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1. Background: Lang-Weil

Start with a finite field k and X/k separated of finite type, which is
smooth and geometrically connected, of dimension n ≥ 1. The Lang-
Weil estimate [La-We] is the assertion that for variable finite extensions
K of k, we have the estimate

#X(K) = (#K)n +O((#K)n−1/2).

Lang and Weil proved this by using its truth for curves, established
by Weil, together with a fibration argument. From a modern point of
view, Lang-Weil is best seen as resulting from Grothendieck’s Lefschetz
trace formula [Gro-FL], combined with Deligne’s estimates [De-Weil II,
3.3.4]. For any prime ` not the characteristic p of k, we have

#X(K) =
2n∑
i=0

(−1)iTrace(FrobK |H i
c(Xk,Q`)).

One knows that H2n
c (Xk,Q`) is one-dimension, with FrobK acting as

(#K)n, and, thanks to Deligne, that each H i
c(Xk,Q`)) is mixed of

weight ≤ i (for any chosen embedding of Q` into C).
So the formula becomes

#X(K) = (#K)n +
2n−1∑
i=0

(−1)iTrace(FrobK |H i
c(Xk,Q`)),

with
2n−1∑
i=0

(−1)iTrace(FrobK |H i
c(Xk,Q`)) = O((#K)n−1/2).

2. Background: Deligne’s equidistribution theorem

How does Deligne’s equidistribution theorem relate to this? The
situation is that we have a lisse Q`-sheaf, ` 6= p, F on X which is
pure of weight zero, of rank r ≥ 1. Attached to it are its geometric
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and arithmetic monodromy groups Ggeom E Garith ⊂ GL(r). These

are algebraic groups over Q`. One knows, again by Deligne, that (the
identity component of) Ggeom is semisimple, cf. [De-Weil II, 1.3.9 and
its proof, and 3.4.1 (iii)].

Suppose that our F has Ggeom = Garith. Embed Q` into C, view
Garith as a group over C, and choose a maximal compact subgroup K
of the complex Lie group Garith(C). Then for each finite extension K/k,
and each x ∈ X(K), (the semi simplification, in the sense of Jordan
normal form, of) the Frobenius conjugacy class Frobx,K meets K in a
unique K-conjugacy class θx,K .

Deligne’s equdistribution theorem asserts that as #K → ∞, the
classes {θx,K}x∈X(K) become equidistributed in K#, the space of con-
jugacy classes in K, for (the direct image from K of) Haar measure of
total mass one, cf. [De-Weil II, 3.5.3], [Ka-GKM, 3.6], and [Ka-Sar,
9.2.6].

The proof goes along the now usual lines, of estimating the appro-
priate Weyl sums. More precisely, for each irreducible nontrivial repre-
sentation ρ of Garith, we form the corresponding “pushout” sheaf ρ(F)
on X. By Peter-Weyl, what must be shown is that the large #K limit
of

(1/#X(K))
∑

x∈X(K)

Trace(Frobx,K |ρ(F))

vanishes.
This sum is

(1/#X(K))
2n∑
i=0

(−1)iTrace(FrobK |H i
c(Xk, ρ(F))),

in which H i
c is mixed of weight ≤ i, and in which the highest term

H2n
c (Xk, ρ(F))) is (the Tate twist by −n of) the space of coinvariants

of Ggeom in the representation ρ. So the leading term vanishes:

H2n
c (Xk, ρ(F))(n) = 0,

and we get the estimate∑
x∈X(K)

Trace(Frobx,K |ρ(F)) = O((#K)n−1/2).

In view of Lang-Weil, we get

(1/#X(K))
∑

x∈X(K)

Trace(Frobx,K |ρ(F)) = O(
1√
#K

).

An equivalent formulation is this. Take any representation σ of
Garith, and denote by N(σ) the multiplicity of the trivial representation
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in σ. Thus N(σ) is the dimension of H2n
c (Xk, ρ(F)), upon which FrobK

operates as the scalar (#K)n. Write σ as the direct sum of N(σ) copies
of the trivial representation with a finite sum of irreducible nontrivial
representation ρ of Garith, say σ = N(σ)1 ⊕ τ , with N(τ) = 0. For

N(σ)1, i.e. for the constant sheaf Q`
N(σ)

, we have the tautological
equality

(1/#X(K))
∑

x∈X(K)

Trace(Frobx,K |Q`
N(σ)

) = N(σ).

For the sheaf τ(F), whose H2n
c vanishes, the Lefschetz trace formula

gives

(1/#X(K))
∑

x∈X(K)

Trace(Frobx,K |τ(F)) =

= (1/#X(K))
∑

i≤2n−1

(−1)iTrace(FrobK |H i
c(Xk, τ(F))).

