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IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn In a recent paper, Brock and Granville consider the following question. Fix a genus g

≥ 1. For a finite field Éq of odd characteristic, denote by S2g+1(Éq) the set of those monic

polynomials f(x) in Éq[x] of the form

x2g+1 + (a polynomial of degree ≤ 2g-1),

which in addition have 2g+1 distinct roots in äÉq. For each point f in S2g+1(Éq), consider the

projective smooth hyperelliptic curve Çf/Éq of genus g, whose affine equation is

y2 = f(x),

and which has a single point at infinity. For each f in S2g+1(Éq), and for integer r ≥ 1, consider the

number ùÇf(Éqr) of Éqr-valued points of Çf. For given r, Brock and Granville ask what can be

said about the average value of ùÇf(Éqr), as f varies over S2g+1(Éq).

For r=1, this average value is q+1. Indeed, any single hyperelliptic curve and its quadratic

twist have between them a total of 2q+2 points over Éq. This same trick of considering quadratic

twists shows that for any odd r, the average value is qr + 1.

For r=2, they show that the situation is quite different. The average value of ùÇf(Éq2), as f

varies over S2g+1(Éq) is nnnnooootttt q2 + 1, but rather it is q2 + q + O(q1/2). This phenomenon, of

"extra" points in quadratic extensions, is the quadratic excess of the title.

In this note, we will show that Brock-Granville quadratic excess is ubiquitous, and occurs

in families of varietes of all sorts. Roughly speaking, it occurs in any family whose monodromy is

irreducible, nontrivial, and self-dual. Quadratic excess is just the diophantine expression of the

(cohomological incarnation of the) Frobenius-Schur indicator. We will also explore the question of

excess in extensions of higher degree.

TTTThhhheeee    FFFFrrrroooobbbbeeeennnniiiiuuuussss----SSSScccchhhhuuuurrrr    iiiinnnnddddiiiiccccaaaattttoooorrrr (cf. [F-S], [Cur, pp. 150-154])

When a compact group G operates irreducibly on a finite-dimensional ^-vector space V,

we have the following trichotomy: either the representation V of G is not self-dual, or it is

orthogonally self-dual, or it symplectically self-dual. As Frobenius and Schur discovered in 1906,

the integral (for the total mass one Haar measure dg on G)

—GTrace(g2 | V)dg,

now called the Frobenius-Schur indicator, distinguishes among these cases:

—GTrace(g2 | V)dg = 0, if V is not self-dual,

= 1, if V is orthogonally self-dual,

= -1, if V is symplectically self-dual.

To see this, recall the universal linear algebra identities
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Trace(g | V‚V) = Trace(g | Sym2(V)) + Trace(g | Ú2(V)),

Trace(g2 | V) = Trace(g | Sym2(V)) - Trace(g | Ú2(V)),

and the representation theory identity

—GTrace(g | any rep'n. W of G)dg =dim(WG).

The last identity gives

—GTrace(g|V‚V)dg = dim((V‚V)G) = dim(HomG(V£, V)),

which is equal to 1 if V is self-dual and 0 if not. The linear algebra identities give

—GTrace(g | V‚V)dg = dim(Sym2(V))G + dim(Ú2(V))G,

—GTrace(g2 | V)dg = dim(Sym2(V))G - dim(Ú2(V))G,

so we find the asserted value for —GTrace(g2 | V)dg.

On the other hand, so long as the irreducible action of G on V is nontrivial, we have

—GTrace(g|V)dg = dim(VG) = 0.

AAAA    nnnnoooottttaaaattttiiiioooonnnnaaaallll    ccccoooonnnnvvvveeeennnnttttiiiioooonnnn

We will frequently be averaging a ^-valued function f over some finite set S. In what

follows, we will write

—S f(s)ds := (1/ùS)‡s in S f(s).

AAAApppppppplllliiiiccccaaaattttiiiioooonnnn    ttttoooo    ffffaaaammmmiiiilllliiiieeeessss    ooooffff    ccccuuuurrrrvvvveeeessss

Fix a genus g ≥ 1. Let k be a finite field, S/k a smooth, geometrically connected k-scheme

of dimension d ≥ 1, and

π : Ç ¨ S

a proper smooth family of geometrically connected curves of genus g. Fix a prime number …

invertible in k. We have the lisse sheaf

Ï : = R1π*ä$… 

of rank 2g on S, which is pure of weight one, and carries a symplectic autoduality (cup-product)

toward ä$…(-1). For each finite extension E/k, and each point s in S(E), the genus g curve Çs/E has

ùÇs(E) = ùE + 1 - Trace(FrobE,s | R1π*ä$…).

It is known that Ï is completely reducible as a representation of π1
geom(S) := π1(S‚käk). We say

that the family has irreducible monodromy if Ï is irreducible as a representation of π1
geom(S), or

equivalently (using the complete reducibility) if End(Ï) as a representation of π1
geom(S) has a

one-dimensional space of invariants (or equivalently, of coinvariants). Using the autoduality of Ï

toward ä$…(-1), we see that the monodromy is irreducible if and only if the cup-product pairing

Ï‚Ï¨ ä$…(-1)

induces an isomorphism

Hc
2d(S‚käk, Ï‚Ï) ¶ Hc

2d(S‚käk, ä$…(-1)) = ä$…(-1-d).
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There is a simple diophantine criterion for this irreducibility, as follows. The family has irreducible

monodromy if and only if

limùE ¨ ‘ (1/ù(E))—S(E) (ùE + 1 - ùÇs(E))2 = 1,

cf. [Ka-MFC]. 

