Mathematical Research Letters 6, 613-624 (1999)

SPACE FILLING CURVES OVER FINITE FIELDS

NicHorLas M. KArz

Introduction

In this note, we construct curves over finite fields which have, in a certain
sense, a “lot” of points, and give some applications to the zeta functions of curves
and abelian varieties over finite fields. In fact, we found the basic construction,
given in Lemma 1, of curves in A™ which go through every rational point, as
part of an unsuccessful attempt to find curves of growing genus over a fixed finite
field with lots of points in the sense of the Drinfield-Vladut bound [2]. The idea
of applying that construction along the lines of this note grew out of an August
1996 conversation with Ofer Gabber about whether every abelian variety over
a finite field was a quotient of a Jacobian, during which he constructed, on the
fly, a proof of that fact. A variant of his proof appears here in Theorem 11. It
is a pleasure to acknowledge my debt to him.

The basic constructions

Lemma 1. Let k be a finile field, p its characteristic, k an algebraic closure of
k, E/k a finite extension inside k, and n > 1 an integer. There exists a smooth,
geometrically connected curve C/k and a closed immersion of k-schemes

C CA"®zk
which induces a bijection of E-valued points
C(E)=A"(E).

Construction-proof. If n =1, take C = A" ®z k. If n = r+1 with r > 1, choose
a sequence of r nonzero polynomials in one variable over k, fi(X),..., fr(X),
with the following three properties:

1) For each i, fi(z) =0 for every z € E.

2) For each i, the degree d; of f; is prime to p.

3) The degrees are strictly increasing: di < da < -+ < d,.
[Here is a simple way to make such a choice. Write ¢ := #F, and pick a

strictly increasing sequence of r positive integers each of which is prime to p, say
e1 < eg < --- < ep. Then take each f;(X) := (X7 — X)X ]
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614 NICHOLAS M. KATZ

In A" ® k with coordinates X,Y7,...,Y,, consider the closed subscheme
C/k defined by the r equations

(V)1 =Y = fi(X), i1=1,...,r

It is obvious from these equations that every E-valued point of A" lies in C'. We
must see that C/k is a smooth curve which is geometrically connected.

First of all, C/k is a smooth curve, for it is the fibre product over A! ® k
of r finite etale galois coverings & — A! ® k, with & the affine plane curve
(V) —Y = f;(X) in A2®k.

It remains to see that C ®j, k is connected. This results from Artin-Schreier
theory. On A ® k, or indeed on any smooth, affine, connected scheme S / k, the
Artin-Schreier sequence relative to g,

— =f9—
0— E — Og f=P)=f1—f Og — 0

gives, via the long exact cohomology sequence, an isomorphism of FE-vector
spaces

HY(S,05)/P(H"(S,05)) = HL (S, E) = Hom(m,(S), E).
Given f in H°(S,0g), the covering of S defined by Y? — Y = f (in A! x §)

Wra”

is finite etale galois with group E (« in F translates Y), so “is” an element
Class(f) in Hom(m(S5), E).

Now return to the case when S is A! ® k and take any nontrivial C-valued
character ¢ of E. If f in k[X] has degree d prime to p, then the composite
homomorphism is known [1, 3.5.4] to have Swan conductor d at oo.

Our C®yk is a finite etale galois covering of A'®@k with group ExEx---x E =
E", corresponding to the r-tuple (fi, f2,..., fr) via

(K[X1/P(k[X]))" = Hy(A' @ k, E") = Hom(m(S), E").

The total space C ®y, k of this covering is connected if and only if the corre-
sponding homomorphism

ClaSS(fl,fg, c 7fr) : 7T1(A1 & E,‘) — E"

is surjective, or equivalently (Pontrajagin duality!) if and only if for every non-
trivial C-valued additive character (v1,2,...,%,) of E”, the composite homo-
morphism

(¢17¢2,---7¢r) OC]aSS(fthv" '7f7”) : ﬂ—l(Al ®l%) - (CX’

is nontrivial. But this composite is just the product

(¢17¢27 v 7¢7‘) o Class(f17f27 ] 7f7‘) = H£¢z(fi)
In this product, Ly, (f;) is trivial if v; itself is trivial, and Ly, (f;) has Swan., =

d; if 1; is nontrivial. Because the d; are all distinct, and at least one ; is
nontrivial, we have

SW&HO@ (H ﬁwz (fl)) = Supz with ; nontriv(di) > 0.
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Hence [], Ly, (fi) must be nontrivial. O

Lemma 2. Let k be a finite field, X/k projective (resp. quasi-projective),
smooth, and geometrically connected of dimension n > 1. Let E/k be a fi-
nite extension. There exists an affine (resp. quasi-affine) open set U C X which
contains all the E-valued points of X, i.e., U(E) = X (E).