By Deligne (and Lang-Weil), this last sum is O( 1√
#K

), so we get

(1/#X(K))
∑

x∈X(K)

Trace(Frobx,K |σ(F)) = N(σ) +O(
1√
#K

).

To the extent that the sum
∑

i≤2n−1(−1)iTrace(FrobK |H i
c(Xk, τ(F)))

has a better estimate, e.g. because some of its H i
c vanish for large i, or

have lower weight than allowed by Deligne’s generaal theorem that H i
c

has weight ≤ i, we get a better estimate of the error term.

3. Rudnick’s question

Zeev Rudnick raised what is, in hindsight, the obvious question:
If n := dim(X) ≥ 2, when can we do better? When will we get

“square root cancellation”, i.e. an estimate, for every irreducible non-
trivial representation ρ of Garith,

(1/#X(K))
∑

x∈X(K)

Trace(Frobx,K |ρ(F)) = O(
1√

#K
n ).

Equivalently, when will we get an estimate, for every representation
σ of Garith,

(1/#X(K))
∑

x∈X(K)

Trace(Frobx,K |σ(F)) = N(σ) +O(
1√

#K
n ).
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4. Examples showing a largely negative response

In the following sections, we will give examples in which some σ’s
have square root cancellation, and in which many others do not.

Fix integersN ≥ n ≥ 2, a prime p > 2N+1, and a nontrivial additive
character ψ of Fp. For K/Fp a finite extension, ψK := ψ ◦TraceK/Fp is
a nontrivial additive character of K. Consider the n parameter family
of sums, for each K, given by

S(t1, t2, ...tn, K) := (−1/
√

#K)
∑
x∈K

ψK(xN+1 +
n∑
i=1

tix
i).

There is a lisse sheaf F on the An of (a1, a2, ...an) whose trace function
is given by these sums:

Trace(Frob(t1,t2,...tn),K |F) = S(t1, t2, ...tn, K).

This sheaf F is lisse of rank N and pure of weight zero. One knows
[Ka-MG, Thm. 19] that for this sheaf F we have

SL(n) ⊂ Ggeom ⊂ Garith ⊂ GL(N).

Lemma 4.1. After passing to a finite extension Fq/Fp, the sheaf F on
An/Fq has

SL(n) ⊂ Ggeom = Garith ⊂ GL(N).

Proof. First extend scalars to Fp2 . For any finite extension K/Fp2 , each
Frobx,K has its characteristic polynomial with coefficients in Q(ζp), so
in particular has its determinant in Q(ζp). The key point is that this
field has a unique place P lying over p. So det(Frobx,K) has absolute
value 1 at each archimedean place (purity), and is a unit at all finite
places of residue characteristic ` 6= p (existence of `-adic cohomology).
By the product formula, the determinant must be a unit at P as well,
so is a root of unity of order dividing 2p. If we take an extension K/Fp
of odd degree, then the square of each Frobx,K has such a determinant.
Thus we have inclusions

SL(n) ⊂ Ggeom ⊂ Garith ⊂ {A ∈ GL(N)| det(A)4p = 1}.
From these inclusions we certainly have

Garith ⊂ GmGgeom (= GL(N)),

so there exist an `-adic unit α such that after the constant field twist
αdeg of F , we have Ggeom = Garith, cf. [Ka-ST, Lemma 3.1]. It remains
only to show that any such α is a root of unity. [For if αN = 1, then
after extension of scalars from Fp to to FpN , we will have Ggeom = Garith

for F .] To see that any such α is a root of unity, choose any point
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x ∈ An(Fp). Then both Frobx,Fp |F and αFrobx,Fp |F lie in Garith,
indeed the latter lies in Ggeom. Comparing determinants, both of which
are roots of unity of order dividing 4p, we see that αN is a root of unity
of order dividing 4p. �

For the remainder of this section, and in the two sections to follow,
we work with the sheaf F on An/Fq, with Fq large enough that

SL(N) ⊂ Ggeom = Garith ⊂ GL(N).

We denote by std the given (“standard”) n-dimensional representation
of Garith, and by std∨ the dual representation. We will be concerned
with the representations

std⊗A ⊗ (std∨)⊗B

of Garith, for each pair of integers (A,B) with 0 ≤ A,B ≤ n (excluding
the case a = b = 0, the trivial representation). We denote

MA,B := dim(std⊗A ⊗ (std∨)⊗B)Garith ,

the dimension of the space of invariants in std⊗A ⊗ (std∨)⊗B, and by

MA,B(Fq)

the “empirical moment”

MA,B(Fq) := (1/qn)
∑

(t1,...,tn)∈An(Fq)

S(t1, t2, ...tn,Fq)AS(t1, t2, ...tn,Fq)
B
.

We know that MA,B is the large q limit of MA,B(Fq). Our concern is
with estimating the difference

MA,B −MA,B(Fq).

