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1. Introduction

In our earlier work [Ka-RLSFM], we exhibited some very simple one
parameter families of exponential sums which gave rigid local systems
on the affine line in characteristic p whose geometric (and usually, arith-
metic) monodromy groups were SL(2, q), and we exhibited other such
families giving SU(3, q). [Here q is a power of the characteristic p, and
p is odd.] What we did there made essential use of the work [Gross]
of Dick Gross. That work of Gross also discussed the Suzuki and Ree
groups, and Gross asked us if those groups entered into our picture.

Our object here is to produce very simple one parameter families of
exponential sums on the affine line A1 in characteristic two (for Suzuki)
and three (for Ree) which give rigid local systems whose geometric and
arithmetic monodromy groups are the Suzuki and Ree groups respec-
tively. For simplicity, let us discuss the situation over Fp, p respectively
2, 3. By the solution [Ray] of the Abhyankar Conjecture, we know there
exist local systems on A1/Fp whose monodromy groups are the Suzuki

and Ree groups respectively. Gross constructs local systems on Gm/Fp
with these groups as monodromy groups. Gross further tells us that
explicit Kummer pullbacks of his local systems give local systems on
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A1/Fp with these same monodromy groups. We expect that our local
systems coincide with these Kummer pullbacks, cf. Section 4.

Our earlier work had two parts. The first was a theorem of Kubert
which assured us that certain one parameter families of exponential
sums gave (rigid) local systems whose geometric and arithmetic mon-
odromy groups were finite. The second was to show that these finite
groups were as asserted above.

In the discussion below of Suzuki and Ree groups, both of these
parts are absent, replaced instead by conjectures. In Section 4, we
explain what should be the relation between the families which will be
the subject of our conjectures and the local systems on Gm constructed
by Gross in the Suzuki and Ree cases.

We begin with the Suzuki groups. For q0 = 2n, n ≥ 1, a power
of 2, and q := 2q20, the Suzuki group Sz(q) is a simple group of order
q2(q2+1)(q−1). Its lowest dimensional nontrivial irreducible (complex)
representations have dimension q0(q−1). There are two of these. Their
complex-conjugate trace functions take values in the ring Z[i] of Gauss-
ian integers. The values assumed are {−q0i,−q0,−1, 0, 1, q0i, q0(q−1)},
cf. the end of Suzuki’s paper [Suz].

The first problem we consider here is to exhibit, for each q0 = 2n, n ≥
1, a pair of complex conjugate rigid local system of rank q0(q − 1) on
the affine line A1/Fq in characteristic 2 whose geometric and arithmetic
monodromy groups are the group Sz(q), in each of its two complex-
conjugate irreducible representations of dimension q0(q − 1).

We will write down explicit “candidate” pairs of complex conjugate
rigid local system of rank q0(q−1) on A1/Fq, about which we make two
conjectures. The first is that their monodromy groups are finite. The
second is that these finite monodromy groups are the asserted Suzuki
groups Sz(q).

We now turn to the Ree groups. For q0 = 3n, n ≥ 1, a power of 3, and
q = 3q20, the Ree group Ree(q) is a simple group of order q3(q3+1)(q−1).
Its lowest dimensional nontrivial irreducible (complex) representation
has dimension q2−q+1. It is orthogonally self-dual. Its trace function
take values Z. The values assumed are {1 − q,−1, 0, 1, 3, q2 − q + 1},
cf. the end of Ward’s paper [Ward].

The second problem we consider here is to exhibit, for each q0 =
3n, n ≥ 1, a rigid local system of rank q2−q+1 on the affine line A1/Fq
in characteristic 3 whose geometric and arithmetic monodromy groups
are the group Ree(q), in its irreducible representation of dimension
q2 − q + 1.
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We have explicit candidate rigid local systems for the Ree groups,
Ree(32n+1), n ≥ 1. Exactly as in the Suzuki case, we first conjecture
that their monodromy groups are finite, and second that these finite
monodromy groups are the asserted Ree groups.

