Notes on G_2 , determinants, and equidistibution

Nicholas M. Katz

Abstract We determine the exact shape of the G_2 equidistribution

law for the one parameter family of exponential sums over \mathbb{F}_{p}^{\times} ,

 $\Sigma_{x \mod p, x \neq 0} \chi_2(x) \exp(2\pi i (x^7 + tx)/p).$

Here $\chi_2(x)$ denotes the quadratic character (x/p), t in \mathbb{F}_p is the parameter, and p is any prime other than 2 or 7. This answers a question raised in [K-L-R, page 2943, footnote 3] and in [Se]. We also analyze the analogous families when 7 is replaced by any odd integer $n \ge 3$.

Table of contents

Introduction

- (1) Determinant calculations
- (2) Proof of Theorem 1.7
- (3) Monodromy of \mathcal{G}_n for general odd n
- (4) Monodromy of \mathcal{G}_7 : the group G_2 and its finite subgroups
- (5) Application to explicit G_2 equidistribution
- (6) Application to explicit SO(n) equidistribution
- (7) Application to the Katz-Sarnak measures $\nu(-, c)$

Introduction

The present work grew out of independent email exchanges with Rudnick and with Serre about the exact shape of the G_2 equidistribution law for the sums in the abstract, and for their natural generalization to finite extensions of \mathbb{F}_p . One knew that in any characteristic p > 15, after dividing these sums by a suitable normalizing factor, they were distributed like the traces of random elements of the compact form UG₂ of the exceptional group G₂. The initial problem was to determine precisely this normalizing factor. We carry out this determination (in sections 1 and 2) using a method which goes back to Davenport and Hasse [Dav-Ha], and which ultimately comes down to exploiting the exact shape of the relations between elementary symmetric functions and Newton

symmetric functions. The same method works to determine the correct normalizing factor for the analogous sums, when 7 is replaced by any odd integer.

For a fixed odd n, the "geometric monodromy group" G_{geom} attached to this family of sums is the same in all large characteristics p: this "stable value" is G_2 for n=7, and SO(n) for other odd n, see sections 3 and 4. In section 4, we analyze the n=7 case in all characteristics p where the sums "make sense", i.e., for any p other than 2 or 7. We show that G_{geom} is G_2 except in characteristics 3 and 13, where we show it is a finite group, and determine which finite group it is.

In section 5, we give the G_2 equidistribution consequences of our results in the n=7 case. In section 6, we give the SO(n) equidistribution consequences of our results in the n≠7 case. In the final section 7, we take the "large n limit" of the results of section 6, and give applications to the Katz-Sarnak measures $\nu(-,c)$.

It is a pleasure to thank Rudnick and Serre for stimulating the work reported on here. It is also a pleasure to thank Chris Hall for computer computations over the fields of 3^{15} and 3^{16} elements which play an essential role in the analysis of the n=7 case in characteristic 3.

(1) Determinant calculations

(1.1) We work over a finite field $k = \mathbb{F}_q$ of odd characteristic p. We fix a prime number $\ell \neq p$, an algebraic closure $\overline{\mathbb{Q}}_\ell$ of \mathbb{Q}_ℓ , and a field embedding ι of $\overline{\mathbb{Q}}_\ell$ into \mathbb{C} . We denote by ψ a nontrivial additive character ψ of k, and by χ_2 the quadratic character of k^{\times} , both with values in $\overline{\mathbb{Q}}_\ell^{\times}$. For any finite extension field E/k, we denote by ψ_E (resp. χ_E) the additive (resp. multiplicative) character of k (resp. k^{\times}) defined by composition with the trace (resp. norm) of E/k. (1.2) For any α in k^{\times} , we denote by ψ_{α} the additive character $\psi(\alpha x)$. We define the Gauss sum (1.2.1) $G(\psi, \chi_2) := \sum_{x \text{ in } k^{\times}} \chi_2(x)\psi(x)$. We have the well known identities (1.2.2) $G(\psi_{\alpha}, \chi_2) = \chi_2(\alpha)G(\psi, \chi_2)$, (1.2.3) $G(\psi, \chi_2)^2 = \chi_2(-1)(\#k).$

For E/k a finite extension, the Gauss sums for E and k are related by (1.2.4) $-G(\psi_E, \chi_{2,E}) = (-G(\psi, \chi_2))^{deg(E/k)}$.

(1.3) For each odd integer n = 2d + 1 prime to p, there is on \mathbb{A}^1/k a geometrically irreducible lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf of rank n which is pure of weight one,

(1.3.1) $\mathcal{F}_{n} := \operatorname{NFT}_{\psi}(\mathcal{L}_{\chi_{2}(x)} \otimes \mathcal{L}_{\psi(x^{n})}),$

cf. [Ka-ESDE, 7.8.2.1], whose trace function is given as follows. For E/k a finite extension, and for t in E = $\mathbb{A}^1(E)$, we have (1.3.2) Trace(Frob_{E,t} | \mathcal{F}_n) = $-\Sigma_{x \text{ in } E^{\times}} \chi_{2,E}(x)\psi_E(x^n + tx)$. In fact, the stalk at t in E = $\mathbb{A}^1(E)$ of \mathcal{F}_n is the cohomology group $H_c^1(\mathbb{G}_m \otimes_E \overline{k}, \mathcal{L}_{\chi_{2,E}(x)} \otimes \mathcal{L}_{\psi}(x^n + tx))$. Let us define the sign $\varepsilon(n) = \pm 1$ in k by (1.3.3) $\varepsilon(n) := (-1)^d$ Denote by A_n the ℓ -adic unit in $\overline{\mathbb{Q}}_{\ell}$ defined by (4.7.4)

(1.3.4) $A_n := -G(\psi_{e(n)n}, \chi_2),$

and form the constant twist \mathcal{G}_n of \mathcal{F}_n defined by

(1.3.5) $\mathfrak{P}_n := \mathfrak{F}_n \otimes (\mathfrak{A}_n)^{-\deg}.$

This is a lisse, rank n, $\overline{\mathbb{Q}}_{\ell}$ -sheaf on \mathbb{A}^1/k which is now pure of weight zero. Its trace function is given as follows. For E/k a finite extension, and for t in E = $\mathbb{A}^1(E)$, we have

(1.3.6) $Trace(Frob_{E,t} | g_n)$

= $(\sum_{x \text{ in } E^{\times}} \chi_{2,E}(x)\psi_{E}(x^{n} + tx))/G(\psi_{e(n)n,E},\chi_{2,E}).$

We see easily (by $x \mapsto -x$) that the trace function of \mathcal{G}_n on Frobenii is \mathbb{R} -valued (via ι). As \mathcal{G}_n is pure of weight 0, its $\overline{\mathbb{Q}}_\ell$ -dual \mathcal{G}_n as lisse sheaf on \mathbb{A}^1/k has the complex conjugate trace function on Frobenii. Therefore \mathcal{G}_n is self dual, because it is absolutely irreducible, and has the same trace function (on Frobenii, and hence on all elements of $\pi_1(\mathbb{A}^1/k)$) as its dual. As \mathcal{G}_n has odd rank n, the autoduality must be orthogonal. So the n-dimensional representation

(1.3.7)
$$\rho_n: \pi_1(\mathbb{A}^1/k) \to \operatorname{GL}(n, \overline{\mathbb{Q}}_\ell)$$

corresponding to the lisse sheaf \mathcal{G}_n factors through the orthogonal group $O(n, \overline{\mathbb{Q}}_p)$:

 $(1.3.8) \qquad \rho_n: \pi_1(\mathbb{A}^1/k) \to O(n, \overline{\mathbb{Q}}_\ell).$

Theorem 1.4 The representation ρ_n lands in SO(n, $\overline{\mathbb{Q}}_{\ell}$), i.e., for

every finite extension E/k and for every t in E = $\mathbb{A}^1(E)$, we have $\det(\operatorname{Frob}_{E,t} | \mathfrak{P}_n) = 1$.