5. Explicit calculation of MA,B(Fq)

For any (A,B), the empirical moments MA,B(Fq) and MB,A(Fq) are

complex conjugates of each other (after any embedding of Q` into C).
So we will assume from now on that

A ≥ B.

In the affine space AA × AB, with coordinates (x1, ..., xA, y1, ..., yb),
denote by V (A,B, n) ⊂ AA ×AB the closed subscheme defined by the
n equations ∑

a≤A

xda =
∑
b≤B

ydb , 1 ≤ d ≤ n.
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[In the case B = 0, V (A, 0, n) ⊂ AA is the closed subschema defined
by the n equations ∑

a≤A

xda = 0, 1 ≤ d ≤ n.]

Lemma 5.1. For Fq a finite field of characteristic p > n, the points of
V (A,B, n)(Fq) have the following explicit description.

(1) If n ≥ A = B > 0, then a point (x1, ..., xA, y1, ..., yA) ∈ AA+A(Fq)
lies in V (A,A, n)(Fq) if and only if the two lists (x1, ..., xA) and
(y1, ..., yA) are rearrangements of each other, i.e. if and only
the first A elementary symmetric functions agree on them.

(2) If n ≥ A > B ≥ 0, then a point (x1, ..., xA, y1, ..., yB) ∈ AA+B(Fq)
lies in V (A,B, n)(Fq) if and only if the two lists of length A,
(x1, ..., xA) and (y1, ..., yB, 0, 0.., 0) (the second list obtained by
padding out the list of yi’s by appending A−B zeros) are rear-
rangements of each other.

(3) (a special case of (2) above) If n ≥ A and B = 0, the only point
of V (A, 0, n)(Fq) is (0, ..., 0).

Proof. Because the characteristic p > n, for A ≤ n the equality of the
first A Newton symmetric functions is equivalent to the equality of the
first A elementary symmetric functions. �

Lemma 5.2. For n ≥ A ≥ B ≥ 0, but (A,B) 6= (0, 0), and Fq a finite
field of characteristic p > n, we have

MA,B(Fq) = (−1/
√
q)A+B#V (A,B, n)(Fq).

Proof. Expand each term S(t1, t2, ...tn,Fq)AS(t1, t2, ...tn,Fq)
B

of the sum
defining MA,B(Fq). By definition, we have

S(t1, t2, ...tn,Fq) := (−1/
√
q)
∑
x∈Fq

ψFq(x
N+1 +

n∑
i=1

tix
i).

Its A′th power is then

S(t1, t2, ...tn,Fq)A = (−1/
√
q)A

∑
x1,...,xA∈Fq

ψFq(
∑
a≤A

(xN+1
a +

n∑
i=1

tix
i
a)).

The B’th power of its complex conjugate is 1 if B = 0, and for B > 0
it is

S(t1, t2, ...tn,Fq)
B

= (−1/
√
q)B

∑
y1,...,yB∈Fq

ψFq(−
∑
b≤B

(yN+1
b +

n∑
i=1

tiy
i
b)),
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So MA,B(Fq) is (−1/
√
q)A+B(−1/q)n times∑

t1,...,tn∈Fq

∑
x1,...,xA,y1,...,yB

ψFq(
∑
a≤A

xN+1
a −

∑
b≤B

yN+1
b +

n∑
i=1

ti(
∑
a≤A

xia−
∑
b≤B

yib)).

Reversing the order of summation, and using orthogonality of charac-
ters, we see that MA,B(Fq) is (−1/

√
q)A+B times∑

(x1,...,xA,y1,...,yB)∈V (A,B,n)(Fq)

ψFq(
∑
a≤A

xN+1
a −

∑
b≤B

yN+1
b ).

From the previous lemma, we know that for a point i(x1, ..., xA, y1, ..., yB)
in V (A,B, n)(Fq), the lists (x1, ..., xA) and (y1, ..., yB, 0, 0.., 0) are rear-
rangements of each other. The function

∑
a≤A x

N+1
a −

∑
b≤B y

N+1
b van-

ishes at such a point, and hence this last sum is just #V (A,B, n)(Fq).
�

Proposition 5.3. For n ≥ A > 0, MA,0(Fq) = M0,A(Fq) = (−1/
√
q)A,

and MA,0 = M0,A = 0.

Proof. The first assertion is immediate from the previous two lemmas,
and the second follows because MA,0 (resp. M0,A) is the large q limit
of MA,0(Fq) (resp. of M0,A(Fq)). �

Corollary 5.4. If N = n, the group Ggeom for our sheaf F is {A ∈
GL(n)| det(A)p = 1}.

Proof. In the previous section, we have seen that over Fp2 we have
inclusions (remember N = n here)

SL(n) ⊂ Ggeom ⊂ Garith ⊂ {A ∈ GL(n)| det(A)2p = 1}.

