SPACE FILLING CURVES OVER FINITE FIELDS

NICHOLAS M. KATZ

Introduction

In this note, we construct curves over finite fields which have, in a certain sense, a "lot" of points, and give some applications to the zeta functions of curves and abelian varieties over finite fields. In fact, we found the basic construction, given in Lemma 1, of curves in \mathbb{A}^n which go through every rational point, as part of an unsuccessful attempt to find curves of growing genus over a fixed finite field with lots of points in the sense of the Drinfield-Vladut bound [2]. The idea of applying that construction along the lines of this note grew out of an August 1996 conversation with Ofer Gabber about whether every abelian variety over a finite field was a quotient of a Jacobian, during which he constructed, on the fly, a proof of that fact. A variant of his proof appears here in Theorem 11. It is a pleasure to acknowledge my debt to him.

The basic constructions

Lemma 1. Let k be a finite field, p its characteristic, \bar{k} an algebraic closure of k, E/k a finite extension inside \bar{k} , and $n \ge 1$ an integer. There exists a smooth, geometrically connected curve C/k and a closed immersion of k-schemes

$$C \subset \mathbb{A}^n \otimes_{\mathbb{Z}} k$$

which induces a bijection of E-valued points

$$C(E) = \mathbb{A}^n(E).$$

Construction-proof. If n = 1, take $C = \mathbb{A}^n \otimes_{\mathbb{Z}} k$. If n = r + 1 with $r \ge 1$, choose a sequence of r nonzero polynomials in one variable over k, $f_1(X), \ldots, f_r(X)$, with the following three properties:

- 1) For each $i, f_i(x) = 0$ for every $x \in E$.
- 2) For each *i*, the degree d_i of f_i is prime to *p*.
- 3) The degrees are strictly increasing: $d_1 < d_2 < \cdots < d_r$.

[Here is a simple way to make such a choice. Write q := #E, and pick a strictly increasing sequence of r positive integers each of which is prime to p, say $e_1 < e_2 < \cdots < e_r$. Then take each $f_i(X) := (X^q - X)X^{e_i}$.]

Received March 4, 1999.

In $\mathbb{A}^{r+1} \otimes k$ with coordinates X, Y_1, \ldots, Y_r , consider the closed subscheme C/k defined by the r equations

$$(Y_i)^q - Y_i = f_i(X), \qquad i = 1, \dots, r.$$

It is obvious from these equations that every *E*-valued point of \mathbb{A}^n lies in *C*. We must see that C/k is a smooth curve which is geometrically connected.

First of all, C/k is a smooth curve, for it is the fibre product over $\mathbb{A}^1 \otimes k$ of r finite etale galois coverings $\mathcal{E}_i \to \mathbb{A}^1 \otimes k$, with \mathcal{E}_i the affine plane curve $(Y)^q - Y = f_i(X)$ in $\mathbb{A}^2 \otimes k$.

It remains to see that $C \otimes_k \bar{k}$ is connected. This results from Artin-Schreier theory. On $\mathbb{A}^1 \otimes \bar{k}$, or indeed on any smooth, affine, connected scheme S/\bar{k} , the Artin-Schreier sequence relative to q,

$$0 \to E \to \mathcal{O}_S \xrightarrow{f \mapsto \mathcal{P}(f) := f^q - f} \mathcal{O}_S \to 0$$

gives, via the long exact cohomology sequence, an isomorphism of E-vector spaces

 $H^0(S, \mathcal{O}_S)/\mathcal{P}(H^0(S, \mathcal{O}_S)) \cong H^1_{\text{et}}(S, E) = \text{Hom}(\pi_1(S), E).$

Given f in $H^0(S, \mathcal{O}_S)$, the covering of S defined by $Y^q - Y = f$ (in $\mathbb{A}^1 \times S$) is finite etale galois with group E (α in E translates Y), so "is" an element Class(f) in $Hom(\pi_1(S), E)$.

Now return to the case when S is $\mathbb{A}^1 \otimes \overline{k}$ and take any nontrivial \mathbb{C} -valued character ψ of E. If f in $\overline{k}[X]$ has degree d prime to p, then the composite homomorphism is known [1, 3.5.4] to have Swan conductor d at ∞ .