(1.5) This theorem is a special case of the following more general result. Denote by $\mathcal{P}_{n,odd}$ the space of monic polynomials of degree n which are odd. Thus for any k-algebra R, a point f in $\mathcal{P}_{n,odd}(R)$ is a polynomial f(X) in R[X] of the form

$$f(X) = X^{n} + \sum_{i=1 \text{ to } d} a_{2i-1} X^{2i-1}.$$

Thus $\mathcal{P}_{n,odd}$ is a d-dimensional affine space \mathbb{A}^d , with coordinates the coefficients a_{2i-1} . The lisse sheaf \mathcal{F}_n is the restriction, to the \mathbb{A}^1 in $\mathcal{P}_{n,odd}$ of polynomials of the form $x^n + tx$, of a lisse sheaf $\mathcal{F}_{n,odd}$ on $\mathcal{P}_{n,odd}/k$, whose trace function is given as follows. For E/k a finite extension, and for f in $\mathcal{P}_{n,odd}(E)$, we have

(1.5.1) $\operatorname{Trace}(\operatorname{Frob}_{E,f} \mid \mathcal{F}_{n,odd}) = -\Sigma_{x \text{ in } E^{\times}} \chi_{2,E}(x) \psi_{E}(f(x)).$

In fact, the stalk at f in $\mathcal{P}_{n,odd}(E)$ of $\mathcal{F}_{n,odd}$ is the cohomology group

 $H_{c}^{1}(\mathbb{G}_{m}\otimes_{E}\overline{k}, \mathcal{L}_{\chi_{2,E}(x)}\otimes\mathcal{L}_{\psi(f(x))}).$

(1.6) We form the constant twist $g_{n,odd}$ of $\mathcal{F}_{n,odd}$ defined by

(1.6.1) $\mathfrak{P}_{n,odd} := \mathfrak{F}_{n,odd} \otimes (A_n)^{-deg}$

This is a lisse, rank n, $\overline{\mathbb{Q}}_{\ell}$ -sheaf on $\mathcal{P}_{n,odd}/k$ which is now pure of weight zero. Its trace function is given as follows. For E/k a finite extension, and for f in $\mathcal{P}_{n,odd}(E)$, we have

(1.6.2) $Trace(Frob_{E,f} | \mathfrak{g}_{n,odd})$

 $= (\Sigma_{x \text{ in } E^{\times}} \chi_{2,E}(x)\psi_{E}(f(x))/G(\psi_{e}(n)n,E,\chi_{2,E}).$

Exactly as above, $g_{n,odd}$ has real trace function on Frobenii, so is orthogonally self dual. The corresponding representation $\rho_{n,odd}$ lands

in O(n, $\overline{\mathbb{Q}}_{\ell}$):

(1.6.3) $\rho_{n,odd}: \pi_1(\mathcal{P}_{n,odd}/k) \to O(n, \overline{\mathbb{Q}}_{\ell}).$

Theorem 1.7 The representation $\rho_{n,odd}$ lands in SO(n, $\overline{\mathbb{Q}}_{\ell}$), i.e., for every finite extension E/k and for every f in $\mathcal{P}_{n,odd}(E)$, we have

 $det(Frob_{E,f} | \mathfrak{g}_{n,odd}) = 1.$

(2) Proof of Theorem 1.7

(2.1) We first observe that $\det(\rho_{n,odd})$ is geometrically trivial, i.e., its restriction to $\pi_1^{\text{geom}}(\mathcal{P}_{n,odd}/k) = \pi_1(\mathbb{A}^d \otimes_k \overline{k})$ is trivial. Indeed, this restriction is a homorphism from $\pi_1(\mathbb{A}^d \otimes_k \overline{k})$ to $\{\pm 1\} = \mu_2$, i.e., an element of $H^1(\mathbb{A}^d \otimes_k \overline{k}, \mu_2)$, and this last group vanishes, because char(k) is odd. Therefore $\det(\rho_{n,odd})$ is a homomorphism (2.1.1) $\det(\rho_{n,odd}): \pi_1(\mathcal{P}_{n,odd}/k) \to \{\pm 1\}$

which is geometrically constant, so necessarily of the form $B^{\mbox{deg}}$ for some choice of B in {±1}. For this B, we have

(2.1.2) $det(Frob_{E,f} | \mathfrak{g}_{n,odd}) = (B)^{deg(E/k)}.$

(2.2) We must show that B = 1. For this, it suffices to compute at a single k-valued point f. We take the point f := x^n . We have

(2.2.1)
$$det(1 - A_n TFrob_{k,f} | \mathcal{G}_{n,odd}) = det(1 - TFrob_k | H_c^{-1}(\mathcal{G}_m \otimes_k \overline{k}, \mathcal{L}_{\chi_2(x)} \otimes \mathcal{L}_{\psi(x^n)}) = L(\mathcal{G}_m/k, \mathcal{L}_{\chi_2(x)} \otimes \mathcal{L}_{\psi(x^n)}, T),$$

the abelian L-function on \mathbb{G}_{m}/k with coefficients in $\mathcal{L}_{\chi_{2}(x)} \otimes \mathcal{L}_{\psi(x^{n})}$. The additive expression of this L-function as a sum over all effective divisors of \mathbb{G}_{m}/k , i.e. over all monic polynomials h(X) in k[X] with $h(0) \neq 0$, is

 $1 + \Sigma_{r \ge 1} c_r T^r$, where c_r is the sum (2.2.1) $c_r =$

 $\Sigma_{\text{monic h of degree r with } h(0) \neq 0} \ \chi_2(\Pi_{\text{roots } \alpha \text{ of } h} \alpha) \psi(\Sigma_{\text{roots } \alpha \text{ of } h} \alpha^n).$

