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The present work grew out of an entirely unsuccessful attempt to answer some basic
questions about elliptic curves over $. Start with an elliptic curve E over $, say given by a
Weierstrass equation

E: y2 = 4x3 - ax - b,

with a, b integers and a3 - 27b2 ± 0. By Mordell's theorem [Mor], the group E($) of $-rational
points is a finitely generated abelian group. The dimension of the $-vector space  E($)‚#$ is

called the Mordell-Weil rank, or simply the rank, of E. Thus we get a function

{(a,b) in #2 with  a3 - 27b2 ± 0} ¨  {nonnegative integers}
defined by

(a,b) ÿ the rank of the curve y2 = 4x3 - ax - b.

It is remarkable how little we know about this function. For example, we do not know if
this function is bounded, or if there exist elliptic curves over $ of arbitrarily high rank. For a long
time, it seems to have been widely believed that this function was bounded. But over the past fifty
years, cleverer and cleverer constructions, by Nïeron [Ner-10], Mestre [Mes-11, Mes-12, Mes-
15], Nagao [Nag-20], Nagao-Kouya [Nag-Ko-21], Fermigier [Fer-22], and Martin-McMillen
[Mar-McM-23 and Mar-McM-24], have given curves over $ with higher and higher rank. At
this writing in September of 2000 the highest known rank is 24, and the present consensus is that
there may well exist elliptic curves over $ of arbitrarily high rank.

We might then ask if at least we can say anything about the average rank of elliptic curves.

What does this question mean? One naive but accessible formulation is this. Since  a3 - 27b2 ± 0,
we might fix a nonzero integer », and look first at the set Ell» defined as

 Ell» := {(a, b) in #2 with a3 - 27b2 = »}.

Now for each nonzero » in #, the equation

X3 - 27Y2 = »
itself is an elliptic curve over $. So it has only finitely many solutions (a, b) in integers, by a
celebrated result of Siegel giving the finiteness of the number of integral points on an elliptic curve
over $. So the set Ell» is finite. For each integer N > 0 we take the union of the sets E» for 

0 < |»| ≤ N, and obtain the finite set 

Ell≤N := {(a,b) in #2 with 0 < |a3 - 27b2| ≤ N}

We now form the average

avrk≤N := (1/ùEll≤N)‡(a,b) in Ell≤N
 (rank of y2 = 4x3 - ax - b),

which is a non-negative real (in fact rational) number.
So now we have a sequence 
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N ¨ avrk≤N
of nonnegative real numbers. We do not know if it has a limit. If it does, it would be reasonable to
call its limit the average rank of elliptic curves over $. It is not even known (unconditionally, see
[Bru] for conditional results on questions of this type) that the limsup of this sequence is finite. 

For a long time, it was widely believed that the large N limit of avrk≤N does exist, and that

its value is 1/2. Moreover, it was believed that each of the three auxiliary sequences of ratios
fraction of points in Ell≤N with rank 0,

fraction of points in Ell≤N with rank 1,

and
fraction of points in Ell≤N with rank ≥ 2,

has a limit, and that these limits are 1/2, 1/2, and 0 respectively.
Today it is still believed that each of these four sequences has a limit, but there is no longer

agreement on what their limits should be. Some numerical experiments ([Brum-McG], [Fer-EE],
[Kra-Zag], [Wa-Ta]) support the view that a positive percentage of elliptic curves have rank two
or more, i.e., that the fourth limit is nonzero. On the other hand, the philosophy of Katz-Sarnak
([Ka-Sar, RMFEM, Introduction] and [Ka-Sar, Zeroes]) suggests that the limits are as formerly
expected, and (hence) that the contradictory evidence is an artifact of too restricted a range of
computation.

At this point, we must say something about the L-function L(s, E) of an elliptic curve over
$, and about the Birch and Swinnerton-Dyer conjecture. The curve E/$ has "conductor" an
integer N = NE ≥ 1 (whose exact definition need not concern us here) with the property that E/$

has "good reduction" at precisely the primes p not dividing N. For each such p we define an integer
ap(E) by writing the number of Ép-points on the reduction as p + 1 - ap(E). The L-function 

L(s, E) of E/$ is defined as an Euler product °pLp(s,f), whose Euler factor Lp(s, E) at each p not

dividing N is

(1 - ap(E)p-s + p1-2s)-1

(and with a recipe for the factors at the bad primes which need not concern us here). The Euler
product converges absolutely for Re(s) > 2, thanks to the Hasse estimate

|ap(E)| ≤ 2Sqrt(p).

It is now known, thanks to work of Wiles [Wi], Taylor-Wiles [Tay-Wi], and Breuil-
Conrad-Diamond-Taylor [Br-Con-Dia-Tay], that every elliptic curve E/$ is modular. What this
means that is that given E/$, with conductor N = NE, there exists a unique weight two cusp form 

f = fE of weight two on the congruence subgroup Æ0(N) of SL(2, #) which is an eigenfunction of

the Hecke operators Tp for primes p not dividing N, whose eigenvalues are the integers ap(E),

 TpfE = ap(E)fE for every p not dividing N,

whose q-expansion at the standard cusp i‘ is q + higher terms, and which is not a modular form



Introduction 5

on Æ0(M) for any proper divisor M of N. 

Now given aaaannnnyyyy integer N ≥ 1 and aaaannnnyyyy weight two normalized newform f on Æ0(N), i.e., a

cusp form f on Æ0(N) which is an  eigenfunction of the Hecke operators Tp for primes p not

dividing N, with eigenvalues denoted ap(f),

 Tpf = apf,

whose q-expansion at i‘ is 

‡n≥1 anqn, a1 = 1,

and which is not a modular form on Æ0(M) for any proper divisor M of N, the L-function L(s, f)

of f is defined to be the Mellin transform of f. Thus L(s, f) is the Dirichlet series

L(s, f) =‡n≥1 ann-s.

This Dirichlet series has an Euler product °pLp(s,f) whose Euler factor Lp(s, f) at each p not

dividing N is

(1 - app-s + p1-2s)-1.