We refer to [Ka-Sar, RMFEM, 10.1.16, 10.1.18.3-5, 10.2.2, 10.3.1-4 (which covers the

hyperelliptic family considered in the introduction), 10.6.11] for examples of families of curves

with irreducible monodromy. In all these examples, the geometric monodromy group is not only

irreducible, it is the full symplectic group. But there are also families of curves with quite small, but

still irreducible, monodromy. For example, there are iso-trivial families whose monodromy is a

finite irreducible group (e.g., the two-parameter family of supersingular elliptic curves 

y2 - y = x3 + Ax + B

in characteristic two).

Suppose now that the monodromy is irreducible. Since Ï has rank 2g > 1, the irreducible

monodromy is necessarily nontrivial, so we have

Hc
2d(S‚käk, Ï) = 0.

Now consider the direct sum decomposition

Ï‚Ï = Sym2(Ï) · Ú2(Ï).

Since the cup-product pairing is alternating, it induces a surjection

Ú2(Ï) ¨ ä$…(-1),

so in turn a surjection

Hc
2d(S‚käk, Ú2(Ï)) ¨ Hc

2d(S‚käk, ä$…(-1)) = ä$…(-1-d).

From the decomposition

Hc
2d(S‚käk, Ï‚Ï) = Hc

2d(S‚käk, Sym2(Ï)) · Hc
2d(S‚käk, Ú2(Ï))

of the one-dimensional space Hc
2d(S‚käk, Ï‚Ï) ¶ = ä$…(-1-d), we infer that

Hc
2d(S‚käk, Ú2(Ï)) ¶ ä$…(-1-d),

Hc
2d(S‚käk, Sym2(Ï)) = 0.

This is the cohomological incarnation of the fact that the Frobenius-Schur indicator is -1 for an

irreducible symplectic representation.

QQQQuuuuaaaaddddrrrraaaattttiiiicccc    EEEExxxxcccceeeessssssss    TTTThhhheeeeoooorrrreeeemmmm Suppose our family Ç/S of curves of genus g ≥ 1 has irreducible

monodromy. Define constants A, C1, and C2 as follows:

A := ‡i hc
i(S‚käk, ä$…),

C1 := ‡i hc
i(S‚käk, Ï),

C2 := ‡i hc
i(S‚käk, Ï‚Ï).

For any finite extension E/k with ùE > 4A2, S(E) is nonempty, and denoting by E2/E the quadratic
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extension of E, we have the inequalities

|—S(E) (ùE + 1 - ùÇs(E))ds| ≤ (3/2)C1,

and

|ùE + —S(E) (ùE2 + 1 - ùÇs(E2))ds| ≤ 2C2(ùE)1/2.

QQQQuuuuaaaaddddrrrraaaattttiiiicccc    EEEExxxxcccceeeessssssss    CCCCoooorrrroooollllllllaaaarrrryyyy Hypotheses as above, for any finite extension E/k we have

—S(E) ùÇs(E)ds = ùE + O(1),

and

—S(E) ùÇs(E2)ds = ùE2 + ùE +O((ùE)1/2).

pppprrrrooooooooffff The corollary is a trivial rewriting of the theorem. For A the sum of the hc
i(S‚käk, ä$…), we

have the Lang-Weil estimate

|ùS(E) - (ùE)d| ≤ A(ùE)d-1/2.

So to prove the theorem it suffices to show that

|‡s in S(E) (ùE + 1 - ùÇs(E))| ≤ C1(ùE)d,

and

|(ùE)d+1 + ‡s in S(E) (ùE2 + 1 - ùÇs(E2))| ≤ C2(ùE)d + 1/2.

The first sum is (by the Lefschetz trace formula)

‡s in S(E) (ùE + 1 - ùÇs(E)) = ‡s in S(E) Trace(FrobE,s | Ï)

=‡i=0 to 2d (-1)iTrace(FrobE | Hc
i(S‚käk, Ï)).

In this sum, the i'th term is mixed of weight ≤ i+1 by Weil II, and the 2d'th term vanishes. So we

get the desired estimate.

In the second sum, we have

‡s in S(E) (ùE2 + 1 - ùÇs(E2)) 

= ‡s in S(E) Trace((FrobE,s)2 | Ï)

= ‡s in S(E) Trace((FrobE,s)| Sym2(Ï)) 

- ‡s in S(E) Trace((FrobE,s)| Ú2(Ï))

= ‡i=0 to 2d (-1)iTrace(FrobE | Hc
i(S‚käk, Sym2(Ï)))

- ‡i=0 to 2d (-1)iTrace(FrobE | Hc
i(S‚käk, Ú2(Ï)))

= ‡i=0 to 2d-1 (-1)iTrace(FrobE | Hc
i(S‚käk, Sym2(Ï)))

- ‡i=0 to 2d-1 (-1)iTrace(FrobE | Hc
i(S‚käk, Ú2(Ï)))

-(ùE)d+1,

the last equality because, as already noted above,

Hc
2d(S‚käk, Ú2(Ï)) ¶ ä$…(-1-d),
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Hc
2d(S‚käk, Sym2(Ï)) = 0.

