weight zero) restriction to the dense
open set Gm. On the dense open set Gm we have an isomorphism of
lisse sheaves

Sym2(V)|Gm
∼= S|Gm,

by Theorem 7.3. Applying j? to this isomorphism gives the asserted
isomorphism.

To see the geometric irreducibility, we argue as follows. In character-
istic p ≥ 5, V has Ggeom = SL(2), so its Sym2(V) has Ggeom = SO(3).
In characteristic 3, Ggeom for V is, by Theorem 6.9 a primitive irre-
ducible subgroup of SL(2), so by classification its image under Sym2
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is one of the three subgroups A4, S4, A5 of SO(3), each of which is
irreducible. �

Theorem 7.5. In characteristic p ≥ 5, S has Ggeom = Garith = SO(3).
In characteristic 3, we have Ggeom ⊂ Garith ⊂ SO(3), with Ggeom and
Garith finite irreducible subgroups of SO(3).

Proof. The lisse sheaf S on A1 and its restriction to Gm have the same
Garith as each other. The sheaf S|Gm, is lisse of rank 3, pure of weight
zero, and has real traces, so is arithmetically isomorphic to its dual.
As it is also geometrically irreducible, its autoduality has a sign, which
must be +1 because we are in odd dimension 3 (we can only have sign
−1 in even dimension). Therefore we have an a priori inclusion

Garith ⊂ O(3).

So in any characteristic we have inclusions

Ggeom ⊂ Garith ⊂ O(3),

with Ggeom a normal subgroup of Garith.
It suffices to prove that Garith ⊂ SO(3). Indeed, once we have this

inclusion, then in characteristic p ≥ 5, we use the resulting inclusions

SO(3) = Ggeom ⊂ Garith ⊂ SO(3).

In characteristic 3, we use the fact that Garith normalizes Ggeom, and
the fact that the normalizers of the groups A4, S4, A5 in SO(3) are
respectively S4, S4, A5.

We know that Ggeom ⊂ SO(3). Therefore det(S) is a ±1-valued
character which is geometrically constant. In other words, either det(S)
is arithmetically trivial, or it is (−1)deg. So to prove that det(S) is
arithmetically trivial, it suffices to exhibit a single Fq-rational point
t ∈ A1(Fq) with

det(Frobt,Fq |S) = 1.

We will show that this holds at the point t = 0. Denote by j : Gm ⊂
A1 the inclusion. Denote

[2Gm ] := [t 7→ t2 on Gm]

as endomorphism of Gm, and denote

[2A1 ] := [t 7→ t2 on A1]

as endomorphism of A1. We must compute the action of Frob0,Fq on
the stalk at 0 of

F := j?j
?S0 = j?[2Gm ]?j?T0.



22 NICHOLAS M. KATZ

Because [2A1 ] is totally ramified over 0, this stalk is the same as the
stalk at 0 of

[2A1 ]?F .
From the commutative diagram

Gm
j
//

[2Gm ]

��

A1

[2A1 ]
��

Gm
j
// A1

we see that

[2A1 ]?F := [2A1 ]?j?[2Gm ]?j?T0 = j?[2Gm ]?[2Gm ]?j?T0.
By the projection formula,

[2Gm ]?[2Gm ]?j?T0 = j?T0 ⊗ [2Gm ]?Q`.

But

[2Gm ]?Q` = Q` ⊕ Lχ2(x),

so

[2A1 ]?F = j?(j
?T0 ⊕ j?(T0 ⊗ Lχ2(x))) = j?j

?T0 ⊕ j?j?(T0 ⊗ Lχ2(x)).

We have already noted, in Theorem 7.2, (4), that j?j
?T0 = T0. To

compute j?j
?(T0 ⊗ Lχ2(x)), we argue as follows. From the known I(0)-

representation of T0, we see that T0⊗Lχ2(x) has a one-dimensional space
of I(0)-invariants at 0, i.e., j?j

?(T0 ⊗ Lχ2(x)) has a one-dimensional
stalk at 0. So any sheaf G on A1 which agrees with T0 ⊗Lχ2(x) on Gm,
geometrically has no nonzero punctual sections, and has a nonzero stalk
at 0 must be j?j

?(T0 ⊗ Lχ2(x)).
Let us first explain the character sum calculation which motivates

the construction of such a sheaf G. For t 6= 0 in Fq, we have

Trace(Frobt,Fq |T0 ⊗ Lχ2(x)) =
−χ2(t)

∑
x∈F×

q
χ2(a/x− x)ψ(4tx)

−g(ψ, χ2)
.

We rewrite this sum as

−
∑

x∈F×
q
χ2(at/x− tx)ψ(4tx)

−g(ψ, χ2)
,

then sum over x/t to get

−
∑

x∈F×
q
χ2(at

2/x− x)ψ(4x)

−g(ψ, χ2)
,
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To obtain these sums geometrically, we consider the second projec-
tion pr2 : Gm × A1 → A1, and endow the source, with coordinates
(x, t), with the sheaf

H := Lχ2(at2/x−x) ⊗ Lψ(4x) ⊗ (−g(ψ, χ2))
−deg.

Then H[2] on the source is perverse, and hence

G := R1pr2!H

is a “sheaf of perverse origin” on A1, and hence has no nonzero punctual
sections, cf. [Ka-SC, Cor. 5]. The Ripr2!H vanish for i 6= 1, so the
trace function of G on Gm is exactly that of T0 ⊗ Lχ2(x), and at t = 0
is given by the formula

Trace(Frob0,Fq |G) =
−
∑

x∈F×
q
χ2(−x)ψ(4x)

−g(ψ, χ2)
= χ2(−1).

This shows that on the one-dimensional stalk at 0 of j?j
?(T0⊗Lχ2(x)),Frob0,Fq

acts as multiplication by χ2(−1).
Now let us consider in greater detail the action of Frob0,Fq on the

two-dimensional stalk at 0 of T0. Here we have, for any finite extension
E/Fq,

Trace(Frob0,E|T0) =
−
∑

x∈E× χ2,E(a/x− x)

−g(ψE, χ2,E)
.

The numerator is the trace of FrobE on the H1 of the elliptic curve E
over Fq of equation

y2 = ax− x3.
In other words, the two-dimensional stalk of T0 at 0, as Frob0,Fq -
module, is

H1(E ⊗Fq Fq,Q`)⊗ (−g(ψ, χ2))
−deg

as FrobFq -module.
Thus the stalk at 0 of S is the direct sum

(χ2(−1))deg ⊕H1(E ⊗Fq Fq,Q`)⊗ (−g(ψ, χ2))
−deg.

So the determinant of Frob0,Fq on this stalk is the product its deter-
minants on each of the two summands. On the first summand, the
determinant is χ2(−1). On the second summand, the determinant is
q/(−g(ψ, χ2))

2 = q/(χ2(−1)q) = χ2(−1). Thus we find det(Frob0,Fq ,S) =
1. �

Making use of the above calculation of the stalk at 0 of S, we get
the following variant of Lemma 7.1.
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Lemma 7.6. For E/Fq a finite extension, and t ∈ E×,

Trace(Frobt,E|S) = S(t, t, E).

For t = 0, we have

Trace(Frob0,E|S) = χ2,E(−1) + S(0, 0, E).

Theorem 7.7. We have an arithmetic isomorphism of lisse sheaves
on A1

Sym2V ∼= S.

