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SPACE FILLING CURVES OVER FINITE FIELDS

Nicholas M. Katz

Introduction

In this note, we construct curves over finite fields which have, in a certain
sense, a “lot” of points, and give some applications to the zeta functions of curves
and abelian varieties over finite fields. In fact, we found the basic construction,
given in Lemma 1, of curves in An which go through every rational point, as
part of an unsuccessful attempt to find curves of growing genus over a fixed finite
field with lots of points in the sense of the Drinfield-Vladut bound [2]. The idea
of applying that construction along the lines of this note grew out of an August
1996 conversation with Ofer Gabber about whether every abelian variety over
a finite field was a quotient of a Jacobian, during which he constructed, on the
fly, a proof of that fact. A variant of his proof appears here in Theorem 11. It
is a pleasure to acknowledge my debt to him.

The basic constructions

Lemma 1. Let k be a finite field, p its characteristic, k̄ an algebraic closure of
k, E/k a finite extension inside k̄, and n ≥ 1 an integer. There exists a smooth,
geometrically connected curve C/k and a closed immersion of k-schemes

C ⊂ An ⊗Z k

which induces a bijection of E-valued points

C(E) = An(E).

Construction-proof. If n = 1, take C = An ⊗Z k. If n = r + 1 with r ≥ 1, choose
a sequence of r nonzero polynomials in one variable over k, f1(X), . . . , fr(X),
with the following three properties:

1) For each i, fi(x) = 0 for every x ∈ E.
2) For each i, the degree di of fi is prime to p.
3) The degrees are strictly increasing: d1 < d2 < · · · < dr.

[Here is a simple way to make such a choice. Write q := #E, and pick a
strictly increasing sequence of r positive integers each of which is prime to p, say
e1 < e2 < · · · < er. Then take each fi(X) := (Xq − X)Xei .]
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614 NICHOLAS M. KATZ

In Ar+1 ⊗ k with coordinates X, Y1, . . . , Yr, consider the closed subscheme
C/k defined by the r equations

(Yi)q − Yi = fi(X), i = 1, . . . , r.

It is obvious from these equations that every E-valued point of An lies in C. We
must see that C/k is a smooth curve which is geometrically connected.

First of all, C/k is a smooth curve, for it is the fibre product over A1 ⊗ k
of r finite etale galois coverings Ei → A1 ⊗ k, with Ei the affine plane curve
(Y )q − Y = fi(X) in A2 ⊗ k.

It remains to see that C ⊗k k̄ is connected. This results from Artin-Schreier
theory. On A1 ⊗ k̄, or indeed on any smooth, affine, connected scheme S/k̄, the
Artin-Schreier sequence relative to q,

0 → E → OS
f �→P(f):=fq−f−−−−−−−−−−→ OS → 0

gives, via the long exact cohomology sequence, an isomorphism of E-vector
spaces

H0(S,OS)/P(H0(S,OS)) ∼= H1
et(S, E) = Hom(π1(S), E).

Given f in H0(S,OS), the covering of S defined by Y q − Y = f (in A1 × S)
is finite etale galois with group E (α in E translates Y ), so “is” an element
Class(f) in Hom(π1(S), E).

Now return to the case when S is A1 ⊗ k̄ and take any nontrivial C-valued
character ψ of E. If f in k̄[X] has degree d prime to p, then the composite
homomorphism is known [1, 3.5.4] to have Swan conductor d at ∞.

Our C⊗k k̄ is a finite etale galois covering of A1⊗k̄ with group E×E×· · ·×E =
Er, corresponding to the r-tuple (f1, f2, . . . , fr) via(

k̄[X]/P(k̄[X])
)r ∼= H1

et(A
1 ⊗ k̄, Er) = Hom(π1(S), Er).

The total space C ⊗k k̄ of this covering is connected if and only if the corre-
sponding homomorphism

Class(f1, f2, . . . , fr) : π1(A1 ⊗ k̄) → Er

is surjective, or equivalently (Pontrajagin duality!) if and only if for every non-
trivial C-valued additive character (ψ1, ψ2, . . . , ψr) of Er, the composite homo-
morphism

(ψ1, ψ2, . . . , ψr) ◦ Class(f1, f2, . . . , fr) : π1(A1 ⊗ k̄) → C×,

is nontrivial. But this composite is just the product

(ψ1, ψ2, . . . , ψr) ◦ Class(f1, f2, . . . , fr) =
∏

i

Lψi(fi).