Proof. To fix ideas, say X C P @ k. We need only construct an affine open set
U in PV ® k which contains all the E-valued points of PV ® k, for then X N U is
the desired affine (resp. quasi-affine) open set of X. To do this, denote by K/E
the field extension of degree N + 1, and pick a basis ag, a1,... ,an of K/E.
Denote by H the form of degree N 4+ 1 in Xg,..., Xy with coefficients in F
defined by

H(X’s) := Normg /g (agXo +--- + anXn) .

Then H is nonzero at every E-valued point of PY. For each o in Gal(E/k),
the form H? has the same property (indeed, if we extend o to an element &
in Gal(K/k) which induces o, then &(ag, a1, ...,an) is another basis of K/E,
and H7 is its norm form to E). So Normpg(H) is a form with coeflicients in &
which is nonzero at every E-valued point of PY. We may take for U the affine
open set (PY ® k) [1/Normpg . (H)]. O

Lemma 3. Let k be a finite field, U/k a quasi-affine, smooth, and geometrically
connected of dimenstion n > 1. Let E/k be a finite extension. There exists an
open set V. C U which contains all the E-valued points of U and which admits
an etale map to A™ ® k.

Proof. Say U is open in the affine scheme U. First view U(FE) as a finite closed
subscheme Z of U, by grouping its points into orbits under Gal(E/k). More
precisely, Z is the disjoint union of the finitely many closed points of U the
degree over k of whose residue fields divides deg(E/k), with its reduced structure.
Thus, Z is a closed subscheme of U which is finite etale over k. This same Z
is closed in U, since we may describe it as the disjoint union of the finitely
many closed points of U whose residue field degrees over k divide deg(U/k) and
which lie in U. Denote by A the coordinate ring of U, I C A the ideal defining
Z. At each point P in Z, pass to the local ring Og p of P in U, and pick n
elements f1 p, f2.p,-.. , fnp which form a k(P)-basis of m/m?, m the maximal
ideal. The ring A/I? is just the product ring []p., Op p/m?. So, we can find
functions fi,..., f, in A such that, for each i and each P, f; induces f; p in
(’)ap/mz. Restrict each function f; to U, and view (fi,..., f,) as a map 7 of
U to A™. This map = is etale at each point P in Z by construction. Thus, the
set V of points of U at which 7 is etale is open, and contains Z. O

Lemma 4. Let k be a finite field, V/k smooth and geometrically connected of
dimension n > 1, and

T V-A"®%k
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an etale map of k-schemes. For each integer r > 1, denote by k. the extension
field of k inside k of degree r over k. For each v > 1, apply Lemma 1 with
E =k, to produce a closed immersion

i Cr/k— A" ®k,
with C./k a smooth, geometrically connected curve such that
Cr(ky) = A" (k).
Form the fibre product

DT = Cr XA Qk Vv % |4

C, L AR
1) For everyr, D, /k is a smooth curve, space-filling in V' for k,., i.e., via the
closed immersion
’ZZDT = Cr XAn@kV — ‘/,

we have
D, (k) =V (k).
2) For all sufficiently large v, D, /k is geometrically connected.
Proof. 1) is obvious from the cartesian diagram defining D,., in which 7 is etale,
C,/k is a smooth curve, and i, is surjective on k,-valued points.
To prove 2), we argue as follows. The etale map 7 need not be finite etale, but

there is a dense open set j : W < A" ®k over which 7 is finite etale (just because
7 is finite etale over the generic point of A” ® k). Take the entire diagram

D, :=C, xpngp V. —— V

l I

C, L ATk

in the category of A™ ® k-schemes, and pull it back to the open set W, i.e., base
change it by j: W — A™ ® k. We get a diagram
D, w " Vw

Cr.w LN 7 74

i |

C. L A"®k
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In this diagram, both W and Vjy are smooth over k£ and geometrically connected,
w is finite etale, and 7,y : C, w — W is spacefilling for k,.. Now C). y is open in
C,, so it is either dense and open in C;. and itself geometrically connected, or it
is empty. For large r, C,. w is not empty, because W (k,) is nonempty for large r
(by Lang-Weil, because W/k is geometrically irreducible), and i, w : Cp.ww — W
is spacefilling for k.. Let us temporarily admit the truth of