In this final expression, both Sym2(Ï) and Ú2(Ï) are pure of weight two, so for i ≤ 2d-1 both

Hc
i(S‚käk, Sym2(Ï)) and Hc

i(S‚käk, Ú2(Ï)) are mixed of weight ≤ 2d + 1. So we get the desired

estimate for the second sum. QED

UUUUnnnniiiiffffoooorrrrmmmm    QQQQuuuuaaaaddddrrrraaaattttiiiicccc    EEEExxxxcccceeeessssssss    TTTThhhheeeeoooorrrreeeemmmm    Take as ground ring a normal integral domain A which is

finitely generated over #. Let S/A be a smooth A-scheme with all fibres geometrically connected

of some common dimension d ≥ 1. Let π : Ç ¨ S be a proper smooth family of geometrically

connected curves of genus g. Suppose that for any finite field k, and for any ring homomorphism å

: A ¨ k, the resulting family on Så/k := S‚Ak/k has irreducible monodromy. There exist

constants A, C1, and C2 with the following properties. For any finite field E with ùE ≥ 4A2, any

ring homomorphism å : A ¨ E, denoting by E2/E the quadratic extension of E, we have the

estimates

|—Så(E) (ùE + 1 - ùÇå,s(E))ds| ≤ (3/2)C1,

and

|ùE + —Så(E) (ùE2 + 1 - ùÇs(E2))ds| ≤ 2C2(ùE)1/2.

pppprrrrooooooooffff The constants A, C1, C2 in the previous theorem applied to Çå/Så stay bounded as å varies

over all finite-field-valued points of Spec(A), cf. [Ka-Sar, RMFEM, 9.3.3-4]. QED

QQQQuuuuaaaaddddrrrraaaattttiiiicccc    EEEExxxxcccceeeessssssss    iiiinnnn    ooootttthhhheeeerrrr    sssseeeellllffff----dddduuuuaaaallll    ccccoooonnnntttteeeexxxxttttssss

Fix an integer n ≥ 0, and a degree d ≥ 3. Denote by

π: X ¨ Ón,d

the universal family over # of smoth, degree d hypersurfaces in @n+1. Given a finite field k and a

point h in Ón,d(k), corresponding to a projective smooth degree d hypersurface Xh/k in @n+1, the

zeta function of Xh/Éq has the form 

P(Xh/k, T)(-1)n+1
/(°i=0 to n(1 - (ùk)iT))

with P(T) a #-polynomial with constant term one, of degree

prim(n,d) := (d-1)((d-1)n+1 - (-1)n+1)/d.

Fix a prime number …. On the space Ón,d[1/…], we have a lisse sheaf Ï (the sheaf Primn
…

of [Ka-Sar, RMFEM, 11.4.8]) of rank prim(n, d), which is pure of weight n, and which is

equipped with an autoduality toward ä$…(-n) which is alternating for n odd, and orthogonal for n

even. For odd n, Ï is just Rnπ*ä$…, while for even n it is the codimension one orthogonal in

Rnπ*ä$… of the image of Hn of the ambient projective space. For a finite field k and a point h in

Ón,d(k), we have
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ùXh(k) = ù@n(k) + (-1)nTrace(Frobk,h | Ï), i.e.,

P(Xh/k, T) = det(1 - TFrobk,h | Ï).

It is known that for every finite field k, the universal family over Ón,d‚#k has irreducible

monodromy: for every … invertible in k, the lisse sheaf Ï on Ón,d‚#k is geometrically irreducible

(and nontrivial, because its rank, prim(n,d), is ≥ 2). For n ≥ 1, cf. [Ka-Sar, RMFEM, 11.4.9 and

its proof]. For n = 0, we are looking at the universal family of binary forms of degree d, so the

assertion amounts to Abel's theorem, that the generic polynomial of degree d in one variable has

galois group the full symmetric group Sd, together with the fact that Ï in this case is the d-1

dimensional augmentation representation of Sd, a representation which is well known to be

irreducible, and orthogonally self-dual.

Let us denote by 

D := Binomial(n+1+d, d) - 1

the dimension of Ón,d‚#k. From the nontriviality of the geometrically irreducible Ï, we get

Hc
2D(Ón,d‚#äk, Ï) = 0.

If n is odd, the autoduality is alternating, the Frobenius-Schur indicator is -1, and we get

Hc
2D(Ón,d‚#äk, Ú2(Ï)) ¶ ä$…(-n -D), 

Hc
2D(Ón,d‚#äk, Sym2(Ï)) = 0.

If n is even, the autoduality is orthogonal, the Frobenius-Schur indicator is +1, and we get

Hc
2D(Ón,d‚#äk, Ú2(Ï)) = 0,

Hc
2D(Ón,d‚#äk, Sym2(Ï)) ¶ ä$…(-n -D).

We can now derive the diophantine consequences of these cohomological incarnations of

the value _1 of Frobenius-Schur indicator, exactly as we did at some length in the case of

irreducible families of curves, where n was odd and the indicator was -1. If n is even, the

Frobenius-Schur indicator, always (-1)n, changes sign, as does the sign with which

Trace(Frobk,h | Ï) occurs in the expression

ùXh(k) = ù@n(k) + (-1)nTrace(Frobk,h | Ï).