In this product, Lψi(fi) is trivial if ψi itself is trivial, and Lψi(fi) has Swan∞ =
di if ψi is nontrivial. Because the di are all distinct, and at least one ψi is
nontrivial, we have

Swan∞

(∏
i

Lψi(fi)

)
= Supi with ψi nontriv(di) > 0.
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Hence
∏

i Lψi
(fi) must be nontrivial.

Lemma 2. Let k be a finite field, X/k projective (resp. quasi-projective),
smooth, and geometrically connected of dimension n ≥ 1. Let E/k be a fi-
nite extension. There exists an affine (resp. quasi-affine) open set U ⊂ X which
contains all the E-valued points of X, i.e., U(E) = X(E).

Proof. To fix ideas, say X ⊂ PN ⊗ k. We need only construct an affine open set
U in PN ⊗ k which contains all the E-valued points of PN ⊗ k, for then X ∩U is
the desired affine (resp. quasi-affine) open set of X. To do this, denote by K/E
the field extension of degree N + 1, and pick a basis α0, α1, . . . , αN of K/E.
Denote by H the form of degree N + 1 in X0, . . . , XN with coefficients in E
defined by

H(X’s) := NormK/E (α0X0 + · · · + αNXN ) .

Then H is nonzero at every E-valued point of PN . For each σ in Gal(E/k),
the form Hσ has the same property (indeed, if we extend σ to an element σ̃
in Gal(K/k) which induces σ, then σ̃(α0, α1, . . . , αN ) is another basis of K/E,
and Hσ is its norm form to E). So NormE/k(H) is a form with coefficients in k

which is nonzero at every E-valued point of PN . We may take for U the affine
open set (PN ⊗ k)

[
1/NormE/k(H)

]
.

Lemma 3. Let k be a finite field, U/k a quasi-affine, smooth, and geometrically
connected of dimenstion n ≥ 1. Let E/k be a finite extension. There exists an
open set V ⊂ U which contains all the E-valued points of U and which admits
an etale map to An ⊗ k.

Proof. Say U is open in the affine scheme Ū . First view U(E) as a finite closed
subscheme Z of U , by grouping its points into orbits under Gal(E/k). More
precisely, Z is the disjoint union of the finitely many closed points of U the
degree over k of whose residue fields divides deg(E/k), with its reduced structure.
Thus, Z is a closed subscheme of U which is finite etale over k. This same Z
is closed in Ū , since we may describe it as the disjoint union of the finitely
many closed points of Ū whose residue field degrees over k divide deg(U/k) and
which lie in U . Denote by A the coordinate ring of Ū , I ⊂ A the ideal defining
Z. At each point P in Z, pass to the local ring OŪ,P of P in Ū , and pick n

elements f1,P , f2,P , . . . , fn,P which form a k(P )-basis of m/m2, m the maximal
ideal. The ring A/I2 is just the product ring

∏
P∈Z OŪ,P /m2. So, we can find

functions f1, . . . , fn in A such that, for each i and each P , fi induces fi,P in
OŪ,P /m2. Restrict each function fi to U , and view (f1, . . . , fn) as a map π of
U to An. This map π is etale at each point P in Z by construction. Thus, the
set V of points of U at which π is etale is open, and contains Z.

Lemma 4. Let k be a finite field, V/k smooth and geometrically connected of
dimension n ≥ 1, and

π : V → An ⊗ k
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an etale map of k-schemes. For each integer r ≥ 1, denote by kr the extension
field of k inside k̄ of degree r over k. For each r ≥ 1, apply Lemma 1 with
E := kr to produce a closed immersion

ir : Cr/k ↪→ An ⊗ k,

with Cr/k a smooth, geometrically connected curve such that

Cr(kr) = An(kr).

Form the fibre product

Dr := Cr ×An⊗k V
i−−−−→ V� �π

Cr
ir−−−−→ An ⊗ k.

