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We discuss in detail some equidistribution questions arising from the
study of the universal extension of an elliptic curve by a vector group.
We will also indicate analogous questions in the case of the universal
extension of a Jacobian by a vector group.

1. THE OVERALL SETTING

Let k be a field, C/k a proper, smooth, geometrically con-
nected curve of genus g ≥ 1 with a marked rational point
0 ∈ C(k), JC/k := Pic0

C/k its Jacobian. Concretely, the group
JC (k) is the group (under tensor product) of isomorphism
classes of invertible sheaves L on C of degree zero.

Given a point P ∈ C(k), we denote by I (P) ⊂ OC the
ideal sheaf of functions vanishing at P . Given P1, . . . , Pr a
finite, possibly empty, list of distinct points in C(k), and D :=∑

i ni [Pi ] a divisor of degree zero (i.e.,
∑

i ni = 0) supported
at these points, we have the invertible sheafLD := ⊗i I (Pi )⊗ni .
(The sheaf LD is denoted by L(−D) in Riemann–Roch nota-
tion and called OC (−D) classically.) If the list is empty, i.e.,
if D = 0 is the zero divisor, we take L0 := OC .

Although not every point in JC (k) need be the isomorphism
class of such anLD built of rational points (unless either g = 1
or k is algebraically closed), those that are form a subgroup
of JC (k), namely the subgroup generated by all elements of
the form I (P) ⊗ I (0)−1 with P ∈ C(k). For g = 1, i.e., when
C/k is an elliptic curve E/k with origin 0, every element of
JE (k) is uniquely of this form (and this bijection of JE (k) with
E(k) is what gives E(k) its group structure).

Given an invertible sheaf L on C that has degree zero, one
has the notion of a connection ∇ on L, namely a k-linear map

∇ : L → L ⊗ �1
C/k

that satisfies the Leibniz rule

∇( f �) = f ∇(�) + � ⊗ d f.

Every L of degree zero admits a connection, and two con-
nections differ by an OC linear map, i.e., by a map of the
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Katz: Equidistribution Questions for Universal Extensions 453

form � 	→ � ⊗ ω, for some ω ∈ H 0(C,�1
C/k). One can tensor

together such pairs (L,∇) by the rule

(L1,∇1) ⊗ (L2,∇2) = (L1 ⊗ L2, ∇1 ⊗ id2 + id1 ⊗ ∇2).

The inverse (or dual) of an object (L,∇) is (L−1,∇∨),
where the dual connection ∇∨ on L−1 = L∨ is defined by the
requirement that for local sections � of L and �∨ of L∨, and
( , ) : L × L∨ → OC the canonical duality pairing, we have
the formula

d(�, �∨) = (∇�, �∨) + (�,∇∨�∨).

The group of isomorphism classes of such pairs (L,∇) is
denoted by J #

C (k). “Forgetting" the connection thus defines
a surjection homomorphism J #

C (k) � JC (k). Its kernel is the
space of connections on the structure sheaf OC . One connec-
tion on OC is exterior differentiation d, so every other such
connection is d + ω for some ω ∈ H 0(C,�1

C/k). So we may
view H 0(C,�1

C/k) as the space of connections on OC . Thus
we have a short exact sequence

0 → H 0
(
C,�1

C/k

) → J #
C (k) → JC (k) → 0,

which is (the k-valued points of) the universal extension of the
title of this paper; cf. [Messing 72a].

Concretely, if L is the invertible sheaf LD := ⊗i I (Pi )⊗ni

attached to a divisor D := ∑
i ni [Pi ] of degree 0 = ∑

i ni ,
then a connection of LD is given by the meromorphic differ-
ential ωD , holomorphic outside the support of D, which has
only simple poles at the points Pi , with residue ni at Pi . (In
the classical literature, such a differential is called a “differen-
tial of the third kind (in the strict sense).”) The corresponding
connection is given by ∇( f ) = d f − f ωD . Indeed, if f is a
section over an open set U , so that f has ordPi ( f ) ≥ ni at each
Pi in U , then although d f has ordPi ( f ) ≥ ni − 1 at each Pi in
U , d f − f ωD again has ordPi (d f − f ωD) ≥ ni at each Pi in
U , so d f − f ωD is a section of L ⊗ �1

E/k over U .
In particular, if the divisor D above is principal, say D =

(g), then there is a canonical choice of ωD , namely ω(g) =
dg/g, well defined because g is determined by its divisor up
to a k× factor.

2. A CONSTRUCTION IN THE HYPERELLIPTIC
CASE

(For more on the construction of this section, see [Katz 77,
Appendix C.2.1]). Suppose now that 2 is invertible in the field
k, and that C/k is a hyperelliptic curve of genus g ≥ 1, given
as the complete nonsingular model of the affine curve defined
by an equation of the form

y2 = f (x)

with f (x) ∈ k[x] of degree 2g + 1 with 2g + 1 distinct roots
in k. There is precisely one point in C(k) not on the affine
curve, the point ∞ ∈ C(k), which we take as a marked point
in C(k).

Lemma 2.1. Given a point P �= ∞ in C(k), say P = (a, b),
the differential

ω([P]−[∞]) := 1

2

y + b

x − a

dx

y

has simple poles at P and ∞ (and no other poles), with
residues 1 and −1 respectively.

Proof. By an additive translation of the x-coordinate, we may
assume a = 0. Suppose first that b = 0. Then our differential
is

1

2

dx

x
.

The function x has a double pole at ∞, and (because b = 0) it
has a double zero at P , so the statement is obvious in this case.

In the remaining case, a = 0, b �= 0, our differential
ω([P]−[∞]) is

1

2

y + b

x

dx

y
= 1

2

y + b

y

dx

x
.

The differential dx/y is holomorphic at finite distance (be-
cause f has all distinct roots) and has a zero of order 2g − 2
at ∞ (because x has a double pole at ∞ and y has a pole of
order 2g + 1 at ∞). Since the degree of the canonical bundle
is 2g − 2, dx/y has no zero or pole at finite distance. So the
only possible pole of our differential ω([P]−[∞]) is at the zeros
of x .

The function x has a simple zero at each of the two points
P = (0, b) and −P := (0,−b). The function y + b vanishes
at −P . Hence the function (y + b)/x is holomorphic at −P ,
and its only finite pole is a simple pole at P . At P , x is a
parameter, and the function (y + b)/y = 1 + b/y takes the
invertible value 2 at P . Thus our differential ω([P]−[∞]) near
P is of the form (1 + · · · )dx/x , so has residue 1 there. At
∞, the function (y + b)/x has a pole of order 2g − 1, so
our differential ω([P]−[∞]) has a simple pole at ∞. Since the
sum of the residues is 0, our differential must have residue
−1 at ∞.