Our $C \otimes_k \bar{k}$ is a finite etale galois covering of $\mathbb{A}^1 \otimes \bar{k}$ with group $E \times E \times \cdots \times E = E^r$, corresponding to the *r*-tuple (f_1, f_2, \ldots, f_r) via

$$\left(\bar{k}[X]/\mathcal{P}(\bar{k}[X])\right)^r \cong H^1_{\text{et}}(\mathbb{A}^1 \otimes \bar{k}, E^r) = \text{Hom}(\pi_1(S), E^r)$$

The total space $C \otimes_k \bar{k}$ of this covering is connected if and only if the corresponding homomorphism

$$Class(f_1, f_2, \dots, f_r) : \pi_1(\mathbb{A}^1 \otimes \bar{k}) \to E^r$$

is surjective, or equivalently (Pontrajagin duality!) if and only if for every nontrivial \mathbb{C} -valued additive character $(\psi_1, \psi_2, \ldots, \psi_r)$ of E^r , the composite homomorphism

$$(\psi_1, \psi_2, \ldots, \psi_r) \circ \operatorname{Class}(f_1, f_2, \ldots, f_r) : \pi_1(\mathbb{A}^1 \otimes \overline{k}) \to \mathbb{C}^{\times},$$

is nontrivial. But this composite is just the product

$$(\psi_1, \psi_2, \dots, \psi_r) \circ \operatorname{Class}(f_1, f_2, \dots, f_r) = \prod_i \mathcal{L}_{\psi_i}(f_i).$$

In this product, $\mathcal{L}_{\psi_i}(f_i)$ is trivial if ψ_i itself is trivial, and $\mathcal{L}_{\psi_i}(f_i)$ has $\operatorname{Swan}_{\infty} = d_i$ if ψ_i is nontrivial. Because the d_i are all distinct, and at least one ψ_i is nontrivial, we have

$$\operatorname{Swan}_{\infty}\left(\prod_{i} \mathcal{L}_{\psi_{i}}(f_{i})\right) = \operatorname{Sup}_{i \text{ with } \psi_{i} \text{ nontriv}}(d_{i}) > 0.$$

Hence $\prod_i \mathcal{L}_{\psi_i}(f_i)$ must be nontrivial.

Lemma 2. Let k be a finite field, X/k projective (resp. quasi-projective), smooth, and geometrically connected of dimension $n \ge 1$. Let E/k be a finite extension. There exists an affine (resp. quasi-affine) open set $U \subset X$ which contains all the E-valued points of X, i.e., U(E) = X(E).

Proof. To fix ideas, say $X \subset \mathbb{P}^N \otimes k$. We need only construct an affine open set U in $\mathbb{P}^N \otimes k$ which contains all the *E*-valued points of $\mathbb{P}^N \otimes k$, for then $X \cap U$ is the desired affine (resp. quasi-affine) open set of X. To do this, denote by K/E the field extension of degree N + 1, and pick a basis $\alpha_0, \alpha_1, \ldots, \alpha_N$ of K/E. Denote by H the form of degree N + 1 in X_0, \ldots, X_N with coefficients in E defined by

$$H(X's) := \operatorname{Norm}_{K/E} \left(\alpha_0 X_0 + \dots + \alpha_N X_N \right).$$

Then H is nonzero at every E-valued point of \mathbb{P}^N . For each σ in $\operatorname{Gal}(E/k)$, the form H^{σ} has the same property (indeed, if we extend σ to an element $\tilde{\sigma}$ in $\operatorname{Gal}(K/k)$ which induces σ , then $\tilde{\sigma}(\alpha_0, \alpha_1, \ldots, \alpha_N)$ is another basis of K/E, and H^{σ} is its norm form to E). So $\operatorname{Norm}_{E/k}(H)$ is a form with coefficients in kwhich is nonzero at every E-valued point of \mathbb{P}^N . We may take for U the affine open set $(\mathbb{P}^N \otimes k) [1/\operatorname{Norm}_{E/k}(H)]$.

Lemma 3. Let k be a finite field, U/k a quasi-affine, smooth, and geometrically connected of dimension $n \ge 1$. Let E/k be a finite extension. There exists an open set $V \subset U$ which contains all the E-valued points of U and which admits an etale map to $\mathbb{A}^n \otimes k$.

Proof. Say U is open in the affine scheme \overline{U} . First view U(E) as a finite closed subscheme Z of U, by grouping its points into orbits under $\operatorname{Gal}(E/k)$. More precisely, Z is the disjoint union of the finitely many closed points of U the degree over k of whose residue fields divides $\deg(E/k)$, with its reduced structure. Thus, Z is a closed subscheme of U which is finite etale over k. This same Z is closed in \overline{U} , since we may describe it as the disjoint union of the finitely many closed points of \overline{U} whose residue field degrees over k divide deg(U/k) and which lie in U. Denote by A the coordinate ring of $U, I \subset A$ the ideal defining Z. At each point P in Z, pass to the local ring $\mathcal{O}_{\overline{U},P}$ of P in \overline{U} , and pick n elements $f_{1,P}, f_{2,P}, \ldots, f_{n,P}$ which form a k(P)-basis of \mathbf{m}/\mathbf{m}^2 , \mathbf{m} the maximal ideal. The ring A/I^2 is just the product ring $\prod_{P \in \mathbb{Z}} \mathcal{O}_{\overline{U},P}/\mathbf{m}^2$. So, we can find functions f_1, \ldots, f_n in A such that, for each i and each P, f_i induces $f_{i,P}$ in $\mathcal{O}_{\bar{U},P}/\mathbf{m}^2$. Restrict each function f_i to U, and view (f_1,\ldots,f_n) as a map π of U to \mathbb{A}^n . This map π is etale at each point P in Z by construction. Thus, the set V of points of U at which π is etale is open, and contains Z.