✄
✂

1) For every r, Dr/k is a smooth curve, space-filling in V for kr, i.e., via the
closed immersion

i : Dr := Cr ×An⊗k V −−−−→ V,

we have
Dr(kr) = V (kr).

2) For all sufficiently large r, Dr/k is geometrically connected.

Proof. 1) is obvious from the cartesian diagram defining Dr, in which π is etale,
Cr/k is a smooth curve, and ir is surjective on kr-valued points.

To prove 2), we argue as follows. The etale map π need not be finite etale, but
there is a dense open set j : W ↪→ An⊗k over which π is finite etale (just because
π is finite etale over the generic point of An ⊗ k). Take the entire diagram

Dr := Cr ×An⊗k V
i−−−−→ V� �π

Cr
ir−−−−→ An ⊗ k.

✄
✂

in the category of An ⊗ k-schemes, and pull it back to the open set W , i.e., base
change it by j : W ↪→ An ⊗ k. We get a diagram

Dr,W
iW−−−−→ VW� �π

Cr,W
ir,W−−−−→ W�jr

�j

Cr
ir−−−−→ An ⊗ k

✄
✂

✄
✂
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In this diagram, both W and VW are smooth over k and geometrically connected,
π is finite etale, and ir,W : Cr,W ↪→ W is spacefilling for kr. Now Cr,W is open in
Cr, so it is either dense and open in Cr and itself geometrically connected, or it
is empty. For large r, Cr,W is not empty, because W (kr) is nonempty for large r
(by Lang-Weil, because W/k is geometrically irreducible), and ir,W : Cr,W ↪→ W
is spacefilling for kr. Let us temporarily admit the truth of

Lemma 5. Let k be a finite field, E/k and W/k two smooth, geometrically con-
nected k-schemes of the same dimension n ≥ 1, and

E�π

W

a finite etale k-morphism. Suppose given an integer r0 ≥ 1, and for all integers
r ≥ r0, a smooth, geometrically connected curve Cr/k and a closed k-immersion
ir : Cr → W which is spacefilling for kr, i.e., Cr(kr) = W (kr). Form the fibre
product

Dr
ir,E−−−−→ E� �π

Cr
ir,W−−−−→ W

✄
✂

✄
✂

Then for r sufficiently large, the curve Dr/k is geometrically connected.

Applying this lemma to our situation (E is VW , Cr is Cr,W ), we find that for
large r, Dr,W is geometrically connected. We wish to infer that Dr/k itself is
geometrically connected. If it is not, then Dr ⊗k k̄ is a union of two or more
connected components, each of which is etale over Cr ⊗k k̄. But as etale maps
are open, the image of each connected component meets the dense open set
Cr,W ⊗k k̄, and hence Dr,W ⊗k k̄ is not connected, contradiction. QED for
Lemma 4 modulo Lemma 5.

Proof of Lemma 5. Fix a geometric point ω in W ⊗k k̄, and view the finite
etale covering π : E → W as an action of the group π1(W, ω) on the finite set
S := π−1(ω), i.e., a homomorphism

ρ : π1(W, ω) → Aut(S).

The geometric connectedness of E means precisely that via this action, the sub-
group

πgeom
1 (W, ω) := π1(W ⊗k k̄, ω) ⊂ π1(W, ω)

acts transitively on S. Recall the short exact sequence
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1 → πgeom
1 (W, ω) → π1(W, ω)

degree−−−−→ Gal(k̄/k) → 1
‖
Ẑ

Denote by
Γgeom ⊂ Γ ⊂ Aut(S)

the images in Aut(S) of πgeom
1 (W, ω) and of π1(W, ω) respectively under ρ. The

quotient Γ/Γgeom is cyclic, say of order N , generated by ρ(F ) for any fixed
element F in π1(W, ω) of degree 1. For each i in Z/NZ, denote by Γ(i) ⊂ Γ the
set of elements whose degree mod N is i, i.e., Γ(i) is the coset ρ(F i)Γgeom.

By Chebotarev (cf., [5, 9.7.13]) for every r � 0, we have:

(∗∗r, E/W ) The images under ρ of all degree r Frobenius elements in π1(W, ω),
i.e., all elements in all Frobenius conjugacy classes

Frobkr,w in π1(W, ω)

attached to kr-valued points w of W , fill the coset Γ(r).