2. The Suzuki case

We take ψ : (F2,+) → ±1 to be the nontrivial additive character
of F2. We recall that the p-Witt vectors, with p = 2, of length two
have W2(F2) ∼= Z/4Z, by the explicit isomorphism [a, b] 7→ a2 + 2b.
We denote by ψ2 : W2(F2) ∼= Z/4Z → µ4(Z[i]) the faithful additive

character [a, b] 7→ ia
2+2b, i.e., the faithful additive character of Z/4Z

given by n 7→ in. This allows us to define the usual Artin-Schreier sheaf
Lψ(x) on A1/F2, and the Artin-Schreier-Witt sheaf Lψ2([x,0]) on A1/F2.

We now turn to the definition of our candidate local systems. Recall
that q0 = 2n, n ≥ 1 and q = 2q20. We denote by

t(q) := q − 2q0 + 1

the order of the Coxeter torus in Sz(q), cf. [Gross]. Thus t(8) =
5, t(32) = 25, t(128) = 113. We also denote by

d(q) := q0(q − 1)

the degree of the lowest dimensional nontrivial irreducible complex rep-
resentations of Sz(q). Thus d(8) = 14, d(32) = 124, d(128) = 1016. For
each q = 2q20 = 22n+1, we define the polynomial fq(x) ∈ F2[x] as follows.

f8(x) := x15,

f32(x) := x125 + x3∗25,

f128 := x1017 + x5∗113 + x3∗113.

The general pattern is that for q = 22n+1,

fq(x) := x1+d(q) +
∑

1≤m≤n−1

x(2
m+1)t(q).

We now define, for each q = 22n+1 a rank one lisse local system on
A1/F2

Sq(x) := Lψ2([xt(q),0]) ⊗ Lψ(fq(x)) = Lψ2([xt(q),fq(x)]),

the last equality simply because in Witt vector addition, [a, b] = [a, 0]+
[0, b]. We then form its Fourier Transform

Fq := FTψ(Sq).
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This is a rigid local system on A1/F2, lisse of rank d(q), pure of weight
one. Its trace function is given at time t ∈ k, k/F2 a finite extension,
by the formula

Trace(Frobt,k|Fq) = −
∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
t(q), fq(x) + tx])).

We then twist this local system by a suitable constant field twist.

Gq := Fq ⊗ β−degq .

For q = 22n+1, we define

βq := 1 + i if n is odd,

βq := 1− i if n is even.

The conjugate local system begins with

Lψ2([xt(q),fq(x)+x2t(q)]),

and twists its FTψ by the complex conjugate of β−1q . [The point here
is that for p-Witt vectors with p = 2, Witt vector addition is given by

[a, b] + [A,B] = [a+ A, b+B − aA].

Thus for Witt vectors with entries in F2-algebras, we have

−[a, b] = [a, b+ a2],

and hence the two input rank one local systems have complex conjugate
traces in Z[i]. After Fourier Transform, their trace functions continue
to be complex-conjugate, because ψ takes integer (in fact ±1) values.
After twisting, the trace functions remain complex conjugates of each
other, but a priori now take values in Z[1/2][i].]

Conjecture 2.1. For each For q = 22n+1, n ≥ 1, the trace function of
the local system Gq on A1/F2 takes values in Z[i].

One knows[Ka-ESDE, 8.14.4] that the conjectured integrality of traces
implies that both the geometric and arithmetic monodromy groups of
Gq are finite.

Conjecture 2.2. For each For q = 22n+1, n ≥ 1, after pullback to
A1/Fq, the geometric and arithmetic monodromy groups of Gq are the
group Sz(q) in one of its irreducible complex representations of degree
d(q) = q0(q − 1).

Remark 2.3. The Galois group Gal(Fq/F2) acts on Sz(q) by conju-
gating the matrix entries (thinking of Sz(q) as a subgroup of Sp(4, q),
cf. [Wil1]). This action preserves the isomorphism class of each of the
two irreducible representations of dimension q0(q − 1) (simply because
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the Galois group has odd order 2n + 1, so it can only act trivially on
a set with two elements). Therefore each of these representations ex-
tends (in several ways, the indeterminacy being that we can twist any
such extension by character of the cyclic group Gal(Fq/F2)) to a rep-
resentation of the semidirect product group Sz(q) oGal(Fq/F2). It is
reasonable to expect that for Gq on A1/F2, its arithmetic monodromy
group is the image of this semidirect product in one of the extended
representations. However, the trace function of our Gq on A1/F2 has
values in Q(i) (and conjecturally in Z[i]). So if our expectation is cor-
rect, there should be a unique extended representation whose trace
have values in Z[i].