Hence det(F)⊗p is a lisse rank one sheaf on An
Fp

which is of order

dividing 2. But the group H1(An
Fp
, µ2) vanishes, because p is odd. So

we have inclusions

SL(n) ⊂ Ggeom ⊂ {A ∈ GL(n)| det(A)p = 1}.

We must rule out the possibility that Ggeom is SL(n). But if it were,
then det(F), would be a geometrically trivial summand of F⊗n, and
Mn,0 would be nonzero. �

Proposition 5.5. Suppose n ≥ A > B > 0. For C := A−B, we have
MA,B = 0,

MA,B(Fq) = O((1/
√
q)C),

and (
√
q)CMA,B(Fq) has a nonzero large q limit.
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Proof. In this case, 0 < A − B < n ≤ N , so already the scalars in
SL(N), namely µN , act by a nontrivial character, namely the A−B’th
power of the “identical” character ζ 7→ ζ, in the representation

std⊗A ⊗ (std∨)⊗B.

A point in V (A,B, n)(Fq) is of the form (x1, ..., xA, y1, ..., yB) such that
at least C := A−B of the xi vanish, and such that the list of (at most
B) nonvanishing xa’s is a rearrangement of the list of nonvanishing yb’s.
Now break up V (A,B, n)(Fq) by the number d of distinct nonzero xa
in a point. There is exactly one point whose d is zero. For given d
with B ≥ d ≥ 1, the number of points with d distinct nonzero xa is the
product of

∏d
i=1(q − i) with a strictly positive combinatorially defined

integer, call it D(A,B, n, d). Thus we have

#V (A,B, n)(Fq) = D(A,B, n,B)qB +O(qB−1).

Dividing by
√
qA+B, we see that

MA,B(Fq) = (−1/
√
qA+B)#V (A,B, n)(Fq)

is

= (−1)A+BD(A,B, n,B)/
√
qC +O(1/

√
qC+2).

�

Proposition 5.6. For n ≥ A ≥ 1, we have the following results.

(1) For A = 1, M1,1(Fq)=1, and M1,1 = 1.
(2) For A = 2, we have

M2,2(Fq) = 2− 1/q.

(3) For n ≥ A ≥ 3, we have

MA,A(Fq) = A!− A(A− 1)A!/4q +O(1/q2).

Proof. Assertion (1) is immediate from the fact that #V (1, 1, n)(Fq) =
q. Assertion (2) is immediate from the fact that #V (2, 2, n)(Fq) =
2q(q − 1) + q = 2q2 − q.

For n ≥ A ≥ 3, we break up V (A,A, n)(Fq) by the number d of
distinct coordinates xa in a point. The number of points with precisely
d distinct xa’s is the product of

∏d−1
i=0 (q − i) with a strictly positive

combinatorially defined integer, call it D(A,A, n, d).

We have D(A,A, n,A) = A!, and D(A,A, n,A−1) =
(
A
2

)2×(A−2)!.

[The term
(
A
2

)2
is to specify on each side the placement of the double

root, and the term (A − 2)! is to specify the reordering of the A − 2
simple roots.
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So looking at the two highest order terms, we have

#V (A,A, n)(Fq) =

A!
A−1∏
i=0

(q − i) +

(
A

2

)2

(A− 2)!
A−2∏
i=0

(q − i) +O(qA−2).

Expanding out
∏A−1

i=0 (q − i), we get

A−1∏
i=0

(q − i) = qA − (A(A− 1)/2)qA−1 + lower terms.

Thus #V (A,A, n)(Fq) is

A!qA − (A(A− 1)/2)qA−1 +

(
A

2

)2

(A− 2)!qA−1 +O(qA−2) =

= A!qA − (A(A− 1)A!/4)qA−1 +O(qA−2).

Dividing through by qA gives the assertion. �

6. Cohomological consequences

We have seen in Lemma 5.2 that, up to a factor (−1/
√
q)A+B, MA,B

is a polynomial in q, in principle quite explicit. A natural question is
the extent to which we can infer from such information the vanishing,
or nonvanishing, of various cohomology groups. Here are some results
along this line.

Let us begin with the fact that M1,1(Fq) = 1. By the Lefschetz Trace
Formula, this is equivalent to

2n∑
i=0

(−1)iTrace(FrobFq |H i
c(An

Fq
,F ⊗ F∨)) = qn.

Already the trace on the H2n
c is qn. This suggests that H i

c(An
Fq
,F⊗F∨)

vanishes for i 6= 2n. We will now show that this is in fact the case.
Here is an equivalent formulation.