Corollary 2.2. Given a point P �= ∞ in C(k) with P �= −P,
say P = (a, b) with b �= 0, the differential

ω([P]−[−P]) := b

x − a

dx

y

has simple poles at P and −P (and no other poles), with
residues 1 and −1 respectively.
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Proof. Indeed, this differential is just the difference
ω([P]−[∞]) − ω([−P]−[∞]).

Suppose now that 2 is invertible in k, but that our hyperel-
liptic curve C/k of genus g ≥ 1 is the complete nonsingular
model of the affine curve defined by an equation of the form

y2 = f (x)

with f (x) ∈ k[x] of degree 2g + 2 with 2g + 2 distinct roots in
k. There are now two points in C(k) not on the affine curve. Let
us call them ∞+ and ∞−. If the leading coefficient of f (x) is a
square in k, these two points are both in C(k); otherwise, they
are Galois conjugate points in C(k2), for k2/k some quadratic
extension. We have the following lemma, whose proof is left
to the reader.

Lemma 2.3. Let P = (a, b), b �= 0, be a finite point in C(k),
and denote by −P the point (a,−b). The differential

y + b

x − a

dx

y

has simple poles at the points P,∞+,∞− with residues
2,−1,−1 respectively, and no other poles. The differential

b

x − a

dx

y

has simple poles at the points P,−P with residues 1,−1
respectively, and no other poles.

3. THE SITUATION OVER A BASE SCHEME

Let S be a scheme, and C/S a proper smooth curve with
structural map f : C → S, with geometrically connected fibers
of genus g ≥ 1, given with a marked section 0 ∈ C(S). Denote
by JC/S := Pic0

C/S its Jacobian, an abelian scheme over S. The
group JC/S(S) is the group of equivalence classes of invertible
sheaves L on C that are fiber by fiber of degree zero, under
tensor product. Two such invertible sheaves L1 and L2 are
equivalent if their ratio L1 ⊗ L−1

2 is isomorphic to f �(M) for
some invertible sheaf M on the base S.

Given an L as above, we have the notion of an S-linear
connection ∇ on L, namely an S-linear map

∇ : L → L ⊗ �1
C/S

that satisfies the Leibniz rule. The tensor product of such pairs
(L,∇) is defined as above, namely

(L1,∇1) ⊗ (L2,∇2) = (L1 ⊗ L2, ∇1 ⊗ id2 + id1 ⊗ ∇2).

One knows that when S is affine, every L that is fiber
by fiber of degree zero admits an S-linear connection; cf.
[Mazur and Messsing 74, p. 46], and the difference of any two
is a global one-form ω ∈ H 0(C,�1

C/S). Just as above, we have

the notion of the inverse, or dual, of an object (L,∇), defined
by

(L,∇)−1 := (L−1,∇∨).

We say that two objects (L1,∇1) and (L2,∇2) are equivalent
if their ratio (L1,∇1) ⊗ (L2,∇2)−1 is isomorphic to an object
of the form ( f �(M), dC/S), with M an invertible sheaf on the
base S together with the trivial connection on its pullback.
The group of equivalence classes of such pairs is denoted by
J #
C/S(S). When S is affine, we thus have a short exact sequence

0 → H 0
(C,�1

C/S

) → J #
C/S(S) → JC/S(S) → 0.

In the special case in which we are given a finite list
of pairwise disjoint sections P1, . . . , Pr ∈ C(S) and integers
n1, . . . , nr with

∑
i ni = 0, a connection on ⊗i I (Pi )⊗ni is

given by a differential in H 0(C,�1
C/S)(log(

∑
i Pi )) having log

poles along the Pi , with residue ni along Pi for each i .

4. THE HYPERELLIPTIC CONSTRUCTION OVER
A BASE SCHEME

Let A be a ring in which 2 is invertible. Suppose S = Spec (A),
and that C/S is a hyperelliptic curve of genus g ≥ 1 (whose
affine part is) given by an equation of the form

y2 = f (x)

with f (x) ∈ A[x] a monic polynomial of degree 2g + 1 whose
discriminant �( f ) is a unit in A.

Exactly as in the case of A a field, we have the following
lemma.

Lemma 4.1. Let P = (a, b) be a finite point, with b a unit
in A (to ensure that I (P) ⊗ I (∞)−1 is everywhere disjoint
from the scheme-theoretic kernel of multiplication by 2 on the
Jacobian). Then the differential

ω([P]−[∞]) := 1

2

y + b

x − a

dx

y

gives a connection on I (P) ⊗ I (∞)−1, and the differential

ω([P]−[−P]) := b

x − a

dx

y

gives a connection on I (P) ⊗ I (P)−1.

5. FORMULATION OF A CONJECTURE

We begin with C/Q a hyperelliptic curve over Q given by
an equation y2 = f (x) with f (x) ∈ Z[x] monic of degree
2g + 1, with 2g + 1 distinct zeros in C, and an integer point
P = (a, b) with b �= 0. We denote by −P the point (a,−b).
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Katz: Equidistribution Questions for Universal Extensions 455

Denote by �( f ) ∈ Z the discriminant of the integer poly-
nomial f . Thus over the ring A := Z [1/2b�( f )], we have the
following structures:

1. a hyperelliptic curve C/A, defined by the equation
y2 = f (x);

2. pairwise disjoint sections P , −P , and ∞ in C(A);

3a. the point P in JC/A(A), which is the class of I (P) ⊗
I (∞)−1;

3b. the point 2P in JC/A(A), which is the class of I (P) ⊗
I (−P)−1,

4a. the connection on P given by ω([P]−[∞]);

4b. the connection on 2P given by ω([P]−[−P]);

5a. the point P# := (P, ω([P]−[∞])) in J #
C/A(A), which lies

over the point P in in JC/A(A);

5b. the point (2P)# := (2P, ω([P]−[−P])) in J #
C/A(A), which

lies over the point 2P in in JC/A(A).

For each odd prime p not dividing b�( f ), we can reduce
all of this data modulo p. We will indicate the reductions with
a subscript p. Thus we have the hyperelliptic curve Cp/Fp, the
point Pp on it, the point Pp in JCp (Fp), and the point P#

p in
J #

C p
(Fp) lying over it.

We also have the point 2Pp in JCp (Fp) and the point (2Pp)#

in J #
C p

(Fp) lying over it.
Denote by n p the cardinality of JC p (Fp). If we multiply

the point P#
p by n p, we get a point that lies over the origin in

JC p (Fp), i.e., we get a point in H 0(Cp,�
1
Cp/Fp

); let us call it

ωp(P#).