3. The Ree case

We take ψ : (F3,+) → µ3(Z[ζ3]) to be the one of the two nontrivial
additive character of F3. We denote by χ2 : F×3 → ±1 the quadratic
character of F×3 , extended to all of F3 by defining χ2(0) := 0. Thus
we may speak of the Artin-Schreier sheaf Lψ on A1/F3, and of the
extension by zero to A1/F3 of the Kummer sheaf Lχ2 on Gm/F3, which
we will denote j!Lχ2 (j : Gm ⊂ A1 denoting the inclusion).

We now turn to the definition of our candidate local systems. Recall
that q0 = 3n, n ≥ 1 and q = 3q20. We denote by

t(q) := q − 3q0 + 1

the order of the Coxeter torus in Ree(q), cf. [Gross]. Thus t27 =
19, t243 = 217. We also denote by

d(q) := q2 − q + 1

the degree of the lowest dimensional nontrivial irreducible complex rep-
resentation of Ree(q). Thus d(27) = 703, d(243) = 58807.

For each q = 3q20 = 32n+1, we define the polynomial fq(x) ∈ F3[x] as
follows.

f27(x) := x703 + 2x11∗19 + 2x7∗19 + 2x19,

f243(x) := x58807 + 2x29∗217 + 2x19∗217 + 2x217.

The general pattern is

fq(x) := xd(q) + 2x(3
n+1+2)t(q) + 2x(2∗3

n+1)t(q) + 2xt(q).

We then define, for each q = 32n+1 a rank one lisse local system on
Gm/F3

Rq(x) := Lχ2(x) ⊗ Lψ(fq(x)).
We then form the Fourier Transform of its extension by zero,

Fq := FTψ(j!Rq).
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This is a rigid local system on A1/F3, lisse of rank d(q), pure of weight
one. Its trace function is given at time t ∈ k, k/F3 a finite extension,
by the formula

Trace(Frobt,k|Fq) = −
∑
x∈k×

χ2(Normk/F3)(x))ψ(Tracek/F3(fq(x) + tx)).

We then twist this local system by a suitable constant field twist.

Gq := Fq ⊗ β−deg,
with

β := ψ(1)− ψ(−1) = 1 + 2ζ3 for ζ3 := ψ(1)

the quadratic Gauss sum over F3.

Conjecture 3.1. For each For q = 32n+1, n ≥ 1, the trace function of
the local system Gq on A1/F3 takes values in Z.

Conjecture 3.2. For each For q = 32n+1, n ≥ 1, after pullback to
A1/Fq, the geometric and arithmetic monodromy groups of Gq are the
group Ree(q) in its irreducible complex representation of degree d(q) =
qq − q + 1.

Remark 3.3. The Galois group Gal(Fq/F3) acts on Ree(q) by conju-
gating the matrix entries (thinking of Ree(q) as a subgroup of G2(q),
cf. [Wil2]. This action (necessarily) preserves the isomorphism class of
the unique irreducible representation of dimension q2 − q + 1. There-
fore this representation extends (in several ways, the indeterminacy
being that we can twist any such extension by character of the cyclic
group Gal(Fq/F3)) to a representation of the semidirect product group
Ree(q) o Gal(Fq/F3). It is reasonable to expect that on A1/F3, the
arithmetic monodromy group is the image of this semidirect product
in one of the extended representations. However, the trace function of
our Gq on A1/F3 has values in Q (and conjecturally in Z). So if our ex-
pectation is correct, there should be a unique extended representation
whose trace have values in Z.

4. Comments on the conjectures: relation to the work
of Gross

For G either Sz(q) or Ree(q), Gross [Gross] constructs a G-torsor
on Gm/Fq whose inertia group at 0 is the Coxeter torus in G. When
we push out this torsor by one of the representations of G with which
we are concerned, we get a local system Grq on Gm/Fq of rank d(q)
whose geometric and arithmetic monodromy groups are G, in that
representation. When we pull back Grq by the t(q)’th power map, the
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resultng Kummer pullback is lisse on (i.e., has a unique lisse extension
to) A1/Fq. It is this local system which we conjecture to be our Gq.