We will show that for any r ≥ r0 large enough that (∗∗r, E/W ) holds, Dr is
geometrically connected. To see this, pick a geometric point cr in Cr, take for ω
its image in W , and consider the composite homomorphism

π1(Cr, cr)
π1(ir,W )−−−−−→ π1(W, ω)

ρ−−−−→ Γ ⊂ Aut(S),

which we label
ρr : π1(Cr, cr) → Γ ⊂ Aut(S).

Now Dr/k is geometrically connected if and only if the subgroup

ρr (πgeom
1 (Cr, cr)) ⊂ Aut(S)

acts transitively on S. A sufficient condition for this transitivity is that

ρr (πgeom
1 (Cr, cr)) = Γgeom,(∗r)

(because the geometric connectedness of E means that Γgeom acts transitively).
A sufficient condition for

ρr(π
geom
1 (Cr, cr)) = Γgeom,

is that the condition (∗∗r, Dr, Cr) hold:

(∗∗r, DR, Cr) The images under ρr of all the Frobenius elements of degree r in
π1(Cr, cr) fill Γ(r).

Indeed, every element in Γgeom := Γ(0) is of the form A−1B with A and B in
Γ(r) = ρ(F r)Γgeom, and hence every element of Γgeom will be the image under
ρr of a ratio (Frobkr,x)−1(Frobkr,y) for two points x and y in Cr(kr). Such a
ratio lies in πgeom

1 (Cr, cr).
But Cr(kr) = W (kr) by assumption, so every degree r Frobenius element

in π1(W, ω) is the image under π1(ir,W ) of a degree r Frobenius element in
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π1(Cr, cr). Therefore (∗∗r, Dr/Cr) is equivalent to (∗∗r, E/W ). In particular,
for large r, (∗∗r, Dr/Cr) and hence (∗r) hold.

With an eye to later applications, we extract from the proof of Lemma 5 the
following variant.

Lemma 6. Let k be a finite field, W/k a smooth, geometrically connected k-
scheme, and w a geometric point of W . Suppose given an integer r0 ≥ 1, and,
for each integer r ≥ r0, a smooth geometrically connected k-scheme Cr/k and a
k-morphism

fr : Cr → W

which is surjective on kr-valued points. For each r ≥ r0, pick a geometric point
cr in Cr, and a “chemin” from fr(cr) to w.

Suppose that G is either
1) a finite group, or,
2) GL(n,Oλ) for some positive integer n and for Oλ the ring of integers in a

finite extension of Ql, for some prime number l.
3) GL(n, Q̄l) for some n and some prime l.

Suppose given a continuous group homomorphism

ρ : π1(W, w) → G.

We denote
ρr : π1(Cr, cr) → G

the composite homomorphism

π1(Cr, cr)
f∗−−−−→ π1(W, f(cr))

chemin−−−−→ π1(W, w)
ρ−−−−→ G.

Then we have:
a) For r sufficiently large, we have an equality of images of geometric funda-

mental groups

ρr(π
geom
1 (Cr, cr)) = ρ(πgeom

1 (W, w))

(equality inside G).
b) Suppose in addition that, for each r ≥ r0, fr is also surjective on ks-valued

points for all divisors s of r. Then for r sufficiently large and sufficiently
divisible, we have an equality of images of fundamental groups

ρr(π1(Cr, cr)) = ρ(π1(W, w))

(equality inside G).

Proof. In case 1), G finite, we put Γ := ρ(π1(W, w)), Γgeom := ρ(πgeom
1 (W, w)),

denote by N the order of the cyclic group Γ/Γgeom, and denote by Γ(i) the set
of elements in Γ of degree i mod N . By Chebotarev, for r � 0, the Frobenii of
kr-valued points of W fill the coset Γ(r), hence by the surjectivity of the map fr

on kr-valued points, so do the Frobenii of kr-valued points of Cr for r � 0. For
these r, the A−1B argument shows that ratios A−1B of such Frobenii fill Γgeom,
whence a).
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For b), we argue as follows. For each integer i in [0, N − 1] pick an integer
di ≡ i mod N and sufficiently large that the Frobenii of kdi-valued points of W
fill the coset Γ(i). Then for any r ≥ r0 which is divisible by

∏
i di, the Frobenii

of the points on Cr with values in kdi for i = 0, 1, . . . , N − 1 fill Γ.
For case 2), put K := the image ρ(πgeom

1 (W, w)) in GL(n,Oλ). By Pink’s
Lemma [4, 8.18.3], there exists an integer d ≥ 1 such that a closed subgroup H of
K is equal to K if and only if H and K have the same image in GL(n,Oλ/ldOλ).