The Euler product converges absolutely for Re(s) > 2. The function L(s, f) extends to an entire
function, and when it is "completed" by a suitable Æ-factor, it satisfies a functional equation under
s ÿ 2-s. The precise result is this. One defines

Ú(s, f) := Ns/2(2π)-sÆ(s)L(s, f).
Then Ú(s, f) is entire, and satisfies a functional equation

Ú(s, f) = œ(f)Ú(2-s, f),
where œ(f) = _1 is called the sign in the functional equation.

It turns out that the Euler factors at the bad primes in L(s, E) are equal to those in L(s, fE),

so we have the identity
L(s, E) = L(s, fE).

This in turn shows that

 Ú(s, E) := Ns/2(2π)-sÆ(s)L(s, E)
extends to an entire function, and satisfies a functional equation

Ú(s, E) = œ(E)Ú(2-s, E),
with œ(E) (:= œ(fE)) = _1.

The upshot of all this discussion is that L(s, E) is holomorphic at the point s=1, so it makes
sense to speak of the order of vanishing of L(s, E) at the point s=1. The basic Birch and
Swinnerton-Dyer conjecture for E/$ is the assertion that the rank of E/$ is the order of vanishing
of L(s, E) at s=1. [We say "basic" because there is a refined version which interprets not only the
order of vanishing as the rank, but also specifies the leading coefficient in the power series
expansion of L(s, E) at s=1.] It is instructive to note that the conjecture was made thirty years
before it was known in general that L(s, E) even made sense at s=1.

One calls the order of vanishing of L(s, E) at s=1 the "analytic rank" of E/$, denoted
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rankan(E):

rankan(E) := order of vanishing of L(s, E) at s=1.

What we now know about the basic Birch and Swinnertion Dyer conjecture can be stated
all too briefly:
1) if L(1, E) is nonzero, then E has rank zero.
2) if L(s, E) has a simple zero at s=1, then E has rank one.
In other words, what we know is that

rankan(E) ≤ 1 à rank(E) = rankan(E).

To emphasize how little we know, it is perhaps worth pointing out that we know neither the
a priori inequality

rank(E) ≤ rankan(E),

nor the opposite a priori inequality
rankan(E) ≤ rank(E)..

[In the "function field case", the analogue of the first a priori inequality holds trivially, cf. [Tate-
BSD], [Shio].]

In all the numerical experiments concerning rank of which we are aware, it is the analytic
rank rather than the rank which is calculated. Thus the relevance of these experiments to the rank of
elliptic curves is conditional on the truth of the Birch and Swinnerton-Dyer conjecture.

A basic observation, due to Shimura (and related by him to Birch at the 1963 Boulder
conference in the context of relating twists of modular forms and elliptic curves, cf. [Bir-St]), is
that if the sign œ(E) in the functional equation of L(s, E) is -1 [respectively +1], then L(s, E) has a
zero of odd [respectively even] order at s=1. So we have the implication

œ(E) = -1 à rankan(E) is ≥1, and odd.

If the Birch and Swinnerton-Dyer conjecture holds, then
œ(E) = -1 à rank(E) is ≥1, and odd.

On the other hand, if œ(E) is +1, then rank(E) is forced to be even, so iiiiffff the rank is nonzero, it is at
least two. We should point out here that the parity consequence 

rankan(E) • rank(E) mod 2

of the Birch and Swinnerton-Dyer conjecture remains a conjecture, sometimes called the Parity
Conjecture [Gov-Maz].

The expectation that the average rank of elliptic curves over $ be 1/2 is based on three
ideas: first, that the Birch and Swinnerton-Dyer conjecture holds for all E/$, second, that half the
elliptic curves have sign œ(E) = +1, and half have sign œ(E) = -1, and third, that for most elliptic
curves, the rank is the minimum, namely zero or one, imposed by the sign in the functional
equation.

The recent conjecture of Katz-Sarnak [Ka-Sar, RMFEM, page 14] about the distribution
of the low-lying zeroes of L(s, E) would, if true, make precise and quantify the third idea above,
that for most elliptic curves, the rank is the minimum imposed by the sign of the functional
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equation. We refer to [Ka-Sar, RMFEM, 6.9 and 7.5.5] for the definitions and basic properties of
the "eigenvalue location measures" √(+,j) and √(-,j), j = 1, 2,...on %. What is important for our
immediate purposese is that these are all probability measures supported in %≥0 which are

absolutely continuous with respect to Lebesgue measure.
In order to formulate the conjecture, we must assume the Riemann Hypothesis for the L-

functions L(s, E) of all E/$, namely that all the nontrivial zeroes of L(s, E) (i.e., all the zeroes of
Ú(s, E)) lie on Re(s) = 1. If L(s, E) has an even functional equation, its nontrivial zeroes occur in
conjugate pairs 1 _ i©E,j with 0 ≤ ©E,1 ≤ ©E,2 ≤ ©E,3 ≤.... If E has an odd functional equation,

then s=1 is a zero of L(s, E), and the remaining nontrivial zeroes of L(s, E) occur in conjugate pairs
1 _ i©E,j with 0 ≤ ©E,1 ≤ ©E,2 ≤ ©E,3 ≤....

We then normalize the heights ©E,j of these zeroes according to the conductor NE of E as

follows. We define the normalized height ë©E,j to be

 ë©E,j  := ©E,jlog(N
E

)/2π.

Now let us return to the set 

Ell≤N := {(a,b) in #2 with 0 < |a3 - 27b2| ≤ N}.

We then break up Ell≤N into two subsets

Ell≤N,_
according to the sign in the functional equation of the L-function of the E/$ given by the
corresponding Weierstrass equation. It is known to the experts, but nowhere in the literature, that
both ratios

ùEll≤N,_/ùEll≤N
tend to 1/2 as N ¨ ‘.

CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee    ((((ccccoooommmmppppaaaarrrreeee    [[[[KKKKaaaa----SSSSaaaarrrr,,,,    RRRRMMMMFFFFEEEEMMMM,,,,    ppppaaaaggggeeee    11114444]]]])))) The normalized heights of low-lying zeroes
of L-functions of elliptic curves over $ are distributed according to the measures √(_, j), in the
following sense. For any integer j ≥ 1, and for any compactly supported    continuous ^-valued
function h on %, we can calculate the integrals—% hd√(_,j) as follows:

—% hd√(-, j) = limN ¨ ‘ (1/ùEll≤N,-) ‡E in Ell≤N,-
 h(ë©E,j),

and

—% hd√(+, j) = limN ¨ ‘ (1/ùEll≤N,+) ‡E in Ell≤N,+
 h(ë©E,j).