But this L function is a polynomial of degree n. Comparing

coefficients of T^n , we find det(- AnFrobk.f | gn.odd) (2.2.2)= det(-Frob_k | $H_c^1(\mathbb{G}_m \otimes_k \overline{k}, \mathcal{L}_{\chi_2(x)} \otimes \mathcal{L}_{\psi(f(x))})$ $= c_n$ which we rewrite in the equivalent form $det(Frob_{k,f} | g_{n,odd}) = c_n/(-A_n)^n$. (2.2.3)(2.3) We now compute c_n as an n-variable character sum. Write a monic h of degree n as $h(X) = X^{n} + \sum_{i=1}^{n} t_{0,n} (-1)^{i} s_{i} X^{n-i}$ (2.3.1)Then (2.3.2) $\Pi_{\text{roots } \alpha \text{ of } h} \alpha = s_n,$ $\sum_{\text{roots } \alpha \text{ of } h} \alpha n = N_n$, (2.3.3)where the N_n is the n'th Newton symmetric function. We know that N_n is an isobaric polynomial of weight n in s_1 , ..., s_n : $N_n = N_n(s_1, ..., s_n)$ So the coefficient \boldsymbol{c}_n is given by the n-variable character sum $c_n = \sum_{s_1,...s_n \text{ in } k, s_n \neq 0} \chi_2(s_n) \psi(N_n(s_1, ..., s_n)).$ (2.3.4)It remains only to establish the identity $c_n = (-A_n)^n$ (2.3.5)i.e., $c_n = G(\psi_{e(n)n}, \chi_2)^n$. (2.3.6)Recall that $G(\psi_{e(n)n}, \chi_2)^2 = \chi_2(-1)q$, and n = 2d + 1, so we have $G(\psi_{e(n)n}, \chi_2)^n = (G(\psi_{e(n)n}, \chi_2)^2)^d G(\psi_{e(n)n}, \chi_2)$ (2.3.7)= $\chi_2((-1)^d)q^d G(\psi_e(n)n, \chi_2)$ = $q^{d}G(\psi_{n},\chi_{2}),$ the last identity because $\varepsilon(n)$ is $(-1)^d$. Thus we must show that $\Sigma_{s_1,...s_n \text{ in } k, s_n \neq 0} \chi_2(s_n) \psi(N_n(s_1, ..., s_n)) = q^d G(\psi_n, \chi_2).$ (2.3.8)The proof of this depends on the following lemma.

Lemma 2.4 For n = 2d + 1 \geq 3, we have the identity N_n(s₁, ..., s_n)

= $(-1)^{n+1}ns_n + (-1)^n n\Sigma_{i=1 \text{ to } d} s_i s_{n-i} + R_n(s_1, ..., s_n),$

where every monomial in $R_n(s_1, ..., s_n)$ is isobaric of weight n and has usual degree \geq 3.

proof Applying (Td/dT) log to the identity

 $\Pi_{i=1 \text{ to } n} (1 - X_i T) = 1 + \Sigma_{i=1 \text{ to } n} (-1)^i s_i T^i$ (2.4.1)

we find

(2.4.2) $-\Sigma_{n > 1} N_n T^n$

= $(\sum_{i=1} t_{0} n (-1)^{i} i_{s_{i}} T^{i})/(1 + \sum_{i=1} t_{0} n (-1)^{i} s_{i} T^{i}).$

Cross-multiply and equate coefficients of like powers of T to obtain the identity, for each i = 1 to n,

(2.4.3)
$$(-1)^{i+1}is_i = N_i + \Sigma_{a=1 \text{ to } i-1} (-1)^a s_a N_{i-a}.$$

Because $N_{\dot{i}}$ is isobaric of weight i, $N_{\dot{i}}$ involves only $s_1, ..., \, s_{\dot{i}},$ and the involvement of s_i is of the form

(2.4.4)
$$N_i = (-1)^{i+1} i s_i + P_i(s_1, ..., s_{i-1}),$$

where every monomial in $P_i(s_1, ..., s_{i-1})$ is isobaric of weight i and has usual degree \ge 2. [Indeed, P_i(s₁, ..., s_{i-1}) is given explicitly as

(2.4.5)
$$P_i(s_1, ..., s_{i-1}) = -\sum_{a=1 \text{ to } i-1} (-1)^a s_a N_{i-a},$$

but we won't use this more explicit information.] Take the formula 2.4.3 above for i = n,

(2.4.6)
$$(-1)^{n+1}ns_n = N_n + \Sigma_{a=1} \text{ to } n-1 (-1)^a s_a N_{n-a}$$
,
and substitute for $N_i = (-1)^{i+1}is_i + P_i(s_1, ..., s_{i-1})$. We obtain

(2.4.7)
$$N_n = (-1)^{n+1}ns_n - \Sigma_{a=1} \text{ to } n-1 (-1)^a s_a N_{n-a}$$

= $(-1)^{n+1}ns_n - \Sigma_{a=1} \text{ to } n-1 (-1)^a s_a (-1)^{n-a+1} (n-a)s_{n-a}$
 $- \Sigma_{a=1} \text{ to } n-1 (-1)^a s_a P_{n-a} (s_1, ..., s_{n-a-1}).$
The final term will be our $B_n (s_1, ..., s_n)$ In the sum

The final term will be our $R_n(s_1, ..., s_n)$. In the sum

$$- \Sigma_{a=1 \text{ to } n-1} (-1)^{a} s_{a} (-1)^{n-a+1} (n-a) s_{n-a},$$

every term $s_i s_{n-i}$ with $1 \le i \le d$ occurs twice, first with coefficient $(-1)^{n}(n-i)$, and then again with coefficient $(-1)^{n}(i)$. QED

Corollary 2.5 For n = 2d + 1 \ge 3, if we write N_n(s₁, ..., s_n) as a polynomial in s_{d+1} , ..., s_n , with coefficients in $\mathbb{Z}[s_1,...,s_d]$, we have $N_n(s_1, ..., s_n)$

= $(-1)^{n+1}ns_n + (-1)^nn\sum_{i=1 \text{ to } d} s_{n-i} (s_i + Q_i(s_1, ..., s_{i-1})) + P_n(s_1, ..., s_d)$, where each $Q_i(s_1, ..., s_{i-1})$ is isobaric of weight i, and every monomial in it has usual degree at least two, and where $P_n(s_1, ..., s_d)$ is isobaric of weight n, and every monomial in it has usual degree at least three. **proof** From the isobaricity of R_n , we see that each of $s_n, s_{n-1}, ..., s_{d+1}$, occurs at most linearly. If one of these, say s_{n-i} , $i \leq d$, occurs,

its coefficient Q_i in R_n is isobaric of weight i, and every monomial in Q_i has usual degree at least two, so only involves those variables s_a with index $1 \le a \le i-1$. Those monomials in R_n which involve none of s_n , s_{n-1} , ..., s_{d+1} comprise P_n . QED