The sheaf F ⊗ F∨ = End(F) has a direct sum decomposition

End(F) = Q` ⊕ End0(F),

in which End0(F) is the subsheaf of endomorphisms of trace zero. The
fact that M1,1(Fq) = 1 is thus equivalent to

2n∑
i=0

(−1)iTrace(FrobFq |H i
c(An

Fq
, End0(F))) = 0.

Lemma 6.1. The cohomology groups H i
c(An

Fq
, End0(F)) all vanish.
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Proof. Compute the cohomology via the Leray spectral sequence for
the projection

pr : An → An−1, (a1, ..., an) 7→ (a2, ..., an).

It suffices to show that all the Ripr!End
0(F) vanish. By proper base

change, it suffices to do this fibre by fibre. On the fibre over the point
a := (a2, ..., an), say with values in some finite extension k/Fq, we have
the polynomial

fa(x) := xN+1 +
n∑
i=2

aix
i ∈ k[x],

and our sheaf F on this fibre is the (naive) Fourier Transform of Lψ(fa).
So the restriction of F to this fibre is geometrically irreducible, and its
M1,1(k) is 1, by the same calculation as above. Therefore the restric-
tion to this fibre of End0(F) has no H2

c (because F on this fibre is
geometrically irreducible), and the alternating sum of traces of Frobk
on its H i

c is zero. On the other hand, its H0
c vanishes (because End0(F)

is lisse on an open curve), and hence its H1
c must vanish, as all powers

of Frobk have trace zero on this H1
c . �

At the opposite extreme, we have the following result.

Lemma 6.2. For n ≥ A ≥ 1, the cohomology group

H2n−1
c (An

Fp
,F⊗A ⊗ (F∨)⊗A−1)

is nonzero, and its subspace of highest weight 2n− 1 is nonzero.

Proof. This is immediate from Proposition 5.5. First it gives the van-
ishing of the H2n

c . Then it tells us that

2n−1∑
i=0

(−1)iTrace(FrobFq |H i
c(An

Fq
,F⊗A ⊗ (F∨)⊗A−1)

is O(
√
q2n−1), and that after division by

√
q2n−1, its large q limit is

nonzero. By Deligne, the H i
c for i < 2n − 1 have lower weight, so we

get the asserted nonvanishing of the weight 2n−1 part of theH2n−1
c . �

Lemma 6.3. For n ≥ A ≥ 2, the weight 2n− 2 part of

H2n−1
c (An

Fp
,F⊗A ⊗ (F∨)⊗A)

is nonzero, and has dimension at least A(A − 1)A!/4, but its weight
2n− 1 part vanishes.
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Proof. By Proposition 5.6, we have

2n−1∑
i=0

(−1)iTrace(FrobFq |H i
c(An

Fq
,F⊗A ⊗ (F∨)⊗A)) =

= −(A(A− 1)A!/4)qn−1 + a polynomial in q of lower degree.

This already shows that the weight 2n − 1 part of H2n−1
c vanishes.

If we look at the parts of weight 2n − 2, only (H2n−1
c )wt.=2n−2 and

(H2n−2
c )wt.=2n−2 are possibly nonzero, and we get

−Trace(Frobq|(H2n−1
c )wt.=2n−2) + Trace(Frobq|(H2n−2

c )wt.=2n−2) =

= −(A(A− 1)A!/4)qn−1.

We rewrite this as

Trace(Frobq|(H2n−1
c )wt.=2n−2) =

= (A(A− 1)A!/4)qn−1 + Trace(Frobq|(H2n−2
c )wt.=2n−2),

which gives the asserted result. �

7. Another example

We fix an odd integer n ≥ 3, and a prime p not dividing n(n−1). We
consider, in characteristic p, the two parameter family of hyperelliptic
curves

y2 = xn + ax+ b

over the open set of A2, parameters (a, b), where the discriminant of
xn + ax+ b, namely

∆ = ∆(a, b) := (n− 1)n−1an + nnbn−1,

is invertible. For this family of curves, its H1 along the fibres, Tate
twisted by 1/2, is a lisse sheaf F on A2[1/∆] of rank 2g = n− 1 which
is pure of weight zero. Its trace function at a point (a, b) with values
in a finite extension Fq is given by

Trace(Frob(a,b),Fq |F) = (−1/
√
q)
∑
x∈Fq

χ2,Fq(x
n + ax+ b).

Here χ2,Fq denotes the quadratic character of F×q , extended by zero to

all of Fq. To define
√
q, we fix a choice of

√
p in Q` and then define

√
q

to be the appropriate power of
√
p.

One knows that for this F , we have Ggeom = Garith = Sp(n − 1),
cf. [Ka-ACT, Thm. 5.4 (1)]. In particular, the standard representa-
tion is irreducible, and hence M1,0 = 0, i.e., H4

c (A2
Fp

[1/∆],F) vanishes.