So one test that our local system Gq (or equivalently Fq) should pass
is that its restriction to Gm descend through the t(q)’th power map on
t-space. It is to insure this that our polynomial fq(x) is a polynomial
in xt(q). [Notice that in both the Ree and Suzuki cases, t(q) divides the
degree of fq(x). In the Suzuki case, we have

d(q) + 1 = t(q)(q0 + 1),

while in the Ree case we have

d(q) = t(q)(q + 3q0 + 1).]

To see the descent, consider first the Suzuki case. Write the formula
for the trace at a nonzero t,

Trace(Frobt,k|Fq) = −
∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
t(q), fq(x) + tx]),

and make the substitution x 7→ x/t. Then the trace is

−
∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
t(q)/tt(q), fq(x/t) + x]),

in which only powers of tt(q) appear.
In the Ree case, remember that t(q) = q − 3q0 + 1 is odd, so the

formula for the trace at a nonzero t is

Trace(Frobt,k|Fq) = −
∑
x∈k×

χ2(Normk/F3)(x
t(q)))ψ(Tracek/F3(fq(x)+tx)).

Then the same substitution x 7→ x/t gives the trace as

−
∑
x∈k×

χ2(Normk/F3)(x
t(q)/tt(q)))ψ(Tracek/F3(fq(x/t) + x)),

in which only powers of tt(q) appear.
Our conjecture also has consequences for the local system Grq on

Gm. Recall that the local system Gq is a rigid local system on A1

(because it is the Fourier Transform of a rank one local system), cf.
[Ka-RLS, 2.0.2 and 3.0.1]. If Gq is the t(q)’th power pullback of Grq,
then Grq must itself be rigid, which does not seem obvious. Here is the
argument, due to Lei Fu.

Lemma 4.1. (Lei Fu)Over an algebraically closed field, let j : U ⊂ P1

be the inclusion of a dense open set, A a Q`-local system (` invertible in
k). Let f : P1 → P1 be a finite morphism (i.e. a nonconstant rational
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function) which is generically étale, and which makes V := f−1(U) a
finite stale covering of U . Call this map

fU : V → U.

Denote by J : V ⊂ P1 the inclusion. Then we have the inequality of
dimensions

dimH1(P1, j?A) ≤ dimH1(P1, J?fU
?A).

Proof. We have the commutation relation

f ◦ J = j ◦ fU .
Because f is a finite morphism, we have

H1(P1, J?fU
?A) = H1(P1, f?J?fU

?A) = H1(P1, j?fU?fU
?A).

Now use the fact that Q`U is a direct factor of fU?Q`V , and hence
that A is a direct factor of fU?fU

?A. Then j?A is a direct factor of
j?fU?fU

?A, and the assertion on dimensions is obvious. �

Corollary 4.2. If A is irreducible and fU
?A is both irreducible and

rigid, then A is rigid.

Proof. Apply the lemma to End(A) and the t(q)’th power map, remem-
bering that for an irreducibleA, rigidity is the vanishing ofH1(P1, j?End(A)).

�

Another consequence for Grq is that Swan∞(Grq) must be q0 + 1 in
the Suzuki case, and q+3q0+1 in the Ree case (simply because pullback
by the t(q)’th power map multiplies Swan∞ by t(q), and Swan∞(Gq)
is d(q) + 1 in the Suzuki case, and is d(q) in the Ree case).

In neither the Suzuki nor the Ree case do we have a conceptual
explanation for the precise form of the polynomial fq(x), which we
found through computer experiments. These experiments are, at least
so far, compatible with the idea that our local systems Gq do have
integral traces, that their traces are among the (very few, seven for
the Suzuki groups and six for the Ree groups) traces of elements of
the group G in the representation in question, and that the traces of
our local systems are distributed like the traces of random elements of
these groups. Caveat Emptor.