Lemma 4. Let k be a finite field, V/k smooth and geometrically connected of dimension $n \ge 1$, and

$$\pi: V \to \mathbb{A}^n \otimes k$$

an etale map of k-schemes. For each integer $r \ge 1$, denote by k_r the extension field of k inside \bar{k} of degree r over k. For each $r \ge 1$, apply Lemma 1 with $E := k_r$ to produce a closed immersion

$$i_r: C_r/k \hookrightarrow \mathbb{A}^n \otimes k,$$

with C_r/k a smooth, geometrically connected curve such that

$$C_r(k_r) = \mathbb{A}^n(k_r).$$

Form the fibre product

1) For every r, D_r/k is a smooth curve, space-filling in V for k_r , i.e., via the closed immersion

$$i: D_r := C_r \times_{\mathbb{A}^n \otimes k} V \longrightarrow V,$$

we have

$$D_r(k_r) = V(k_r).$$

2) For all sufficiently large r, D_r/k is geometrically connected.

Proof. 1) is obvious from the cartesian diagram defining D_r , in which π is etale, C_r/k is a smooth curve, and i_r is surjective on k_r -valued points.

To prove 2), we argue as follows. The etale map π need not be finite etale, but there is a dense open set $j: W \hookrightarrow \mathbb{A}^n \otimes k$ over which π is finite etale (just because π is finite etale over the generic point of $\mathbb{A}^n \otimes k$). Take the entire diagram

in the category of $\mathbb{A}^n \otimes k$ -schemes, and pull it back to the open set W, i.e., base change it by $j: W \hookrightarrow \mathbb{A}^n \otimes k$. We get a diagram

$$\begin{array}{cccc} D_{r,W} & \xrightarrow{i_W} & V_W \\ & \downarrow & & \downarrow^{\pi} \\ C_{r,W} & \xleftarrow{i_{r,W}} & W \\ & \downarrow_{j_r} & & \downarrow_j \\ C_r & \xleftarrow{i_r} & \mathbb{A}^n \otimes k \end{array}$$

In this diagram, both W and V_W are smooth over k and geometrically connected, π is finite etale, and $i_{r,W}: C_{r,W} \hookrightarrow W$ is spacefilling for k_r . Now $C_{r,W}$ is open in C_r , so it is either dense and open in C_r and itself geometrically connected, or it is empty. For large r, $C_{r,W}$ is not empty, because $W(k_r)$ is nonempty for large r(by Lang-Weil, because W/k is geometrically irreducible), and $i_{r,W}: C_{r,W} \hookrightarrow W$ is spacefilling for k_r . Let us temporarily admit the truth of

Lemma 5. Let k be a finite field, \mathcal{E}/k and W/k two smooth, geometrically connected k-schemes of the same dimension $n \geq 1$, and

$$\mathcal{E}$$
 \downarrow^{π}
 W

a finite etale k-morphism. Suppose given an integer $r_0 \ge 1$, and for all integers $r \ge r_0$, a smooth, geometrically connected curve C_r/k and a closed k-immersion $i_r : C_r \to W$ which is spacefilling for k_r , i.e., $C_r(k_r) = W(k_r)$. Form the fibre product

$$\begin{array}{ccc} \mathcal{D}_r & \stackrel{i_{r,\mathcal{E}}}{\smile} & \mathcal{E} \\ & & & \downarrow^{\pi} \\ \mathcal{C}_r & \stackrel{i_{r,W}}{\smile} & W \end{array}$$

Then for r sufficiently large, the curve \mathcal{D}_r/k is geometrically connected.

Applying this lemma to our situation (\mathcal{E} is V_W , C_r is $C_{r,W}$), we find that for large r, $D_{r,W}$ is geometrically connected. We wish to infer that D_r/k itself is geometrically connected. If it is not, then $D_r \otimes_k \bar{k}$ is a union of two or more connected components, each of which is etale over $C_r \otimes_k \bar{k}$. But as etale maps are open, the image of each connected component meets the dense open set $C_{r,W} \otimes_k \bar{k}$, and hence $D_{r,W} \otimes_k \bar{k}$ is not connected, contradiction. QED for Lemma 4 modulo Lemma 5.