What is the relevance of this conjecture to rank? Take, for each real t > 0, a continuous
function ht(x) on % which has values in the closed interval [0, 1], is supported in [-t, t], and takes

the value 1 at the point x=0, for instance
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        ,     .

By the absolute continuity of √(_, j) with respect to Lebesgue measure, we have
|—% htd√(_, j)| ¨ 0 as t ¨ 0.

Choose N large enough that Ell≤N,œ is nonempty for both choices of sign œ. Denote by ∂0(x) the

characteristic function of {0} in %. Notice that we have the trivial inequality ht(x) ≥ ∂0(x) for all

real x. For the choice +, we have
(1/ùEll≤N,+) ‡E in Ell≤N,+

 h(ë©E,j)

≥(1/ùEll≤N,+) ‡E in Ell≤N,+
 ∂0(ë©E,j)

:= fraction of E in Ell≤N,+ with rankan(E) ≥ j.

For the choice -, the L function automatically vanishes once at s=1, but that zero is not on our list 
0 ≤ ©E,1 ≤ ©E,2 ≤ ©E,3 ≤..., so we have

(1/ùEll≤N,-) ‡E in Ell≤N,-
 h(ë©E,j)

≥(1/ùEll≤N,-) ‡E in Ell≤N,-
 ∂0(ë©E,j)

:= fraction of E in Ell≤N,- with rankan(E) ≥ j+1.

Taking the limit as N ¨‘, and setting j = 1, we find
0 = lim N ¨‘ fraction of E in Ell≤N,+ with rankan(E) ≥ 1,

and
0 = lim N ¨‘ fraction of E in Ell≤N,- with rankan(E) ≥ 2.

Therefore, if we assume in addition the Birch and Swinnerton-Dyer conjecture for all E/$, we find
a precise sense in which a vanishingly small fraction of elliptic curves over $ have rank greater
than that imposed by the sign in the functional equation.

As measures on %≥0, the √(_, j) all have densities, and these densitites are the restrictions

to %≥0 of entire functions, cf. [Ka-Sar, RMFEM, 7.3.6, 7.5.5]. A signifigant difference between

the two measures √(-,1) and √(+,1) is that the density of √(-,1) vanishes to second order at the

origin x=0, while that of √(+,1) is 2 + O(x2) near x=0, cf. [Ka-Sar, RMFEM, AG.0.3 and
AG.0.5]. 

Thus the imposed zero of L(s, E) at s=1 for E of odd functional equation "quadratically
repels" the next higher zero 1 + i©E,1, while for E of even functional equation the point s=1 does

not repel the next higher zero 1 + i©E,1. This is presumably the phenomenon underlying the fact

that in the numerical experiments cited above which call into question the "average rank = 1/2"
hypothesis, what is found numerically is that about half the curves tested have odd sign, and
essentially all of these have analytic rank one, while among the other half of the curves tested,
among those with even sign, between twenty and forty percent have analytic rank two or more.
What may be happening is that, because √(-,1) quadratically repels the origin, while √(+,1) does
not repel the origin, in any given range of numerical computation, the data on ranks of curves of
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odd sign will look "better" than the data on ranks of curves of even sign ["better" in supporting the
idea that elliptic curves over $ "try" to have as low a rank as their signs will allow].

An attractive and apparently "easier" question to study is this. Fix one elliptic curve E/$,
with Weierstrass equation

E: y2 = 4x3 - ax - b
and conductor NE. For each squarefree integer D, one defines the quadratic twist ED of E by D to

be the elliptic curve over $ of equation

ED: Dy2 = 4x3 - ax - b,

or equivalently, (multiply the equation by D3 and change variables to Dx, D2y)

ED: y2 = 4x3 - aD2x - bD3.

Denote by çD the primitive quadratic Dirichlet character attached to the quadratic extension

$(Sqrt(D))/$. Thus for odd primes p not dividing D, we have
çD(p) = 1 if D is a square in Ép, -1 if not.

For all primes p which are prime to 2≠D≠NE, the ap for E and for ED are related by

ap(ED) = çD(p)ap(E).

The conductor of ED divides (a power of 2)≠D2≠NE. If we take D • 1 mod 4 and relatively prime

to N, then the conductor of ED is D2NE. For any D relatively prime to N, ED has the sign in its

functional equation related to that of E by the rule
œ(ED) = çD(-NE)œ(E).

Denote by f := fE the weight two normalized newform attached to E. The normalized

newform attached to ED is f‚çD, the unique weight two normalized newform of any level

dividing a power of 2DNE whose Hecke eigenvalues at primes not dividing 2DNE are given by

the rule ap(ED) = çD(p)ap(E) above.

So having fixed E/$, we can now ask the same questions as above for the family of curves
ED. Thus for real X > 0, we look at the set

Sqfr≤X := {squarefree integers D with |D| ≤ X}.

On this set we have the function
D ÿ rank of ED.

We can ask whether as X ¨ ‘, the quantities
average of rank(ED) over Sqfr≤X,

fraction of D in Sqfr≤X, with rank(ED) = 0,

fraction of D in Sqfr≤X, with rank(ED) = 1,

fraction of D in Sqfr≤X, with rank(ED) ≥ 2,

have limits, and, if so, what they are. Or if not, what the limsup's might be. And a more refined
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version is to break Sqfr≤X up according to the sign in the functional equation of L(s, ED) into two

sets Sqfr≤X,_, and repeat the above questions over these sets. There are almost no unconditional

results. 
If we admit the truth of the Birch and Swinnerton-Dyer conjectures for all the twists ED,

then these are questions about the behavior at s=1 of the L-functions L(s, f‚çD) as D varies. Let

us further assume the Riemann hypothesis for the L-functions L(s, f) attached to all weight two
normalized newforms f on all Æ0(N). Then we can formulate the following conjecture.

CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee    [[[[KKKKaaaa----SSSSaaaarrrr,,,,    ZZZZeeeerrrrooooeeeessss,,,,    IIIIIIII    ((((bbbb))))    aaaannnndddd    ppppgggg    22221111]]]] Fix a weight two normalized newform f on any
Æ0(N). Break up the set Sqfr≤X according to the sign in the functional equation of L(s, f‚çD)

into two subsets Sqfr≤X,_. [It is known that both the ratios

ùSqfr≤X,_/ùSqfr≤X
tend to 1/2 at X ¨ ‘.]. Then the normalized heights ë©D,j of the low-lying zeroes of the L-

functions L(s, f‚çD) are distributed according to the measures √(_, j), in the following sense. For

any integer j ≥ 1, and for any compactly supported    continuous ^-valued function h on %, we can
calculate the integrals —% hd√(_,j) as follows. 

—% hd√(-, j) = limX ¨ ‘ (1/ùSqfr≤X,-) ‡D in Sqfr≤X,-
 h(ë©D,j),

and

—% hd√(+, j) = limX ¨ ‘ (1/ùSqfr≤X,+) ‡D in Sqfr≤X,+
 h(ë©D,j).

Exactly as above, the truth of this conjecture for fE gives us 

0 = lim X ¨‘ fraction of D in Sqfr≤X,+ with rankan(ED) ≥ 1,

and
0 = lim X ¨‘ fraction of D in Sqfr≤X,- with rankan(ED) ≥ 2.

So if we assume in addition the Birch and Swinnerton-Dyer conjecture for all the ED/$, we find

that as X ¨ ‘, 100 percent of the even twists have rank zero, that 100 percent of the odd twists
have rank one, and that the average rank of all the twists is 1/2. That this should be so was first
conjectured by Goldfeld [Go].

The numerical experiments so far seem to support this conclusion moderately well for odd
twists, but poorly for even twists. Again, the fact that √(-,1) quadratically repels the origin, while
√(+,1) does not repel the origin, may be "why" the numerical data so far is "better" for odd twists
then for even twists.

We now turn to the the situation for elliptic curves over function fields over finite fields.
Thus let k be a finite field, C/k a proper smooth geometrically connected curve, K := k(C) its
function field, and E/K an elliptic curve with non-constant j invariant. Then E/K "spreads out" to
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an elliptic curve over some dense open set U of C, say π : ‰ ¨ U. By the theory of the Neron
model, if such a spreading out exists over a given open U, it is unique. Moreover, there is a largest
such U, called the open set of good reduction for E/K. [Because E/K has non-constant j invariant,
it does not have good reduction everywhere on C.] The finite set of closed points of C at which
E/K has bad reduction will be denoted Sing(E/K). By the Neron Ogg Shafarevic criterion, the open
set of good reduction can be described as follows. Pick a prime number … invertible in K, pick
some spreading out 

π : ‰ ¨ U 

of E/K, and form the lisse rank two sheaf R1π*ä$… on U, which by Hasse [Ha] is pure of weight

one. Denoting by j : U ¨ C the inclusion, form the "middle extension" (:= direct image) sheaf 

Ï := j*R1π*ä$… on C. This sheaf Ï on C is independent of the auxiliary choice of spreading out

used to define it, and the open set of good reduction for E/K is precisely the largest open set on
which Ï is lisse. Thus Sing(E/K) as defined above is equal to Sing(Ï), the set of points of C at
which Ï is not lisse.

The L-function L(T, E/K) is defined to be the L-function of C with coefficients in Ï, itself
defined as the Euler product

L(T, Ï) := °x (det(1 - Tdeg(x)Frobx | Ïx)-1

over the closed points x of C. At each point x of good reduction, the reduction of E/K at x is an
elliptic curve éx over the residue field Éx, and

det(1 - TFrobx | Ïx) = 1 - axT + (ùÉx)T2 in #[T],

where ax is the integer defined by the equation

ax := 1 + ùÉx - ùéx(Éx).

Thus the local factors at the points of good reduction are visibly #-polynomials, independent of
the auxiliary choice of …. This is true also of the factors at the points of bad reduction [De-
Constants, 9.8].

The cohomological expression for this L-function

L(T, Ï) = °i=0,1,2(det(1 - TFrobk | Hi(Cºkäk, Ï)))(-1)i+1

simplifies. Because E/K has non-constant j invariant, the middle extension sheaf Ï is geometrically
irreducible when restricted to any dense open set of Cºkäk on which it is lisse [De-Weil II, 3.5.5].

This in turn implies that the groups Hi vanish for i±1. Thus we end up with the identity

L(T, E/K) = L(T, Ï) = det(1 - TFrobk | H1(Cºkäk, Ï)).

By Deligne [De-WeII, 3.2.3], H1(Cºkäk, Ï) is pure of weight two. Thus L(T, E/K) = L(T, Ï) lies

in 1 + T#[T] and has all its complex zeros on the circle |T| = 1/q (i.e., L(q-s, E/K) has all its zeros
on the line Re(s) = 1).

By the Mordell-Weil theorem, the group E(K) is finitely generated. The (basic) Birch and
Swinnerton-Dyer conjecture for E/K asserts that the rank of E(K), denoted rank(E/K), is the order
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of vanishing of L(T, E/K) at the point T = 1/q, q := ùk, or equivalently that rank(E/K) is the

multiplicity of 1 as generalized eigenvalue of Frobk on the Tate-twisted group H1(Cºkäk, Ï)(1).

We call this multiplicity the analytic rank of E/K:

rankan(E/K) := ordT=1det(1-TFrobk | H1(Cºkäk, Ï)(1)).

The group H1(Cºkäk, Ï)(1) has a natural orthogonal autoduality <,> which is preserved by

Frobk, i.e., Frobk lies in the orthogonal group O := Aut(H1(Cºkäk, Ï)(1), <,>). Now for any

element A of any orthogonal group O, its reversed characteristic polynomial 
P(T) := det(1-AT) 

satisfies the functional equation

Tdeg(P)P(1/T) = det(-A)P(T),
the sign in which is det(-A).

Applying this to Frobk, we find the functional equation of the L-function of E/K:

Tdeg(L)L(1/T, E/K) = œ(E/K)L(T, E/K),
where œ(E/K) is the the sign

œ(E/K) = det(-Frobk | H1(Cºkäk, Ï)(1)).

So just as in the number field case, we have the implications
œ(E/K) = -1 à rankan(E/K) is odd, and ≥ 1,

œ(E/K) = +1 à rankan(E/K) is even.

In the function field case, we also have an a priori inequality
rank(E/K) ≤ rankan(E/K).