These two sign changes ccccaaaannnncccceeeellll: whatever the parity of n, we end up with quadratic excess (rather

than quadratic defect). Here is the precise statement.

QQQQuuuuaaaaddddrrrraaaattttiiiicccc    EEEExxxxcccceeeessssssss    TTTThhhheeeeoooorrrreeeemmmm Fix integers n ≥ 0 and d ≥ 3. There exist constants A, C1, and C2 with

the following properties. For any finite field E with ùE ≥ 4A2, denoting by E2/E the quadratic

extension of E, we have the estimates

|—Ón,d(E) (ù@n(E) - ùXh(E))dh| ≤ (3/2)C1(ùE)(n-1)/2,

and

|(ùE)n + —Ón,d(E) (ù@n(E2) - ùXh(E2))dh| ≤ 2C2(ùE)(2n-1)/2.
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QQQQuuuuaaaaddddrrrraaaattttiiiicccc    EEEExxxxcccceeeessssssss    CCCCoooorrrroooollllllllaaaarrrryyyy Hypotheses as above, for any finite field E we have

—Ón,d(E)ùXh(E)dh = ù@n(E) + O((ùE)(n-1)/2),

and

—Ón,d(E) ùXh(E2)dh = ù@n(E2) + (ùE)n +O((ùE)(2n-1)/2).

RRRReeeemmmmaaaarrrrkkkkssss 1) Instead of taking the universal family of smooth hypersurfaces of given degree d ≥ 3

and dimension n ≥ 1, we could have taken any family with irreducible monodromy, for example a

Lefschetz pencil.

2) For even n ≥ 2, the geometric monodromy group for the universal family is the full orthogonal

group, except in the case n=2, d = 3. In the case n=2, d=3, of cubic surfaces in @3, the group is a

finite irreducible reflection group.

3) If n is even, we can also take d=2. In this case Ï has rank one, and is nontrivial: its geometric

monodromy group is the full orthogonal group O(1) = {_1}. So also in the universal family of

even dimensional quadrics, we get quadratic excess. Limiting case: take d=2, n=0.

4) In the case n=0, we are saying that, on average, degree d square-free polynomials over Éq have

one root in Éq and two roots in Éq2. This incarnation of quadratic excess has an elementary

number field analogue. Here is the simplest case. Take a degree d polynomial f over # whose

galois group is the full symmetric group Sd. By the classical Chebotarev density theorem, we have

limX ¨‘ (1/π(X))‡p ≤ X ù{roots of f in Ép} = 1,

while

limX ¨‘ (1/π(X))‡p ≤ X ù{roots of f in Ép2} = 2.

EEEExxxxcccceeeessssssss    iiiinnnn    eeeexxxxtttteeeennnnssssiiiioooonnnnssss    ooooffff    aaaarrrrbbbbiiiittttrrrraaaarrrryyyy    ddddeeeeggggrrrreeeeeeee    rrrr    ≥≥≥≥    1111

To fix ideas, take the universal family

π : X ¨ Ón,d

of the last section, with n ≥ 1, d ≥ 3, but exclude the case (n=2, d=3). In order to analyze the

question of excess in extensions of arbitrary degree r ≥ 1, it no longer suffices to have irreducible

monodromy, we must know what the geometric monodromy group is. We will succeed for these

universal families because, for each finite field k, the family over Ón,d‚#k has biggest possible

geometric monodromy group

Ggeom = Sp(prim(n,d)), if n is odd,

  = O(prim(n,d)), if n is even.

In both cases, there is no excess in extensions of odd degree, and in both cases there is excess in

extensions of low even degree. In the symplectic case, the excess disappears in extensions of high

even degree, while in the orthogonal case the even degree excess never disappears. Here is the

precise statement.

SSSSyyyymmmmpppplllleeeeccccttttiiiicccc    HHHHiiiigggghhhheeeerrrr    DDDDeeeeggggrrrreeeeeeee    EEEExxxxcccceeeessssssss    TTTThhhheeeeoooorrrreeeemmmm Fix integers n ≥ 1, d ≥ 3. Suppose n is odd. Fix an

integer r ≥ 1. There exist constants A, and Cr with the following property. For any finite field E

with ùE ≥ 4A2, denoting by Er/E the extension of degree r, we have the following estimates.
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1) if r is odd, or if r > prim(n,d), we have

|—Ón,d(E) (ù@n(Er) - ùXh(Er))dh| ≤ 2Cr(ùE)(rn-1)/2.

2) If r is even, and 2 ≤ r ≤ prim(n,d), we have

|(ùE)rn/2 + —Ón,d(E) (ù@n(Er) - ùXh(Er))dh| ≤ 2Cr(ùE)(rn-1)/2.

OOOOrrrrtttthhhhooooggggoooonnnnaaaallll    HHHHiiiigggghhhheeeerrrr    DDDDeeeeggggrrrreeeeeeee    EEEExxxxcccceeeessssssss    TTTThhhheeeeoooorrrreeeemmmm Fix integers n ≥ 2, d ≥ 3. Suppose n is even, and

exclude the case n=2, d=3. Fix an integer r ≥ 1. There exist constants A and Cr with the following

property. For any finite field E with ùE ≥ 4A2, denoting by Er/E the extension of degree r, we have

the following estimates.