Concretely, the invertible sheaf nPp := I (Pp)n p ⊗ I (∞p)−n p

is trivial on Cp, i.e., there is a meromorphic function gp on
Cp whose divisor is n p([Pp] − [∞p]). Then dgp/gp is another
connection on nPp. The difference n pω([Pp]−[∞p]) − dgp/gp

is the differential ωp(P#).
We can play this same game instead with the point (2Pp)#;

then n p(2Pp)# is an element

ωp(2P#)

in H 0(Cp,�
1
Cp/Fp

).

In our hyperelliptic case, H 0(C,�1
C/A) has an “obvious”

A-basis, namely the g differentials xi dx/xy for i = 1, . . . , g.
We will denote by H the free Z-module with this basis. Thus
H 0(C,�1

C/A) isH ⊗Z A, and for each odd prime p not dividing
b�( f ), H 0(Cp,�

1
Cp/Fp

) is H/pH.

For each odd prime p not dividing b�( f ), we have the iso-
morphism H/pH ∼= 1

pH/H given by multiplication by 1/p.
We denote by

ωp(P#)

p
,
ωp(2P#)

p
∈ 1

p
H/H

the images of ωp(P#) and ωp(2P#) respectively in 1
pH/H. Via

the inclusion

1

p
H/H ⊂ H ⊗Z R/Z,

we view these elements ωp(P#)/p, ωp(2P#)/p as lying in the
g-dimensional compact real torus H ⊗Z R/Z ∼= (R/Z)g .

Conjecture 5.1. Suppose the cyclic subgroup generated by
P is Zariski dense in JC/A ⊗A C. Then both of the sequences
{ωp(P#)/p}p and {ωp(2P#)/p}p, indexed by odd primes p not
dividing b�( f ), are equidistributed in the compact real torus
H ⊗Z R/Z for its Haar measure of total mass one.

Remark 5.2. When can we be sure that the cyclic subgroup
generated by P is Zariski dense in JC/A ⊗A C? The simplest
case is when the Jacobian is geometrically a simple abelian
variety, and then the condition is simply that P not be a point
of finite order. This geometric simplicity holds when g = 1,
or when C/Q is of either of the following two forms:

1. (CM case) an equation y2 = x� + a, � an odd prime, any
a ∈ Q×; cf. [Katz 14, 9.1];

2. (Big Galois case) an equation y2 = f (x) with f of de-
gree d = 2g + 1 ≥ 5 having Galois group either Sd or Ad

(Zarhin’s theorem); cf. [Zarhin 02] or [Katz 14, Section 10].

To check that the point P is not of finite order in JCp (A),
it suffices to exhibit two distinct odd primes p1 and p2, both
prime to b�( f ), such that the images of P in the two groups
JC/A(Fp1 ) and JC/A(Fp2 ) have different orders; cf. [Katz 81b,
appendix].

We have the following lemma over C. We formulate it for
a Jacobian, but it remains valid, with the same proof, for the
universal extension of Pic0(A):

0 → H 0
(

A,�1
A/C

) → Pic0(A)#(C) → Pic0(A)(C) → 0,

for A/C any complex abelian variety.

Lemma 5.3. Let C/C be a proper smooth connected curve of
genus g ≥ 1, P a point in JC (C), and P# a point in J #

C (C)
lying over P. Suppose that the cyclic group generated by P is
Zariski dense in JC . Then the cyclic group generated by P# is
Zariski dense in J #

C .
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Proof. This results formally from the universal extension
property. More precisely, recall that

Ext1(JC ,Ga) ∼= H 1(JC ,OJC ) ∼= H 1(C,OC ),

in such a way that the nontrivial extensions of JC by Ga are
precisely the pushouts of

0 → H 0
(
C,�1

C/C

) → J #
C (C) → JC (C) → 0

by nonzero elements of

H 1(C,OC ) ∼= HomC

(
H 0
(
C,�1

C/C

)
,C
)
.

Denote by G ⊂ J #
C the Zariski closure of the subgroup

generated by P#. By hypothesis, G maps onto JC , so G itself
is an extension of the form

0 → V → G → JC → 0,

with V some vector subspace of H 0(C,�1
C/C). If V is the

entire space H 0(C,�1
C/C), we are done. If not, we get a con-

tradiction as follows. Choose a surjective homomorphism φ

from H 0(C,�1
C/C) to C whose kernel contains V. This exten-

sion is simultaneously split (because φ kills V) and nontrivial
(by the universal extension property).

6. RELATIONSHIP, IN THE ELLIPTIC CASE, TO
ANOTHER CONJECTURE

We begin with E/Q an elliptic curve over Q given by an
equation y2 = f (x) with f (x) ∈ Z[x] a square-free monic
cubic, and an integer point P = (a, b) with b �= 0. We denote
by �( f ) the discriminant of f . We work over the ring A :=
Z [1/2b�( f )]. So we have an elliptic curve E/A, and a line
bundle L := I (P) ⊗ I (∞)−1 on E , fiberwise of degree zero.
For each good prime p, i.e., for each prime p not dividing
2b�( f ), we define n p := #E(Fp). We assume that n p is prime
to p for all good p. (This is automatic if E(Q) contains a
nontrivial point of order 2, at least for good primes p ≥ 7; cf.
[Katz 72, 7.5.2].) For each good p, the divisor n p([P] − [∞])
on Ep := E ⊗A Fp is principal and therefore the divisor of
some function gp on Ep. Then (1/n p)dgp/gp is a connection
onLp := I (P) ⊗ I (∞)−1|Ep. In [Katz 72, Conjecture 7.5.11],
we suppose that a connection ∇ onL has been chosen. In terms
of the connection

ω([P]−[∞]) := 1

2

y + b

x − a

dx

y
,

such a choice is of the form

∇ = ω([P]−[∞]) + a
dx

y

for some a ∈ A. We denote by ∇p its restriction to Lp.

We then consider, for each good prime p, the difference

∇p − 1

n p

dgp

gp
,

which is necessarily of the form bp dx/y for some bp ∈ Fp. We
consider the sequence {bp}good p in

∏
good p Fp. If we change the

choice of ∇, say to ∇ + B dx/y for some B ∈ A, we change
this sequence to {B + bp}good p. So given the point P , we get a
well-defined element of the quotient group (

∏
good p Fp)/A,

where A is embedded diagonally. In [Katz 72, Conjecture
7.5.11], we conjecture that if this element in (

∏
good p Fp)/A

vanishes, then P is a point of finite order in E(Q).