5. Numerical data: the Suzuki case

Recall that q0 = 2n, q = 22n+1, n ≥ 1. In either irreducible represen-
tation of Sz(q) of dimension q0(q − 1), the traces attained are

{−q0i , −q0 , −1 , 0 , 1 , q0i , q0(q − 1)}.
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Thanks to Frank Luebeck [Lu], using CHEVIE [CH], the fraction of
elements in Sz(q) with these traces is known to be

FracSz(q) :=

{ 1

2q
,

1

q2
,

q0(q0 − 1)

2(q − 2q0 + 1)
,
q20 − 1

q − 1
,

q0(q0 + 1)

2(q + 2q0 + 1)
,

1

2q
,

1

q2(q2 + 1)(q − 1)
}.

We calculated, for our local systems Gq, the traces of Frobenius ob-
tained at the Fqd points of A1 for various q and some low d. We tabulate
the multiplicity with which each trace occurs, in the order listed above.
Below this tabulation, we list the “expected” multiplicities, by which
we that we round the table of rational numbers

FracSz(q)qd.

For Sz(8) we have
d = 2,

Found = {6 , 1 , 13 , 27 , 15 , 2 , 0}
Expected = {4 , 1 , 13 , 27 , 15 , 4 , 0}.

d = 3,

Found = {28 , 9 , 109 , 219 , 111 , 36 , 0}
Expected = {32 , 8 , 102 , 219 , 118 , 32 , 0}.

d = 4,

Found = {240 , 40 , 845 , 1755 , 975 , 240 , 1}
Expected = {256 , 64 , 819 , 1755 , 945 , 256 , 0}.

d = 5,

Found = {2080 , 520 , 6605 , 14043 , 7503 , 2016 , 1}
Expected = {2048 , 512 , 6554 , 14043 , 7562 , 2048 , 1}.

For Sz(32), we have
d = 2,

Found = {20 , 1 , 246 , 495 , 250 , 12 , 0}
Expected = {16 , 1 , 246 , 495 , 250 , 16 , 0}.

For Sz(128), we have
d = 2,

Found = {72 , 1 , 4060 , 8127 , 4086 , 56 , 0}
Expected = {64 , 1 , 4060 , 8127 , 4068 , 64 , 0}.
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For Sz(512), we have
d = 1,

Found = {1 , 0 , 136 , 255 , 120 , 0 , 0}
Expected = {8 , 1 , 123 , 248 , 125 , 8 , 0}.

For Sz(2048), we have
d = 1,

Found = {0 , 0 , 496 , 1023 , 528 , 1 , 0}
Expected = {0 , 0 , 512 , 1023 , 512 , 0 , 0}.

For Sz(8192), we have
d = 1,

Found = {0 , 0 , 259 , 507 , 233 , 1 , 0}
Expected = {0 , 0 , 250 , 500 , 250 , 0 , 0}.

6. Numerical data: the Ree case

Recall that q0 = 3n, q = 32n+1, n ≥ 1. In the irreducible representa-
tion of Ree(q) of dimension q(q − 1), the traces attained are

{1− q , −1 , 0 , 1 , 3 , q(q − 1)}.
Thanks to Frank Luebeck [Lu], using CHEVIE [CH], the fraction of
elements in Ree(q) with these traces is known to be

FracRee(q) :=

{ 1

q3
,

3

8
,

q(q − 2)

3(q2 − q + 1)
,
q3 + q2 − 4

4q2(q − 1)
,

q − 3

24(q + 1)
,

1

q3(q3 + 1)(q − 1)
}.

We calculated, for our local systems Gq, the traces of Frobenius ob-
tained at the Fqd points of A1 for various q and some low d. We tabulate
the multiplicity with which each trace occurs, in the order listed above.
Below this tabulation, we list the “expected” multiplicities, by which
we mean that we round the table of rational numbers

FracRee(q)q
d.

What we found, to our complete astonishment, is that for each of
the first five Ree groups Ree(32n+1) with 1 ≤ n ≤ 5, calculating traces
for our Gq over Fq (i.e. with d = 1), we get perfect agreement with
what is “expected”, better than with some higher values of d when we
could compute them. We have no explanation of this. Here is the data.

For Ree(27) we have
d = 1,

Found = {0 , 10 , 9 , 7 , 1 , 0}
Expected = {0 , 10 , 9 , 7 , 1 , 0}.
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d = 2,

Found = {0 , 280 , 225 , 196 , 28 , 0}
Expected = {0 , 273 , 233 , 196 , 26 , 0}.

d = 3,

Found = {1 , 7381 , 6300 , 5298 , 703 , 0}
Expected = {1 , 7381 , 6300 , 5298 , 703 , 0}.

d = 4,

Found = {28 , 199108 , 170325 , 143052 , 18928 , 0}
Expected = {27 , 199290 , 170091 , 143052 , 18980 , 0}.