Proof of Lemma 5. Fix a geometric point ω in $W \otimes_k \bar{k}$, and view the finite etale covering $\pi : \mathcal{E} \to W$ as an action of the group $\pi_1(W, \omega)$ on the finite set $S := \pi^{-1}(\omega)$, i.e., a homomorphism

$$\rho: \pi_1(W, \omega) \to \operatorname{Aut}(S).$$

The geometric connectedness of \mathcal{E} means precisely that via this action, the subgroup

$$\pi_1^{\text{geom}}(W,\omega) := \pi_1(W \otimes_k \bar{k},\omega) \subset \pi_1(W,\omega)$$

acts transitively on S. Recall the short exact sequence

$$1 \to \pi_1^{\text{geom}}(W, \omega) \to \pi_1(W, \omega) \xrightarrow{\text{degree}} \text{Gal}(\bar{k}/k) \to 1$$
$$\parallel \\ \hat{\mathbb{Z}}$$

Denote by

$$\Gamma_{\text{geom}} \subset \Gamma \subset \text{Aut}(S)$$

the images in Aut(S) of $\pi_1^{\text{geom}}(W,\omega)$ and of $\pi_1(W,\omega)$ respectively under ρ . The quotient $\Gamma/\Gamma_{\text{geom}}$ is cyclic, say of order N, generated by $\rho(F)$ for any fixed element F in $\pi_1(W,\omega)$ of degree 1. For each i in $\mathbb{Z}/N\mathbb{Z}$, denote by $\Gamma(i) \subset \Gamma$ the set of elements whose degree mod N is i, i.e., $\Gamma(i)$ is the coset $\rho(F^i)\Gamma_{\text{geom}}$.

By Chebotarev (cf., [5, 9.7.13]) for every $r \gg 0$, we have:

 $(**r, \mathcal{E}/W)$ The images under ρ of all degree r Frobenius elements in $\pi_1(W, \omega)$, i.e., all elements in all Frobenius conjugacy classes

$$\operatorname{Frob}_{k_r,w}$$
 in $\pi_1(W,\omega)$

attached to k_r -valued points w of W, fill the coset $\Gamma(r)$.

We will show that for any $r \ge r_0$ large enough that $(**r, \mathcal{E}/W)$ holds, \mathcal{D}_r is geometrically connected. To see this, pick a geometric point c_r in \mathcal{C}_r , take for ω its image in W, and consider the composite homomorphism

$$\pi_1(\mathcal{C}_r, c_r) \xrightarrow{\pi_1(i_{r,W})} \pi_1(W, \omega) \xrightarrow{\rho} \Gamma \subset \operatorname{Aut}(S),$$

which we label

$$\rho_r: \pi_1(\mathcal{C}_r, c_r) \to \Gamma \subset \operatorname{Aut}(S).$$

Now \mathcal{D}_r/k is geometrically connected if and only if the subgroup

$$\rho_r\left(\pi_1^{\text{geom}}(\mathcal{C}_r, c_r)\right) \subset \text{Aut}(S)$$

acts transitively on S. A sufficient condition for this transitivity is that

(*r)
$$\rho_r \left(\pi_1^{\text{geom}}(\mathcal{C}_r, c_r) \right) = \Gamma_{\text{geom}}$$

(because the geometric connectedness of \mathcal{E} means that Γ_{geom} acts transitively).

A sufficient condition for

$$\rho_r(\pi_1^{\text{geom}}(\mathcal{C}_r, c_r)) = \Gamma_{\text{geom}},$$

is that the condition $(**r, \mathcal{D}_r, \mathcal{C}_r)$ hold:

 $(**r, \mathcal{D}_R, \mathcal{C}_r)$ The images under ρ_r of all the Frobenius elements of degree r in $\pi_1(\mathcal{C}_r, c_r)$ fill $\Gamma(r)$.

Indeed, every element in $\Gamma_{\text{geom}} := \Gamma(0)$ is of the form $A^{-1}B$ with A and B in $\Gamma(r) = \rho(F^r)\Gamma_{\text{geom}}$, and hence every element of Γ_{geom} will be the image under ρ_r of a ratio $(\operatorname{Frob}_{k_r,x})^{-1}(\operatorname{Frob}_{k_r,y})$ for two points x and y in $\mathcal{C}_r(k_r)$. Such a ratio lies in $\pi_1^{\text{geom}}(\mathcal{C}_r, c_r)$.

But $C_r(k_r) = W(k_r)$ by assumption, so every degree r Frobenius element in $\pi_1(W,\omega)$ is the image under $\pi_1(i_{r,W})$ of a degree r Frobenius element in $\pi_1(\mathcal{C}_r, c_r)$. Therefore $(**r, \mathcal{D}_r/\mathcal{C}_r)$ is equivalent to $(**r, \mathcal{E}/W)$. In particular, for large $r, (**r, \mathcal{D}_r/\mathcal{C}_r)$ and hence (*r) hold.

With an eye to later applications, we extract from the proof of Lemma 5 the following variant.

Lemma 6. Let k be a finite field, W/k a smooth, geometrically connected k-scheme, and w a geometric point of W. Suppose given an integer $r_0 \ge 1$, and, for each integer $r \ge r_0$, a smooth geometrically connected k-scheme C_r/k and a k-morphism

$$f_r: \mathcal{C}_r \to W$$

which is surjective on k_r -valued points. For each $r \ge r_0$, pick a geometric point c_r in C_r , and a "chemin" from $f_r(c_r)$ to w.