For each integer r ≥ r0, put Hr := the image ρr(π
geom
1 (Cr, cr)) in GL(n,Oλ).

Thus Hr is a closed subgroup of K. By case 1), applied to the reduction mod
ld of ρ, for r � 0, Hr and K have the same image in GL(n,Oλ/ldOλ). So by
Pink’s Lemma Hr = K for all such r.

For b), apply Pink’s Lemma to L := the image ρ(π1(W, w)) in GL(n,Oλ) and
the subgroups Jr := the image ρr(πq(Cr, cr)) in GL(n,Oλ) to reduce b) to case
1).

For case 3), use the fact [5, 9.0.7] that any compact subgroup of GL(n, Q̄l), in
particular the image ρ(π1(W, w)), is conjugate to a closed subgroup of GL(n,Oλ)
for Oλ the ring of integers in some finite extension Eλ of Ql to reduce to case
2).

As an immediate consequence of case 3) of Lemma 6, we get the following
result of Bertini type.

Corollary 7. Let k be a finite field, W/k a smooth, geometrically connected k-
scheme, and w a geometric point of W . Suppose given an integer r0 ≥ 1, and,
for each integer r ≥ r0, a smooth, geometrically connected k-scheme Cr/k and a
k-morphism

fr : Cr → W,

which is surjective on kr-valued points. For each r ≥ r0, pick a geometric point
cr in Cr, and a “chemin” from fr(cr) to w. Let l be a prime number, and F a lisse
Q̄l-sheaf on W of rank denoted n, corresponding to a continuous homomorphism

ρ : π1(W, w) → GL(n, Q̄l).

Denote by Ggeom,F on W the Zariski closure of ρ(πgeom
1 (W, w)) in GL(n) ⊗ Q̄l.

Then for r sufficiently large, the pullback sheaf (fr)∗(F) on Cr has the same
Ggeom:

Ggeom, (fr)∗F on Cr
= Ggeom,F on W .

Moreover, if F on W has the property that ρ(π1(W, w)) lies in Ggeom,F on W (Q̄l),
then for r sufficiently large the pullback sheaf (fr)∗(F) on Cr has the same prop-
erty, that ρ(π1(Cr, cr)) lies in Ggeom, (fr)∗F on Cr

(Q̄l).

Theorem 8. Let k be a finite field, X/k smooth and quasi-projective and ge-
ometrically connected, of dimension n ≥ 1. Let E/k be a finite extension.
There exists a smooth, geometrically connected curve C0/k, and an immersion
π : C0 → X which is bijective on E-valued points.
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Proof. First apply Lemmas 2 and 3 to find an open set V in X which contains
all the E-valued points and which admits an etale map π to An ⊗ k. Let d :=
degree(E/k), so E is kd. For each r ≥ 1, use Lemma 1 to find a smooth,
geometrically connected curve Crd/k in An ⊗ k which is spacefilling for krd.
Take Drd/k in V to be the fibre product

Drd := Crd ×An⊗k V.

By Lemma 4, for large r this closed subscheme Drd of V is a smooth, ge-
ometrically connected curve over k which is spacefilling for krd. Taking the
Gal(krd/kd)-invariants on both sides of the equality Drd(krd) = V (krd), we get
Drd(kd) = V (kd), or in other words Drd is spacefilling in V for E. The composite
inclusion Drd ⊂ V ⊂ X is the desired immersion.