1) if r is odd, we have

|—Ón,d(E) (ù@n(Er) - ùXh(Er))dh| ≤ 2Cr(ùE)(rn-1)/2.

2) If r is even, we have

|(ùE)rn/2 + —Ón,d(E) (ù@n(Er) - ùXh(Er))dh| ≤ 2Cr(ùE)(rn-1)/2.

PPPPrrrrooooooooffff    ooooffff    tttthhhheeee    hhhhiiiigggghhhheeeerrrr    ddddeeeeggggrrrreeeeeeee    eeeexxxxcccceeeessssssss    tttthhhheeeeoooorrrreeeemmmmssss

Fix a finite field, and a prime number … invertible in k. Over Ón,d‚#k we have the lisse

ä$…-sheaf Ï. Pick an embedding “ of ä$… into ^, and denote by (ùk)1/2 in ä$… the choice of square

root which maps under “ to the positive one in ^. The choice of  (ùk)1/2 allows us to define the

fractional Tate-twist Ï(n/2) of Ï. The sheaf Ï(n/2) on Ón,d‚#k is pure of weight zero and lisse

of rank prim(n,d). If n is even (respectively odd), Ï(n/2) is orthogonally (respectively

symplectically) self-dual, and its geometric monodromy group Ggeom is O(prim(n,d))

(respectively Sp(prim(n,d)). Because Ï(n/2) is self dual, all the Frobenii FrobE,h respect the

autoduality, and hence all Frobenii land in Ggeom.

With k and … fixed, we define constants A and Cr by

A := ‡i hc
i(Ón,d‚#äk, ä$…),

Cr = ‡a≥1,b≥0, a+b=r‡i=0 to 2D a≠dim Hc
i(Ón,d‚#äk, Úa(Ï)‚Symb(Ï)).

It suffices to prove that as E varies only over finite extensions of k, the theorems hold with

these constants. Indeed, for fixed …, these constants remain bounded as k varies over all finite fields

of characteristic not …, cf. [Ka-Sar, RMFEM, 9.3.3-4]. Let A(…) and Cr(…) be upper bounds. Then

the theorems hold with the constants A(…) and Cr(…) if we restrict to finite fields E in which … is

invertible. So if we pick any two distinct primes …1 and …2, the theorems hold universally with the

constants A := Sup(A(…1), A(…2)), Cr = Sup(Cr(…1), Cr(…2)).

We now turn to proving the theorem over Ón,d‚#k. For E/k a finite extension, and h in

Ón,d(E), we have

ùXh(Er) = ù@n(Er) + (-1)nTrace((FrobE,h)r | Ï).
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So we have

—Ón,d(E) (ù@n(Er) - ùXh(Er))dh 

= (-1)n+1—Ón,d(E) Trace((FrobE,h)r | Ï)dh

=  (-1)n+1(ùE)rn/2—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh.

So we must show the following three statements:

1) If r is odd, or if n is odd and r > prim(n,d) = rank(Ï), we have

|—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh| ≤ 2Cr/(ùE)1/2.

2) If n is odd and r is even with 2 ≤ r ≤ prim(n,d), we have

|—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh - (-1)n| ≤ 2Cr/(ùE)1/2,

3) If n is even and if r ≥ 2 is even, we have

|—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh - (-1)n| ≤ 2Cr/(ùE)1/2.

These will follow from Deligne's equidistribution theorem [De-Weil II, 3.5.3], cf also

[Katz-Sarnak, RMFEM, 9.2.6], which tells us that the large E limit of

—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh

may be computed as follows. Using “, view the semisimple ä$…-algebraic group Ggeom as a

complex semisimple group, and pick a maximal compact subgroup K in Ggeom(^). In our case,

Ggeom is either the full orthogonal group or the symplectic group, of size prim(n,d), so K is either

the compact orthogonal group O(prim(n,d), %), or the compact symplectic group USp(prim(n,d)).

In either case, the compact group K is given inside GL(prim(n,d), ^), and it is in that sense that we

will speak of the traces of elements of K. We endow K with its total mass one Haar measure dk.

Then we have

limùE ¨ ‘—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh 

= —KTrace(kr)dk.

Moreover, because the function Trace(kr) on K is the trace of a virtual representation (as we will

see below), we also get an effective estimate for the absolute value of the difference: whenever E/k

is a finite extension with ùk ≥ 4A2, we have

|—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh  - —KTrace(kr)dk| 

≤ 2Cr/(ùE)1/2.

Let us explain briefly how this comes about. A key ingredient is the following classical

linear algebra indentity.

LLLLeeeemmmmmmmmaaaa Let R be a ring, N ≥ 1 a positive integer, V a free R-module of rank N, and A an element

of GL(V). For any integer r ≥ 1, we have the identity in R

Trace(Ar|V) 
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= ‡a≥1, b≥0, a+b=r a(-1)a-1Trace(A | Úa(V)‚Symb(V)).

pppprrrrooooooooffff By first reducing to the universal case (when R is the coordinate ring of GL(N)/#, and A has

independent indeterminates as entries) and then embedding R into R‚#$, we reduce to the case

when R is a $-algebra. Then we have the following three standard identities:

det(1 - TA) = exp(-‡n≥1 Trace(An)Tn/n),

det(1 - TA) = ‡n≥0 (-1)nTrace(Ún(A))Tn,

1/det(1 - TA) = ‡n≥0 Trace(Symn(A))Tn. 