Lemma 5. Let k be a finite field, £/k and W/k two smooth, geometrically con-
nected k-schemes of the same dimension n > 1, and

&

W
a finite etale k-morphism. Suppose given an integer rq > 1, and for all integers
r > 19, a smooth, geometrically connected curve C,./k and a closed k-immersion
ir : Cp, — W which is spacefilling for k,, i.e., C.(k.) = W (k,). Form the fibre
product

D, <, €

Lk

c, W

Then for r sufficiently large, the curve D, /k is geometrically connected.

Applying this lemma to our situation (€ is Viy, C, is C, w ), we find that for
large 7, D, w is geometrically connected. We wish to infer that D, /k itself is
geometrically connected. If it is not, then D, ®j k is a union of two or more
connected components, each of which is etale over C, ®;, k. But as etale maps
are open, the image of each connected component meets the dense open set
Crw Qk E, and hence D, w ®y k is not connected, contradiction. QED for
Lemma 4 modulo Lemma 5. O

Proof of Lemma 5. Fix a geometric point w in W ® k, and view the finite
etale covering m : &€ — W as an action of the group m1(W,w) on the finite set
S := 77 }(w), i.e., a homomorphism

p:m(W,w) — Aut(S).

The geometric connectedness of £ means precisely that via this action, the sub-
group
(W, w) = m (W @4 k,w) C m (W, w)

acts transitively on S. Recall the short exact sequence



618 NICHOLAS M. KATZ

degree

1 — 7" (W,w) - m(W,w) —— Gal(k/k) — 1

I
7

Denote by
Cgeom C I' C Aut(S)
the images in Aut(S) of 7™ (W,w) and of 71 (W, w) respectively under p. The
quotient I'/T'geom is cyclic, say of order N, generated by p(F') for any fixed
element F' in m (W, w) of degree 1. For each i in Z/NZ, denote by I'(¢) C T the
set of elements whose degree mod N is i, i.e., I'(7) is the coset p(F*)'geom-
By Chebotarev (cf., [5, 9.7.13]) for every r > 0, we have:

(xxr, £/W) The images under p of all degree r Frobenius elements in 1 (W, w),
i.e., all elements in all Frobenius conjugacy classes

Frobg, ., in m (W, w)
attached to k,-valued points w of W, fill the coset I'(r).

We will show that for any r > rg large enough that (xxr, £/W) holds, D, is
geometrically connected. To see this, pick a geometric point ¢, in C,, take for w
its image in W, and consider the composite homomorphism

T (CT‘7 CT‘)

which we label

w1 (ir,w)

m(W,w) —2— T C Aut(S),

pr T (Crycr) — T C Aut(S).
Now D, /k is geometrically connected if and only if the subgroup
pr (T$7(Cpry cr)) C Aut(S)
acts transitively on S. A sufficient condition for this transitivity is that
(*7) pr (13" (Cry ¢r)) = Tgeom,

(because the geometric connectedness of £ means that Fgeom acts transitively).
A sufficient condition for

Pr (ﬂ_%eom (C'ra Cr)) = Fgeoma
is that the condition (x*r, D,.,C,) hold:

(x*7, Dg,C,) The images under p, of all the Frobenius elements of degree r in
m1(Cr, cp) fill T'(7).

Indeed, every element in Igeom := I'(0) is of the form A™'B with A and B in

I'(r) = p(F")'geom, and hence every element of I'geom Wwill be the image under
pr of a ratio (Frobkr,x)fl(Frobkmy) for two points x and y in C,(k,). Such a
ratio lies in 75°°" (Cy, ¢;).

But C.(k,.) = W(k,) by assumption, so every degree r Frobenius element

in m (W,w) is the image under 7 (i, w) of a degree r Frobenius element in
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71(Cpr, ¢r). Therefore (xxr, D,./C,.) is equivalent to (xxr, £/W). In particular,
for large r, (xxr, D, /C,) and hence (*r) hold. O

With an eye to later applications, we extract from the proof of Lemma 5 the
following variant.

Lemma 6. Let k be a finite field, W/k a smooth, geometrically connected k-
scheme, and w a geometric point of W. Suppose given an integer rq > 1, and,
for each integer r > 1o, a smooth geometrically connected k-scheme C,./k and a
k-morphism
friCr— W

which is surjective on k,-valued points. For each r > rg, pick a geometric point
¢r in Cp, and a “chemin” from f.(c,) to w.