For Ree(243) we have

d = 1,

Found = {0 , 91 , 81 , 61 , 10 , 0}
Expected = {0 , 91 , 81 , 61 , 10 , 0}.

d = 2,

Found = {0 , 22204 , 19521 , 14884 , 2440 , 0}
Expected = {0 , 22143 , 19601 , 14884 , 2420 , 0}.

For Ree(37 = 2187) we have

d = 1,

Found = {0 , 820 , 729 , 547 , 91 , 0}
Expected = {0 , 820 , 729 , 547 , 91 , 0}.

For Ree(39 = 19683) we have

d = 1,

Found = {0 , 7381 , 6561 , 4921 , 820 , 0}
Expected = {0 , 7381 , 6561 , 4921 , 820 , 0}.

For Ree(311 = 177147) we have

d = 1,

Found = {0 , 66430 , 59049 , 44287 , 7381 , 0}
Expected = {0 , 66430 , 59049 , 44287 , 7381 , 0}.
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7. Appendix: the limiting cases Sz(2) and Ree(3)

In this section, we see what happens if we apply our constructions
in the “q0 = 1” case.

The group Sz(2) is isomorphic to the ax+ b group over F5. It has a
pair of complex conjugate linear characters of order 4.

Lemma 7.1. For Sz(2), our local system G2 has arithmetic and geo-
metric monodromy groups equal to the image µ4 of Sz(2) in either of
its one-dimensional representations of order 4.

Proof. For Sz(2), i.e. the case q = 2, q0 = 1, we have d(2) = q0(q−1) =
1 and t(2) = q − 2q0 + 1 = 1. The polynomial f2(x) is x2, the input
local system is

S2(x) := Lψ2([x,0]) ⊗ Lψ(x2) ∼= Lψ2([x,0]) ⊗ Lψ(x),
and our local system F2 is F2 := FTψ(S2). The twisting factor β2 is
1− i. The local system G2 is lisse of rank d(2) = 1, so is geometrically
of finite order on A1/F2, of some 2-power order N . Hence for some

γ ∈ Q`
×

we have
G⊗N2

∼= Q` ⊗ γdeg.
But at the points t = 0 and t = 1 in A1(F2), we have the equalities

Trace(Frobt=0,F2(G2) = −(1− i)/β2 = −1,

Trace(Frobt=1,F2(G2) = −(1 + i)/β2 = −i.
The first shows that γ = 1, i.e., G2 is arithmetically of finite order. As
G2 has traces in Q(i) which are roots of unity, it has traces in µ4 The
second equality shows that the arithmetic monodromy group is all of
µ4. The two inequalities together show that the ratio of the traces at
the two F2 points is i, and hence that the geometric monodromy group
is all of µ4. �

The Ree group Ree(3) is not simple, but its derived group, of index
3, is the simple group SL(2, 8). Indeed, Ree(3) is Aut(SL(2, 8)), the
semidirect product of SL(2, 8) withGal(F8/F2), this latter group acting
entrywise on SL(2, 8). For Ree(3), with q = 3, q0 = 1, we have

d(3) = 32−3+1 = 7, t(3) = 3−3+1 = 1, f3(x) = x7+2x5+2x3+2x.

With this input data, we form the local system

F3 := FTψ(Lχ2(x) ⊗ Lψ(f3(x))),
and its twist

G3 := F3 ⊗ β−deg

for β the quadratic Gauss sum over F3.
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The Ree group Ree(3) has three irreducible representations of de-
gree 7, precisely one of which is orthogonally self dual. Its traces are
{−2,−1, 0, 1, 7}. From the character tables in Magma, where Ree(3) is
ChevalleyGroup(“2G”,2,3) [Mag, 65.2.1, p. 1881], we see that the frac-
tion of elements of Ree(3) with these traces is {1/27, 3/8, 1/7, 4/9, 1/1512}
(which are also the fractions Lübeck’s table gives setting q = 3).