Lemma 6.1. If Conjecture 5.1 holds for E/Q, then [Katz 72,
Conjecture 7.5.11] holds.

Proof. We argue by contradiction. Suppose P is a point of
infinite order but that it gives rise to zero in the quotient group.
This means that for some b ∈ A, if we use the connection
∇ = ω([P]−[∞]) − b dx/y, then for each good p, we have

ω([P]−[∞]) − b
dx

y
= 1

n p

dgp

gp
,

i.e., we have

n pω([P]−[∞]) = dgp

gp
+ n pb

dx

y
.

In other words, denoting by bp ∈ Fp = A/p A the reduction
modulo p of b, we have

ωp(P#) = n pbp
dx

y
.

According to Conjecture 5.1, the sequence {n pbp/p}good p is
equidistributed in R/Z for Haar measure. If b = 0 , this is
obviously false. If b ∈ A is nonzero, denote by N its denomi-
nator, say

b = B

N
,

with B, N nonzero integers. Recall that if a sequence {xi }i

is equidistributed in R/Z for Haar measure, then so is the
sequence {N xi }i ; cf. [Katz 14, 5.1]. Hence the sequence
{n p B/p}good p is equidistributed. This, too, is false, for if we
write n p = p + 1 − ap, then we have the Hasse bound |ap| <

2
√

p. Thus modulo Z, we have that n p B/p is (1 − ap)B/p, a
fraction bounded in absolute value by B(1 + 2

√
p)/p. Since

B is fixed and p is growing, this sequence tends to 0 in R/Z,
so it certainly is not equidistributed for Haar measure.
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Katz: Equidistribution Questions for Universal Extensions 457

7. NUMERICAL EVIDENCE IN THE ELLIPTIC
CASE

It is only in the g = 1 case that we have performed numerical
experiments. We took the curve

y2 = (x2 − 1)(x − 4)

and the point

P := (0, 2).

The only bad primes are 2, 3, 5. We calculated both ωp(P#)/p
and ωp(2P#)/p for the first 330 000 primes starting with 7,
i.e., for all primes 7 ≤ p ≤ 4 716 091, and found excellent
agreement, as measured by the Kolmogorov–Smirnov statistic,
with the conjecture.

We also took the CM curve

y2 = x3 + 3

and the point

P := (1, 2).

The only bad primes are 2, 3. We calculated ωp(P#)/p for
the first 180 000 primes starting with 7, i.e., for all primes
7 ≤ p ≤ 2 454 631, and here also found excellent agreement,
as measured by the Kolmogorov–Smirnov statistic, with the
conjecture.

Let us recall the definition of this statistic. Given a se-
quence of length N of points in R/Z, one takes their rep-
resentatives in [0, 1), sorts them into increasing order, say
0 ≤ x1 ≤ x2 ≤ · · · ≤ xN < 1, computes the maximum over
i ∈ [1, N ] of the absolute value of xi − i/N , and multiplies
this maximum by the square root of N . See [Gnedenko 67,
pp. 450–451] and [Press et al. 88, pp. 490–492] for a discus-
sion of the significance of this statistic.

We also did some equicharacteristic experiments. For sev-
eral large primes p, the largest of which was 3 497 861, we
looked at the curves Et over Fp given by

Et : y2 = (x2 − 1)(x − t2),

for t ∈ Fp with t(t4 − 1) �= 0. On Et , we took the point
Pt := (0, t) and calculated the point ωp(P#

t )/p (respectively
the point ωp(2P#

t )/p) and its ratios to dx/y. We found that in
both cases, as t varies, these p − 5 or p − 3 points in 1

pZ/Z

(according to whether p ≡ 1, or p ≡ 3 mod 4) were approx-
imately equidistributed in R/Z, again as measured by the
Kolmogorov–Smirnov statistic.

8. HOW WE DID THE CALCULATIONS

Let p be an odd prime, E/Fp an elliptic curve given by an
equation y2 = f (x) with f (x) a monic cubic polynomial that
is square-free. We are given a divisor of degree zero, D :=∑

i ei [Pi ] with all Pi ∈ E(Fp), and a differential ωD that is
holomorphic except at the points Pi and has simple poles at
the Pi with resPi (ωD) = ei . We define

n p := #E(Fp).

Then the divisor n p D is principal, say n p D = (gp). Hence the
difference n pωD − dgp/gp is everywhere holomorphic and is
therefore an Fp multiple of dx/y:

n pωD = dgp

gp
+ cp

dx

y

for some cp ∈ Fp. Our task is to calculate cp.

Lemma 8.1. Suppose n p := #E(Fp) is prime to p. Denote by
C the Cartier operator. Then

(1 − C)(ωD) = cp
dx

y
.

Proof. The Cartier operator fixes logarithmic differentials and
preserves holomorphicity at any given point. Now ωD is, near
each Pi , the sum of a holomorphic (at Pi ) form and a logarith-
mic one, so (1 − C)(ωD) is everywhere holomorphic. Applying
1 − C to both sides of the equation

n pωD = dgp/gp + cp
dx

y
,

we get

n p(1 − C)(ωD) = cp(1 − C)
dx

y
.

But one knows that

C dx

y
= ap

dx

y

for

ap := p + 1 − n p.

So the above identity reads

n p(1 − C)(ωD) = cp(1 − ap)
dx

y
.

Since n p is congruent to 1 − ap modulo p and is invertible
modulo p, we may cancel to get the asserted identity (1 −
C)(ωD) = cp dx/y.

Remark 8.2. In fact, the identity

(1 − C)(ωD) = cp
dx

y
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remains valid even when p | n p. In an appendix (Section 10),
we will give a proof of this.

We now work out the special case in which D is [P] − [∞]
and the special case in which D is [P] − [−P], with P a finite
point (a, b) with b �= 0. By an additive translation of x , we
reduce to the case that P is (0, b), with b �= 0.

Lemma 8.3. Suppose n p is prime to p, and P ∈ E(Fp) is
(0, b) with b �= 0. Write f (x) = A0 + A1x + A2x2 + x3, with
coefficients Ai ∈ Fp. Write

f (x)(p−1)/2 =
∑

i

Bi x
i .

Then

ω([P] − [−P]) = −bBp
dx

y

and

ω([P] − [∞]) = 1

2
ω([P] − [−P]) = −bBp

2

dx

y
.

Proof. We first explain the factor 1/2. The differential
ω([P]−[∞]) is

ω([P]−[∞]) = 1

2
(y + b)

dx

xy
= 1

2

dx

x
+ 1

2
b

dx

xy
.