(2.6) With this corollary established, it is a simple matter to compute $\mathbf{c}_{n}.$ We have

$$\begin{array}{ll} (2.6.1) & c_n = \sum_{s_1, \ldots s_n \text{ in } k, \ s_n \neq 0} \ \chi_2(s_n) \psi(N_n(s_1, \ \ldots, \ s_n)) \\ & = \sum_{s_1, \ldots s_n \text{ in } k, \ s_n \neq 0} \ \chi_2(s_n) \times \\ \psi((-1)^{n+1}ns_n + (-1)^n n \sum_{i=1 \text{ to } d} s_{n-i} \ (s_i + Q_i(s_1, \ \ldots, \ s_{i-1})) + P_n(s_1, \ldots, \ s_d)) \\ & = (\sum_{s_n \text{ in } k} \times \chi_2(s_n) \psi((-1)^{n+1}ns_n)) \times \\ \sum_{s_1, \ldots s_{n-1} \text{ in } k} \psi(P_n(s_1, \ldots, \ s_d)) \psi((-1)^n n \sum_{i=1 \text{ to } d} s_{n-i} \ (s_i + Q_i(s_1, \ \ldots, \ s_{i-1}))). \\ \text{Remember that } n = 2d + 1 \text{ is odd, so the first sum is just } G(\psi_n, \ \chi_2). \\ \text{We claim the second sum is } q^d. Write it as \\ (2.6.2) & \sum_{s_1, \ldots s_d \text{ in } k} \psi(P_n(s_1, \ldots, \ s_d))) \times \\ & \sum_{s_{d+1}, \ldots s_{n-1} \text{ in } k} \psi_{-n}(\sum_{i=1 \text{ to } d} s_{n-i} \ (s_i + Q_i(s_1, \ \ldots, \ s_{i-1}))). \\ \text{The inner sum is of the form } \\ (2.6.3) & \sum_{s_{d+1}, \ldots s_{n-1} \text{ in } k} \psi(a \text{ linear form in } s_{n-1}, \ \ldots, \ s_{d+1}), \\ \text{so it vanishes unless all the coefficients of the linear form vanish, in which case it is q^d . But the coefficients are $(2.6.4) \quad s_1, s_2 + Q_2(s_1), \ldots, s_i + Q_i(s_1, \ \ldots, \ s_{d-1}). \\ \text{If they all vanish, then we see successively that } s_1 = 0, \ s_2 = 0, \ \ldots, s_d \end{array}$$$

= 0. So the inner sum is nonzero precisely once, for $s_1 = ... = s_d = 0$, in which case it is q^d . Thus the second sum is $q^d \psi(P_n(0,..., 0))$. Now P_n has no constant term, every monomial in it being of usual degree at least three, so $P_n(0,..., 0) = 0$, and so

$$(2.6.5) \qquad q^{d}\psi(P_{n}(0,..., 0)) = q^{d}\psi(0) = q^{d}$$

This concludes the proof of Theorem 1.7, and with it, Theorem 1.4.

(3) Monodromy of \mathcal{G}_n for general odd n

(3.1) In [Ka-ESDE, 7.1.1], we defined, for each integer $b \ge 1$, nonzero integers N₁(b) and N₂(b), and showed that if a prime p does not divide $2N_1(b)N_2(b)$, then the relations in $\overline{\mathbb{F}}_p$ of the form

 $\alpha - \beta = \gamma - \delta$ among elements α , β , γ , δ of $\mu_b(\overline{\mathbb{F}}_p) \cup \{0\}$ are, in a precise sense, "the same" as in characteristic zero.

Theorem 3.2 Fix an odd integer $n \ge 3$, $n \ne 7$. For any prime p such that

p > 2n + 1,

and

p does not divide $2nN_1(n-1)N_2(n-1)$,

for any finite field k of characteristic p, for any prime $\ell \neq p$, and for any choice of nontrivial additive character ψ of k, the group G_{geom} for the lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathcal{G}_n (or equivalently for the lisse sheaf \mathcal{F}_n) on \mathbb{A}^1/k is SO(n).

proof The description of \mathcal{F}_n as a Fourier Transform, together with Laumon's Stationary Phase, [Lau] or [Ka-ESDE, 7.4.1, 7.5], shows that the I(∞)-representation attached to \mathcal{F}_n is the direct sum

 $\mathcal{L}_{\chi_2} \oplus$ (a totally wild rep'n of dim. n-1, all breaks n/(n-1)). Because p > 2n + 1, and \mathcal{F}_n is lisse of rank n and geometrically irreducible on \mathbb{A}^1 , it is Lie-irreducible [Ka-MG, Prop. 5]. We now apply [Ka-ESDE, 7.2.7], with a/b there taken to be n/(n-1). Since we have an a priori inclusion of G_{geom} in SO(n), the only possibility

signs-53-10

among the choices offered there for $(G_{geom})^{0,der}$ is SO(n) itself. QED

(3.3) For any given odd $n \ge 3$, we do not know the exact list of the exceptional primes, those p prime to 2n for which G_{geom} for \mathcal{F}_n is smaller than SO(n). However, there is a general principle that it quite useful in thinking about such questions.

Lemma 3.4 Fix an odd integer $n \ge 3$, a characteristic p prime to 2n, and a prime $\ell \ne p$. The group G_{geom} for \mathfrak{F}_n is independent of the auxiliary choice of (k, ψ) used to define \mathfrak{F}_n . **proof** Given two data (k, ψ) to (k_1, ψ_1) , denote by $\mathfrak{F}_n(k, \psi)$ and $\mathfrak{F}_n(k_1, \psi_1)$ the versions of \mathfrak{F}_n they give rise to. To compare them, we pass to a common finite extension E of both k and k_1 . There the two nontrivial additive characters ψ_E and $\psi_{1,E}$ are E^{\times} -proportional: there exists α in E^{\times} such that for x in E we have $\psi_{1,E}(x) = \psi_E(\alpha x)$.

Passing to a further finite extension if necessary, we may assume that $\alpha = \beta^{2n}$ for some β in E^{\times} . Then we see that for any finite extension E_1 of E, and any t in E_1 , we have

 $\mathsf{Trace}(\mathsf{Frob}_{E_1,t} \mid \mathfrak{F}_n(\mathsf{k}_1, \, \psi_1))$

$$\begin{split} &= -\Sigma_{x \text{ in } E_{1}} \times \chi_{2, E_{1}}(x) \psi_{E_{1}}(\beta^{2n}(x^{n} + tx)) \\ &= -\Sigma_{x \text{ in } E_{1}} \times \chi_{2, E_{1}}(\beta^{-2}x) \psi_{E_{1}}(\beta^{2n}((\beta^{-2}x)^{n} + t\beta^{-2}x)) \\ &= -\Sigma_{x \text{ in } E_{1}} \times \chi_{2, E_{1}}(x) \psi_{E_{1}}(x^{n} + t\beta^{2n-2}x)) \\ &= \text{Trace}(\text{Frob}_{E_{1}, t\beta}2n-2 \mid \mathcal{F}_{n}(k, \psi)). \end{split}$$

This means that after pullback to \mathbb{A}^1/\mathbb{E} , the sheaves

 $\mathcal{F}_{n}(k_{1}, \psi_{1}) \text{ and } [t \mapsto \beta^{2n-2}t]^{*}\mathcal{F}_{n}(k, \psi)$

have the same trace function. As both are geometrically and hence arithmetically irreducible, by Chebotarev, they are isomorphic:

$$\mathfrak{F}_n(\mathbf{k}_1,\,\psi_1)\cong \ [\mathbf{t}\mapsto \beta^{2n-2}\mathbf{t}]^{\boldsymbol{\star}}\mathfrak{F}_n(\mathbf{k},\,\psi) \ \text{on} \ \mathbb{A}^1/\mathbb{E}.$$

In particular, they are geometrically isomorphic. Now

$$[t \mapsto \beta^{2n-2}t]^* \mathcal{F}_n(k, \psi)$$

is the pullback of $\mathcal{F}_n(k, \psi)$ by an automorphism, so has the same G_{geom} as $\mathcal{F}_n(k, \psi)$ Thus $\mathcal{F}_n(k_1, \psi_1)$ and $\mathcal{F}_n(k, \psi)$ have the same G_{geom} .