Moreover, we have
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Lemma 7.1. For any finite extension Fq/Fp, M1,0(Fq) = 0.

Proof. By definition, M1,0(Fq) is (1/#A2[1/∆](Fq))(−1/
√
q) times the

sum ∑
(a,b)∈A2[1/∆](Fq),x∈Fq

χ2,Fq(x
n + ax+ b).

If this sum extended over all (a, b) ∈ A2[(Fq), it would vanish; simply
reverse the order of summation, i.e., write it as∑

(a,x)∈A2(Fq)

∑
b∈Fq

χ2,Fq(x
n + ax+ b),

and notice that the innermost sum
∑

b∈Fq
χ2,Fq(x

n + ax+ b) vanishes.
So it remains to show that∑

(a,b)∈A2(Fq)|∆(a,b)=0,x∈Fq

χ2,Fq(x
n + ax+ b) = 0.

The condition ∆(a, b) = 0 is the condition

(n− 1)n−1an + nnbn−1 = 0,

which we rewrite as

(−a/n)n = (b/(n− 1))n−1.

This means precisely that (−a/n, b/(n−1)) is of the form (tn−1, tn) for
a unique t ∈ Fq. So our sum is∑

t∈Fq ,x∈Fq

χ2,Fq(x
n − ntn−1x+ (n− 1)tn).

For t = 0, the inner sum becomes
∑

x∈Fq
χ2,Fq(x

n), which vanishes

because n is odd. For t 6= 0, we use the fact that xn−ntn−1x+(n−1)tn

is homogeneous in x, t of degree n, so we write it as tn(Xn−nX+n−1)
with X := x/t. The sum over t 6= 0 becomes∑

t∈F×
q ,X∈Fq

χ2,Fq(t
n(Xn − nX + n− 1)),

which is the product

(
∑
t∈F×

q

χ2,Fq(t
n))(

∑
X∈Fq

χ2,Fq(X
n − nX + n− 1)),

in which the first factor vanishes (again because n is odd). �

In fact, we have the following explanation of this vanishing.

Lemma 7.2. The cohomology groups H i
c(A2

Fp
[1/∆],F) all vanish.
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Proof. The idea is simply to imitate, cohomologically, the argument
given above.

We first define a sheaf F on all of A2 which agrees with our previously
defined F on A2[1/∆] and whose trace function at any point (a, b) ∈
A2(Fq) is

(−1/
√
q)
∑
x∈Fq

χ2,Fq(x
n + ax+ b).

For this, we consider the sheaf Lχ2(xn+ax+b) on the A3 of (x, a, b), with
the understanding that this sheaf has been extended by zero across the
points where xn + ax + b = 0. For the projection of A3 onto A2 given
by pr(x, a, b) := (a, b), Ripr!(Lχ2(xn+ax+b)) vanishes for i 6= 1 (check
fibre by fibre). The Tate-twisted sheaf R1pr!(Lχ2(xn+ax+b))(1/2) is the
desired F .

We wish to show that all the groups H i
c(A2

Fp
[1/∆],F) vanish. Using

the excision long exact sequence

→ H i
c(A2

Fp
[1/∆],F)→ H i

c(A2
Fp
,F)→ H i

c((∆ = 0)Fp
,F)→ ...

we are reduced to showing the vanishing of all the groups H i
c(A2

Fp
,F)

and of all the groups H i
c((∆ = 0)Fp

,F).

To show the vanishing of the groups H i
c(A2

Fp
,F), we notice first that,

from the construction of F as (a Tate twist of) the only nonvanishing
Rjpr!(Lχ2(xn+ax+b)), namely the R1, we have

H i
c(A2

Fp
,F) = H i+1

c (A3
Fp
,Lχ2(xn+ax+b))(1/2).

To show that these groups vanish, we use the projection pr1,2 of A3

onto A2 given by (x, a, b) 7→ (x, a).
For this projection, all the Rj(pr1,2)!(Lχ2(xn+ax+b)) vanish, as one sees

looking fibre by fibre (the cohomological version of summing over b).
To show that the groups H i

c((∆ = 0)Fp
,F) all vanish, we use the

construction of F once again, this time to write

H i
c((∆ = 0)Fp

,F) = H i+1
c (A2

Fp
,Lχ2(xn−ntn−1x+(n−1)tn)),

where the A2 in question is that of (x, t). By excision on this A2, it
suffices to treat separately the open set A1×Gm, coordinates x, t, and
the line t = 0. On this line, with coordinate x, we are looking at the
groups

H i+1
c (A1

Fp
,Lχ2(xn)),

which all vanish. On the product A1×Gm, we make the (t, x/t) substi-
tution to write our sheaf as the external tensor product of Lχ2(Xn−nX+n−1)

on the first A1 factor with Lχ2(tn) on the Gm factor. The vanishing
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then results from Kunneth, because on the second factor all the groups
Hj
c ((Gm)Fp

,Lχ2(tn)) vanish (again because n is odd). �

Thanks to a marvelous formula of Davenport-Lewis, we do have
square root cancellation for M1,1(Fq).
Lemma 7.3. We have M1,1(Fq) = 1 +O(1/q).