Proof. We have already proven in Lemma 7.4 that Sym2V and S are
geometrically isomorphic and that S, and hence Sym2V as well, are
geometrically irreducible. Therefore arithmetically one is a constant
field twist of the other, so we have an arithmetic isomorphism Sym2V ∼=
S ⊗βdeg for some β ∈ Q`

×
. We have shown in Theorem 7.5 that S has

its Garith,S ⊂ SO(3). By Theorems 6.3 and 6.9, we know that V has
its Garith,V ⊂ SL(2), and hence Sym2V has its Garith,Sym2V ⊂ SO(3).
Thus both Sym2V and S have their groups Garith ⊂ SO(3). Therefore
the scalar β lies in SO(3). But the only scalar in SO(3) is 1, hence
β = 1. �

We can now relate V to the sums P (t, t, E).

Corollary 7.8. For E/Fq a finite extension, and t ∈ E, we have the
identities

(Trace(Frobt,E|V))2 = 1 + Trace(Frobt,E|S) = P (t, t, E).

Proof. We have the tautological identity

Trace(Frobt,E|V⊗2) = (Trace(Frobt,E|V))2.

Because V has its Garith,V ⊂ SL(2), we have the decomposition

V⊗2 = Sym2V ⊕ Λ2V ∼= Sym2V ⊕Q`.

This proves the first identity. The second results from Lemma 7.6 and
the definition of the sums P (t, t, E). �

For the sums V (t, E), we have the following result.

Corollary 7.9. For E/Fq a finite extension, and t ∈ E, we have the
identity

V (t, E)2 = P (t, t, E).

Proof. Immediate from the previous result, Theorem 6.1 and Lemmas
6.4 and 6.5. �

Here is a slight variant.
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Corollary 7.10. For E/Fq a finite extension, and t ∈ E, we have the
identity

V (t, E)V (−t, E) = P (t,−t, E).

Proof. Immediate from the previous result, the fact that V (−t, E) =
χ2,E(−1)V (−t, E) (Lemmas 3.1 and 4.1), and the fact that P (t,−t, E) =
χ2,E(−1)P (t, t, E). �

8. The projection property of the P (j, k), following Evans

In this section, we give a proof, due to Evans, of a result we learned
from Wootters [A-S-S-W].

Theorem 8.1. The q × q matrix P := P (j, k)j,k∈Fq satisfies the iden-
tities

Trace(P ) = q − χ2(a),

P 2 = (q − χ2(a))P.

Proof. We first prove the trace identity. By definition,

Trace(P ) = P (0, 0)+
∑
t∈F×

q

(1+S(t, t)) = 1+χ2(−1)+
∑
t∈Fq

S(t, t)+q−1 =

q + χ2(−1) + (1/g(ψ, χ2))
∑
uv=a

χ2(u− v)
∑
t∈Fq

ψ(4t2v).

In the innermost sum, v is nonzero (since uv = a), so this innermost
sum is ∑

t∈Fq

ψ(4t2v) = χ2(v)g(ψ, χ2),

hence

Trace(P ) = q+χ2(−1)+
∑
uv=a

χ2(u−v)χ2(v) = q+χ2(−1)+
∑
v∈F×

q

χ2(a−v2).

But we have the identity

χ2(a) + χ2(−1) +
∑
v∈F×

q

χ2(a− v2) = 0,

because this expression is minus the trace of FrobFq on H1 of the
complete nonsingular model of the curve y2 = a − v2, and this H1

vanishes.This last identity gives the asserted value for Trace(P ).
We now turn to the second identity. We must show that for every

j, k ∈ Fq, we have∑
t∈Fq

P (j, t)P (t, k) = (q − χ2(a))P (j, k).
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For brevity, we will now write
∑

t for
∑

t∈Fq , and we will abbreviate

g := g(ψ, χ2).

Writing each

P (j, k) := δj,k + χ2(−1)δj,−k + S(j, k)

and expanding, we get∑
t

P (j, t)P (t, k) = sum1 + sum2 + sum3 + sum4,

with

sum1 =
∑
t

(δj,t + χ2(−1)δj,−t)(δt,k + χ2(−1)δt,−k),

sum2 =
∑
t

(δj,t + χ2(−1)δj,−t)S(t, k),

sum3 =
∑
t

(δt,k + χ2(−1)δt,−k)S(j, t),

sum4 =
∑
t

S(j, t)S(t, k).

We have

sum1 =


0 if j2 6= k2,

(1 + χ2(−1))2 if j = k = 0,
2 if j = k 6= 0,

2χ2(−1) if j = −k 6= 0.

We have

sum2 + sum3 =

S(j, k) + χ2(−1)S(−j, k) + S(j, k) + χ2(−1)S(j,−k) = 4S(j, k).

So the real work comes in evaluating sum4 :=
∑

t S(j, t)S(t, k). We
write

sum4 = (1/g2)
∑

uv=a,xy=a

χ2((u− v)(x− y))×

∑
t

ψ((j + t)2v + (j − t)2u+ (k + t)2y + (k − t)2x) =

(1/g2)
∑

uv=a,xy=a

χ2((u− v)(x− y)ψ(j2(v + u) + k2(y + x))×

∑
t

ψ(t2(u+ v + x+ y) + 2t(j(v − u) + k(y − x))).



RIGID LOCAL SYSTEMS AND A QUESTION OF WOOTTERS 27

If u + v + x + y = 0, the innermost sum is qδ0,j(v−u)+k(y−x). If
u+ v + x+ y 6= 0, the innnermost sum is (complete the square)

χ2(u+ v + x+ y)gψ(
−(j(v − u) + k(y − x))2

u+ v + x+ y
).

Following closely Evans, we denote by A the sum of those terms in
the entire sum with u+v+x+y = 0, and by B the sum of those terms
in the entire sum with u+ v + x+ y 6= 0.

To analyze A, we argue as follows. Since uv = xy = (−x)(−y) (all
are a), and u + v = (−x) + (−y), we conclude (symmetric functions)
that the unordered sets {u, v} and {−x,−y} coincide. If in addition
u = v, the factor u − v inside the χ2 kills this term. For each pair
u, v with uv = a, u 6= v, there are two pairs, (x, y) = (−u,−v) and
(x, y) = (−v,−u), with u+ v + x+ y = 0.

Still with the A sum, suppose first j = k = 0. Then every innermost
sum is q, and for each pair u, v with uv = a, u 6= v, the outer sum
has a term which χ2((u − v)2) (from taking (x, y) = (−v,−u)) and a
term χ2(−(u − v)2) (from taking (x, y) = (−u,−v)). The number of
pairs uv = a, u 6= v is the number of u ∈ F×q with u2 6= a, so there are
q − 1− (1 + χ2(a)) = q − 2− χ2(a) terms. So we have

A = (1/g2)q(q−2−χ2(a))(1+χ2(−1)) = χ2(−1)(q−2−χ2(a))(1+χ2(−1)) =

(q − 2− χ2(a))(1 + χ2(−1)) if j = k = 0.

We now analyze the A term when j2 6= k2 (and hence at least one
of j, k is nonzero). In these cases, the innermost sum, qδ0,j(v−u)+k(y−x),
vanishes (because y − x = ±(v − u) in each A summand, and again
only terms with u 6= v contribute). Thus

A = 0 if j2 6= k2.

We now analyze the A term when j = k 6= 0. Here for each pair u, v
with uv = a, u 6= v, there is just one pair, (x, y) = (−u,−v) for which
the innermost sum, qδ0,j(v−u)+k(y−x), is nonzero. But for these terms,
χ2((u− v)(y − x)) = χ2(−(u− v)2) = χ2(−1), so we get

A = q − 2− χ2(a) if j = k 6= 0.

In a similar fashion, we find

A = χ2(−1)(q − 2− χ2(a)) if j = −k 6= 0.