Lemma 3.5 Suppose k is a finite field of characteristic p, C/k a smooth, geometrically connected affine curve, ℓ a prime invertible in k, and F a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf on C which is geometrically irreducible, and whose rank n is a prime number. Then either F is Lie-irreducible, or F has finite G_{geom} . If in addition C is \mathbb{A}^1 and p > n, then either F is Lie-irreducible or G_{geom} is a finite primitive irreducible subgroup of $GL(n, \overline{\mathbb{Q}}_{\ell})$.

proof If \mathcal{F} is not Lie-irreducible, then [Ka-MG, Prop. 1] geometrically it is either induced, i.e. of the form $\pi_*\mathcal{X}$ for some finite etale covering $\pi: \mathbb{Z} \to \mathbb{C}/\overline{k}$ of degree d > 1, dln, and some lisse \mathcal{X} on \mathbb{Z} of rank n/d, or it is a tensor product $\mathscr{A} \otimes \mathbb{B}$ with \mathbb{B} Lie-irreducible of rank r a proper divisor r of n, and with \mathscr{A} of rank n/r having finite G_{geom} . Since n is prime, in the induced case \mathcal{F} is $\pi_*\mathcal{L}$ for some \mathcal{L} of rank one, and in the tensor product case \mathcal{F} is $\mathscr{A} \otimes \mathcal{L}$ with \mathcal{L} of rank one and \mathscr{A} having finite G_{geom} . In either case, the pullback of \mathcal{F} to a finite etale connected galois covering of \mathbb{C}/\overline{k} is the direct sum of n lisse sheaves, each of rank one. Therefore $(G_{geom})^0$ for \mathcal{F} lies in a torus, so is a torus. But by Grothendieck's theorem [De-Weil II, 1.3.9], $(G_{geom})^0$ for \mathcal{F} is semisimple. Therefore $(G_{geom})^0$ for \mathcal{F} is trivial, i.e. G_{geom} for \mathcal{F} is finite. If C is C is \mathbb{A}^1 and p > n, the induced case is impossible, because $\mathbb{A}^1/\overline{k}$ has no connected finite etale coverings of degree < p. QED

(3.6) We now return to the sheaves $\mathbb{F}_n.$ When n is prime, we have the following result.

Theorem 3.7 Fix an odd integer $n \ge 3$, $n \ne 7$, and suppose that n is prime. Then for any prime $p \ge 2n + 1$, for any finite field k of characteristic p, for any prime $\ell \ne p$, and for any choice of nontrivial additive character ψ of k, the group G_{geom} for the lisse

 $\overline{\mathbb{Q}}_{\ell}\text{-sheaf}\ \mathfrak{P}_n$ (or equivalently for the lisse sheaf $\mathfrak{F}_n)$ on \mathbb{A}^1/k is

SO(n).

proof We first treat the case p > 2n+1. Because p > 2n + 1, and det(\mathcal{F}_n) is geometrically trivial, \mathcal{F}_n is Lie-irreducible, and G_{geom} is connected [Ka-MG, Prop. 5]. Thus G_{geom} is an irreducible connected subgroup of SO(n). Because n is an odd prime other than 7, it results from Gabber's theorem on prime-dimensional representations [Ka-ESDE, 1.6] that G_{geom} is either SO(n) or the faithful image PSL(2) of SL(2) in Symⁿ⁻¹(std₂). If n = 3, these two cases coincide. If n ≥ 5, the second case cannot occur. Indeed, \mathcal{F}_n has an ∞-break n/(n-1), so by [Ka-GKM, 1.9], every faithful representation of its G_{geom} has dimension ≥ n-1, compare [Ka-ESDE, proof of 9.1.1]. But PSL(2) ≅ SO(3) has a faithful three-dimensional representation.

It remains to treat the case p = 2n + 1. If \mathcal{F}_n is Lie-irreducible, then the argument above applies.

Since n is prime, if \mathcal{F}_n is not Lie-irreducible, then by Lemma 3.5 above, it has finite G_{geom} . We must show that G_{geom} for \mathcal{F}_n is not finite, if p = 2n+1. The key point is not the exact value of p, but rather that we have the congruence

 $p \equiv 1 \mod 2n$.

If G_{geom} is finite, then a power of every $\operatorname{Frob}_{E,t} | \mathfrak{F}_n$ is scalar, cf. [Ka-ESDE, 8.14.3.1]. In particular, a power of $\operatorname{Frob}_{k,0} | \mathfrak{F}_n$ is scalar, and hence in particular has equal eigenvalues.

To conclude the proof, we will now show that if $p \equiv 1 \mod 2n$, then no power of $\operatorname{Frob}_{k,0} | \mathcal{F}_n$ has equal eigenvalues. We argue by contradiction. Since $p \equiv 1 \mod 2n$, and n is an odd prime, already \mathbb{F}_p and hence k contains all the 2n'th roots of unity. Enlarging k if necessary, we may assume that $\operatorname{Frob}_{k,0} | \mathcal{F}_n$ itself has all equal eigenvalues. Denote by $\{\Lambda_1, ..., \Lambda_n\}$ all the multiplicative characters of k[×] of order dividing n. We have $Trace(Frob_{k,0} | \mathcal{F}_n)$

$$= - \sum_{x \neq 0 \text{ in } k} \chi_2(x) \psi(x^n)$$

$$= - \sum_{x \neq 0 \text{ in } k} \chi_2(x^n) \psi(x^n)$$

$$= -\sum_{u \neq 0 \text{ in } k} \chi_2(u) \psi(u) (\text{number of n'th roots of u in } k)$$

$$= -\sum_{u \neq 0 \text{ in } k} \chi_2(u) \psi(u) \sum_{i=1 \text{ to } n} \Lambda_i(u)$$

$$= \sum_{i=1 \text{ to } n} -G(\psi, \chi_2 \Lambda_i).$$

These same identities, but over all finite extensions of k, show that the eigenvalues of $\operatorname{Frob}_{k,0} | \mathfrak{F}_n$ are precisely the $((-1)\times)$ Gauss sums $-G(\psi, \chi_2 \Lambda_i)$,

for all the characters Λ_i of order dividing n. So it suffices to show that these n Gauss sums are all distinct. The key point is that the characters $\chi_2 \Lambda_i$ are all distinct, all nontrivial, and they all have order dividing p-1. That they are all distinct results from the fact that the p-2 Gauss sums formed with **all** the nontrivial characters of order dividing p-1 are all distinct. This follows from (the most elementary case of) Stickelberger's theorem. These sums all lie in $\mathbb{Z}[\varsigma_p, \varsigma_{p-1}]$, and for any p-adic place \mathbb{P} of $\mathbb{Q}(\varsigma_p, \varsigma_{p-1})$, these Gauss sums have all distinct \mathbb{P} -adic valuations. If we normalize ord p by $\operatorname{ord}_{\mathbb{P}}(\#k) = 1$, the p-2 sums in question have as $\operatorname{ord}_{\mathbb{P}}$'s the p-2 fractions a/(p-1), for a = 1 to p-2, in some order. QED

(3.8) For n = 3, this result is sharp.