Suppose that G is either

1) a finite group, or,

2) GL(n,O,) for some positive integer n and for Oy the ring of integers in a

finite extension of Q, for some prime number [.
3) GL(n,Q,) for some n and some prime .

Suppose given a continuous group homomorphism
p:m(W,w) — G.
We denote
pr T (Crycr) = G
the composite homomorphism

chemin p
—_

T (Cryer) —Lm T (W, f(e) m(W,w) —— G.

Then we have:

a) Forr sufficiently large, we have an equality of images of geometric funda-
mental groups

pr(mi " (Cry er)) = p(ri™" (W, w))

(equality inside G).

b) Suppose in addition that, for each r > 1o, f, is also surjective on ks-valued
points for all divisors s of r. Then for r sufficiently large and sufficiently
divisible, we have an equality of images of fundamental groups

pr(mi(Crcr)) = p(m (W, w))
(equality inside G ).

Proof. In case 1), G finite, we put I' := p(m1 (W, w)), Tgeom = p(7F*" (W, w)),
denote by N the order of the cyclic group I'/T'geom, and denote by I'(i) the set
of elements in I" of degree ¢ mod N. By Chebotarev, for » > 0, the Frobenii of
k,-valued points of W fill the coset I'(r), hence by the surjectivity of the map f,
on k,-valued points, so do the Frobenii of k,-valued points of C, for r > 0. For
these 7, the A~'B argument shows that ratios A~ B of such Frobenii fill Fgeom,
whence a).
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For b), we argue as follows. For each integer i in [0, N — 1] pick an integer
d; =1 mod N and sufficiently large that the Frobenii of k4,-valued points of W
fill the coset I'(7). Then for any r > ro which is divisible by [, d;, the Frobenii
of the points on C, with values in kg4, for  =0,1,...,N —1 fill I".

For case 2), put K := the image p(75°*" (W, w)) in GL(n,0,). By Pink’s
Lemma [4, 8.18.3], there exists an integer d > 1 such that a closed subgroup H of
K is equal to K if and only if H and K have the same image in GL(n, O, /1905).

For each integer r > rg, put H, := the image p,(75°°"(C,,¢,)) in GL(n, O,).
Thus H, is a closed subgroup of K. By case 1), applied to the reduction mod
14 of p, for r > 0, H, and K have the same image in GL(n, 0,/1%0,). So by
Pink’s Lemma H, = K for all such 7.

For b), apply Pink’s Lemma to L := the image p(m (W, w)) in GL(n,O,) and
the subgroups J, := the image p,(74(C,,¢,)) in GL(n,O)) to reduce b) to case
1).

For case 3), use the fact [5, 9.0.7] that any compact subgroup of GL(n,Q;), in
particular the image p(m (W, w)), is conjugate to a closed subgroup of GL(n, O,)
for O, the ring of integers in some finite extension F) of Q; to reduce to case
2). O

As an immediate consequence of case 3) of Lemma 6, we get the following
result of Bertini type.

Corollary 7. Let k be a finite field, W/k a smooth, geometrically connected k-
scheme, and w a geometric point of W. Suppose given an integer ro > 1, and,
for each integer r > rq, a smooth, geometrically connected k-scheme C,./k and a
k-morphism

friCr— W,

which is surjective on k,-valued points. For each r > rg, pick a geometric point
¢r inCyr, and a “chemin” from fr(cr) tow. Letl be a prime number, and F a lisse
Qq-sheaf on W of rank denoted n, corresponding to a continuous homomorphism

p: m(W,w) — GL(n, Q).
Denote by Geeom, 7 on w the Zariski closure of p(m$°*™ (W, w)) in GL(n) ® Q.
Then for r sufficiently large, the pullback sheaf (f.)*(F) on C, has the same
Ggeom ;

Ggeom, (fr)*F on Cp. — Ggeom,]—' on W-

Moreover, if F on W has the property that p(m1 (W, w)) lies in Ggeom, 7 on w(Q1),
then for r sufficiently large the pullback sheaf (f)*(F) on C, has the same prop-
erty, that p(m1(Cyr,c,)) lies in Ggeom, (f)*F on C, (Q).