We now turn to the analysis of the B sum. We will prove below that

B = (q − 4− χ2(a))S(j, k).

If we admit this, then we get the required assertion. In all cases,

sum2 + sum3 + B = (q − χ2(a))S(j, k).
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Suppose first j2 6= k2. Then sum1 = 0, A = 0, and P (j, k) := S(j, k),
so we are done.

If j = k = 0, then sum1 = (1 +χ2(−1))2 = 2((1 +χ2(−1)), and A =
(q− 2−χ2(a))(1 +χ2(−1)). In this case P (0, 0) := 1|χ2(−1) +S(0, 0),
so again we are done.

If j = k 6= 0, then sum1 = 2 and A = q − 2 − χ2(a). In this case
P (j, j) := 1 + S(j, j), so we are done.

If j = −k 6= 0, then sum1 = 2χ2(−1) and A = χ2(−1)(q−2−χ2(a)).
In this case P (j, j) := χ2(−1) + S(j, j), so we are done. �

To finish the proof of Theorem 8.1, it remains to prove the following.

Lemma 8.2. We have

B = (q − 4− χ2(a))S(j, k).

Proof. Recall that B is given by

(1/g2)
∑

uv=a,xy=a,u 6=v,x6=y,u+v+x+y 6=0

χ2((u−v)(x−y)ψ(j2(v+u)+k2(y+x))×

χ2(u+ v + x+ y)gψ(
−(j(v − u) + k(y − x))2

u+ v + x+ y
)

= (1/g)
∑

uv=a,xy=a,u6=v,x6=y,u+v+x+y 6=0

χ2((u− v)(x− y)(u+ v + x+ y))×

ψ(j2(v + u) + k2(y + x)− (j(v − u) + k(y − x))2

u+ v + x+ y
).

To see some structure in the argument of χ2, we need two identities.
The first is

vy(u+v+x+y) = ay+v2y+av+y2v = a(y+v)+vy(y+v) = (a+vy)(y+v).

The second, using the first, is

(yv)2(u− v)(x− y)(u+ v + x+ y) = (a− v2)(a− y2)(a+ vy)(y + v) =

(a2 − av2 − ay2 + y2v2)(a+ vy)(y + v) =

((a+ vy)2 − a(y + v)2)(a+ vy)(y + v).

In the χ2 argument, we may multiply by the invertible square (vy)2

and divide by the invertible square (a+ vy)2(y + v)2, so B is

(1/g)
∑

uv=a,xy=a,u6=v,x6=y,u+v+x+y 6=0

χ2(
a+ vy

v + y
− a(y + v)

a+ vy
)×

ψ(j2(v + u) + k2(y + x)− (j(v − u) + k(y − x))2

u+ v + x+ y
).
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The argument of ψ is of the form

j2C + k2D − 2jkE,

with

C =
(v + u)(u+ v + x+ y)− (u− v)2

u+ v + x+ y
,

D =
(y + x)(u+ v + x+ y)− (y − x)2

u+ v + x+ y
,

E =
(v − u)(y − x)

u+ v + x+ y
.

We first observe that
C = D.

Indeed, the numerator of C is

(v+u)(u+v+x+y)−(u−v)2 = (u+v)2−(u−v)2+(u+v)(x+y) = 4a+(u+v)(x+y),

which is also the numerator of D. Thus the argument of ψ is

j2C + k2C − 2jkE = (j + k)2((C − E)/2) + (j − k)2((C + E)/2).

We have

(C − E)/2 =
4a+ (u+ v)(x+ y)− (v − u)(y − x)

2(u+ v + x+ y)
=

=
(yv)(4a+ (u+ v)(x+ y)− (v − u)(y − x))

2(a+ vy)(y + v)
=

=
4ayv + (a+ v2)(a+ y2)− (v2 − a)(y2 − a)

2(a+ vy)(y + v)
=

=
4ayv + 2ay2 + 2av2

2(a+ vy)(y + v)
=

a(v + y)2

(a+ vy)(y + v)
=
a(v + y)

a+ vy
.

In a completely similar fashion, we get

(C + E)/2 =
a+ vy

v + y
.

Putting this all together, we find

B = (1/g)
∑

uv=a,xy=a,u6=v,x6=y,u+v+x+y 6=0

χ2((
a+ vy

v + y
)− (

a(y + v)

a+ vy
))×

ψ((j + k)2(
a(v + y)

a+ vy
) + (j − k)2(

a+ vy

v + y
)).

So if we put

X :=
a(v + y)

a+ vy
,
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then we have

B = (1/g)
∑

X∈F×
q ,X 6=a/X

χ2(a/X−X)ψ((j+k)2X+(j−k)2(a/X))Mult(X),

where Mult(X) is the number of inputs uv = a, xy = a, u 6= v, x 6=
y, u+ v + x+ y 6= 0 for which

X =
a(v + y)

a+ vy
.

So our remaining task is to show that for any X ∈ F×q with X 6= a/X,
we have

Mult(X) = q − 4− χ2(a).

In view of the identity

vy(u+ v + x+ y) = (a+ vy)(y + v),

Mult(X) is the number of pairs (v, y) in Fq2 with vy(v+y)(a+vy)(a−
v2)(a− y2) invertible and

X =
a(v + y)

a+ vy
.

If we fix a choice of y with a− y2 invertible, then

v 7→ a(v + y)

a+ vy

is a fractional linear transformation, say Ly, given by the 2 by 2 matrix
((a, ay), (y, a)). This matrix is invertible, because a − y2 is invertible.
Then there is a unique v ∈ P1(Fq) with Ly(v) = X, given by

v =
a(X − y)

a−Xy
.

Thus v lies in F×q provided that y 6= X and y 6= a/X. So for each y with

y(a− y2)(y−X)(y−a/X) invertible, v = a(X−y)
a−Xy is invertible and X =

a(v+y)
a+vy

. We claim that this v is such that vy(v+y)(a+vy)(a−v2)(a−y2)
is invertible. Indeed, we have

v + y =
a(X − y)

a−Xy
+ y =

a(X − y) + y(a−Xy)

a−Xy
=
X(a− y2)
a−Xy

,

so v+y is invertible. Once v+y is invertible, the fact that X = a(v+y)
a+vy

is

invertible shows that a+ vy is invertible. That v2 6= a, or equivalently
that v 6= a/v, or equivalently that

a(X − y)

a−Xy
6= a−Xy

X − y
,
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amounts to

a(X − y)2 6= (a−Xy)2,

i.e.

(a− y2)(X2 − a) 6= 0,

which is indeed the case.
On the other hand, if y2 = a, then

X =
a(v + y)

a+ vy
=
y2(v + y)

y2 + vy
= y.

But X2 6= a, so no such y contributes to Mult(X).
So for each invertible X with X 6= a/X, we may take y ∈ Fq other

than 0, X, a/X or any root of y2 = a. If there are roots of y2 = a in Fq,
none of them is X or a/X, exactly because X2 6= a. So the number of
y which contribute to Mult(X), each exactly once, is

q − 3− (1 + χ(2)(a)) = q − 4− χ2(a),

as required. �

As explained in the first section, Theorem 8.1, together with the fact
that the matrix P is real and symmetric, shows that there is a (unique
up to a ±1 factor) vector

V := (Vj)j∈Fq ∈ Rq

such that we have the identities

P (j, k) = VjVk.

In particular, we have the identities

P (j, k)2 = P (j, j)P (k, k).

In view of Corollary 7.9, it follows that

P (j, k)2 = V (j)2V (k)2,

and hence we have

P (j, k) = ±V (j)V (k).