Proof. Davenport and Lewis prove (cf. [Dav-Lew, (19) on page 55 ] or
[Ka-MF, Lemma 8]) that for any n ≥ 0, we have∑

(a,b)∈A2(Fq)

(
∑
x∈Fq

χ2,Fq(x
n + ax+ b))2 = q2(q − 1).

The sum over (a, b) ∈ A2(Fq) with ∆ = 0 is, as we have seen above,
the sum ∑

t∈F×
q

(χ2,Fq(t
n)
∑
x∈Fq

χ2,Fq(x
n − nx+ n− 1))2 =

= (q − 1)(
∑
x∈Fq

χ2,Fq(x
n − nx+ n− 1))2 = O(q2).

Thus the sum over (a, b) ∈ A2[1/∆](Fq) is q2(q − 1) +O(q2). Dividing
by # A2[1/∆](Fq) = q2(q − 1), we find the asserted result. �

8. A third example

We fix an even integer n ≥ 4, and a prime p not dividing n(n−1). We
consider, in characteristic p, the two parameter family of hyperelliptic
curves

y2 = xn + ax+ b

over the open set of A2, parameters (a, b), where the discriminant of
xn + ax+ b, namely

∆ = ∆(a, b) := (n− 1)n−1an + nnbn−1,

is invertible. For this family of curves, its H1 along the fibres, Tate
twisted by 1/2, is a lisse sheaf F on A2[1/∆] of rank 2g = n− 2 which
is pure of weight zero. Its trace function at a point (a, b) with values
in a finite extension Fq is given by

Trace(Frob(a,b),Fq |F) = (−1/
√
q)(1 +

∑
x∈Fq

χ2,Fq(x
n + ax+ b)).

One knows [Ka-ACT, Thm. 5.17 (1)] that for this F , we have Ggeom =
Garith = Sp(n − 2). In particular, the standard representation is irre-
ducible, and hence M1,0 = 0, i.e., H4

c (A2
Fp

[1/∆],F) vanishes. However,

in contradistinction to the case when n is odd, we have the following
lemma.
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Lemma 8.1. We have

M1,0(Fq) = −1/
√
q +O(1/q).

Proof. Here the discriminant ∆(a, b) vanishes precisely when

(n− 1)n−1an = nnbn−1,

in other words when (a, b) is of the form (a, b) = (ntn−1, (n−1)tn) for a
unique t ∈ Fq. Thus there are q points in A2(Fq) at which ∆ vanishes.
By definition, M1,0(Fq) is (−1/

√
q)(1/(q(q − 1)) times the sum∑

(a,b)∈A2[1/∆](Fq)

(1 +
∑
x∈Fq

χ2,Fq(x
n + ax+ b)).

If this sum extended over all points (a, b) in A2(Fq), it would be q2 (from
summing the term 1); the sum over all (a, b, x) of χ2,Fq(x

n + ax + b)
vanishes (for each (a, x), sum over b).

The sum over the Fq points where ∆ vanishes is the sum∑
(t,x)∈A2(Fq)

(1 + χ2,Fq(x
n + ntn−1x+ (n− 1)tn)) =

= q +
∑

(t,x)∈A2(Fq)

χ2,Fq(x
n + ntn−1x+ (n− 1)tn).

In this second sum, the sum over the points (0, x) is q − 1 (because n
is even). For each t 6= 0, we write

xn + ntn−1x+ (n− 1)tn = tn(Xn + nX + n− 1),

with X := x/t. Because n is even, for each t 6= 0 the sum over x of
χ2,Fq(x

n+ntn−1x+(n−1)tn) is independent of t, equal to the quantity∑
x∈Fq

χ2,Fq(x
n + nx+ n− 1).

So all in all, the sum over the Fq points where ∆ vanishes is

2q − 1 + (q − 1)
∑
x∈Fq

χ2,Fq(x
n + nx+ n− 1).

So M1,0(Fq) is (−1/
√
q)(1/(q(q − 1)) times the quantity

q2 − 2q + 1− (q − 1)
∑
x∈Fq

χ2,Fq(x
n + nx+ n− 1).

One checks easily that the polynomial xn + nx+ n− 1 has no triple
roots, and that its unique double root is x = −1. We readily compute
that

xn+nx+n−1 = (x+1)2Pn−2(x), Pn−2(x) = xn−2−2xn−3+3xn−4+...+(n−1).
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Thus Pn−2(x) is square free. As xn + nx + n − 1 vanishes at x = −1,
we have ∑

x∈Fq

χ2,Fq(x
n + nx+ n− 1) =

∑
x∈Fq ,x 6=−1

χ2,Fq(Pn−2(x)).