Corollary 9. Let k be a finite field, X/k projective, smooth, and geometri-
cally connected, of dimension n ≥ 1. Let E/k be a finite extension. There
exists a proper, smooth, geometrically connected curve C/k, and a k-morphism
π : C → X which is surjective on E-valued points. Moreover,

1) there is an open dense set U in C such that π|U : U → X is bijective on
E-valued points,

2) π is birationally an isomorphism of C with its image π(C) taken with the
induced reduced structure.

Proof. Apply Theorem 8 to get π : C0 → X, and then take C/k to be the
complete nonsingular model of C0/k. Take U to be C0. Because X/k is proper,
the map π extends to a k-morphism π̄ : C → X with all the asserted properties.

Question 10. Given X/k projective, smooth, and geometrically connected of
dimension n ≥ 2, and E/k a finite extension, is there always a closed subscheme
Y in X, Y �= X, such that Y (E) = X(E) and such that Y/k is smooth and
geometrically connected? What, if any, is the obstruction to the existence of
such Y ? For example, take for X an odd dimensional projective space P2n+1,
n ≥ 1 with homogeneous coordinates Xi and Yi for i = 1, . . . , n + 1. Write
q := Card(E) and take for Y the smooth hypersurface Hyp(2n + 1, q) of degree
q + 1:

Hyp(2n + 1, q) :
∑

i

(Xi(Yi)q − (Xi)qYi) = 0.

But what to do for P2n? Take the “easy” case k = E (= Fq). One idea is to
view P2n as an Fq-rational hyperplane section L = 0 of P2n+1, and then take its
Y to be L ∩ Hyp(2n + 1, q). This idea does not work, because the Gauss map
for Hyp(2n + 1, q) is

(Xi, Yi)’s �→ ((Yi)q,−(Xi)q)’s = Frobq((Yi,−Xi)’s).

The map
(Xi, Yi)’s �→ (Yi,−Xi)’s



622 NICHOLAS M. KATZ

is an involution of Hyp(2n+1, q). Thus Hyp(2n+1, q) is its own dual variety, cf.,
[8, XVII, 3.4]. Exactly because Hyp(2n + 1, q) contains all the Fq-valued points
in P2n+1, there are no Fq-rational hyperplanes L in P2n+1 which are transverse
to Hyp(2n + 1, q)!

The simplest form of the question is this: in P2/Fq, is there a smooth plane
curve C/Fq which goes through all the Fq-points of P2?

Applications to abelian varieties and to zeta functions of curves

Theorem 11. Let k be a field, A/k an abelian variety of dimension g ≥ 1.
There exists a proper, smooth, geometrically connected curve C/k, a k-valued
point OC in C(k), and a k-morphism

π : C → A,

which maps the point OC on C to the origin OA on A, and whose Albanese map

Alb(π) : Alb(C/k, 0C) � A

‖
Jac(C/k)

is surjective. Moreover, if the field k is infinite, there exists such data with π a
closed immersion.

Proof. We first treat the well known case when the field k is infinite. The proof
we give in this case (cf., [6, 10.1] for a variant) is quite simple. We give it both
for the reader’s convenience and because it conceivably could be made to work
over a finite field as well, see Question 13 below. It depends on the following
geometric fact:

Lemma 12. In PN over an infinite field k, let X/k be a closed subscheme which
is smooth and geometrically connected, of dimension n ≥ 1. Given an point P
in X(k) and an integer d ≥ 2, there exists a hypersurface H/k of degree d in PN

such that P lies on H and such that X ∩ H is smooth of dimension n − 1.

Proof. Denote by H the projective space of all degree d hypersurfaces in PN .
Inside H, we have two subvarieties of particular interest:

1) the “dual variety” X̌ (of X for the d-fold Segre embedding, cf., [8, XVII,
2.4]), consisting of those degree d hypersurfaces H such that X ∩ H fails
to be smooth of dimension n − 1.

2) the hyperplane P̌ consisting of those degree d hypersurfaces which contain
P .