Apply (Td/dT)«log to the first, to get

(Td/dT(det(1 - TA)))/det(1 - TA) = -‡n≥1 Trace(An)Tn.

Now use the second and third to rewrite the numerator and denominator respectively. We get

(‡n≥0 n(-1)nTrace(Ún(A))Tn)≠(‡n≥0 Trace(Symn(A))Tn)

= -‡n≥1 Trace(An)Tn.

Equating coefficients of like powers of T gives the assertion. QED

Apply this to FrobE,h acting on Ï(n/2). We get

Trace((FrobE,h)r | Ï(n/2)) 

= ‡a≥1, b≥0, a+b=r a(-1)a-1Trace(FrobE,h | Úa(Ï)‚Symb(Ï)(rn/2)).

Summing over h in Ón,d(E), and using the Lefschetz trace formula, we get

(ùÓn,d(E))—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh

= ‡a≥1, b≥0, a+b=r a(-1)a-1 ≠

≠‡i = 0 to 2D Trace(FrobE, Hc
i(Ón,d‚#äk, Úa(Ï)‚Symb(Ï)(rn/2)).

The coefficient sheaves Úa(Ï)‚Symb(Ï)(rn/2) are all pure of weight zero, so by Weil II the sum

of all the terms with i < 2D is bounded by Cr(ùE)D - 1/2. What about the terms with i = 2D? Here

we find the Tate-twisted coinvariants under G = Ggeom:

Hc
2D(Ón,d‚#äk, Úa(Ï)‚Symb(Ï)(rn/2)) 

¶ (Úa(Ï)‚Symb(Ï)(rn/2))G(-D).

Because all the FrobE,h lie in Ggeom, FrobE acts on these twisted Ggeom-coinvariants as the

scalar (ùE)D. Of course we do not yet know the dimension of this cohomology group. Let us name

it:
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Invar(a,b) := dim Hc
2D(Ón,d‚#äk, Úa(Ï)‚Symb(Ï)(rn/2)).

And let us define

Inv := ‡a≥1, b≥0, a+b=r a(-1)a-1 Invar(a,b).

Then the above discussion gives the estimate

|(ùÓn,d(E))—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh - Inv≠(ùE)D|

≤ Cr(ùE)D - 1/2. 

Dividing through by ùÓn,d(E), we get

|—Ón,d(E) Trace((FrobE,h)r | Ï(n/2))dh - Inv| ≤ 2Cr/(ùE)1/2. 

So now we are reduced to computing the integer Inv, which is the dimension of the space

of invariants of Ggeom in the virtual representation

= ‡a≥1, b≥0, a+b=r a(-1)a-1Úa(Ï(n/2))‚Symb(Ï(n/2)).

Here Ggeom is either Sp(N) or O(N), for N := rank(Ï) = prim(n,d), and Ï(n/2) is its standard

representation, which we will call stdN. So Inv is the dimension of the space of invariants of either

Sp(N) or O(N) in the virtual representation

 ‡a≥1, b≥0, a+b=r a(-1)a-1Úa(stdN)‚Symb(stdN).

By the unitarian trick, i.e., the fact that K is Zariski dense in Ggeom, this is also the dimension of

the space of invariants of K (= USp(N) or O(N, %)) in this virtual representation. So by the linear

algebra identity above, now applied to K (= USp(N) or O(N, %)) in its standard representation, we

find

Inv = —KTrace(kr)dk.

So the theorems on higher degree excess now result from the following two lemma, which

are surely well-known to the experts, e.g., cf. [Di-Sha], but for which I do not know a reference.

SSSSyyyymmmmpppplllleeeeccccttttiiiicccc    HHHHiiiigggghhhheeeerrrr    IIIInnnnddddiiiiccccaaaattttoooorrrr    LLLLeeeemmmmmmmmaaaa Suppose g ≥ 1. For r ≥ 1, we have the formulas

—USp(2g)Trace(Ar)dA = -1, if r is even and r ≤ 2g,

—USp(2g)Trace(Ar)dA = 0, if r is odd, or if r > 2g.

OOOOrrrrtttthhhhooooggggoooonnnnaaaallll    HHHHiiiigggghhhheeeerrrr    IIIInnnnddddiiiiccccaaaattttoooorrrr    LLLLeeeemmmmmmmmaaaa Suppose N ≥ 1. For r ≥ 1, we have the formulas

—O(N, %)Trace(Ar)dA = 1, if r is even,

= 0, if r is odd.

PPPPrrrrooooooooffff    ooooffff    tttthhhheeee    hhhhiiiigggghhhheeeerrrr    iiiinnnnddddiiiiccccaaaattttoooorrrr    lllleeeemmmmmmmmaaaassss

For G either USp(2g) or O(N, %), we have seen that

—GTrace(Ar)dA 

= ‡a≥1, b≥0, a+b=r a(-1)a-1dim((Úa(std)‚Symb(std))G).

For either G, all the representations Úa(std) and Symb(std) are self-dual, so we can rewrite this

formula as
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—GTrace(Ar)dA 

= ‡a≥1, b≥0, a+b=r a(-1)a-1dimHomG(Symb(std), Úa(std)).