The value of Pn−2(x) at x = −1 is n(n − 1)/2) (L’Hôpital’s rule), so
we get∑

x∈Fq ,x 6=−1

χ2,Fq(Pn−2(x)) = −1− χ2,Fq(n(n− 1)/2)− Sn−2(Fq).

with
Sn−2(Fq) = −(1 +

∑
x∈Fq

χ2,Fq(Pn−2(x))).

Here Sn−2(Fq) is the trace of FrobFq on H1 of the complete nonsingular
model of the hyperelliptic curve y2 = Pn−2(x)) of genus (n − 4)/2. In
particular, Sn−2(Fq) = O(

√
q).

Thus M1,0(Fq) is (−1/
√
q)(1/(q(q − 1)) times the quantity

(q − 1)2 − (q − 1)(−1− χ2,Fq(n(n− 1)/2)− Sn−2(Fq)) =

= q(q − 1) +O(q3/2).

Thus
M1,0(Fq) = −1/

√
q +O(1/q).

�

Lemma 8.2. The cohomology group H4
c (A2

Fp
[1/∆],F) vanishes, but the

weight 3 part of H3
c (A2

Fp
[1/∆],F) is one-dimensional, and FrobFq acts

on it as q3/2.

Proof. The vanishing of the H4
c is the fact that M1,0 = 0. By the

Lefschetz trace formula, M1,0(Fq) is (1/(q(q − 1)) times the two term
sum

−Trace(FrobFq |H3
c (A2

Fp
[1/∆],F) + Trace(FrobFq |H2

c (A2
Fp

[1/∆],F).

From our estimate that M1,0(Fq) = −1/
√
q + O(1/q), we see that this

sum is −q3/2 +O(q). As H i
c is mixed of weight ≤ i, we get the asserted

result. �

Remark 8.3. The reader may be concerned by the apparent sign am-
biguity in the statement above, that the eigenvalue of FrobFq on the

weight three part of H3
c (A2

Fp
[1/∆],F) is q3/2. Here is a more intrinsic

way to say this. Instead of F , consider the sheaf H which is the H1

along the fibres of our family of curves y2 = xn + ax + b. In terms of
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H, we defined F to be the one-half Tate twist H(1/2), which involved
a choice of

√
p and a consequent determination of

√
q. The sheaf H is

pure of weight one, the cohomology group H3
c (A2

Fp
[1/∆],H) is mixed

of weight ≤ 4, and what is being asserted is that its weight four part
is one-dimensional, with FrobFq acting as q2.

Exactly as in Lemma 7.3, the Davenport-Lewis formula gives square
root cancellation for M1,1(Fq).

Lemma 8.4. We have M1,1(Fq) = 1 +O(1/q).

Proof. By definition, M1,1(Fq) is (1/q)(1/(q(q − 1)) times the sum∑
(a,b)∈A2[1/∆](Fq)

(1 +
∑
x∈Fq

χ2,Fq(x
n + ax+ b))2.

Expanding the square, this is

q(q − 1) + 2
∑

(a,b)∈A2[1/∆](Fq)

∑
x∈Fq

χ2,Fq(x
n + ax+ b)+

∑
(a,b)∈A2[1/∆](Fq)

(
∑
x∈Fq

χ2,Fq(x
n + ax+ b))2.

If these last two summations extended over all (a, b) ∈ A2(Fq), the first
would vanish, and the second would be q2(q − 1) by the Davenport-
Lewis formula. So our sum is

q(q − 1)− 2
∑

(a,b)∈A2(Fq),∆(a,b)=0

∑
x∈Fq

χ2,Fq(x
n + ax+ b)

+q2(q − 1)−
∑

(a,b)∈A2(Fq),∆(a,b)=0

(
∑
x∈Fq

χ2,Fq(x
n + ax+ b))2.

The summands for (a, b) = (0, 0) are respectively q− 1 and (q− 1)2,
so both are O(q2). For each of the q− 1 summands with (a, b) 6= (0, 0)
but ∆(a, b) = 0, the polynomial xn + ax+ b has precisely n− 1 roots,
of which n − 2 > 0 are simple roots. In particular, this polynomial is
not geometrically a square, so the Weil bound gives

|
∑
x∈Fq

χ2,Fq(x
n + ax+ b)| ≤ (n− 1)

√
q.

So all in all, the total contribution of the ∆ = 0 terms is O(q2), and
our sum over A2[1/∆](Fq) is q2(q − 1) + O(q2). Dividing through by
q2(q − 1) gives the asserted result. �
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