[But the "parity conjecture", the assertion that we have an a priori congruence
rank(E/K) • rankan(E/K) mod 2,

is not known in either the number field or the function field case.]
What about quadratic twists of a given E/K? To define these, we suppose that the field K

has odd characteristic. Then E/K is defined by an equation

y2 = x3 + ax2 + bx + c

where x3 + ax2 + bx + c in K[x] is a cubic polynomial with three distinct roots in äK. For any

element f in K≠, the quadratic twist Ef/K is defined by the equation

fy2 = x3 + ax2 + bx + c.
Pick any dense open set U in C over which E/K has good reduction, and over which the function f
has neither zero nor pole. Then Ef/K also has good reduction over U, say πf : ‰f ¨ U, and the

lisse sheaf R1(πf)*ä$… on U is obtained from R1π*ä$… by twisting by the lisse rank one Kummer

sheaf Òç2(f) on U:

R1(πf)*ä$… = Òç2(f)‚R1π*ä$… 
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[Recall that ç2 is the unique character of order two of k≠, and Òç2(f) is the character of π1(U)

whose value on the geometric Frobenius Frobx attached to a closed point x of U with residue field

Éx is ç2(NÉx/k(f(x))). This twisting formula is the sheaf-theoretic incarnation of the relation

ax(Ef/K) = ç2(NÉx/k(f(x)))ax(E/K),

itself the function field analogue of the number field formula
ap(ED) = çD(p)ap(E).]

So if we denote by j : U ¨ C, the sheaf Ïf := j*R1(πf)*ä$… on C attached to Ef/K is related to the

sheaf Ï := j*R1π*ä$… on C attached to E/K by the rule

Ïf = j*(Òç2(f)‚j*Ï).

And the L-function of Ef/K is thus

L(T, Ef/K) = L(T, Ïf) = det(1 - TFrobk | H1(Cºkäk, Ïf)).

Thus when we start with a single elliptic curve E/K, and pick a prime number …  invertible
in K, we get a geometrically irreducible middle extension ä$…-sheaf Ï on C. To the extent that we

wish to study the LLLL----ffffuuuunnnnccccttttiiiioooonnnnssss of twists Ef/K (rather than the twists themselves, or their actual

ranks) the only input data we need to retain is the sheaf Ï. Indeed, once we have Ï, the sheaf Ïf
attached to a twist Ef/K is constructed out of Ï by the rule

Ïf = j*(Òç2(f)‚j*Ï),

for j : U ¨ C the inclusion of any dense open set on which f in invertible and on which Ï is lisse.
In the case of twists of an E/$, we twisted by squarefree integers D, and for growing real

X > 0 we successively averaged over the finitely many such D with |D| ≤ X. What is the function
field analogue? 

When the function field K is a rational function field k(¬) in one variable ¬, every element

f(¬) of K≠ can be written as f = g(¬)2h(¬), with h(¬) a polynomial in ¬ of degree d ≥ 0 which has
all distinct roots in äk (i.e., h is a square free polynomial). This expression is unique up to 

(g, h) ÿ (åg, å-2h) for some å in k≠. 
So in this case, we might initially try to look at twists of a given E by aaaallllllll squarefree

polynomials in ¬ of higher and higher degree d. We might hope that for a given degree d of twist
polynomial h, the L-functions L(T, Eh/K) form some sort of reasonable family of polynomials in

T. But the degree of L(T, Eh/K) depends on more than just the degree of the square free h. It is also

sensitive to the zeros and poles of h at points of Sing(E/K), the set where E/K has bad reduction.
For this reason, it is better to abandon the crutch of polynomials and their degrees, and rather

impose in advance the behavior of the twisting function f in K≠ at all the points of Sing(E/K). 
Since we are doing quadratic twisting, the local geometric behavior at a point x in C of the
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twist Ef/K sees ordx(f) only through its parity. Let us fix an effective divisor D on C and look only

at functions f on C whose divisor of poles is exactly D, and which have d := deg(D) distinct zeros
(over äk), none of which lies in Sing(E/K)¤(C-D). We denote by

Fct(C, D, d, Sing(E/K)¤(C-D)) fi L(D)
this set of functions. Then the interaction between f and Sing(E/K) can be read entirely from the
divisor D, in fact, from the parity of ordx(D) at each point x in Sing(E/K). In particular, if we want

to force local twisting at a given point x in C, in particular at a point in Sing(E/K), we have only to
be take an effective D which contains the point x with odd multiplicity. This formulation has the
advantage of working equally well over a base curve C of any genus, whereas the polynomial

formulation was tied to having @1 as the base.
The upshot is that if we fix an effective divisor D on C, then as f varies in the space 

Fct(C, D, d, Sing(E/K)¤(C-D)),
all the L-functions L(T, Ef/K) have a common degree. It turns out there is a sheaf-theoretic

explanation for this uniformity. For any effective D whose degree d satisfies d ≥ 2g+1, the space
Fct(C, D, d, Sing(E/K)¤(C-D))

is, in a natural way, the set of k-points of a smooth, geometrically connected k-scheme
X := Fct(C, D, d, Sing(E/K)¤(C-D))

of dimension d + 1 - g. And there is a lisse ä$…-sheaf 

Ì := Twistç2,C,D(Ï)

on the space X, whose stalk Ìf at a k-valued point

f in X(k) = Fct(C, D, d, Sing(E/K)¤(C-D))

is the cohomology group H1(Cºkäk, Ïf), and whose local characteristic polynomial 

det(1 - TFrobk,f | Ìf) is given by

det(1 - TFrobk,f | Ìf) = det(1 - TFrobk,f | H
1(Cºkäk, Ïf)) = L(T, Ef/K).

Moreover, the Tate-twisted sheaf Ì(1) is pure of weight zero, and has an orthogonal autoduality,

which induces on each individual cohomology group H1(Cºkäk, Ïf)(1) the orthogonal autoduality

responsible for the functional equation of L(T, Ef/K). And for each finite extension kn/k of given

degree n, the stalks of Ì at the kn-valued points X(kn) encode the L functions of twists defined

over kn.