Lemma 3.9 In characteristic p = 5, \mathcal{F}_3 , or equivalently \mathcal{G}_3 , has finite $G_{geom} = A_5$, where A_5 is viewed as lying in SO(3) by one of its two irreducible three-dimensional representations. proof By Lemma 3.4 above, we may choose k to the prime field \mathbb{F}_5 , and ψ to be (the image under ι of) the C-valued additive character $x \mapsto \exp(2\pi i x/5)$. We know a priori that G_{geom} is a irreducible subgroup of SO(3), so it is either SO(3) itself, or it is one of A_4 , S_4 , or A_5 .

We first show that G_{geom} is not SO(3). We argue by contradiction. Recall that SO(3) has a unique irreducible representation Λ_{2m+1} of each odd dimension 2m+1. Since g_3 has $\pi_1(\mathbb{A}^1/\mathbb{F}_5)$ landing in SO(3), we can form the lisse sheaf $\Lambda_{2m+1}(\mathfrak{G}_3)$ on $\mathbb{A}^1/\mathbb{F}_5$. Each sheaf $\Lambda_{2m+1}(\mathfrak{G}_3)$ is pure of weight zero and selfdual. If G_{geom} is SO(3), then each is geometrically irreducible, and so we will have

$$\begin{split} &H_c^2(\mathbb{A}^1\otimes\overline{\mathbb{F}}_5,(\Lambda_{2m+1}(\mathfrak{g}_3))\otimes^2)\\ &\cong \ &H_c^2(\mathbb{A}^1\otimes\overline{\mathbb{F}}_5,\,\underline{\mathrm{End}}(\Lambda_{2m+1}(\mathfrak{g}_3)))\,=\,\overline{\mathbb{Q}}_\ell(-1). \end{split}$$

So for any finite extension E/\mathbb{F}_5 , the Lefschetz trace formula will give

$$\begin{split} \Sigma_{\text{t in E}} &(\text{Trace}(\text{Frob}_{\text{E},\text{t}} \mid \Lambda_{2m+1}(\boldsymbol{9}_{3})))^{2} \\ &= \textit{\texttt{#}E} - \text{Trace}(\text{Frob}_{\text{E}} \mid \textbf{H}_{c}^{-1}(\mathbb{A}^{1} \otimes \overline{\mathbb{F}}_{5}, (\Lambda_{2m+1}(\boldsymbol{9}_{3}))^{\otimes 2})). \end{split}$$

By Deligne [De-Weil II, 3.3.1], $H_c^1(\mathbb{A}^1 \otimes \overline{\mathbb{F}}_5, (\Lambda_{2m+1}(\mathfrak{G}_3))^{\otimes 2})$ is mixed of weight ≤ 1 , and hence we have the estimate

 $| \neq E - \Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | \Lambda_{2m+1}(\mathfrak{g}_3)))^2 |$

$$\leq \dim H_c^1(\mathbb{A}^1 \otimes \overline{\mathbb{F}}_5, (\Lambda_{2m+1}(\mathfrak{P}_3))^{\otimes 2})(\# E)^{1/2}.$$

Dividing through by # E, we rewrite this in the form

- $|1 (1/\#E)\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | \Lambda_{2m+1}(g_3)))^2|$
 - $\leq \dim H_c^1(\mathbb{A}^1 \otimes \overline{\mathbb{F}}_5, (\Lambda_{2m+1}(\mathcal{G}_3))^{\otimes 2})/(\# E)^{1/2}.$

We next note that

$$\begin{split} &\dim \mathrm{H_c}^1(\mathbb{A}^1\otimes\overline{\mathbb{F}}_{5},(\Lambda_{2m+1}(\mathfrak{G}_{3}))^{\bigotimes 2})\leq 1+2m^2+2m.\\ &\mathrm{To\ show\ this,\ we\ argue\ as\ follows.\ Because\ \mathrm{G}_{geom}\ is\ \mathrm{SO}(3),}\\ &\dim \mathrm{H_c}^2(\mathbb{A}^1\otimes\overline{\mathbb{F}}_{5},(\Lambda_{2m+1}(\mathfrak{G}_{3}))^{\bigotimes 2})=1,\ \mathrm{so} \end{split}$$

$$\begin{split} 1 &- \dim_{C} \operatorname{H}_{c}^{1}(\mathbb{A}^{1} \otimes \overline{\mathbb{F}}_{5}, (\Lambda_{2m+1}(9_{3})) \otimes 2) \\ &= \chi((\mathbb{A}^{1} \otimes \overline{\mathbb{F}}_{5}, (\Lambda_{2m+1}(9_{3})) \otimes 2) \\ &= \operatorname{rank}((\Lambda_{2m+1}(9_{3})) \otimes 2) - \operatorname{Swan}_{\infty}(\Lambda_{2m+1}(9_{3})) \otimes 2) \\ &= (2m+1)^{2} - \operatorname{Swan}_{\infty}(\Lambda_{2m+1}(9_{3})) \otimes 2). \end{split}$$

Now \mathcal{G}_3 has highest ∞ -slope 3/2, so $(\Lambda_{2m+1}(\mathcal{G}_3))^{\otimes 2}$ has highest ∞ -slope $\leq 3/2$, and so

$$\begin{split} &\operatorname{Swan}_{\infty}(\Lambda_{2m+1}(\mathfrak{G}_{3}))^{\otimes 2}) \leq (3/2)\operatorname{rank}(\Lambda_{2m+1}(\mathfrak{G}_{3}))^{\otimes 2}) \\ &\leq (3/2)(2m+1)^{2}. \end{split}$$

Thus we have

 $(2m+1)^2\geq\chi((\mathbb{A}^1\otimes\overline{\mathbb{F}}_5,(\Lambda_{2m+1}(g_3))^{\bigotimes 2})\geq(2m+1)^2-(3/2)(2m+1)^2.$ On the other hand, we have

 $1 - \dim \mathrm{H_c}^1(\mathbb{A}^1 \otimes \overline{\mathbb{F}}_5, (\Lambda_{2m+1}(\mathfrak{G}_3))^{\otimes 2})$

$$= \chi((\mathbb{A}^1 \otimes \overline{\mathbb{F}}_{5,}(\Lambda_{2m+1}(\mathfrak{g}_3))^{\otimes 2}),$$

so we have

$$1 \geq \chi((\mathbb{A}^1 \otimes \overline{\mathbb{F}}_5, (\Lambda_{2m+1}(\mathcal{G}_3)) \otimes ^2).$$

Thus we have

$$1 \ge \chi((\mathbb{A}^1 \otimes \overline{\mathbb{F}}_5, (\Lambda_{2m+1}(\mathfrak{G}_3))^{\bigotimes 2}) \ge -(1/2)(2m+1)^2,$$

and so

$$1 \ge 1 - \dim \mathrm{H}_{\mathrm{C}}^{1}(\mathbb{A}^{1} \otimes \overline{\mathbb{F}}_{5}, (\Lambda_{2m+1}(\mathfrak{g}_{3}))^{\otimes 2}) \ge -(1/2)(2m+1)^{2},$$

so finally

$$\begin{split} \dim \mathbb{H}_{c}^{-1}(\mathbb{A}^{1}\otimes \overline{\mathbb{F}}_{5}, (\Lambda_{2m+1}(\mathcal{G}_{3}))^{\bigotimes 2}) &\leq 1 + (1/2)(2m+1)^{2} \\ &\leq 1 + 2m^{2} + 2m + 1/2. \end{split}$$