The differential ω([P]−[−P]) is

ω([P]−[−P]) = b
dx

xy
.

But 1 − C kills dx/x , so we have

(1 − C)(ω([P]−[∞]) = 1

2
(1 − C)(ω([P]−[−P])),

and we apply the previous lemma.
It remains to compute

(1 − C)(ω([P]−[−P]) = b(1 − C)
dx

xy
.

For this, we follow the classical computation. We write

dx

xy
= y p−1 dx

xy p
= f (x)(p−1)/2 dx

xy p
.

In terms of Dwork’s � operator

�

(∑
n

en xn

)
:=
∑

n

epn xn

on Fp-polynomials, we have

C ( f (x)(p−1)/2
) dx

xy p
= �

(
f (x)(p−1)/2

) dx

xy
.

Thus

(1 − C)
dx

xy
= (

1 − �
(

f (x)(p−1)/2
)) dx

xy

= �
(
1 − f (x)(p−1)/2

) dx

xy
.

Because P = (0, b) is an Fp point on E with b �= 0, we have
f (0) = b2, and hence f (x)(p−1)/2 has constant term 1. Thus
1 − f (x)(p−1)/2 has no constant term. Since its degree is 3(p −
1)/2 < 2p, we have �(1 − f (x)(p−1)/2) = −Bpx , and hence

(1 − C)
dx

xy
= −Bp

dx

y
, (1 − C)b

dx

xy
= −bBp

dx

y
.

We now explain our method of computing Bp. In Fp, we
have the identity

∑
x∈F×

p

xd =
{

−1 if (p − 1) | d,

0 otherwise.

Because f (x)(p−1)/2 has degree < 2(p − 1), we have∑
x∈F×

p

1

x
f (x)(p−1)/2 = −B1 − Bp.

So

−bBp = bB1 + b
∑
x∈F×

p

(1/x) f (x)(p−1)/2.

On the other hand, in terms of the linear term b2 + A1x of
f (x), we have

B1 = p − 1

2
(b2)(p−3)/2 A1 = −bp−3 A1

2
= − A1

2b2
.

For χ2 the quadratic character of F×
p extended to Fp by

χ2(0) = 0 and viewed as having values in Fp, we have

χ2( f (x)) = f (x)(p−1)/2

for each x ∈ Fp. So we get the following.

Lemma 8.4. We have

−bBp = − A1

2b
+ b

∑
x∈F×

p

1

x
χ2( f (x)).

In some of our experiments, we took curves of the form
y2 = (x2 − 1)(x − b2). For such a curve, A1 = −1. All the
points of order 2 are rational, so n p is divisible by 4. Hence n p

is prime to p; if it were not, then the strictly positive integer
n p would be divisible by 4p, and hence we would have n p ≥
4p. This contradicts the completely elementary estimate n p ≤
2(p + 1), which results from viewing an elliptic curve as a
double cover of P1.
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Katz: Equidistribution Questions for Universal Extensions 459

For the CM curve y2 = x3 + 3, P the point (1, 2), and D
the divisor [P] − [∞], there were 43 primes p with p | n p (or
equivalently p = n p) in our test range 7 ≤ p ≤ 2 454 631. For
each of these, we checked by computer that

(1 − C)(ωD) = cp
dx

y
,

or equivalently (since 0 = n pωD = dg/g + cp dx/y) that
dg/g = (C − 1)(ωD) for g the function whose divisor is n p D.
(We used a Magma program kindly provided by Bradley Brock
to compute the function g with divisor n p D and the differen-
tial dg/g.) Of course, once we know that Lemma 8.1 remains
valid when p | n p, as we show in the appendix, such computer
checking is no longer necessary.

9. COMPUTATIONAL PROBLEMS IN THE
HIGHER-GENUS CASE

We now consider a (proper, smooth, geometrically connected)
curve C/Fp of genus g ≥ 1 and a divisor D of degree zero
on C . Choose any differential ωD of the third kind in the strict
sense with simple poles at (some of) the points of D and no
other poles, whose residue divisor is congruent modulo p to
D. With n p := # Jac(C/Fp)(Fp), we know that n p D is the
divisor of a function g, and our problem is to compute the
holomorphic one-form

n pωD − dg

g
.

Equivalently, our problem is to compute dg/g for the function
g, unique up to a k× factor, whose divisor is n p D.

To do this, we consider the action of the Cartier operator C
on H 0(C,�1

C/Fp
), and denote by F(T ) ∈ Fp[T ] its character-

istic polynomial:

F(T ) := det
(
T Id −C|H 0

(
C,�1

C/Fp

))
.

Lemma 9.1. If n p is prime to p and the function g has divisor
n p D, then

F(C)(ωD) = dg

g
.

Proof. We first remark that F(C)(ωD) is independent of the
particular choice of ωD . Indeed, that choice is indetermi-
nate up to adding an element of H 0(C,�1

C/Fp
). By the

Cayley–Hamilton theorem, the operator F(C) kills the space
H 0(C,�1

C/Fp
). We next remark that the formation of F(C)(ωD)

is additive in D; if we have chosen ωDi for i = 1, 2, then
ωD1 ± ωD2 is an ωD3 for D3 := D1 ± D2. We have the same
additivity for dg/g as a function of D.

Thus the construction

D 	→ F(C)(ωD) − dg

g

is an additive map from the group Div0(C) of divisors of
degree zero on C to the space H 0(C,�1

C/Fp
). This map kills

principal divisors. For if D = (h), then one choice of an ωD is
dh/h. Then n p D is the divisor of g := hn p , and hence dg/g
is n pdh/h. So the assertion is that

F(C)(dh/h) − n p
dh

h
= 0.

But C fixes logarithmic differentials, so F(C)(dh/h) =
F(1)dh/h, and F(1) = det(1 − C) is n p modulo p.

Summing up, the construction

D 	→ F(C)(ωD) − dg

g

defines a group homomorphism from Jac(C/Fp)(Fp) to
H 0(C,�1

C/Fp
). The target is a p-group, so this homomor-

phism must vanish when its source has order prime to
p, and in general, it factors through the quotient group
Jac(C/Fp)(Fp)/p Jac(C/Fp)(Fp).

Corollary 9.2. If n p is prime to p and the function g has
divisor n p D, then

n p D − dg

g
= (F(1) − F(C))(ωD).

Remark 9.3. When g = 1, then F(T ) = T − A for A the
Hasse invariant, and the difference F(1) − F(C) is 1 − C.