Suppose that G is either

- 1) a finite group, or,
- GL(n, O_λ) for some positive integer n and for O_λ the ring of integers in a finite extension of Q_l, for some prime number l.
- 3) $GL(n, \mathbb{Q}_l)$ for some n and some prime l.

Suppose given a continuous group homomorphism

$$\rho: \pi_1(W, w) \to G.$$

We denote

$$\rho_r: \pi_1(\mathcal{C}_r, c_r) \to G$$

the composite homomorphism

$$\pi_1(\mathcal{C}_r, c_r) \xrightarrow{f_*} \pi_1(W, f(c_r)) \xrightarrow{\text{chemin}} \pi_1(W, w) \xrightarrow{\rho} G.$$

Then we have:

a) For r sufficiently large, we have an equality of images of geometric fundamental groups

$$\rho_r(\pi_1^{\text{geom}}(\mathcal{C}_r, c_r)) = \rho(\pi_1^{\text{geom}}(W, w))$$

(equality inside G).

b) Suppose in addition that, for each $r \ge r_0$, f_r is also surjective on k_s -valued points for all divisors s of r. Then for r sufficiently large and sufficiently divisible, we have an equality of images of fundamental groups

$$\rho_r(\pi_1(\mathcal{C}_r, c_r)) = \rho(\pi_1(W, w))$$

(equality inside G).

Proof. In case 1), G finite, we put $\Gamma := \rho(\pi_1(W, w))$, $\Gamma_{\text{geom}} := \rho(\pi_1^{\text{geom}}(W, w))$, denote by N the order of the cyclic group $\Gamma/\Gamma_{\text{geom}}$, and denote by $\Gamma(i)$ the set of elements in Γ of degree $i \mod N$. By Chebotarev, for $r \gg 0$, the Frobenii of k_r -valued points of W fill the coset $\Gamma(r)$, hence by the surjectivity of the map f_r on k_r -valued points, so do the Frobenii of k_r -valued points of C_r for $r \gg 0$. For these r, the $A^{-1}B$ argument shows that ratios $A^{-1}B$ of such Frobenii fill Γ_{geom} , whence a). For b), we argue as follows. For each integer i in [0, N-1] pick an integer $d_i \equiv i \mod N$ and sufficiently large that the Frobenii of k_{d_i} -valued points of W fill the coset $\Gamma(i)$. Then for any $r \geq r_0$ which is divisible by $\prod_i d_i$, the Frobenii of the points on C_r with values in k_{d_i} for $i = 0, 1, \ldots, N-1$ fill Γ .

For case 2), put K := the image $\rho(\pi_1^{\text{geom}}(W, w))$ in $\text{GL}(n, \mathcal{O}_{\lambda})$. By Pink's Lemma [4, 8.18.3], there exists an integer $d \geq 1$ such that a closed subgroup H of K is equal to K if and only if H and K have the same image in $\text{GL}(n, \mathcal{O}_{\lambda}/l^d\mathcal{O}_{\lambda})$.

For each integer $r \ge r_0$, put $H_r :=$ the image $\rho_r(\pi_1^{\text{geom}}(\mathcal{C}_r, c_r))$ in $\operatorname{GL}(n, \mathcal{O}_{\lambda})$. Thus H_r is a closed subgroup of K. By case 1), applied to the reduction mod l^d of ρ , for $r \gg 0$, H_r and K have the same image in $\operatorname{GL}(n, \mathcal{O}_{\lambda}/l^d \mathcal{O}_{\lambda})$. So by Pink's Lemma $H_r = K$ for all such r.

For b), apply Pink's Lemma to L := the image $\rho(\pi_1(W, w))$ in $\operatorname{GL}(n, \mathcal{O}_{\lambda})$ and the subgroups $J_r :=$ the image $\rho_r(\pi_q(\mathcal{C}_r, c_r))$ in $\operatorname{GL}(n, \mathcal{O}_{\lambda})$ to reduce b) to case 1).

For case 3), use the fact [5, 9.0.7] that any compact subgroup of $\operatorname{GL}(n, \mathbb{Q}_l)$, in particular the image $\rho(\pi_1(W, w))$, is conjugate to a closed subgroup of $\operatorname{GL}(n, \mathcal{O}_{\lambda})$ for \mathcal{O}_{λ} the ring of integers in some finite extension E_{λ} of \mathbb{Q}_l to reduce to case 2).

As an immediate consequence of case 3) of Lemma 6, we get the following result of Bertini type.