In this way, questions about the (distribution of the zeroes of the) L-functions L(T, Ef/K),

as f varies in the space
X(k) = Fct(C, D, d, Sing(E/K)¤(C-D)),

become questions about the sheaf 
Ì := Twistç2,C,D(Ï)

on X. Thanks to Deligne's equidistribution theorem [Ka-Sar, RMFEM, 9.2.6], we can answer
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many of these questions in terms the geometric monodromy group Ggeom attached to the sheaf Ì. 

For example, iiiiffff the group Ggeom is the full orthogonal group, we automatically get the

following results on average analytic rank.
1) The average analytic rank over kn of twists defined by f's in X(kn) tends to 1/2 as n ¨ ‘. [And

hence the average rank has a limsup ≤ 1/2 as n ¨ ‘.]
2) for each choice of œ = _1, the fraction ùX(kn)sign œ/ùX(kn) of twists with sign œ in the

functional equation tends to 1/2 as n ¨ ‘.
3) In the set ùX(kn)sign +, the fraction of twists with rankan = 0 tends to 1 as n ¨ ‘. [And hence

in the set ùX(kn)sign +, the fraction of twists with rank = 0 tends to 1 as n ¨ ‘.]

4) In the set ùX(kn)sign -, the fraction of twists with rankan = 1 tends to 1 as n ¨ ‘. [And hence

in the set ùX(kn)sign -, the fraction of twists with rank ≤ 1 tends to 1 as n ¨ ‘]

Suppose we take a sequence of effective divisors D√ on C whose degrees d√ are strictly

increasing. Then we get a sequence of smooth k-schemes
X√ := Fct(C, D√, d, Sing(E/K)¤(C-D√))

and, on each X√, a lisse sheaf Ì√, say of rank N√. The ranks N√ tend to ‘ with √. Suppose that

for every large enough √, the group Ggeom for the sheaf Ì√ on X√ is the full orthogonal group

O(N√). Then for each choice of sign œ = _1, and each choice of integer j ≥ 1, we can obtain the

eigenvalue location measure √(œ, j) as the following (weak *)double limit: the large √ limit of the
large n limit of the distribution of the j'th normalized zero of the L-functions attached to variable
points in X√(kn)sign œ.

It was with these applications in mind that we set out to prove that, at least in characteristic
p ≥ 5, as soon as the effective divisor D on C has degree d sufficiently large, then Ggeom for Ì is

the full orthogonal group. Unfortunately, this assertion is not always true. What is true is that
Ggeom is either the full orthogonal group O or the special orthogonal group SO, provided only

that E/K has nonconstant j invariant, and that
d ≥ 4g+4, and
2g - 2 + d > Max(2ùSing(E/K)(äk), 144).

[If p=3, this result remains valid provided that the sheaf Ï attached to E/K is everywhere tamely
ramified, a condition which is automatic in higher characteristic]

We prove that Ggeom is O if E/K has multiplicative reduction (i.e., unipotent local

monodromy) at some point of Sing(E/K) which is not contained in D. 
But there are cases where Ggeom is SO rather than O. If E/K does nnnnooootttt have unipotent local

monodromy at aaaannnnyyyy point of Sing(E/K), and if every point of Sing(E/K) which occurs in D does so
with even multiplicity, then Ì has even rank, say N, and an analysis of local constants, using [De-
Constants, 9.5] shows that Ggeom lies in SO(N) (and hence is equal to SO(N), for d large). cf.

Theorem 8.5.7.
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An example of an E/K with nonconstant j but with no places of multiplicative reduction, is
the twisted (by ¬(¬-1)) Legendre curve 

y2 = ¬(¬-1)x(x-1)(x-¬)
over k(¬), k := Ép, p any odd prime, which has bad reduction precisely at 0, 1, ‘, but at each of

these points the monodromy is 
(quadratic character)‚(unipotent).]

In this example, it turns out (cf. Corollary 8.6.7) that if the characteristic p is 1 mod 4, then all the
L-functions over all kn have eeeevvvveeeennnn functional equation. But, if p is 3 mod 4, then the L-functions

over even [respectively odd] degree extensions kn have even [respectively odd] functional

equations~
The Legendre curve itself,

y2 = x(x-1)(x-¬)
over k(¬), has unipotent local monodromy at both 0 and 1. And so if we twist by polynomials f(¬)
in k[¬] of any fixed degree d ≥ 146, which have all distinct roots in äk and are invertible at both 0

and 1, the resulting sheaf Ìd on Xd := Fct(@1, d‘, d, {0,1}) has Ggeom = O(Nd), with Nd equal

to 2d if d is even, and to 2d-1 if d is odd.
Now the Legendre curve makes sense over #[1/2][¬, 1/¬(¬-1)], and the space Xd makes

sense over #[1/2]. For each fixed d ≥ 146, it makes sense to vary the characteristic p, and ask
average rank questions about twists of the Legendre curve over Ép(¬) by points in Xd(Ép) as 

p ¨ ‘. We get the same answers as we got by fixing p and looking at twists by points in Xd(Épn)

as n ¨ ‘. If we vary d as well, we can recover the eigenvalue location measures √(œ,j) as well. For
each choice of sign œ and integer j ≥ 1, we can obtain the eigenvalue location measure √(œ, j) as the
following (weak *) double limit: the large d limit of the large p limit of the distribution of the j'th
normalized zero of the L-functions attached to variable points in Xd(Ép)sign œ. 

But there are some basic things we don't know, "even" about this Legendre example, and
"even" in equal characteristic p. For example, it is easy to see that for any fixed p, ùXd(Ép) ¨‘ as

d ¨‘. [Indeed, an element of Xd(Ép) is a degree d polynomial f(¬) in Ép[¬] with all distinct roots

in äÉp, which is nonzero at the points 0 and 1. For d ≥ 3, any iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee polynomial of degree d in

Ép[¬] will lie in Xd(Ép). And the number of degree d irreducibles in Ép[¬] is at least 

(p-1)(1/d)(pd - (d/2)pd/2).]
It is also easy to see that for each choice of sign œ, the ratio

ùXd(Ép)sign œ/ùXd(Ép)

tend to 1/2 as d ¨ ‘. [For d even, use [De-Const, 9.5] as in 8.5.7. For d odd, use the fact that for

å in Ép
≠ a nonsquare, and any f in Xd(Ép), the twists of the Legendre curve by f and by åf have

opposite signs in their functional equations, cf. 5.5.2, case 3).] But for p fixed, we do nnnnooootttt    kkkknnnnoooowwww
any of the following 1) through 4).
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1)The average rank of twists defined by f's in Xd(Ép) tends to 1/2 as d ¨ ‘. 