Since dimensions are integers, we have

$$\begin{split} \dim H_c^{-1}(\mathbb{A}^1\otimes\overline{\mathbb{F}}_5,(\Lambda_{2m+1}(\mathfrak{G}_3))^{\bigotimes 2}) &\leq 1+2m^2+2m,\\ \text{as asserted. Thus if } G_{geom} \text{ is SO(3), we have the estimate, for every}\\ m &\geq 1, \text{ and every finite extension } \mathbb{E}/\mathbb{F}_5, \end{split}$$

$$|1 - (1/\#E)\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | \Lambda_{2m+1}(9_3)))^2| \le (1 + 2m^2 + 2m)/(\#E)^{1/2}.$$

We now take m = 3. Then a machine calculation over E the field of 5^5 = 3125 elements gives

 $(1/\#\, E)\Sigma_t$ in $_E$ $(Trace(Frob_{E,t}\mid \Lambda_7(\ensuremath{9.3})))^2$ = 1.99872, which is not within

 $(1 + 2m^2 + 2m)/(\#E)^{1/2} = 25/Sqrt(5^5) = 0.447214$ of 1. Therefore G_{geom} for 9_3 is not SO(3).

The only other possibilities for G_{geom} , i.e., the only finite irreducible subgroups of SO(3), are A₄, S₄, and A₅. Denote by G_{arith} the Zariski closure of $\rho(\pi_1(\mathbb{A}^1/k))$ in SO(3), for ρ the representation corresponding to \mathcal{G}_3 . Then G_{arith} is finite as well, cf. [Ka-ESDE, 8.14.3.1], and it contains G_{geom} as a normal irreducible subgroup. So G_{arith} is itself one of A₄, S₄, or A₅. But all the irreducible threedimensional representations of A₄ and S₄ have trace functions which take values in the set {3, 1, 0, -1}. On the other hand, the traces of G_{arith} are all the numbers

 $Trace(Frob_{E,t} | g_3)$

$$= (-1/G(\psi, \chi_2))^{\deg(E/\mathbb{F}_p)} \times (-\Sigma_{t \text{ in } E} \chi_{2,E}(x)\psi_E(x^3 + tx).$$

Taking for E the prime field \mathbb{F}_5 , and t = 1, we get 1.61803... as a trace, and hence G_{arith} can only be A₅. Since A₅ is simple, and G_{geom} is an irreducible normal subgroup of it, we have $G_{geom} = A_5$. QED

(3.10) For general odd n, we have uniform results not for \mathcal{F}_n but for its several parameter version $\mathcal{F}_{n.odd}$.

Theorem 3.11 Fix p > 5. Then for any odd $n \ge 3$ prime to p, for any finite field k of characteristic p, for any prime $\ell \neq p$, and for any choice of nontrivial additive character ψ of k, the group G_{geom} for the lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf $\mathcal{G}_{n,odd}$ (or equivalently for the lisse sheaf $\mathcal{F}_{n,odd}$) on $\mathcal{P}_{n,odd}/k$ is SO(n).

proof For n = 3, $\mathcal{F}_{3,odd}$ is just \mathcal{F}_3 , and the theorem is a special case of Theorem 3.7. We will handle the case $n \ge 5$ by a degeneration argument, which in fact proves a stronger result. Inside the space $\mathcal{P}_{n,odd}$ of monic odd polynomials of degree n, let us denote by $\mathcal{P}_{n,odd,\leq 3}$ the closed subscheme whose R-valued points are all polynomials of the form

$$x^n + bx^3 + cx$$
,

with b, c in R. We denote by $\mathcal{F}_{n,odd,\leq 3}$ (respectively $\mathcal{G}_{n,odd,\leq 3}$) the restriction of $\mathcal{F}_{n,odd}$ (respectively $\mathcal{G}_{n,odd}$) to this closed subspace. We know that G_{geom} for $\mathcal{F}_{n,odd}$ lies in SO(n). Since G_{geom} for a pullback is a subgroup, it suffices to prove that G_{geom} for $\mathcal{F}_{n,odd,\leq 3}$ is SO(n).

Theorem 3.12 Fix $p \ge 5$. Then for any odd $n \ge 5$ prime to p, for any finite field k of characteristic p, for any prime $\ell \neq p$, and for any choice of nontrivial additive character ψ of k, the group G_{geom} for

the lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf $\mathcal{G}_{n,odd,\leq 3}$ (or equivalently for the lisse sheaf $\mathcal{F}_{n,odd,\leq 3}$) on $\mathcal{P}_{n,odd}/k$ is SO(n).

proof Exactly as in [Ka-LFM, pp. 115-119], we show that the fourth moment M_4 of G_{geom} for the lisse sheaf $\mathcal{F}_{n,odd,\leq 3}$ is 3. Since G_{geom} is a priori a subgroup of SO(n), it follows from Larsen's Alternative [Ka-LFM, page 113] that G_{geom} is either SO(n), or is finite.

It remains to show that G_{geom} for $\mathcal{F}_{n,odd,\leq 3}$ is not finite. Consider the following geometric situation. Over \mathbb{A}^3/k , with coordinates a, b, c consider the product space $\mathbb{G}_m \times \mathbb{A}^3$, with coordinates x ,a, b, c, endowed with the lisse sheaf

 $\mathcal{K} := \mathcal{L}_{\chi_2(\mathbf{x})} \mathcal{L}_{\psi(\mathbf{a}^{2n} \mathbf{x}^n + \mathbf{b} \mathbf{x}^3 + \mathbf{c} \mathbf{x})}.$

Via the projection

we form the sheaf

 $\mathfrak{M} := \mathbb{R}^1(\mathrm{pr}_2)_! \mathfrak{K}$

on the base \mathbb{A}^3/k . As explained in [Ka-SMD], \mathbb{M} is a sheaf of perverse origin on \mathbb{A}^3/k . The restriction of \mathbb{M} to the \mathbb{A}^1 of polynomials $x^3 + tx$, i.e., the points (0, 1, t) in \mathbb{A}^3 , is just the sheaf \mathbb{F}_3 . The restriction of \mathbb{M} to the open set $\mathbb{A}^3[1/a]$ is isomorphic to a pullback of the sheaf $\mathbb{F}_{n,odd,\leq 3}$. [First pull back by the map

$$\mathbb{A}^{3}[1/a] \rightarrow \mathbb{P}_{n,odd,\leq 3}$$

$$(a, b, c) \mapsto x^{n} + (b/a^{6})x^{3} + (c/a^{2})x,$$

then do the $\mathbb{A}^{3}[1/a]$ -automorphism of $\mathbb{G}_{m} \times \mathbb{A}^{3}[1/a]$

 $(x, a, b, c) \mapsto (a^2x, a, b, c).]$

So if $\mathcal{F}_{n,odd,\leq 3}$. has finite G_{geom} , then $\mathbb{M}|\mathbb{A}^3[1/a]$ has finite G_{geom} . This implies, by [Ka-SMD], that $\mathbb{M}|(\text{the }\mathbb{A}^1 \text{ of } (0, 1, t))$ has finite G_{geom} . But $\mathbb{M}|(\text{the }\mathbb{A}^1 \text{ of } (0, 1, t))$ is \mathcal{F}_3 , whose G_{geom} is not finite, being SO(3). Therefore $\mathcal{F}_{n,odd,\leq 3}$. does not have finite G_{geom} . QED

(4) Monodromy of Q_7 : the group G_2 and its finite subgroups

(4.1) Recall that G_2 is the automorphism group of Cayley's and Graves' octonions, cf. [Spr, 17.4], [Adams, 15.16]. By looking its action on the "purely imaginary" octonions, we obtain G_2 as a closed subgroup of SO(7). Let us denote by UG₂ a maximal compact subgroup of the complex Lie group $G_2(\mathbb{C})$. The following lemma is well known, we include it for ease of reference.