We claim that P̌ − P̌ ∩ X̌ has a k-point. Since P̌ − P̌ ∩ X̌ is open in the
projective space P̌ and the field k is infinite, P̌ − P̌ ∩ X̌ is either empty or it
has a k-point. [This comes down to the fact that if a k-polynomial in some
number m of variables vanishes on km then it is the zero polynomial, provided k
is infinite.] If P̌−P̌∩X̌ is empty, then P̌ ⊂ X̌. But the dual variety is irreducible
of codimension at least one, cf., [8, XVII, 3.1.4], so P̌ = X̌. Take homogeneous
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coordinates X0, . . . , XN in which the point P is (1, 0, 0, . . . , 0). The hypersurface
(X0)d = 0 lies in X̌ but not in P̌ , contradiction.

To exhibit a g-dimensional abelian variety A over an infinite field k as the
quotient of a Jacobian, embed A in projective space, pick g − 1 integers di ≥ 2,
and successively intersect A with general hypersurfaces of degrees di defined
over k which each contain the origin 0A, to obtain a smooth curve C/k in A,
defined over k, which contains 0A. The “weak Lefschetz theorem” [7, VII, 7.1] on
hypersurface sections tells us that for any prime l invertible in k, the restriction
map

Hi(A ⊗k k̄, Ql) → Hi(C ⊗k k̄, Ql),
is bijective for i = 0, so C/k is geometrically connected, and injective for i = 1.
This injectivity for i = 1 implies that the Albanese map

Alb(C, 0A) → A

is surjective.
The proof we give below, over a finite field, is due to Ofer Gabber. We do

not know if the proof given above in the infinite field case can be made to work
over a given finite field, say by taking the degrees di quite large, cf., Question
13 below.

Pick a prime number l �= p, and a finite extension E/k such that each of the
l2g points in A(k̄) of order dividing l lies in A(E). Apply the previous corollary
to produce a proper smooth geometrically connected curve C/k, an open set
U ⊂ C, and a k-morphism

π : C → A

such that π|U is bijective on E-valued points: U(E) ∼= A(E) by π. Taking
Gal(E/k)-invariants, we see that U(k) ∼= A(k) by π. Take 0C in U(k) to be
(π|U)−1(0A).

The image of Alb(C/k, 0C) in A is an abelian subvariety B ⊂ A. So B(k̄) is a
subgroup of A(k̄). Hence B(k̄)∩A(k̄)[l] = B(k̄)[l]. But by construction we have

A(k̄)[l] ⊂ A(E) ∼= π(U(E)) ⊂ π(C(k̄)) ⊂ B(k̄).

Therefore B(k̄)[l] = A(k̄)[l], hence #(B(k̄)[l]) = l2g. Therefore B has dimension
g, so it must be all of A.

Question 13. Suppose we are in the setting of Lemma 12, but over a finite field
k. Thus in PN over k, we are given a closed subscheme X/k which is smooth
and geometrically connected, of dimension n ≥ 1. Given a point P in X(k),
does there exist an integer d ≥ 2 and a hypersurface H/k of degree d in PN such
that P lies on H and such that X ∩H is smooth of dimension n− 1? Does this
hold for all d � 0?

Corollary 14. Given a finite field k, and an abelian variety A/k, there exists a
proper, smooth, geometrically connected curve C/k such that the characteristic
polynomial of Frobenius on (H1 of) A/k divides the characteristic polynomial of
Frobenius on (H1 of) C/k.
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Proof. Once the Albanese map is surjective, for l �= p we have a Gal(k̄/k)-
equivariant inclusion

H1(A ⊗k k̄, Ql) ⊂ H1(Alb(C/k, 0C) ⊗k k̄, Ql) = H1(C ⊗k k̄, Ql),

whence a divisibility of characteristic polynomials

det(1 − TFk|H1(A ⊗k k̄, Ql)|det(1 − TFk|H1(C ⊗k k̄, Ql)).

Corollary 15. Suppose we are given an integer r ≥ 1, a list of r Weil numbers
αi for q := #k (each αi is an algebraic integer which has all its archimedean
absolute values equal to Sqrt(q)), and a list r positive integers ni. There exists
a proper, smooth, geometrically connected curve C/k whose zeta function has a
zero of multiplicity at least ni at the point T = 1/αi for each i = 1, . . . , r.

Proof. By Honda-Tate ([3, 9]), there exists an abelian variety Ai/k on which
αi is an eigenvalue of Frobenius. Apply the previous corollary to the product
abelian variety

∏
i(Ai)ni .
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