Corollary 7. Let k be a finite field, W/k a smooth, geometrically connected k-scheme, and w a geometric point of W. Suppose given an integer $r_0 \ge 1$, and, for each integer $r \ge r_0$, a smooth, geometrically connected k-scheme C_r/k and a k-morphism

$$f_r: \mathcal{C}_r \to W,$$

which is surjective on k_r -valued points. For each $r \ge r_0$, pick a geometric point c_r in C_r , and a "chemin" from $f_r(c_r)$ to w. Let l be a prime number, and \mathcal{F} a lisse $\overline{\mathbb{Q}}_l$ -sheaf on W of rank denoted n, corresponding to a continuous homomorphism

$$\rho: \pi_1(W, w) \to \operatorname{GL}(n, \overline{\mathbb{Q}}_l)$$

Denote by $G_{\text{geom},\mathcal{F} \text{ on } W}$ the Zariski closure of $\rho(\pi_1^{\text{geom}}(W,w))$ in $\text{GL}(n) \otimes \overline{\mathbb{Q}}_l$. Then for r sufficiently large, the pullback sheaf $(f_r)^*(\mathcal{F})$ on \mathcal{C}_r has the same G_{geom} :

$$G_{\text{geom}, (f_r)^* \mathcal{F} \text{ on } \mathcal{C}_r} = G_{\text{geom}, \mathcal{F} \text{ on } W}.$$

Moreover, if \mathcal{F} on W has the property that $\rho(\pi_1(W, w))$ lies in $G_{\text{geom}, \mathcal{F} \text{ on } W}(\mathbb{Q}_l)$, then for r sufficiently large the pullback sheaf $(f_r)^*(\mathcal{F})$ on \mathcal{C}_r has the same property, that $\rho(\pi_1(\mathcal{C}_r, c_r))$ lies in $G_{\text{geom}, (f_r)^*\mathcal{F} \text{ on } \mathcal{C}_r}(\mathbb{Q}_l)$.

Theorem 8. Let k be a finite field, X/k smooth and quasi-projective and geometrically connected, of dimension $n \ge 1$. Let E/k be a finite extension. There exists a smooth, geometrically connected curve C_0/k , and an immersion $\pi: C_0 \to X$ which is bijective on E-valued points. *Proof.* First apply Lemmas 2 and 3 to find an open set V in X which contains all the E-valued points and which admits an etale map π to $\mathbb{A}^n \otimes k$. Let d :=degree(E/k), so E is k_d . For each $r \geq 1$, use Lemma 1 to find a smooth, geometrically connected curve C_{rd}/k in $\mathbb{A}^n \otimes k$ which is spacefilling for k_{rd} . Take D_{rd}/k in V to be the fibre product

$$D_{rd} := C_{rd} \times_{\mathbb{A}^n \otimes k} V.$$

By Lemma 4, for large r this closed subscheme D_{rd} of V is a smooth, geometrically connected curve over k which is spacefilling for k_{rd} . Taking the $\operatorname{Gal}(k_{rd}/k_d)$ -invariants on both sides of the equality $D_{rd}(k_{rd}) = V(k_{rd})$, we get $D_{rd}(k_d) = V(k_d)$, or in other words D_{rd} is spacefilling in V for E. The composite inclusion $D_{rd} \subset V \subset X$ is the desired immersion.

Corollary 9. Let k be a finite field, X/k projective, smooth, and geometrically connected, of dimension $n \ge 1$. Let E/k be a finite extension. There exists a proper, smooth, geometrically connected curve C/k, and a k-morphism $\pi: C \to X$ which is surjective on E-valued points. Moreover,

- 1) there is an open dense set U in C such that $\pi | U : U \to X$ is bijective on E-valued points,
- 2) π is birationally an isomorphism of C with its image $\pi(C)$ taken with the induced reduced structure.

Proof. Apply Theorem 8 to get $\pi : C_0 \to X$, and then take C/k to be the complete nonsingular model of C_0/k . Take U to be C_0 . Because X/k is proper, the map π extends to a k-morphism $\overline{\pi} : C \to X$ with all the asserted properties.

Question 10. Given X/k projective, smooth, and geometrically connected of dimension $n \ge 2$, and E/k a finite extension, is there always a closed subscheme Y in $X, Y \ne X$, such that Y(E) = X(E) and such that Y/k is smooth and geometrically connected? What, if any, is the obstruction to the existence of such Y? For example, take for X an odd dimensional projective space \mathbb{P}^{2n+1} , $n \ge 1$ with homogeneous coordinates X_i and Y_i for $i = 1, \ldots, n+1$. Write $q := \operatorname{Card}(E)$ and take for Y the smooth hypersurface $\operatorname{Hyp}(2n+1,q)$ of degree q+1:

Hyp
$$(2n+1,q)$$
: $\sum_{i} (X_i(Y_i)^q - (X_i)^q Y_i) = 0.$

But what to do for \mathbb{P}^{2n} ? Take the "easy" case k = E (= \mathbb{F}_q). One idea is to view \mathbb{P}^{2n} as an \mathbb{F}_q -rational hyperplane section L = 0 of \mathbb{P}^{2n+1} , and then take its Y to be $L \cap \text{Hyp}(2n + 1, q)$. This idea does not work, because the Gauss map for Hyp(2n + 1, q) is

$$(X_i, Y_i)'s \mapsto ((Y_i)^q, -(X_i)^q)'s = \operatorname{Frob}_q((Y_i, -X_i)'s).$$