Remark 9.4. Just as in the elliptic case, where we are able to
prove it, we believe that the formula

F(C)(ωD) = dg

g

remains valid even when p divides n p. In any case, we univer-
sally have the “decomposition”

n p D = F(C))(ωD) + (F(1) − F(C))(ωD).

The first term, F(C)(ωD), is always logarithmic, because it is
killed by 1 − C. Indeed,

(1 − C)F(C)(ωD) = F(C)(1 − C)(ωD).

But (1 − C)(ωD) is an everywhere holomorphic form, and
F(C) kills all such forms. The second term, (F(1) −
F(C))(ωD), is everywhere holomorphic, because the operator
F(1) − F(C) is divisible by 1 − C, and (1 − C)(ωD) is every-
where holomorphic. (When n p is prime to p, an expression
as the sum of a logarithmic form and a holomorphic one is
unique. This amounts to the fact that if a nonzero logarithmic
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form dh/h is everywhere holomorphic, then there is a ratio-
nal point of order p on the Jacobian. The divisor of h is of the
form pD, and the nonvanishing of dh/h means that D is not
principal, although pD is.)

To examine a bit the computational issues, we consider the
special case of a hyperelliptic curve C/Fp of genus g ≥ 2 over
Fp, p odd, of equation y2 = f (x) with f (x) a monic square-
free polynomial of degree 2g + 1. We suppose that (0, b), b �=
0, is a point P ∈ C(Fp) on our curve, and we define −P :=
(0,−b). With D taken to be [P] − [∞] or [P] − [−P], a
choice of ω([P]−[∞]) is

ω([P]−[∞]) = 1

2
(y + b)

dx

xy
= 1

2

dx

x
+ 1

2
b

dx

xy
,

and a choice of ω([P]−[−P]) is

ω([P]−[−P]) = b
dx

xy
.

In view of the preceding general discussion, we will need
first to compute the characteristic polynomial F(T ) and then
the action of the powers C, C2, . . . , Cg on b dx/xy. For the first
step, we can proceed as follows. For each i ≥ 1, we have the
mod-p congruence

#C(Fpi ) ≡ 1 − Trace(Ci ).

In characteristic p > g, these traces (Newton sums of eigen-
values) for 1 ≤ i ≤ g determine the elementary symmetric
functions Trace(
i (C)), which are, up to sign, the coefficients
of F(T ).

This second step is theoretically straightforward, for we
have the following lemma, the higher-genus version of
Lemma 8.3.

Lemma 9.5. For q = pi , i ≥ 1, any power of p, write

f (x)(q−1)/2 =
∑

i

Bi,q xi .

Then B0,q = 1, and

Ci dx

xy
= B0,q

dx

xy
+

g∑
j=1

B jq,q x j dx

y
.

Proof. That B0,q = 1 results from the hypothesis that the con-
stant term b2 of f is a square. Fix i ≥ 1, write q := pi , and
write

dx

xy
= yq−1 dx

xyq
= f (x)(q−1)/2 dx

xyq
=
(∑

i

Bi,q xi

)
dx

xyq
.

Applying C once, we get

C dx

xy
=
(∑

i

Bip,q xi

)
dx

xyq/p
.

Continuing to apply C to both sides of the above equality, we
find successively that for each j in the interval 1 ≤ j ≤ i , we
have

C j dx

xy
=
(∑

i

Bip j ,q xi

)
dx

xyq/p j .

Combining Corollary 9.2 with this result, we get a method
of calculation, but one that is computationally unpleasant. For
D = [P] − [∞], with P = (0, b), and

F(1) − F(T ) =
g∑

i=0

di T
i ,

we obtain

(F(1) − F(C))(ωD) =
(

g∑
i=0

diCi

)(
1

2

dx

x
+ b

2

dx

xy

)

=
g∑

j=1

Ai x
j dx

xy
,

with

A j = b

2

g∑
i=0

di B jpi ,pi .

(The A0 term vanishes because each B0,pi is equal to 1, and∑
i di = 0.)
In the case g = 2, we can compute F(1) − F(C) in a simpler

way. We know that 1 − Trace(C) ≡ #C(Fp) mod p. So we get

F(1) − F(C) = (1 − Trace(C) + det(C))

− (C2 − Trace(C)C + det(C))

= −C2 + (1 − #C(Fp))C + #C(Fp).

10. APPENDIX

In this appendix, we show that the conclusion of Lemma 8.1
remains valid without the assumption that n p is prime to p.
Because it may be of use in other situations, we will work
in a slightly more general situation. We take an odd prime
p, a finite extension field Fq of Fp, and an elliptic curve
E/Fq , with #E(Fq ) denoted by nq . We give ourselves a point
P ∈ E(Fq ) with P �= −P . We choose a Weierstrass equation
for our curve, y2 = f (x) with f (x) ∈ Fq [x] a monic square-
free cubic, so that our point P is (0, b). We take for D the
divisor [P] − [0] on E , and for ωD the differential of the third
kind in the strong sense,

ωD := 1

2
(y + b)

dx

xy
,
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Katz: Equidistribution Questions for Universal Extensions 461

which has simple poles only at P and 0, with residues 1 and
−1 respectively. We know that the divisor nq D is principal,
say nq D = (g) for some function g on E , and so the difference
nqωD − dg/g has no poles. In other words, we can write

nqωD = dg

g
+ ω(D)

with ω(D) a differential of the first kind on E , say ω(D) =
cq dx/y with cq ∈ Fq .

For d := deg(Fq/Fp), we denote by Cq the dth iterate Cd
p

of the Cartier operator. This is an Fq -linear operator on the
space of meromorphic one-forms on E that fixes logarithmic
differentials, kills exact differentials, and preserves holomor-
phicity at any given point. We denote by aq ∈ Fq the effect of
Cq on the one-dimensional space H 0(E,�1

E/Fq
):

Cq
dx

y
= aq

dx

y
.

We have the mod-p congruence

nq ≡ 1 − aq mod p,

which shows that in fact, aq lies in the prime field.

Theorem 10.1. In the situation of the appendix, we have the
formulas

dg

g
= (Cq − aq )(ωD), ω(D) = (1 − Cq )(ωD).

Corollary 10.2. Let E/Fq be an elliptic curve, D a divisor
of degree zero on E, and g a nonzero function on E whose
divisor is nq D. Then for every differential ωD of the third kind
in the strict sense whose residue divisor is D, dg/g is given
by the formula

dg

g
= (Cq − aq )(ωD).

Proof. For given D, a choice of ωD is indeterminate up to
adding a differential of the first kind on E . But every such ωD

is killed by Cq − aq , so we may choose ωD conveniently. We
treat three cases separately.