Computer experiments support the following conjecture.

Conjecture 7.2. For Ree(3), the local system G3 has integer traces,
and its geometric and arithmetic monodromy groups on A1/F3 are the
group Ree(3) in its orthogonal seven-dimensional irreducible represen-
tation.

Here is some data for Ree(3).

d = 6,

Found = {21 , 280 , 112 , 315 , 1}
Expected = {27 , 273 , 104 , 324 , 0}.

d = 7,

Found = {84 , 820 , 301 , 981 , 1}
Expected = {81 , 820 , 312 , 972 , 1}.

d = 8,

Found = {252 , 2440 , 949 , 2916 , 4}
Expected = {243 , 2460 , 937 , 2916 , 4}.

d = 9,

Found = {729 , 7381 , 2812 , 8748 , 13}
Expected = {729 , 7381 , 2812 , 8748 , 13}.

d = 10,

Found = {2160 , 22204 , 8401 , 26244 , 40}
Expected = {2187 , 22143 , 8436 , 26244 , 39}.

Given that Ree(3) contains SL(2, 8) as a normal subgroup of index
three, it is natural to wonder what happens if we take our local system
G3 and pull it back by the Artin-Schreier covering t 7→ t3− t of A1/F3.
Computer experiments support the following conjecture.
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Conjecture 7.3. The pullback local system

H3 := [t 7→ t3 − t]?G3
on A1/F3 has integer traces, it has Ggeom = SL(2, 8) and it has Garith =
Ree(3) in its orthogonal seven-dimensional irreducible representation.
If we pull back H3 to A1/F33, it has Ggeom = Garith = SL(2, 8) in the
unique irreducible seven dimensional representation of SL(2, 8) with
integer traces.

Remark 7.4. We are surprised to find, at least conjecturally, SL(2, 8)
occurring “naturally” in characteristic 3 rather than 2.

If this conjecture is correct, it has the following equidistribution con-
sequence, cf.[Ka-Sar, 9.7.13]. The group SL(2, 8) has three cosets inside
Ree(3). Fix an isomorphism of the quotient Ree(3)/SL(2, 8) ∼= Z/3Z.
If we let d → ∞ through d’s in a fixed congruence class mod 3, the
traces we find should become equidistributed according to the distri-
bution of traces of our given representation on elements of the corre-
sponding coset of SL(2, 8). Looking at the character table of Ree(3),
we see that

(0) In coset 0, the subgroup SL(2, 8), the traces attained are

{−2,−1, 0, 1, 7},
and the fraction of elements with these traces is

{1/9, 1/8, 3/7, 1/3, 1/504}.
[These are also the traces, and fractions of occurrence, in the
unique irreducible seven dimensional representation of SL(2, 8)
with integer traces.]

(± 1) In each of the two cosets 1 and −1, the traces attained are
{−1, 1}, and the fraction of elements with these traces is {1/2, 1/2}.

So when we compute traces of the pullback local system H3 over de-
gree d extensions of F3 with d 6= 0 mod 3, we expect to find only {−1, 1}
as traces, and approximately equal occurrences of each. When we com-
pute over degree d extensions with 3|d, we expect to find the traces
{−2,−1, 0, 1, 7} in approximate fractions {1/9, 1/8, 3/7, 1/3, 1/504}.

Here is some data for H3, first for the coset 0, the group SL(2, 8).

d = 3,

Found = {3 , 3 , 12 , 9 , 0}
Expected = {3 , 3 , 12 , 9 , 0}.

d = 6,
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Found = {63 , 84 , 336 , 243 , 3}
Expected = {81 , 91 , 312 , 243 , 1}.

d = 9,

Found = {2187 , 2460 , 8436 , 6561 , 39}
Expected = {2187 , 2460 , 8436 , 6561 , 39}.

Here is data for extensions F3d with d 6= 0 mod 3, where what we
expect is equal occurrences of −1 and 1.

d = 1, Found = {3, 0}.
d = 2, Found = {6, 3}.
d = 4, Found = {36, 45}.
d = 5, Found = {108, 135}.
d = 7, Found = {1053, 1134}.
d = 8, Found = {3240, 3321}.

d = 10, Found = {29646, 29403}.
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