Repeating these considerations over a finite extension E/Fq, we find

Corollary 8.3. For E/Fq a finite extension, and s, t ∈ E, we have

P (s, t, E) = ±V (s, E)V (t, E).
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9. Interlude:The ± Trace problem

In this section, we work over C. We are given a group Γ, a finite
dimensional C-vector space V with dim(V ) ≥ 2, and two irreducible
C-representations of Γ,

ρ1, ρ2 : Γ→ GL(V ).

We are told that for every γ ∈ Γ, we have

Trace(ρ1(γ))2 = Trace(ρ2(γ))2.

When is it then true that there exists a character χ ∈ Hom(Γ,±1) such
that ρ2 = χ⊗ ρ1?

Let us consider the following slightly more general problem. Suppose
we are given a nonzero polynomial F (X, Y ) ∈ C[X, Y ] and we are told
that for every γ ∈ Γ,

F (Trace(ρ1(γ)),Trace(ρ2(γ))) = 0.

How can this happen, and will it have a representation-theoretic ex-
planation? Here is an answer, in a special case.

Theorem 9.1. In the above situation, define, for i = 1, 2,

Gi := the Zariski closure of ρi(Γ) in GL(V ).

Suppose that G1 and G2 are conjugate in GL(V ), i.e., for some A ∈
GL(V ) we have G2 = AG1A

−1. Suppose further G1 is a connected
semisimple group, and that

Lie(ρ1) : Lie(G1)→ End(V )

is the unique irreducible representation of Lie(G1) of dimension dim(V ).
Then there is a divisor d ≥ 1 of the order f of the center Z(G1) such
that

(1) There is a unique character χ ∈ Hom(Γ, µd) such that ρ2 =
χ⊗ ρ1.

(2) The polynomial F (X, Y ) is divisible by the polynomial Xd−Y d.

Proof. View each ρi as a homomorphism from Γ to Gi, and define

H := the Zariski closure of (ρ1 × ρ2)(Γ) in G1 ×G2.

Then H is a closed subgroup of G1 × G2 which projects onto both
factors (by the Zariski density of Γ in all three of H,G1, G2). By (the
algebraic group version of) Goursat’s lemma, there exist closed normal
subgroups N1 ⊂ G1 and N2 ⊂ G2 and an isomorphism

φ : G1/N1
∼= G2/N2
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such that

H = {(g1, g2) ∈ G1 ×G2 | φ(g1 mod N1) = g2 mod N2}.
By the Zariski density of Γ in H, we have

F (Trace(g1|V ),Trace(g2|V )) = 0, for all (g1, g2) ∈ H.
The key observation at this point is that we have an inclusion

N1 ×N2 ⊂ H.

Using this, we first show that N1 and N2 are both finite. Indeed,
the existence of the isomorphism φ : G1/N1

∼= G2/N2, together with
the fact that G1 and G2 are themselves isomorphic, shows that N1

and N2 have the same dimension as each other. Each Gi is reductive
(because it has a faithful completely reducible representation), hence
its normal subgroup Ni is also reductive. So if the Ni have strictly
positive dimension, each of them contains a one-dimensional torus, say
Ti ⊂ Ni. Then we have

T1 × T2 ⊂ H.

Now V is a faithful representation of both the Ti, so if we view each
Ti as Gm, say T1 = Spec(C[X, 1/X]), T2 = Spec(C[Y, 1/Y ]), then
Trace(t1(X)|V ) is a nonconstant Laurent polynomial f(X) ∈ C[X, 1/X]),
and Trace(t1(Y )|V ) is a nonconstant Laurent polynomial g(Y ) ∈ C[Y, 1/Y ]).
But T1 × T2 ⊂ H, so we find that F (f(X), g(Y )) = 0. As f(X), g(Y )
are nonconstant polynomials in X and Y respectively, they are alge-
braically independent over C, hence F is the zero polynomial, contra-
diction.

So now we know that N1 and N2 are finite normal subgroups of
G1 and G2 respectively. But the only finite normal subgroups of a
connnected semisimple group are the subgroups of its center. Moreover,
since each Gi is an irreducible subgroup of GL(V ), its center is a (finite,
because Gi is semisimple) group of scalars, so the group µfi of fi’th
roots of unity for some fi ≥ 1. But G1 and G2 are isomorphic, so
f1 = f2, let us call it f . So N1 = µd1 for some divisor d1 of f , and
N2 = µd2 for some divisor d2 of f . We next claim that d1 = d2. One
way to see this is to pass from the isomorphism

φ : G1/N1
∼= G2/N2

to the induced isomorphism of the universal covering groups

φ̃ : G̃1
∼= G̃2.

Now we make use of our assumption that

Lie(ρ1) : Lie(G1)→ End(V )
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is the unique irreducible representation of Lie(G1) of dimension dim(V ),
in the equivalent form that the composite homomorphism G̃1 → G1 ⊂
GL(V ) is the unique irreducible representation of G̃1 of dimension
dim(V ). In particular, this representation is equivalent to the com-
position

G̃1
φ̃→ G̃2 → G2 ⊂ GL(V ).

Then φ̃ must map the kernel of this representation to itself, i.e.,
it must map the fundamental group of G1 to the fundamental group
of G2. Thus φ̃ induces an isomorphism φG of G1 to G2, which maps
N1 isomorphically to N2. Now we use the uniqueness to say that our
isomorphism of G1 to G2 must be conjugation by some element B of
the ambient GL(V ). Thus

H = {(g1, g2) ∈ G1 ×G2 | ∃ζ ∈ µd with g2 = Bg1B
−1ζ}.

As Trace(Bg1B
−1ζ|V ) = ζTrace(g1|V ), we find that

F (Trace(g1|V ), ζTrace(g1|V )) = 0 ∀g1 ⊂ G1,∀ζ ∈ µd.
Restricting to g1 running over some one-dimensional torus T1 of G1,
with character f(X) a nonconstant Laurent polynomial, we get the
polynomial relation

F (f(X), ζf(X)) = 0 ∀ζ ∈ µd,
hence the polynomial relation F (X, ζX) = 0 ∀ζ ∈ µd. So F (X, ζY )
vanishes on the diagonal, so is divisible by X − Y . Hence F (X, Y ) is
divisible by X−ζ−1Y . As the various factors X−ζ−1Y for the various
ζ ∈ µd are relatively prime, F (X, Y ) is divisible by their product Xd−
Y d.

Returning to H, we observe that the assignment which attaches to
(g1, g2) ∈ H the unique element ζ ∈ µd for which g2 = Bg1B

−1ζ is
indeed a character χ : H → µd. Restricting this χ to Γ, we have

Trace(ρ2(γ)) = χ(γ)Trace(ρ1(γ)),

hence we have an equality ρ2 = χ⊗ ρ1 of (irreducible) representations
of Γ.

To show the uniqueness of χ, we argue as follows.The ratio of two
such is a character Λ for which we have an isomorphism of nonzero (in
fact irreducible) representations

ρ1 ∼= Λ⊗ ρ1.
Because the Zariski closure of ρ1(Γ) is connected (being G1), the last
line of the proof of [Ka-RLS, 2.18.2bis] shows that any such Λ is trivial.

�
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Corollary 9.2. Let X/Fq be smooth and geometrically irreducible, ` 6=
p := char(Fq), F and G lisse Q`-sheaves on X, both of the same rank
n ≥ 2. Suppose that for all finite extensions E/Fq, and all points
x ∈ X(E), we have

Trace(Frobx,E|F)2 = Trace(Frobx,E|G)2.