2) In the set Xd(Ép)sign - the fraction of twists with rankan = 1 tends to 1 as d ¨ ‘.

3) In the set Xd(Ép)sign + the fraction of twists with rankan = 0 tends to 1 as d ¨ ‘.

4) For each choice of sign œ and integer j ≥ 1, the eigenvalue location measure √(œ, j) is the
following (weak *) ssssiiiinnnngggglllleeee limit: the large d limit of the distribution of the j'th normalized zero of the
L-functions attached to variable points in Xd(Ép)sign œ. 

Let us now stand back and see what ingredients were required in the above discussion of
quadratic twists of E/K, an elliptic curve over a function field with a nonconstant j-invariant. The
function field K is the function field of a projective, smooth, geometrically connected curve C/k, k a
finite field. Over some dense open set U in C, E/K spreads out to an elliptic curve π : ‰ ¨ U. We

fix a prime number … invertible in k, and form the lisse sheaf R1π*ä$… on U. It is lisse of rank two,

pure of weight one, and symplectically self dual toward ä$…(-1). The assumption that the j invariant

is nonconstant is used only to insure that R1π*ä$… is geometrically irreducible on U. If k has

characteristic p ≥ 5, then R1π*ä$… is everywhere tamely ramified: this is the only way the

hypothesis p ≥ 5 is used. Denoting by j : U ¨ C the inclusion, we form the sheaf 

Ï := j*R1π*ä$…
on C. We then fix an effective divisor D on C of large degree. We form the quadratic twists Ef/K

of E/K by variable f in L(D) which have deg(D) distinct zeroes (over äk), none of which lies in D or
in Sing(Ï)¤(C-D). The L-functions of these quadratic twists are the local L-functions of a lisse
ä$…-sheaf 

Ì := Twistç2,C,D(Ï)

at the k-points of a smooth, geometrically connected k-scheme
X := Fct(C, D, d, Sing(Ï)¤(C-D))

of dimension d + 1 - g. 
The original ellliptic curve E/K occcurs oooonnnnllllyyyy through the geometrically irreducible middle

extension sheaf Ï on C. Once we have Ï, we can forget where it came from~ Our fundamental
result in the elliptic case is the determination of the geometric and arithmetic monodromy groups
attached to the lisse ä$…-sheaf 

Ì := Twistç2,C,D(Ï)

on the smooth, geometrically connected k-scheme
X := Fct(C, D, d, Sing(Ï)¤(C-D))

of dimension deg(D) + 1 - g.
In fact, we can study the L-functions of twists, by nontrivial tame characters ç of aaaannnnyyyy

order, of an    aaaarrrrbbbbiiiittttrrrraaaarrrryyyy geometrically irreducible middle extension sheaf Ï on C. Again in this
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general set up, the L-functions of such twists are the local L-functions of a lisse ä$…-sheaf 

Ì := Twistç,C,D(Ï)

at the k-points of the same smooth, geometrically connected k-scheme
X := Fct(C, D, d, Sing(Ï)¤(C-D))

of dimension deg(D) + 1 - g that occurred above for quadratic twists of elliptic curves. Again the
question is to determine the arithmetic and geometric monodromy groups attached to Ì.

The rank N of Ì := Twistç,C,D(Ï) grows with deg(D), indeed we have an a priori

inequality
N := rankÌ ≥ (2g - 2 + deg(D))rank(Ï).

One case of our main technical result (Theorems 5.5.1 and 5.6.1) is this. Suppose that Ï is
everywhere tamely ramified. Then for any effective divisor D of large degree, the geometric
monodromy group Ggeom for Ì := Twistç,C,D(Ï) is one of the following subgroups of GL(N):

O(N)
SO(N): possible only if N is even
Sp(N): possible only if N is even
a group containing SL(N).

We can be more precise about which cases arise for which input data (Ï, ç). Unless ç has order
two and Ï is self-dual on Cºäk, Ggeom contains SL(N). If Ï is orthogonally self dual on Cºäk, and

ç has order two, then Ì is symplectically self dual on Xºäk, and Ggeom for Ì is Sp(N). If Ï is

symplectically self dual on Cºäk, and ç has order two, then Ì us orthogonally self dual on Xºäk, and
Ggeom for Ì is either SO(N), possible only if N is even, or it is O(N).

We can drop the hypothesis that Ï be everywhere tame if we are in large characteristic (the
exact condition is p ≥ rank(Ï) + 2), and if we require in addition that the effective divisor D of
large degree contain no point where Ï is wildly ramified. [This second condition is automatic for
D's which are disjoint from the ramification of Ï.]

Fix, then, input data (Ï, ç, D) as above. As deg(D) grows, the sheaves 
Ì := Twistç,C,D(Ï) have larger and larger classical groups as their geometric monodromy groups.

The general large N limit results of Katz-Sarnak [Ka-Sar, RMFEM] then give information about
the statistical behaviour of the zeroes of the L-functions of the corresponding twists. This
information always concerns a double limit limdeg(D) ¨ ‘ limdeg(E/k) ¨ ‘. For each D we

must consider, for larger and larger finite extensions E of k, the L-functions of all twists Ï‚Òç(f)
as f runs over the E-valued points X(E) of the parameter space 

X = Fct(C, D, d, Sing(Ï)¤(C-D)).
We also work out some refinements of these results, where we change the inner limit. The

first refinement is twist only by "primes" in X(E), i.e., by functions f in X(E) whose divisor of
zeroes div0(f) is a single closed point of CºkE. The terminology "prime" arises as follows. In the

case when C is @1 and D is d‘, an element f in X(E) is a polynomial f(t) in E[t] of degree d which
has d distinct roots in äE and which is invertible at the finite singularities of Ï. Such an element f is



Introduction 19

"prime" if and only if f(t) is an irreducible polynomial in E[t]. More generally, we might twist only
by f's in X(E) whose divisor of zeroes has any pre-imposed factorization pattern. For instance, we
might twist only by f's in X(E) which "split completely" over E, i.e., by f's in X(E) which have d
distinct zeroes in C(E). 