Theorem 8. Let k be a finite field, X/k smooth and quasi-projective and ge-
ometrically connected, of dimension n > 1. Let E/k be a finite extension.
There exists a smooth, geometrically connected curve Cy/k, and an immersion
7w Cy — X which is bijective on E-valued points.
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Proof. First apply Lemmas 2 and 3 to find an open set V' in X which contains
all the E-valued points and which admits an etale map 7 to A" ® k. Let d :=
degree(E/k), so E is k4. For each r > 1, use Lemma 1 to find a smooth,
geometrically connected curve C,4/k in A™ ® k which is spacefilling for k4.
Take D,.q/k in V to be the fibre product

D,g:= Crqg Xpngr V.

By Lemma 4, for large r this closed subscheme D,; of V is a smooth, ge-
ometrically connected curve over k which is spacefilling for k,q. Taking the
Gal(k;q/kq)-invariants on both sides of the equality D,q(k-q) = V(krq), we get
D,.q(kq) = V(kq), or in other words D,.q is spacefilling in V for E. The composite
inclusion D,y C V C X is the desired immersion. O

Corollary 9. Let k be a finite field, X/k projective, smooth, and geometri-
cally connected, of dimension n > 1. Let E/k be a finite extension. There
exists a proper, smooth, geometrically connected curve C/k, and a k-morphism
w: C — X which is surjective on E-valued points. Moreover,

1) there is an open dense set U in C such that ©|U : U — X is bijective on
E-valued points,

2)  is birationally an isomorphism of C with its image w(C') taken with the
induced reduced structure.

Proof. Apply Theorem 8 to get m : Cp — X, and then take C'/k to be the
complete nonsingular model of Cy/k. Take U to be Cy. Because X/k is proper,

the map 7 extends to a k-morphism 7 : C — X with all the asserted properties.
O

Question 10. Given X/k projective, smooth, and geometrically connected of
dimension n > 2, and E/k a finite extension, is there always a closed subscheme
Y in X, Y # X, such that Y(E) = X(FE) and such that Y/k is smooth and
geometrically connected? What, if any, is the obstruction to the existence of
such Y? For example, take for X an odd dimensional projective space P?"+1,
n > 1 with homogeneous coordinates X; and Y; for ¢ = 1,...,n + 1. Write
q := Card(E) and take for Y the smooth hypersurface Hyp(2n + 1, q) of degree
g+ 1:
Hyp(2n+1,q) : Y _(Xi(¥;)? — (X;)7Y;) = 0.

But what to do for P?"? Take the “easy” case k = E (= F,). One idea is to
view P?" as an F-rational hyperplane section L = 0 of P?"*1 and then take its
Y to be L N Hyp(2n + 1,q). This idea does not work, because the Gauss map
for Hyp(2n + 1,¢q) is

(X3, Yi)'s = ((Yi)?, = (X4)7)’s = Frobg((Y;, —=X;)’s).

The map
(Xia }/;')’S = ()/’M _Xi)78
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is an involution of Hyp(2n+1, ¢). Thus Hyp(2n+1, ¢) is its own dual variety, cf.,
[8, XVII, 3.4]. Exactly because Hyp(2n + 1, ¢) contains all the F,-valued points
in P?"*1 there are no F4-rational hyperplanes L in P27+! which are transverse
to Hyp(2n + 1, q)!

The simplest form of the question is this: in P?/F,, is there a smooth plane
curve C'/F, which goes through all the F,-points of P2?

Applications to abelian varieties and to zeta functions of curves

Theorem 11. Let k be a field, A/k an abelian variety of dimension g > 1.
There exists a proper, smooth, geometrically connected curve C/k, a k-valued
point O¢ in C(k), and a k-morphism

m:C — A,
which maps the point Oc on C to the origin O 4 on A, and whose Albanese map
Alb(m) : Alb(C/k,0c) — A

|
Jac(C/k)

is surjective. Moreover, if the field k is infinite, there exists such data with © a
closed immersion.

Proof. We first treat the well known case when the field k is infinite. The proof
we give in this case (cf., [6, 10.1] for a variant) is quite simple. We give it both
for the reader’s convenience and because it conceivably could be made to work
over a finite field as well, see Question 13 below. It depends on the following
geometric fact:

Lemma 12. In PV over an infinite field k, let X /k be a closed subscheme which
is smooth and geometrically connected, of dimension n > 1. Given an point P
in X (k) and an integer d > 2, there exists a hypersurface H/k of degree d in PN
such that P lies on H and such that X N H is smooth of dimension n — 1.