If D is linearly equivalent to zero, say D = (h), then a
convenient choice of ωD is dh/h. Then nq D is the divisor of
g := hnq , in which case dg/g = nq dh/h, and the assertion
is that (Cq − ag)(dh/h) = nq dh/h. This holds because nq ≡
1 − aq mod p, while Cq fixes dh/h.

If D is linearly equivalent to D0 := [P] − [0] for a point
P in E(Fq ) of order 2, let h be a function whose divisor is
2[P] − 2[0]. Because p is odd, 1

2 dh/h is a choice of ωD . With
this choice, (Cq − aq )(ωD) is

(1 − aq )
1

2

dh

h
= nq

2

dh

h
= dg

g

for g := hnq/2. This g has divisor nq D.

If D is linearly equivalent to D0 := [P] − [0] for a point
P in E(Fq ), with P �= −P , write D = [P] − [0] + (h), for
some nonzero function h on E . Then a convenient choice of
ωD is ωD0 + dh/h. Write nq D0 = (g0). Then nq D = (g0hnq ),
and the assertion is that

(Cq − aq )

(
ωD0 + dh

h

)
= dg0

g0
+ nq

dh

h
,

which results from Theorem 10.1, together with the first case
treated above.

We now turn to the proof of the theorem.

Proof. The two formulas are equivalent, because

nqωD = dg

g
+ ω(D),

and nq ≡ 1 − ag mod p.
When nq is prime to p, the argument is the one used in

proving Lemma 8.1. We apply the operator 1 − Cq to both
sides of the displayed formula. This operator kills dg/g, so we
get

nq (1 − Cq )ωD = (1 − Cq )ω(D) = (1 − aq )ω(D).

Because nq ≡ 1 − ag mod p is prime to p, we may divide and
get (1 − Cq )ωD = ω(D).

More generally, if the divisor class D has order nD prime
to p, say nD D = (h), then we write

nDωD = dh

h
+ ω0(D).

Multiplying by nq/nD , we see that

ω(D) = nq

nD
ω0(D).

But if we apply 1 − Cq to both sides of nDωD = dh/h +
ω0(D), we get

nD(1 − Cq )ωD = (1 − aq )ω0(D) = nqω0(D).

Dividing through by nD gives the result.
Suppose now that p divides nq , or equivalently that aq

is 1 modulo p. Then certainly E is ordinary. We denote by
E/W (Fq ) its canonical lifting in the sense of Serre–Tate. We
will make use of two key properties of the canonical lift-
ing; cf. [Messing 72b, Chapter V, 2.3, 2.3.6, 3.3, 3.4, and
Appendix 1.2].

The first is that the torsion subgroup of E(W (Fq )) maps
by reduction modulo p isomorphically to the group E(Fq ).
This is true for the prime-to-p parts for every lifting. It is
true for the p-power parts for the canonical lifting, because
the p-divisible group of E is the product of the étale group
E(Fq )[p∞] with the dual twisted form of μp∞ . Because p is
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odd, the second factor has no (nontrivial) unramified points,
so none with values in W (Fq ), and a fortiori none with values
in W (Fq ).

The second property that we will use is that the qth-power
Frobenius endomorphism Frobq of E lifts to an endomorphism
F of E. Every endomorphism of E, in particular F, maps the
torsion subgroup of E(W (Fq )) to itself. Since Frobq fixes each
element of E(Fq ), it follows that F fixes each torsion point in
E(W (Fq )). (If P is a torsion point upstairs, P and F(P) have
the same reduction, so must be equal.)

Let us denote by Aq ∈ W (Fq ) the action of F on the free
W (Fq )-module H 1(E,OE) of rank one, and by Bq ∈ W (Fq )
the action of F on the free W (Fq )-module H 0(E,�1

E/W (Fq ))
of rank one. One knows that Aq mod p is aq , so Aq is a p-adic
unit; one knows that Bq = q/Aq ; and one knows that

nq = q + 1 − Aq − Bq .

Let us denote by P ∈ E(W (Fq )) the unique torsion point
lifting P ∈ E(Fq ). On E, we have the divisor D := [P] −
[0E], and now nqD is principal. So there exists an invertible
function G on E \ {0E ,P} that is a W (Fq )-basis of the free
W (Fq )-module

H 0
(

E,
(
I (P) ⊗ I (0E)−1

)⊗nq
)

of rank one.
We now choose a torsion point P1 in E(W (Fq )) other than

P or 0E. For example, we could take P1 to be −P. We fur-
ther choose a uniformizing parameter T at P1, so the for-
mal completion E∨ of E along P1 is the formal spectrum of
W (Fq ))[[T ]]. Because P1 is everywhere disjoint from both P

and 0E, we can choose G so that its formal expansion along
P1 lies in 1 + T W (Fq )[[T ]].

In terms of a Weierstrass equation for E lifting that of E ,
we have the differential of the third kind ωD, and we know that
nqωD − dG/G is everywhere holomorphic on E, say

nqωD = dG

G
+ ω(D).

We now work in the group H 1
DR(E∨, (p)), defined as the

cokernel of p times the exterior differentiation map

pd : T W (Fq )[[T ]] → �1
E∨/W (Fq ) = T W (Fq ))[[T ]]

dT

T
;

cf. [Katz 81a, Theorem 5.1.6], with I there the ideal (p). Be-
cause the point P1 is fixed by F, F is a pointed endomorphism
of E∨, and so F acts on this cohomology group. However, it
will be convenient to consider instead the pointed endomor-
phism F1 of E∨ given by T 	→ T q . According to [Katz 81a,
Theorem 5.1.6], the two maps F and F1, being congruent
modulo p, induce the same map on this cohomology group.

We now introduce another map, V, on the terms of the de
Rham complex, given by

V

(∑
n≥1

anT n

)
:=
∑
n≥1

anq T n,

V

(∑
n≥1

anT n dT

T

)
:=
∑
n≥1

anq T n.

We have the following lemma, whose proof is left to the
reader.

Lemma 10.3. For every f ∈ T W (Fq ))[[T ]], we have

V(d f ) = qd(V( f )).

This map V is an ad hoc formal lifting of the Cartier oper-
ator Cq .1

Choose a W (Fq )-basis ω of H 0
(
E,�1

E/W (Fq )

)
. Then we

have the identity

F�(ω) = q

Aq
ω

of differential forms on E. So in H 1
DR(E∨, (p)), we have this

same relation. On this cohomology group,F1 induces the same
map as F, so we have the relation

F�
1(ω) = q

Aq
ω in H 1

DR(E∨, (p)).