A second refinement is to start not over a finite field, but over a ring of finite type over #,
for instance over #[1/N…]. Then just as in the case of the Legendre family discussed above, we can
look at twists by points in X(Ép) as p ¨ ‘. We get the same answers as we got by fixing p and

looking at twists by points in X(Épn) as n ¨ ‘. We can combine the two refinements. We can

twist only by primes in X(Ép) as p ¨ ‘, or we can twist only by elements of X(Ép) which "split

completely" over Ép. Under mild hypotheses, the limit results remain the same. 

Still working over #[1/N], take a sequence of divisors D√ whose degrees d√ are strictly

increasing. We get thus a sequence of parameter spaces
X√ := Fct(C, D, d, Sing(Ï)¤(C-D))

over #[1/N]. We can recover the eigenvalue location measure (whichever of √(œ,j) or √(j) is
appropriate to the situation being considered) as the following (weak *) double limit: the large √
limit of the large p limit of the distribution of the j'th normalized zero of the L-functions attached to
variable points in X√(Ép). 

If we fix the prime p, and let √ ¨ ‘, then just as in the Legendre case discussed above, it is
natural to ask if we can recover the eigenvalue location measure, whichever of √(œ,j) or √(j) is
appropriate, as the following (weak *) single limit: the large √ limit of the distribution of the j'th
normalized zero of the L-functions attached to variable points in X√(Ép). 

Let us now backtrack, and describe the logical organization of this book. It falls naturally
into four parts:
Part I (Chapters 1,2,3,4): background material, used in Part II.
Part II (Chapter 5) twisting, done over an algebraically closed field
Part III (Chapters 6,7,8): twisting, done over a finite field
Part IV (Chapters 9, 10): twisting, done over schemes of finite type over #.

The first chapter is devoted to results from representation theory. Its main result is Theorem
1.5.1, which depends essentially upon a beautiful result of Zarhin about recognizing when an
irreducible Lie subalgebra of End(V), V a finite-dimensional ^-vector space, is either Lie(SL(V))
or Lie(SO(V)) or, if dim(V) is even, Lie(Sp(V)). It also requires a remarkable recent result [Wales]
of Wales concerning finite primitive irreducible subgroups G of GL(V) containing elements © of
type

© := Diag(Ω, Ω,..., Ω,1, 1, ...., 1),
with Ω a primitive n'th root of unity, n ≥ 3, which occurs with multiplicity r, 1 ≤ r < dim(V). Wales
result is that dim(V) ≤ 4r. 

Wales's inequality was conjectured in an earlier version of this manuscript, written at a time

when less was known. It was known, by Blichfeld's 60o theorem [Blich-FCG, paragraph 70,
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Theorem 8, page 96], that the case n ≥ 6 could not arise: no finite irreducible primitive subgroup of

GL(V) contains such an element. [Blichfeldt's 60o theorem is that in a finite irreducible primitive
subgroup G of GL(N, ^), if an element g in G has an eigenvalue å such that every other

eigenvalue of © is within 60o of å (on either side, including the endpoints), then g is a scalar.] A
little-known result of Zalesskii showed that in the case n=5 we have dim(V) = 2r. For n = 3 or
n=4, there were only results for r ≤ 2. For r=1, we have Mitchell's theorem [Mit], that a finite
irreducible primitive subgroup of GL(V) containing a pseudoreflection of order n > 2 exists only if
dim(V) ≤ 4. For r=2, Huffman-Wales prove that if n=4 then dim(V) ≤ 4, and if n=3 then dim(V)
≤ 8, cf. [Huf-Wa, Theorems 2 and 3 respectively]. 

In an appendix to Chapter 1, we explained at length the result [AZ.1] of Zalesskii, and
made some conjectures about what might be true in general. Wales then proved the most optimistic
AZ.6.2 of these conjectures. Because his manuscript itself refers to some of the results in the
appendix, we have left the appendix unchanged, except to add a note saying that Wales has now
proven AZ.6.2. We have, however, simplified the original statement and proof of Theorem 1.5.1
by making use of Wales inequality.

In the second chapter, we use the general theory of Lefschetz pencils over an algebraically
closed field to develop some basic facts about the geometry of curves, which were surely well
known in the nineteenth century.

The third chapter is concerned with induction of group representations, and with giving
algebro-geometric criteria for induced representations to have various properties (e.g., to be
autodual, to be irreducible).

The fourth chapter is a brief review of "middle convolution" and its effect on local
monodromy as developed in [Ka-RLS]. This material depends in an essential way on Laumon's
work on Fourier Transform.

After all these preliminaries, we turn to our subject proper in Chapter 5, which is the
technical core of the book. We work over an algebraically closed field, and compute monodromy
groups of twist sheaves, using as essential ingredients results of all the previous chapters. [In the
earlier version of this manuscript, written before Wales result, we could not twist by characters ç
of order 4 or 6 unless the input sheaf Ï had rank at most 2.]

In Chapter 6, we explain how to formulate over a general base scheme the set up we
considered in Chapter 5.

In Chapter 7, we work over a finite field, and extract the diophantine consequences of the
monodromy results of Chapter 5. The essential ingredient here is the work of Deligne in [De-Weil
II], both his purity theorem and his equidistribution theorem. 

In Chapter 8, we give applications to average analytic rank of twists of a given elliptic
curve. This leads us into a long discussion of whether the monodromy group in question is O or
SO, and leads us to some very nice examples.

In Chapter 9, we begin to work systematically over a base which is a scheme of finite type
over #, rather than "just" a finite field. We also introduce the notion of twisting by a "prime". We
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prove an equidistribution theorem for primes in divisor classes, which was presumably well
known in the late 1920's and 1930's to people like Artin, Hasse and Schmidt, but for which we do
not know a reference. We then analyze when twisting only by primes changes nothing as far as
equidistribution properties. This leads us to a simple but useful case of Goursat's Lemma.

In Chapter 10, we give "horizontal" versions (i.e., over Ép as p ¨ ‘) of all the results we

found earlier over a finite field k (where we worked over larger and larger extension fields of the
given k)

It is a pleasure to thank Cheewhye Chin for his help in preparing the index. I respectfully

dedicate this book to the memory of my teacher Bernard Dwork, to whom I owe so very much.