Proof. Denote by H the projective space of all degree d hypersurfaces in PV,
Inside H, we have two subvarieties of particular interest:

1) the “dual variety” X (of X for the d-fold Segre embedding, cf., [8, XVII,
2.4]), consisting of those degree d hypersurfaces H such that X N H fails
to be smooth of dimension n — 1.

2) the hyperplane P consisting of those degree d hypersurfaces which contain
P.

We claim that P — P N X has a k-point. Since P — P N X is open in the
projective space P and the field k is infinite, P — P N X is either empty or it
has a k-point. [This comes down to the fact that if a k-polynomial in some
number m of variables vanishes on k™ then it is the zero polynomial, provided &
is infinite.] If P— PNX is empty, then P C X. But the dual variety is irreducible
of codimension at least one, cf., [8, XVII, 3.1.4], so P = X. Take homogeneous
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coordinates Xg, ..., X in which the point P is (1,0,0,...,0). The hypersurface
(X0)? = 0 lies in X but not in P, contradiction. O

To exhibit a g-dimensional abelian variety A over an infinite field k as the
quotient of a Jacobian, embed A in projective space, pick g — 1 integers d; > 2,
and successively intersect A with general hypersurfaces of degrees d; defined
over k which each contain the origin 04, to obtain a smooth curve C'/k in A,
defined over k, which contains 04. The “weak Lefschetz theorem” [7, VII, 7.1] on
hypersurface sections tells us that for any prime [ invertible in k, the restriction
map

HZ(A Rk ka Ql) - Hﬁ(c Rk k: Ql)7
is bijective for i = 0, so C'/k is geometrically connected, and injective for i = 1.
This injectivity for ¢ = 1 implies that the Albanese map

Ab(C,04) — A

is surjective.

The proof we give below, over a finite field, is due to Ofer Gabber. We do
not know if the proof given above in the infinite field case can be made to work
over a given finite field, say by taking the degrees d; quite large, cf., Question
13 below.

Pick a prime number [ # p, and a finite extension F/k such that each of the
129 points in A(k) of order dividing [ lies in A(E). Apply the previous corollary
to produce a proper smooth geometrically connected curve C/k, an open set
U c C, and a k-morphism

m:C— A
such that 7|U is bijective on E-valued points: U(F) = A(FE) by w. Taking
Gal(E/k)-invariants, we see that U(k) = A(k) by m. Take O¢ in U(k) to be
(#]U) 1 (04): )
The image of Alb(C/k,0¢) in A is an abelian subvariety B C A. So B(k) is a

subgroup of A(k). Hence B(k) N A(k)[l] = B(k)[l]. But by construction we have

ARl € A(E) 2 n(U(E))  n(C(k)) C B(k).

Therefore B(k)[l] = A(k)[l], hence #(B(k)[l]) = I?9. Therefore B has dimension
g, so it must be all of A. O

Question 13. Suppose we are in the setting of Lemma 12, but over a finite field
k. Thus in PV over k, we are given a closed subscheme X/k which is smooth
and geometrically connected, of dimension n > 1. Given a point P in X (k),
does there exist an integer d > 2 and a hypersurface H/k of degree d in PV such
that P lies on H and such that X N H is smooth of dimension n — 1?7 Does this
hold for all d > 07

Corollary 14. Given a finite field k, and an abelian variety A/k, there exists a
proper, smooth, geometrically connected curve C'/k such that the characteristic
polynomial of Frobenius on (H* of) A/k divides the characteristic polynomial of
Frobenius on (H' of) C/k.
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Proof. Once the Albanese map is surjective, for | # p we have a Gal(k/k)-
equivariant inclusion

HY(A® k,Q) c HY(AIb(C/k,0c) @1 k, Q) = H (C @4 k, Q)),
whence a divisibility of characteristic polynomials
det(1 — TFy|H' (A ®k k, Q)| det(1 — TE|H' (C &y, k, Q1))
O

Corollary 15. Suppose we are given an integer r > 1, a list of r Weil numbers
a; for q := #k (each «; is an algebraic integer which has all its archimedean
absolute values equal to Sqrt(q)), and a list r positive integers n;. There exists
a proper, smooth, geometrically connected curve C/k whose zeta function has a
zero of multiplicity at least n; at the point T =1/«; for eachi=1,...,r.

Proof. By Honda-Tate ([3, 9]), there exists an abelian variety A;/k on which
«; is an eigenvalue of Frobenius. Apply the previous corollary to the product
abelian variety [],(A;)™. O
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