Lemma 10.4. We have the relation

V(ω) = Aqω in H 1
DR(E∨, (p)).

Proof. Indeed, write the formal expansion of ω along P1, say

ω =
∑
n≥1

anT n dT

T
,

with coefficients an ∈ W (Fq ). Its pullback by F1 is

F�
1(ω) = q

∑
n≥1

anT nq dT

T
.

So the assertion that F�
1(ω) = q

Aq
ω in H 1

DR(E∨, (p)) means
that

q

Aq

∑
n≥1

anT n dT

T
− q

∑
n≥1

anT nq dT

T

1It is not a lifting of the Verschiebung Vq of E . Indeed, from the relation
Vq Frobq = q, we see that Vq acts on E(Fq ) as multiplication by q, so only
the points in E(Fq ) of order dividing q − 1 are fixed by Vq . Our problematic
points P in E(Fq ) are those of p-power order, so are certainly not fixed by Vq .
So although Vq does lift to an endomorphism of E, this lifting will in general
not even act on our E∨.
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is d of some series in pT W (Fq )[[T ]]. If we look at the coef-
ficient of nq, the exactness means precisely that (q/Aq )anq −
qan lies in pqnW (Fq ). Because Aq is a p-adic unit, we may
rewrite this as a congruence

anq ≡ Aqan mod pnW (Fq ).

These congruences mean precisely that V(ω) = Aqω in
H 1

DR(E∨, (p)).

Lemma 10.5. For every function G ∈ 1 + T W (Fq )[[T ]], writ-
ing dlog(G) := dG/G, we have the relation

(1 − V)(dlog(G)) = 0 in H 1
DR(E∨, (p)).

Proof. Write G as an infinite product

G =
∏
n≥1

1

1 − bnT n
,

with coefficients bn in W (Fq ). Then dlog(G) is the sum

dlog(G) =
∑
n≥1

∑
d≥1

n(bn)d T nd dT

T
.

Since the space of exact forms is T -adically complete, it
suffices to show that for each n ≥ 1 and for every b ∈ W (Fq ),
1 − V kills dlog(1/(1 − bT n)), i.e., that

(1 − V)

(∑
d≥1

nbd T nd dT

T

)
= 0

is in H 1
DR(E∨, (p)). Equivalently, we must show that for the

series ∑
a≥1

caT a :=
∑
d≥1

nbd T nd −
∑

d≥1 s.t. q|nd

nbd T nd/q ,

its coefficients satisfy the congruences

ca ≡ 0 mod paW (Fq ).

There are two cases to consider. Suppose first that a can be
written as a = ne. Then a can be written uniquely as nd/q,
with d = qe. Then

ca = nbe − nbd .

Here d = qe, pa = pne, and we must show that

nbe − nbqe ≡ 0 mod pneW (Fq ).

If e is prime to p, it suffices to show that for every b ∈ W (Fq )
(here our be), we have

b ≡ bq mod pW (Fq ),

which is obviously true, since W (Fq )/pW (Fq ) is Fq . If p
divides e, write e = e0 p f with e0 prime to p. In this case, it

suffices to show that for every b ∈ W (Fq ) (here our be0 ), we
have

bp f ≡ bqp f
mod p f +1W (Fq ).

If b is divisible by p, both sides vanish modulo p f +1W (Fq ).
This is just the statement that p f ≥ f + 1. If b is a unit
in W (Fq ), write it as the product ζq−1(1 + pc) of its Te-
ichmüller part ζq−1 ∈ μq−1(W (Fq )) with a principal unit
1 + pc ∈ 1 + pW (Fq ). The Teichmüller parts of bp f

and bqp f

agree, so we may divide through by them and reduce to the
case that b is 1 + pc. Now successively use the fact that for
every n ≥ 1, raising to the p′th power maps 1 + pnW (Fq ) to
1 + pn+1W (Fq ) (in fact, isomorphically for p ≥ 3). So both
sides lie in 1 + p f +1W (Fq ), and we are done.

Suppose next that a = nd/q but a cannot be written as ne.
Then ca = nbd , and we must show that

nbd ≡ 0 mod p

(
nd

q

)
W (Fq ),

or equivalently,

qbd ≡ 0 mod pdW (Fq ).

To say that a cannot be written as ne is to say that q does
not divide d, which is to say that ordp(q) > ordp(d). But in
this case, ord( q) ≥ ordp(pd), i.e., q ≡ 0 mod pdW (Fq ), so
again the assertion is obvious.

With these preliminaries, we now finish the proof of the
theorem. We start with the identical relation

nqωD = dG

G
+ ω(D).

We apply 1 − V to it, and view the result in H 1
DR(E∨, (p)).

There are f and g in T W (Fq )[[T ]] such that we have the
identical relations

(1 − V)
dG

G
= p d f, V(ω(D)) = Aqω(D) + p dg.

So we have an identical relation

nq (1 − V)(ωD) = (1 − V)
dG

G
+ (1 − V)(ω(D))

= p d f + (1 − Aq )ω(D) − p dg.

Now apply V to this relation. We get

nqV(1 − V)(ωD)

= pV(d f ) − pV(dg) + (1 − Aq )(Aqω(D) + p dg).
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As we have already remarked, V(d f ) = qd(V( f )), V(dg) =
qd(V(g)), so we have

nqV(1 − V)(ωD)

= pq d(V( f − g)) + (1 − Aq )Aqω(D) + (1 − Aq )p dg.

Recall that Aq is a p-adic unit. From the formula

nq := #E(Fq ) = (1 − Aq )

(
1 − q

Aq

)
,

we see that nq and 1 − Aq have the same ordp; their ratio is the
p-adic unit 1 − q/Aq . Moreover, from the Hasse bound, we
see that nq cannot be divisible by pq. In other words, pq/nq

lies in pW (Fq ). So dividing through by nq , we get

V(1 − V)(ωD) = pq

nq
d(V( f − g))

+ 1 − Aq

nq
Aqω(D) + 1 − Aq

nq
pdg.

Recall that

1 − Aq

nq
= 1

1 − q/Aq

is 1 modulo p. So when we reduce mod p, we get a relation of
differential forms on Fq [[T ]],

Cq (1 − Cq )(ωD) = aqω(D).

Recalling that (1 − Cq )(ωD) is itself everywhere holomorphic
on E , we have

Cq (1 − Cq )(ωD) = aq (1 − Cq )(ωD).

Since aq is nonzero in Fq (in fact, it is 1), we may divide
through by it to get

(1 − Cq )(ωD) = ω(D).

Since this equality of global forms on E holds in the formal
completion at P1, it holds identically.
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