Suppose further that one of the following three hypotheses holds.

(1) The common rank n is even, F and G are symplectically self
dual, and Ggeom,F = Garith,G = Sp(n).

(2) The common rank n is even, n ≥ 4, F and G are orthogonally
self dual, and Ggeom,F = Garith,G = SO(n).

(3) The common rank n is odd, n ≥ 3, F and G are orthogonally
self dual, and Ggeom,F = Garith,G = SO(n).

Then there exists a lisse rank one Q` sheaf L on X with L⊗2 arithmeti-
cally trivial, and an arithmetic isomorphism G ∼= L ⊗ F . In case (3),
L is trivial, and G ∼= F . The sheaf L is unique.

Proof. We pick (!) an isomorphism of fields Q`
∼= C, and apply Theo-

rem 9.1, with Γ taken to be πarith1 (X) and with ρ1 and ρ2 the represen-
tations corresponding to F and G respectively. [The theorem applies
because the groups in question, Sp(n) for n even, n ≥ 2 and SO(n),
n ≥ 3 are connected semisimple groups with a unique representation
of dimension n. By Chebotarev, for every γ ∈ Γ = πarith1 (X), we have

Trace(γ|F)2 = Trace(γ|G)2.]

The map from πarith1 (X) to H(Q`) is continuous, so the character χ
produced in the Theorem gives by composition a continuous character
of πarith1 (X), which is our L. In cases (1) and (2), the center has order
f = 2. In case (3), the center is trivial, f = 1, so L is trivial. �

Corollary 9.3. In the situation of Corollary 9.2, suppose in addition
that X/Fq is A1/Fq and that p is odd. Then in cases (1) and (2), either
G ∼= F or G ∼= (−1)deg ⊗F .

Proof. Because p is odd, πgeom1 (A1) has no nontrivial homomorphism
to any finite group of order prime to p. So L is geometrically constant,
of order dividing two, so is either trivial or is (−1)deg. �

10. The identity P (j, k) = V (j)V (k); preparations

We restate Corollary 8.3 here, as the following (key) lemma.

Lemma 10.1. For E/Fq a finite extension, and s, t ∈ E, we have

P (s, t, E) = ±V (s, E)V (t, E).
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We now turn to proving the following theorem.

Theorem 10.2. Suppose p ≥ 5. For any s, t ∈ Fq, we have

P (s, t) = V (s)V (t).

Corollary 10.3. Suppose p ≥ 5. For any finite extension E/Fq, and
any s, t ∈ E, we have

P (s, t, E) = V (s, E)V (t, E).

Proof. This is just Theorem 10.2, applied after extension of scalars. �

We will prove Theorem 10.2 by focusing on the difference s − t.
Thanks to Corollary 7.9, Theorem 10.2 is equivalent to the following
Theorem.

Theorem 10.4. Suppose p ≥ 5. Fix λ ∈ F×q . For each t ∈ Fq, we have

P (t+ λ, t− λ) = V (t+ λ)V (t− λ).

We now fix λ ∈ F×q . Our first task will be to exhibit sheaf-theoretic
incarnations of the products V (t+λ)V (t−λ) and the sums P (t+λ, t−
λ).

To incarnate the products V (t + λ)V (t − λ), we define two lisse
sheaves on A1, both additive translates of V , namely

Vλ+ := [t 7→ t+ λ]?V , ,Vλ− := [t 7→ t− λ]?V .
We then form their tensor product on A1

Aλ := Vλ+ ⊗ Vλ−.
The sheaf Aλ is lisse of rank four and pure of weight zero. In view of
Theorem 6.1 and Lemmas 6.4 and 6.5, we have

Lemma 10.5. The trace function of the lisse sheaf Aλ on A1 is given
as follows. For E/Fq a finite extension, and t ∈ E,

Trace(Frobt,E|Aλ) = V (t+ λ,E)V (t− λ,E).

Theorem 10.6. If the characteristic p ≥ 5, the sheaf Aλ has Ggeom =
Garith = SO(4).

Proof. Because p ≥ 5, V has Ggeom = Garith = SL(2), cf. Theorem
6.3. One knows that the image of SL(2)×SL(2) in the tensor product
std2 ⊗ std2 of their standard representations is SO(4). So we have a
priori inclusions

Ggeom,Aλ ⊂ Garith,Aλ ⊂ SO(4).

So it suffices to show that Ggeom,Aλ = SO(4). For this, we argue as
follows. By the Goursat-Kolchin-Ribet criterion [Ka-ESDE, 1.8.2], it
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suffices to show that the two lisse sheaves Vλ+ and Vλ− on A1 are not
geometrically isomorphic, or equivalently that V is not geometrically
isomorphic to [t 7→ t+ 2λ]?V . [In the SL(2) case, we also have to show
that neither is obtained from the other by tensoring with a character
of πgeom1 (A1) with values in ±1, but as we are in odd characteristic,
there are no such nontrivial characters.] This nonisomorphy is obvious
already from looking at the I(∞)-representations. By Lemma 6.6, the
I(∞)-representation of V is

Lχ2(x) ⊗ Lψ(2αx2)
⊕
Lχ2(x) ⊗ Lψ(−2αx2),

which, as we are in odd characteristic, is visibly nonisomorphic to any
nontrivial additive translate of itself. �

To incarnate the sums P (t+λ, t−λ), we must proceed in two steps.
For t 6= 0, we have (t+ λ)2 6= (t− λ)2, hence

P (t+ λ, t− λ) :=
−
∑

uv=a χ2(u− v)ψ(4t2v + 4λ2u)

−g
=

−
∑

x∈F×
q
χ2(a/x− x)ψ(4t2x+ 4λ2a/x)

−g
,

where we have written

g := g(ψ, χ2).

We now imitate the constuction of the sheaf T0 in Section 7. On
the open set U of A1 where ax − x3 is invertible, we have the lisse
rank one sheaf Lχ2(a/x−x) ⊗ Lψ(4λ2a/x). For j : U ⊂ A1 the inclusion,
we form the sheaf j?(Lχ2(a/x−x) ⊗Lψ(4λ2a/x)). This sheaf has vanishing
stalk at 0 and the two square roots ±α of a. Its shift j?Lχ2(a/x−x)[1] is
a perverse sheaf on A1 which is geometrically irreducible. Denoting by
ψ4 the additive character x 7→ ψ(4x), we form the Fourier Transform

Rλ
0 := FTψ4(j?(Lχ2(a/x−x) ⊗ Lψ(4λ2a/x))⊗ (−g)−deg).

This is a single sheaf, indeed Rλ
0 [1] is a perverse sheaf on A1 which

is geometrically irreducible (being the Fourier Transform of such an
input). The trace function of Rλ

0 is given as follows: for E/Fq a finite
extension, and t ∈ E,

Trace(Frobt,E|Rλ
0) =

−
∑

x∈E× χ2,E(a/x− x)ψE(4tx+ 4λ2a/x)

−g(ψE, χ2,E)
.

We then define

Pλ0 := [t 7→ t2]?R0.

The following lemma is a tautology.
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Lemma 10.7. For E/Fq a finite extension, and t ∈ E,

Trace(Frobt,E|Pλ0 ) = S(t+ λ, t− λ,E).

For t 6= 0, we have

Trace(Frobt,E|Pλ0 ) = P (t+ λ, t− λ,E).

We thus have the following relation between Pλ0 and Aλ.

Lemma 10.8. For E/Fq a finite extension, and t ∈ E×,

Trace(Frobt,E|Pλ0 ) = ±Trace(Frobt,E|Aλ).