The map

$$(X_i, Y_i)$$
's $\mapsto (Y_i, -X_i)$'s

is an involution of Hyp(2n+1,q). Thus Hyp(2n+1,q) is its own dual variety, cf., [8, XVII, 3.4]. Exactly because Hyp(2n+1,q) contains all the \mathbb{F}_q -valued points in \mathbb{P}^{2n+1} , there are no \mathbb{F}_q -rational hyperplanes L in \mathbb{P}^{2n+1} which are transverse to Hyp(2n+1,q)!

The simplest form of the question is this: in $\mathbb{P}^2/\mathbb{F}_q$, is there a smooth plane curve C/\mathbb{F}_q which goes through all the \mathbb{F}_q -points of \mathbb{P}^2 ?

Applications to abelian varieties and to zeta functions of curves

Theorem 11. Let k be a field, A/k an abelian variety of dimension $g \ge 1$. There exists a proper, smooth, geometrically connected curve C/k, a k-valued point O_C in C(k), and a k-morphism

$$\pi: C \to A,$$

which maps the point O_C on C to the origin O_A on A, and whose Albanese map

$$\operatorname{Alb}(\pi) : \operatorname{Alb}(C/k, 0_C) \twoheadrightarrow A$$
$$\parallel \\ \operatorname{Jac}(C/k)$$

is surjective. Moreover, if the field k is infinite, there exists such data with π a closed immersion.

Proof. We first treat the well known case when the field k is infinite. The proof we give in this case (cf., [6, 10.1] for a variant) is quite simple. We give it both for the reader's convenience and because it conceivably could be made to work over a finite field as well, see Question 13 below. It depends on the following geometric fact:

Lemma 12. In \mathbb{P}^N over an infinite field k, let X/k be a closed subscheme which is smooth and geometrically connected, of dimension $n \ge 1$. Given an point Pin X(k) and an integer $d \ge 2$, there exists a hypersurface H/k of degree d in \mathbb{P}^N such that P lies on H and such that $X \cap H$ is smooth of dimension n - 1.

Proof. Denote by \mathcal{H} the projective space of all degree d hypersurfaces in \mathbb{P}^N . Inside \mathcal{H} , we have two subvarieties of particular interest:

- 1) the "dual variety" \dot{X} (of X for the *d*-fold Segre embedding, cf., [8, XVII, 2.4]), consisting of those degree *d* hypersurfaces *H* such that $X \cap H$ fails to be smooth of dimension n 1.
- 2) the hyperplane \check{P} consisting of those degree d hypersurfaces which contain P.

We claim that $\check{P} - \check{P} \cap \check{X}$ has a k-point. Since $\check{P} - \check{P} \cap \check{X}$ is open in the projective space \check{P} and the field k is infinite, $\check{P} - \check{P} \cap \check{X}$ is either empty or it has a k-point. [This comes down to the fact that if a k-polynomial in some number m of variables vanishes on k^m then it is the zero polynomial, provided k is infinite.] If $\check{P} - \check{P} \cap \check{X}$ is empty, then $\check{P} \subset \check{X}$. But the dual variety is irreducible of codimension at least one, cf., [8, XVII, 3.1.4], so $\check{P} = \check{X}$. Take homogeneous

coordinates X_0, \ldots, X_N in which the point P is $(1, 0, 0, \ldots, 0)$. The hypersurface $(X_0)^d = 0$ lies in \check{X} but not in \check{P} , contradiction.

To exhibit a g-dimensional abelian variety A over an infinite field k as the quotient of a Jacobian, embed A in projective space, pick g-1 integers $d_i \geq 2$, and successively intersect A with general hypersurfaces of degrees d_i defined over k which each contain the origin 0_A , to obtain a smooth curve C/k in A, defined over k, which contains 0_A . The "weak Lefschetz theorem" [7, VII, 7.1] on hypersurface sections tells us that for any prime l invertible in k, the restriction map

$$H^i(A \otimes_k \bar{k}, \mathbb{Q}_l) \to H^i(C \otimes_k \bar{k}, \mathbb{Q}_l),$$

is bijective for i = 0, so C/k is geometrically connected, and injective for i = 1. This injectivity for i = 1 implies that the Albanese map

$$\operatorname{Alb}(C, 0_A) \to A$$

is surjective.

The proof we give below, over a finite field, is due to Ofer Gabber. We do not know if the proof given above in the infinite field case can be made to work over a given finite field, say by taking the degrees d_i quite large, cf., Question 13 below.