LLLLeeeemmmmmmmmaaaa On USp(2g), we have the following results. If b = 0 and if a is both even and ≤ 2g, then

dimHomG(Symb(std), Úa(std)) = 1.

If b = 1 and if a is both odd and < 2g, then

dimHomG(Symb(std), Úa(std)) = 1.

In all other cases,

dimHomG(Symb(std), Úa(std)) = 0.

pppprrrrooooooooffff For each dominant weight ∑ of Sp(2g), we denote by V(∑) the irreducible representation

with highest weight ∑. In terms of the fundamental weights ∑1,..., ∑g  of Sp(2g), the

representations we are looking at are as follows. For every b ≥ 0, we have

Symb(std) = V(b∑1).

For a > 2g, we have

Úa(std) = 0.

For g < a ≤ 2g, we have (by autoduality)

Úa(std) = Ú2g-a(std).

For a ≤ g odd, we have

Úa(std) = ·0 ≤ j ≤ [a/2] V(∑a-2j).

For a ≤ g even, we have

Úa(std) = ú · (·1 ≤ j ≤ [a/2] V(∑2j)).

So for b ≥ 2, Symb(std), whose highest weight is b∑1, does not occur in any Úa(std). For

b = 1, Sym1(std) = V(∑1) occurs precisely in those Úa(std) with a odd and a < 2g, and it occurs

once in each. For b = 0, Sym0(std) = ú occurs precisely in those Úa(std) with a even and a ≤ 2g,

and it occurs once in each. QED

Using this lemma and the above formula

—USp(2g)Trace(Ar)dA 

= ‡a≥1, b≥0, a+b=r a(-1)a-1dimHomG(Symb(std), Úa(std)),

we easily prove the symplectic indicator lemma. If r is odd, all the pairs (a, b) which sum to r have

have opposite parity, so give zero contribution. If r is even, then there are precisely two terms

which could possibly contribute, namely the (a=r-1, b=1) term and the (a=r, b=0) term. If r > 2g,

then r ≥ 2g+2, and both terms vanish. If r ≤ 2g, the first contributes (r-1)(-1)r-2 = r-1, the

second contributes r(-1)r-1 = -r. QED

We now turn to the proof of the orthogonal indicator lemma.
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The group O(N, %) contains the scalar -1,  so we trivially have

—O(N, %)Trace(Ar)dA = 0, if r is odd.

Suppose now r is even, r = 2k, k ≥ 1. We first explain how the question reduces to one on

SO(N, %).

Consider the case when N is odd, N = 2n+1. Then

O(2n+1, %) = (_1)≠SO(2n+1, %),

and the integrand is invariant under the subgroup _1. Hence we have

—O(2n+1, %)Trace(A2k)dA = —SO(2n+1, %)Trace(A2k)dA.

So for N = 2n+1 odd, we must show that

—SO(2n+1, %)Trace(A2k)dA = 1, for all k ≥ 1.

It suffices to treat the case n ≥ 1, the case n = 0 being trivially correct.

If N = 2n is even, then we have

—O(2n, %)Trace(A2k)dA 

= (1/2)—SO(2n, %)Trace(A2k)dA + (1/2)—O-(2n, %)Trace(A2k)dA.

Let us first treat the case N = 2. Every element in O-(2, %) has eigenvalues {1, -1}, so the

function Trace(A2k) on O-(2, %) is the constant function 2. Therefore we find

—O(2, %)Trace(A2k)dA = (1/2)—SO(2, %)Trace(A2k)dA + 1.

If we view SO(2, %) as the unit circle S1 = %/2π# with parameter ø in [0, 2π), then Haar measure

is dø/2π, and the function Trace(A2k) is 2cos(2kø). Since k ≥ 1, we see that

—SO(2, %)Trace(A2k)dA = (1/2π)—[0,2π) 2cos(2kø)dø = 0.

Thus for N=2, the Proposition is proved.

Now suppose N = 2n is even, n ≥ 2. Every element in O-(2n, %) has both 1 and -1 as

eigenvalues, and the remaining 2n-2 eigenvalues fall into n-1 pairs of inverses {eiø(j), e-iø(j)}. If

we interpret these n-1 pairs of inverses as arising from a conjugacy class in USp(2n-2), we get a

bijection of spaces of conjugacy classes

O-(2n, %)ù ¶ USp(2n-2)ù.

It is a marvelous fact that under this bijection, the total mass one Haar measures coincide, cf. [Ka-

Sar, RMFEM, 5.0.4 and 5.0.7] And under this bijection, the function Trace(A2k) on O-(2n, %)ù

becomes the function 2 + Trace(A2k) on USp(2n-2)ù. Thus we find

—O(2n, %)Trace(A2k)dA 

= (1/2)—SO(2n, %)Trace(A2k)dA + (1/2)—USp(2n-2)(2 + Trace(A2k))dA

= 1 + (1/2)—SO(2n, %)Trace(A2k)dA + (1/2)—USp(2n-2)Trace(A2k)dA.

We have already evaluated the final term:
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—USp(2n-2)Trace(A2k)dA = -1 for 1 ≤ k ≤ n-1, 

= 0 for k ≥ n.

So for N = 2n even with n ≥ 2, we must show 

—SO(2n, %)Trace(A2k)dA = 1, if 1 ≤ k ≤ n-1,

= 0, if k ≥ n.

So the orthogonal higher indicator lemma above is equivalent to the following one.