Proof. Simply combine Lemmas 10.7 and 10.5 with the fact that

P (j, k, E) = ±V (j, E)V (k,E).

�

The geometric structure of Rλ
0 is given as follows.

Theorem 10.9. We have the following results on the sheaf Rλ
0 on A1.

(1) The I(∞)-representation of Rλ
0 is

Wild2
⊕
Lχ2(t) ⊗ Lψ(4αt)

⊕
Lχ2(t) ⊗ Lψ(−4αt),

with Wild2 a two dimensional representation of I(∞) with both
slopes 1/2.

(2) The sheaf Rλ
0 is lisse of rank four, pure of weight zero, and

geometrically irreducible on Gm.
(3) The I(0)-representation of Rλ

0 |Gm is

Q` ⊕Q` ⊕Q` ⊕ Lχ2(t).

(4) For j0 : Gm ⊂ A1 the inclusion, we have an isomorphism Rλ
0
∼=

j0?(Rλ
0 |Gm).

(5) The sheaf Rλ
0 |Gm is cohomologically rigid, i.e., for j : Gm ⊂ P1

the inclusion,

χ(P1 ⊗Fq Fq, j?End(Rλ
0)) = 2.

(6) Any lisse rank 4 sheaf on Gm/Fq whose I(0) and I(∞)-representations
are isomorphic to those of Rλ

0 is geometrically isomorphic to
Rλ

0 |Gm.

Proof. Assertion (1) results from Laumon’s stationary phase. Here the
input is tame at ∞, tame at the finite singularities at the two square
roots of a, but at 0 has an I(∞)-representation of dimension one and
Swan conductor one (which contributes the Wild2 piece). The proofs
of assertions (2) through (5) are entirely analogous to the proofs of
their analogues for T0 given in Theorem 7.2. �
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Theorem 10.10. The sheaf Rλ
0 |Gm has Ggeom ⊂ Garith ⊂ O(4). If the

characteristic p ≥ 5, then Ggeom = Garith = O(4).

Proof. The sheafRλ
0 has real traces. HenceRλ

0 |Gm, being lisse and pure
of weight zero, is isomorphic to its dual. As Rλ

0 |Gm is geometrically
irreducible, its autoduality has a sign. But its local monodromy at 0
is a reflection, which does not lie in Sp(4) (because it has determinant
−1). So the autoduality is orthogonal, i.e., we have inclusions Ggeom ⊂
Garith ⊂ O(4).

Suppose now that p ≥ 5. In view of the a priori inclusions, it suffices
to prove that Ggeom = O(4). For this, it suffices to show that Rλ

0 |Gm

is Lie-irreducible. For if we know this, then the fact that Lie(Ggeom)
is normalized by a reflection allows us to apply [Ka-ESDE, 1.5] to
conclude that Lie(Ggeom) = Lie(SO(4)). Hence Ggeom contains SO(4),
and as it contains a reflection, it must be the entire group O(4).

To show that R0|Gm is Lie-irreducible, we apply the trichotomy of
[Ka-MGF, Prop. 1], according to which eitherRλ

0 |Gm is Lie-irreducible,
or it is induced from a finite etale covering of Gm/Fq of degree 2 or 4,
or it is the tensor product of something Lie-irreducible of rank d = 1
or d = 2 with something or rank 4/d having finite Ggeom. Because
p ≥ 5, the only finite etale coverings we need to consider are the
Kummer coverings of degrees 2 and 4, and it is obvious from the I(0)
representation that Rλ

0 |Gm is not Kummer-induced. The fact that the
I(0)-representation is through a reflection shows that already this I(0)-
representation is not the tensor product of two I(0)-representations
each of rank 2 (a reflection is never a tensor product in a nontrivial
way).

It remains to show that Ggeom is not a finite primitive subgroup of
O(4). If it were, then Garith would be finite (lying inside the normalizer
in O(4) of a finite irreducible subgroup). Then the Garith for the pull-
back P0|Gm = [2]?R0|Gm would be (even more) finite. In that case,
the traces

Trace(Frobt,E|Pλ0 ),

as E/Fq runs over all finite extensions, and t runs over E×, would all
lie in a finite set. By Lemma 10.9, this would imply that the traces

Trace(Frobt,E|Aλ),
as E/Fq runs over all finite extensions, and t runs over E×, would all lie
in a finite set. This is nonsense, because Aλ|Gm is lisse, pure of weight
zero, and has Ggeom = Garith = SO(4), so by Deligne’s equidistribution
theorem [Ka-GKM, 3.6] the traces

{Trace(Frobt,E|Aλ)}t∈E×
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becomes equidistributed (as #E grows) in [−4, 4] for the direct image
by the trace map

Trace : SO(4,R)→ [−4, 4]

of (total mass one) Haar measure on SO(4,R). This measure (con-
cretely, the additive convolution of semicircle measure (1/(2π))

√
4− x2dx

on [−2, 2] with itself) is absolutely continuous with respect to Lebesgue
measure on [−4, 4] and gives every nonvoid open set in [−4, 4] strictly
positive measure, and in particular it is not a finite sum of point
masses. �

We now define a sheaf Pλ on A1 which agrees with P0 on Gm, but
which has the “correct” stalk at 0. For j : Gm ⊂ A1 the inclusion, we
define

Pλ := j?j
?Pλ0 = j?(Pλ0 |Gm).

Lemma 10.11. The sheaf Pλ on A1 is lisse of rank four and pure of
weight zero, with Ggeom ⊂ SO(4). In characteristic p ≥ 5, Ggeom =
SO(4).

Proof. Local monodromy at 0 for Rλ
0 |Gm is a reflection, so the local

monodromy at 0 of Pλ|Gm is trivial, hence P is lisse at 0. That it has
rank four and is pure of weight zero results from its being both lisse
and the direct image from Gm of a lisse sheaf with these properties.
The group Ggeom for Pλ on A1 is the same as for Pλ|Gm = [2]?Rλ

0 |Gm.
So we again have an inclusion Ggeom,Pλ ⊂ O(4). But det(Pλ) is geo-
metrically trivial, since it is a character of πgeom1 (A1), and there are no
such nontrivial characters. Thus we have Ggeom ⊂ SO(4).

Suppose now p ≥ 5. In general, the identity component of Ggeom

does not change under finite pullback, so by Theorem 10.10 we have
inclusions

SO(4) = G0
geom,Pλ ⊂ Ggeom,Pλ ⊂ SO(4).

�

Theorem 10.12. In characteristic p ≥ 5, Pλ has Ggeom = Garith =
SO(4).

Proof. Given the inclusions

SO(4) = Ggeom ⊂ Garith ⊂ O(4),

the only other possibility is that Ggeom = SO(4) and Garith = O(4).
In that case, det(Pλ) is geometrically trivial but not arithmetically
trivial, so we would have det(Pλ) = (−1)deg. In view of Deligne’s
equidistribution theorem when Ggeom is of finite index in Garith, cf.
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[Ka-Sar, 9.7.10], as E/Fq grows over larger and larger extensions of
odd degree, the traces

{Trace(Frobt,E|Pλ)}t∈E×

would become equidistributed for the direct image by the trace map

Trace : O−(4,R)→ [−4, 4]

of the restriction of (total mass 2) Haar measure to the cosetO−(4,R) ⊂
O(4) of elements with determinant −1. On this coset, all traces lie in
the interval [−2, 2]. [Indeed every element in this coset has eigenvalues
of the form eiθ, e−iθ, 1,−1.]