Pick a prime number $l \neq p$, and a finite extension E/k such that each of the l^{2g} points in $A(\bar{k})$ of order dividing l lies in A(E). Apply the previous corollary to produce a proper smooth geometrically connected curve C/k, an open set $U \subset C$, and a k-morphism

$$\pi: C \to A$$

such that $\pi|U$ is bijective on *E*-valued points: $U(E) \cong A(E)$ by π . Taking $\operatorname{Gal}(E/k)$ -invariants, we see that $U(k) \cong A(k)$ by π . Take 0_C in U(k) to be $(\pi|U)^{-1}(0_A)$.

The image of $Alb(C/k, 0_C)$ in A is an abelian subvariety $B \subset A$. So $B(\bar{k})$ is a subgroup of $A(\bar{k})$. Hence $B(\bar{k}) \cap A(\bar{k})[l] = B(\bar{k})[l]$. But by construction we have

$$A(\bar{k})[l] \subset A(E) \cong \pi(U(E)) \subset \pi(C(\bar{k})) \subset B(\bar{k}).$$

Therefore $B(\bar{k})[l] = A(\bar{k})[l]$, hence $\#(B(\bar{k})[l]) = l^{2g}$. Therefore B has dimension g, so it must be all of A.

Question 13. Suppose we are in the setting of Lemma 12, but over a finite field k. Thus in \mathbb{P}^N over k, we are given a closed subscheme X/k which is smooth and geometrically connected, of dimension $n \geq 1$. Given a point P in X(k), does there exist an integer $d \geq 2$ and a hypersurface H/k of degree d in \mathbb{P}^N such that P lies on H and such that $X \cap H$ is smooth of dimension n - 1? Does this hold for all $d \gg 0$?

Corollary 14. Given a finite field k, and an abelian variety A/k, there exists a proper, smooth, geometrically connected curve C/k such that the characteristic polynomial of Frobenius on $(H^1 \text{ of }) A/k$ divides the characteristic polynomial of Frobenius on $(H^1 \text{ of }) C/k$.

Proof. Once the Albanese map is surjective, for $l \neq p$ we have a $\operatorname{Gal}(k/k)$ -equivariant inclusion

$$H^{1}(A \otimes_{k} \bar{k}, \mathbb{Q}_{l}) \subset H^{1}(\mathrm{Alb}(C/k, 0_{C}) \otimes_{k} \bar{k}, \mathbb{Q}_{l}) = H^{1}(C \otimes_{k} \bar{k}, \mathbb{Q}_{l}),$$

whence a divisibility of characteristic polynomials

$$\det(1 - TF_k | H^1(A \otimes_k \bar{k}, \mathbb{Q}_l)| \det(1 - TF_k | H^1(C \otimes_k \bar{k}, \mathbb{Q}_l)).$$

Corollary 15. Suppose we are given an integer $r \ge 1$, a list of r Weil numbers α_i for q := #k (each α_i is an algebraic integer which has all its archimedean absolute values equal to $\operatorname{Sqrt}(q)$), and a list r positive integers n_i . There exists a proper, smooth, geometrically connected curve C/k whose zeta function has a zero of multiplicity at least n_i at the point $T = 1/\alpha_i$ for each $i = 1, \ldots, r$.

Proof. By Honda-Tate ([3, 9]), there exists an abelian variety A_i/k on which α_i is an eigenvalue of Frobenius. Apply the previous corollary to the product abelian variety $\prod_i (A_i)^{n_i}$.

References

- P. Deligne, Application de la formule des traces aux sommes trigonométriques, in Cohomologie Étale (SGA 4¹/₂), Springer Lecture Notes in Mathematics, 569, pp. 168–232, Springer-Verlag, Berlin-New York, 1977.
- [2] V. Drinfeld, and S.G. Vladut, The number of points of an algebraic curve, Functional Anal. App. 17 (1983), 53–53.
- [3] T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83–95.
- [4] N. Katz, Exponential sums and differential equations, Annals of Mathematics Studies, 124, Princeton University Press, Princeton, NJ, 1990.
- [5] N. Katz and P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, 45, American Mathematical Society, Providence, RI, 1999.
- [6] J.S. Milne, Jacobian varieties, in Arithmetic Geometry, (G. Cornell and J.H. Silverman, eds.), pp. 167–212, Springer, New York, 1986.
- [7] Séminaire de Géométrie Algébrique du Bois-Marie 1965-66, Cohomologie l-adique et Fonctions L, Springer Lecture Notes in Mathematics, 589, Springer, New York, 1977.
- [8] Séminaire de Géométrie Algébrique du Bois-Marie 1967-69, Groupes de Monodromie en Géométrie Algébrique, Springer Lecture Notes in Mathematics, 340, Springer, New York, 1973.
- [9] J. Tate, Classes d'Isogénie des variétés abéliennes sur un corps fini (d'après T. Honda), Exposé 352, Séminaire Bourbaki 1968/69.

FINE HALL, DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON NJ 08544 E-mail address: nmk@math.princeton.edu