SSSSppppeeeecccciiiiaaaallll    OOOOrrrrtttthhhhooooggggoooonnnnaaaallll    IIIInnnnddddiiiiccccaaaattttoooorrrr    LLLLeeeemmmmmmmmaaaa

1) For N ≥ 3 odd, and for any k ≥ 1, we have

—SO(N, %)Trace(A2k)dA = 1.

2) For N ≥ 4 even, and k ≥ 1, we have

—SO(N, %)Trace(A2k)dA = 1, if 2 ≤ 2k < N,

= 0, if 2k ≥ N.

pppprrrrooooooooffff We first treat separately the case N = 4. The group SO(4, %) in its standard representation

std4 is the quotient of USp(2)≠USp(2) in std2‚std2. by the subgroup of order two generated by

(-1, -1). Thus we have

—SO(4, %)Trace(A2k)dA = —USp(2)≠USp(2)Trace((A‚B)2k)dAdB

= —USp(2)≠USp(2)Trace(A2k)Trace(B2k)dAdB

= (—USp(2)Trace(A2k)dA)2.

We have already seen that for k ≥ 1, we have

—USp(2)Trace(A2k)dA =-1, if k = 1,

= 0, if k ≥ 2,

so the proposition is correct for N = 4.

We next treat separately the case N = 3. For SO(3, %), every conjugacy class meets the

maximal torus Diag(eiø, 1, e-iø). We have SO(3, %)ù = [0, π], and the direct image of Haar

measure is (2/π)sin(ø/2)2dø. The function Trace(A2k) on SO(3, %)ù is the function 1 + 2cos(2kø)

on [0, π]. The proposition amounts to the vanishing of —[0,π] cos(2kø)sin(ø/2)2dø for k ≥ 1.

We now treat the remaining cases N ≥ 5. Denote by std the standard representation of G

=SO(N, %). We will use the identity

—SO(N, %)Trace(Ar)dA 

= ‡a≥1, b≥0, a+b=r a(-1)a-1dimHomG(Úa(std), Symb(std)).

Let us temporarily admit the truth of the following lemma.

LLLLeeeemmmmmmmmaaaa Let N ≥ 5. On G = SO(N, %), we have the following results. 

If a = 0 and if b is even, then

dimHomG(Úa(std), Symb(std)) = 1.

If a = 1 and if b is odd, then
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dimHomG(Úa(std), Symb(std))) = 1.

If a = N-1 and if b is odd, then

dimHomG(Úa(std), Symb(std))) = 1.

If a = N and if b is even, then

dimHomG(Úa(std), Symb(std))) = 1.

In all other cases,

dimHomG(Úa(std), Symb(std)) = 0.

We first explain why this lemma implies the special orthogonal indicator lemma. Indeed, if

N is odd, then the only term (a, b) which can contribute to

‡a≥1, b≥0, a+b=2k a(-1)a-1dimHomG(Úa(std), Symb(std)).

is the single term (1, 2k-1), which contributes 1.This proves part 1) . If N is even, there at most

three terms (a, b) which can contribute to this sum:

 (1, 2k-1), which contributes 1, 

and, if 2k ≥ N-1, the two terms 

(N-1, 2k+1-N), which contributes N-1,

(N, 2k - N), which contributes -N.

This proves part 2).

It remains to prove the lemma. Suppose first N = 2n +1 is odd, n ≥ 2. In terms of the

fundamental weights ∑1, ..., ∑n, we have

std = V(∑1),

Ú0(std) = ú = V(0∑1),

Úa(std) = V(∑a), for 1 ≤ a ≤ n-1,

Ún(std) = V(2∑n),

ÚN-a(std) ¶ Úa(std) for 1 ≤ a ≤ N,

Symb(std) = ·0 ≤ j ≤ [b/2] V((b-2j)∑1)), for b ≥ 0,

So the lemma is clear in this case: the highest weights of the irreducible constituents of any

Symb(std) are integer multiples of ∑1, and the only Úa(std) of this type have a either 0 or 1 or N or

N-1.

Suppose now N = 2n is even, n ≥ 3. In terms of the fundamental weights ∑1, ..., ∑n, we

have

std = V(∑1),

Ú0(std) = ú= V(0∑1),

Úa(std) = V(∑a), for 1 ≤ a ≤ n-2,
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Ún-1(std) = V(∑n-1 + ∑n)

Ún(std) = V(2∑n-1) · V(2∑n),

ÚN-a(std) ¶ Úa(std) for 1 ≤ a ≤ N,

Symb(std) = ·0 ≤ j ≤ [b/2] V((b-2j)∑1)), for b ≥ 0,

The highest weights of the irreducible constituents of any Symb(std) are integer multiples of ∑1,

As n ≥ 3, the only Úa(std) of this type have a either 0 or 1 or N or N-1. So the lemma is clear in

this case as well. QED

RRRReeeemmmmaaaarrrrkkkk We formulated the quadratic excess theorems for certain universal families of smooth

projective hypersurfaces, whose geometric monodromy groups we knew to be the full orthogonal

or symplectic groups. But any family X/S of smooth projective hypersurfaces whose geometric

monodromy group is the full orthogonal or symplectic group would work as well. As would any

family of curves Ç/S of genus g ≥ 1 whose geometric monodromy group is the full symplectic

group. 
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