We arrive at a contradiction as follows. By Lemma 10.9, the traces
of Pλ at points of Gm are, up to sign, those of Aλ. By Theorem
10.6 Aλ has Ggeom = Garith = SO(4). By equidistribution the traces
of Aλ, over larger and larger extensions, in particular over larger and
larger extensions of odd degree, become equidistributed in [−4, 4] for a
measure which gives every open set of [−4, 4] strictly positive measure.
So over a large extension of odd degree, a positive proportion of the
traces of Aλ have absolute value > 2. But Aλ and Pλ have the same
|Trace| at all points of Gm. �

We must now compute the action of Frob0,E on the stalk at 0 of Pλ.

Theorem 10.13. For E/Fq a finite extension, we have the identity

Trace(Frob0,E|Pλ) = P (λ,−λ,E),

and hence (by Lemma 10.7) for any t ∈ E, we have

Trace(Frobt,E|Pλ) = P (t+ λ, t− λ,E),

Proof. The calculation is very similar to that for S occurring in the
proof of Theorem 7.5. Lemma 10.7 gives, at t = 0 the identity

Trace(Frob0,E|Pλ0 ) = S(λ,−λ,E).

By definition, we have

P (λ,−λ,E) = χ2,E(−1) + S(λ,−λ,E).

What must be shown is that the “new” eigenvalue of Frob0,E is χ2,E(−1).
Just as in the proof of Theorem 7.5, this eigenvalue is the action of of
Frob0,E on the one-dimensional stalk at 0 of j?j

?(Rλ
0 ⊗ Lχ2(x)). Any

sheaf G on A1 which agrees with Rλ
0 ⊗Lχ2(x) on Gm, geometrically has

no nonzero punctual sections, and has a nonzero stalk at 0 must be
j?j

?(Rλ
0 ⊗ Lχ2(x)). Exactly as there, we show that the eigenvalue is
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χ2,E(−1) by giving the analogous “sheaf of perverse origin” construc-
tion of the needed G, whose sole purpose is to provide a geometric justi-
fication of the following character sum calculation (and its E-version).
For t 6= 0 in Fq, we have

Trace(Frobt,Fq |Rλ
0⊗Lχ2(x)) =

−χ2(t)
∑

x∈F×
q
χ2(a/x− x)ψ(4tx+ 4λ2a/x)

−g(ψ, χ2)
.

We rewrite this sum as

−
∑

x∈F×
q
χ2(at/x− tx)ψ(4tx+ 4λ2a/x)

−g(ψ, χ2)
,

then sum over x/t to get

−
∑

x∈F×
q
χ2(at

2/x− x)ψ(4x+ 4λ2at/x)

−g(ψ, χ2)
.

Its value at t = 0 is indeed

−
∑

x∈F×
q
χ2(−x)ψ(4x)

−g(ψ, χ2)
= χ2(−1).

�

Corollary 10.14. For E/Fq a finite extension, and any t ∈ E, we
have

Trace(Frobt,E|Pλ) = ±Trace(Frobt,E|Aλ).

Proof. By Lemmas 10.1 and 10.5, and the above theorem, both sides
are ±P (t+ λ, t− λ,E). �

Theorem 10.15. Suppose p ≥ 5. If P (λ,−λ) 6= 0, then we have an
arithmetic isomorphism Pλ ∼= Aλ. For E/Fq a finite extension, and
any t ∈ E, we have

P (t+ λ, t− λ,E) = V (t+ λ,E)V (t− λ,E).

Proof. By Corollary 9.3, either Pλ ∼= Aλ or Pλ ∼= (−1)deg ⊗ Aλ. By
Corollary 7.10, Lemma 10.5 and Theorem 10.13, we have

P (λ,−λ) = Trace(Frob0,Fq |Pλ) = Trace(Frob0,Fq |Aλ) = V (λ)V (−λ).

If P (λ,−λ) 6= 0, this rules out the (−1)deg possibility. So we have
an arithmetic isomorphism Pλ ∼= Aλ. Equating their traces gives the
second assertion. �
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11. The end of the proof when p ≡ 1 mod 4

Lemma 11.1. If p ≡ 1 mod 4, then for every λ ∈ F×q , we have
P (λ,−λ) 6= 0.

Proof. Because P (λ,−λ) = χ2(−1)P (λ, λ), it is equivalent to prove
that P (λ, λ) 6= 0. The quantity P (λ, λ) lies in Q(ζp), which has one
place, πp, lying over p. For this place, 1−ζp is a uniformizing parameter.
We denote by ordq this valuation, normalized so that ordq(q) = 1. We
will show that, if p ≡ 1 mod 4, we have ordq(P (λ, λ)) = −1/2, which
forces P (λ, λ) 6= 0. By definition,

P (λ, λ) = 1 + S(λ, λ) = 1 +
−
∑

x∈F×
q
χ2(ax− x3)ψ(4λ2x)

−g(ψ, χ2)
.

So it is equivalent to show that ordq(S(λ, λ)) = −1/2. The denomina-
tor −g(ψ, χ2) has ordq = 1/2, so it suffices to show that the numerator,

−
∑
x∈F×

q

χ2(ax− x3)ψ(4λ2x),

which lies in Z[ζp], is a p-adic unit. For this, it suffices to show that it
is congruent modulo the uniformizing parameter 1− ζp to a p-adic unit
in Z. Modulo the uniformizing parameter 1− ζp, the numerator is the
integer

−
∑
x∈F×

q

χ2(ax− x3),

which is the trace of FrobFq on H1 of the elliptic curve y2 = ax − x3,
which has complex multiplication by Z[i]. Because p ≡ 1 mod 4, this
curve is ordinary at p, so this trace is a p-adic unit. �

Combining Lemma 11.1 with Theorem 10.15 (and Corollary 7.9), we
get

Theorem 11.2. If p ≡ 1 mod 4, Theorem 10.2 holds.

12. The end of the proof in the general case

When p ≡ 3 mod 4, we do not know whether every λ ∈ F×q has
P (λ,−λ) 6= 0. However, we do have the following

Lemma 12.1. Suppose p ≥ 5. There exists λ ∈ F×q with P (λ,−λ) 6= 0.

Proof. As P (λ,−λ) = χ2(−1)P (λ, λ), it is equivalent to show that
there exists λ ∈ F×q with P (λ, λ) 6= 0.
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The case p = 5 is covered by Lemma 11.1. For p ≥ 7, we have q ≥ 7.
By Theorem 8.1, we have∑

t∈Fq

P (t, t) = q − χ2(a).

We have the bound
|P (0, 0)| ≤ 4,

because |S(0, 0)| ≤ 2 (the Riemann Hypothesis for the elliptic curve
y2 = ax − x3 over Fq). So some other term in the sum

∑
t∈Fq P (t, t)

must be nonzero. �

For the rest of this section, we fix a choice of λ ∈ F×q with P (λ,−λ) 6=
0. By Theorem 10.15, we have an arithmetic isomorphism of lisse
sheaves on A1/Fq,

Pλ ∼= Aλ.
We will make use of the restriction of this isomorphism to Gm,

Pλ|Gm
∼= Aλ|Gm.

We first explain the strategy. We begin with A2/Fq, coordinates
(s, t). We work on the open set

U := A2[1/(s2 − t2)]
of A2/Fq where s2− t2 is invertible. We will construct a lisse, rank four
sheaf P total on U whose trace function is given by

Trace(Frob(s,t),E|P total) = P (s, t, E),

for any finite extension E/Fq and any point (s, t) ∈ U(E). On this
same open set U , we have the restriction to U of the lisse, rank four
sheaf V�V on A2/Fq, the external tensor product of V with itself. Let
us call this restriction Atotal:

Atotal := V � V|U.
Its trace function is given by

Trace(Frob(s,t),E|Atotal) = V (s, E), V (t, E).

We will prove that we have an arithmetic isomorphism of lisse sheaves
on U ,

P total ∼= Atotal.
Once we have this isomorphism, then comparing their trace functions
gives the truth of Theorem 10.2 at points where s 6= ±t; the cases
s = ±t are handled by Corollaries 7.9 and 7.10.

The sheaf V on A1 has Ggeom = Garith = SL(2), so its external
external tensor product with itself, V�V , has Ggeom = Garith = SO(4).
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Both Ggeom, Garith are birational invariants, so the lisse sheaf Atotal on
U also has Ggeom = Garith = SO(4).

We now explain the construction of the sheaf P total. We begin by
defining a lisse sheafH on Gm×Gm, with coordinates (A,B), as follows.
We begin with the curve uv = a, and pass to the open set W where v2−
a is invertible. On this open set W , we have the lisse sheaf Lχ2(u−v) ⊗
(−g(ψ, χ2))

−deg. On the product W ×Gm×Gm, we have the lisse sheaf

F := Lχ2(u−v) ⊗ Lψ(Av+Bu) ⊗ (−g(ψ, χ2))
−deg.

We consider the projection pr : W ×Gm ×Gm → Gm ×Gm, and form

H := R1pr!(F).

Each fibre is a P1, coordinate v, with the four points 0,∞,±
√
a re-

moved. Our sheaf is tame along the two missing points ±
√
a, and has

Swan conductor 1 at both 0,∞ (because A,B are both invertible). By
Deligne’s semicontinuity theorem [Lau-SCCS, 2.1.2], H is lisse. Look-
ing fibre by fibre, we see that Ripr!(F) vanishes for i 6= 1, and that H
is punctually pure of weight zero. The Euler-Poincaré formula shows
that H has rank four. The trace function of H is real, given by

Trace(Frob(A,B),E|H) =
−
∑

uv=a∈E× χ2,E(u− v)ψE(Av +Bu)

−g(ψE, χ2,E)
.

We now define the sheaf P total. We have a morphism

f : U → Gm ×Gm, (s, t) 7→ ((s+ t)2, (s− t)2).

We define

P total := f ?H.
Thus P total is lisse of rank four, pure of weight zero, with a real trace
function given by

Trace(Frob(s,t),E|P total) = P (s, t, E),

for any finite extension E/Fq and any point (s, t) ∈ U(E).
Although we fixed a choice of λ ∈ F×q with P (λ,−λ) 6= 0, we are not

quite ready to use it. For any µ ∈ F×q , we have in U an embedded Gm

with coordinate t, given by

iµ : Gm ⊂ U, t ∈ Gm 7→ (t+ µ, t− µ) ∈ U.

Lemma 12.2. We have arithmetic isomorphisms of lisse sheaves on
Gm/Fq

Pµ ∼= i?µP total, Aµ ∼= i?µAtotal.
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Proof. The trace function of i?µP total (resp. of i?µAtotal) is equal to that
of Pµ (resp. of Aµ). So by Chebotarev their arithmetic semisimplifi-
cations are isomorphic. But both Pµ and Aµ are arithmetically irre-
ducible, so the two pullbacks are arithmetically irreducible as well. �

Lemma 12.3. The sheaf P total on U has Ggeom = Garith = SO(4).

Proof. We know this sheaf is lisse of rank four, pure of weight zero,
and has a real trace, so it is arithmetically isomorphic to its dual. By
the previous lemma, it has a geometrically irreducible pullback, for
example any Pµ, so it is geometrically (and arithmetically) irreducible.
Thus its autoduality has a well defined sign. But we can read this sign
from its pullback, and conclude that the autoduality is orthogonal. So
we have a priori inclusions

Ggeom,Ptotal ⊂ Garith,Ptotal ⊂ O(4).

We also know that each Pµ has Ggeom,Pµ = Garith,Pµ = SO(4). Since
Ggeom can only decrease under a pullback, we have inclusions

SO(4) = Ggeom,Pµ ⊂ Ggeom,Ptotal ⊂ Garith,Ptotal ⊂ O(4).

It remains only to show that Garith,Ptotal ⊂ SO(4), i.e. to show
that det(P total) is arithmetically trivial. But every point of U(Fq) lies
in one of the embedded Gm’s (i.e. the point (s, t) lies in iµ(Gm) for
µ = (s− t)/2). But each Pµ has Garith = SO(4). So for every rational
point (s, t) ∈ U(Fq), we have det((Frob(s,t),Fq |P total) = 1. Repeating
this argument over finite extensions E/Fq, we get that det(P total) is
arithmetically trivial. �

We complete the proof of Theorem 10.2 with the following theorem.

Theorem 12.4. In any characteristic p ≥ 5, we have an arithmetic
isomorphism

P total ∼= Atotal

of lisse sheaves on A2[1/(s2 − t2)].

Proof. The trace functions of the lisse sheave P total and Atotal have the
same square, and each has Ggeom = Garith = SO(4). By Corollary 9.3,
there is a lisse, rank one sheaf L on U with L⊗2 arithmetically trivial,
for which we have an arithmetic isomorphism

P total ∼= L ⊗Atotal

of lisse sheaves on A2[1/(s2 − t2)].
We will first show that this L is geometrically trivial.
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To analyze the possible geometric L, we use the Kummer sequence

0→ µ2 → Gm
x 7→x2→ Gm → 0

on UFq = A2[1/(s2 − t2)]Fq = Spec(R), R = Fq[s, t][1/(s2 − t2)]. Since

R is a UFD, it has trivial Picard group: H1(UFq ,Gm) = 0. So the long
exact étale cohomology sequence gives a coboundary isomorphism

R×/(R×)
2 ∼= H1(UFq , µ

2) := Hom(πgeom1 (U), µ2).

In this isomorphism, an element of R×/(R×)
2

represented by a function

g ∈ R× corresponds to Lχ2(g). For this R, the cokernel R×/(R×)
2

is
the two-dimensional F2-vector space with basis s− t, s+ t. So P total is
geometrically isomorphic to exactly one of following four sheaves:

Atotal, Lχ2(s−t) ⊗Atotal, Lχ2(s+t) ⊗Atotal, Lχ2(s2−t2) ⊗Atotal.

Under the involution (s, t) 7→ (s,−t), the trace functions of both
P total and Atotal on E-valued points multiply by the same constant field
twist factor, χ2,E(−1). So our L must, by uniqueness, be isomorphic
to its pullback by this involution. So our L cannot be either Lχ2(s−t)
or Lχ2(s+t). We next rule out the Lχ2(s2−t2) possibility. If we had a
geometric isomorphism

P total ∼= Lχ2(s2−t2) ⊗Atotal,

then after pullback by iλ, we would get a geometric isomorphism

Pλ ∼= Lχ2(4λt) ⊗Aλ.

This contradicts (the restriction to Gm of) Theorem 10.15.
So we have a geometric isomorphism

P total ∼= Atotal.

So the L is a geometrically constant character of order dividing two,
so it is either arithmetically trivial or it is (−1)deg. So either we have
an arithmetic isomorphism P total ∼= Atotal, in which case we are done,
or we have an arithmetic isomorphism

P total ∼= (−1)deg ⊗Atotal.

This cannot happen, because its pullback by iλ would give an arith-
metic isomorphism

Pλ ∼= (−1)deg ⊗Aλ

on Gm, and then on A1 as well (simply becaus πarith1 (Gm) maps onto
πarith1 (A1)). This contradicts Theorem 10.15. �
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