Lemma 4.2 Two elements of UG_2 are conjugate in UG_2 if and only if they have the same characteristic polynomial in the given sevendimensional representation.

proof Use the fact that the two fundamental representations ω_1 and ω_2 of G₂ are the given seven-dimensional one std₇, and the adjoint representation Lie(G₂). We have

std₇ \oplus Lie(G₂) \cong \wedge^2 (std₇).

Fix an element g in UG_2 . Given its characteristic polynomial on std₇,

we know its characteristic polynomial also on $\Lambda^2(\text{std}_7)$, and so by long division on Lie(G₂) as well. Once we know the characteristic polynomial of g in both fundamental representations, we know it in all irreducible representations. So we know the trace of g in all irreducible representations. By Peter-Weyl the conjugacy class of g is determined by all these traces. QED

(4.3) Also standard is the following lemma.

Lemma 4.4 The normalizer of G_2 in SO(7) is G_2 .

proof Every automorphism of G_2 is inner, because its Dynkin diagram has no automorphisms. So if g in SO(7) normalizes G_2 , there exists h in G_2 such conjugation by h has the same effect as

conjugation by g, i.e., hg^{-1} is an element of SO(7) which commutes with G₂. But G₂ acts irreducibly in its seven-dimensional

representation, so hg^{-1} must be a scalar. The only scalar in SO(7) is 1. Hence g = h lies in G₂. QED (4.5) Another useful fact is this.

Lemma 4.6 Over C, let G be a Zariski closed irreducible subgroup of SO(7). Then G lies in (some SO(7)-conjugate of) G_2 inside SO(7) if and only if $\Lambda^3(\text{std}_7)$ contains a nonzero G-invariant vector, in which case the space of G-invariants in $\Lambda^3(\text{std}_7)$ has dimension one. **proof** As pointed out by [Co-Wa, page 449], this follows from the classification of trilinear forms in seven variables [Sch]. For a later treatment, see [Asch, Theorem 5, parts (2) and (5) on page 196]. QED

(4.7) We now turn our attention to the lisse sheaf \mathcal{G}_7 . Let p be a prime other than 2 or 7. For any finite field k of characteristic p, for any prime $\ell \neq p$, and for any choice of nontrivial additive character ψ of k, we have the lisse sheaves \mathcal{F}_7 and \mathcal{G}_7 on \mathbb{A}^1/k . We denote by

$$\rho: \pi_1(\mathbb{A}^1/k) \to \operatorname{SO}(7, \overline{\mathbb{Q}}_{\ell})$$

the representation which "is" \mathfrak{G}_7 , and by G_{arith} the Zariski closure of its image. Recall that G_{geom} is the normal subgroup of G_{arith} defined as the Zariski closure of the image by ρ of $\pi_1^{geom}(\mathbb{A}^1/k)$. **G**₂ Inclusion Theorem 4.8 Let p be a prime other than 2 or 7. For any finite field k of characteristic p, for any prime $\ell \neq p$, and for any choice of nontrivial additive character ψ of k, the group G_{arith} for the lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathfrak{G}_7 on \mathbb{A}^1/k lies in G_2 .

proof We know (1.3) that 9_7 is geometrically irreducible, i.e., that G_{geom} and hence a fortiori G_{arith} is an irreducible subgroup of SO(7). So by the previous lemma, it suffices to show that $\Lambda^3(9_7)$ as a representation of G_{arith} has a nonzero space of invariants. It is proven in [Ka-ESDE, pp. 321-324] that $(9_7)^{\otimes 3}$ has a one-dimensional space of invariants under G_{geom} . We will refine the argument given there to show that this one-dimensional space lies in $\Lambda^3(9_7)$, and that G_{arith} acts trivially on this space. Since we know that G_{geom} is semisimple, it is equivalent to show that the space of G_{geom} co-invariants in $\Lambda^3(9_7)$ is one-dimensional, and that $Frob_k$ acts trivially on it, i.e., we must show

 $\dim \, \mathrm{H_c}^2(\mathbb{A}^1 \otimes_k \overline{\mathrm{k}}, \ \wedge^3(9_7))(\text{-1}) \, = \, 1,$

 $\operatorname{Frob}_k \operatorname{acts} \operatorname{as} 1 \text{ on } \operatorname{H}_c^2(\mathbb{A}^1 \otimes_k \overline{k}, \Lambda^3(\mathfrak{g}_7))(-1).$

Let us first explain the idea. We already know from [Ka-ESDE, pp. 321-324] that

 $\dim \, \mathrm{H_c}^2(\mathbb{A}^1 \otimes_k \overline{\mathrm{k}}, \, (9_7)^{\otimes 3})(\text{-}1) \, = \, 1.$

Therefore since $\Lambda^3(g_7)$ is a direct summand of $(g_7)^{\bigotimes 3}$, we have the inequality

 $\dim\, {\rm H_c}^2(\mathbb{A}^1 \otimes_k \overline{k},\, \wedge^3(9_7))(-1) \leq 1.$

By the Lefschetz trace formula, we have, for every finite extension $\ensuremath{\mathsf{E/k}}\xspace,$

 $\mathsf{Trace}(\mathsf{Frob}_E \mid \mathsf{H}_c^2(\mathbb{A}^1 \otimes_k \overline{k}, \Lambda^3(\mathfrak{g}_7))(-1))$

= Trace(Frob_E | $H_c^1(\mathbb{A}^1 \otimes_k \overline{k}, \Lambda^3(9_7))(-1))$

+ $(1/\#E)\Sigma_{t \text{ in } E}$ Trace(Frob_{E,t} $|\Lambda^{3}(g_{7}))$.

By Deligne [De-Weil II, 3.3.1], $H_c^1(\mathbb{A}^1 \otimes_k \overline{k}, \Lambda^3(\mathfrak{g}_7))(-1)$ is mixed of weight ≤ -1 , so we have

 $|\text{Trace}(\text{Frob}_E | H_c^1(\mathbb{A}^1 \otimes_k \overline{k}, \Lambda^3(\mathfrak{g}_7))(-1))| \le \dim(H_c^1)/\text{Sqrt}(\#E).$ Thus for variable finite extensions E/k, we have

 $\mathsf{Trace}(\mathsf{Frob}_{\mathsf{E}} \mid \mathsf{H}_{\mathsf{C}}^{2}(\mathbb{A}^{1} \otimes_{k} \overline{\mathsf{k}}, \Lambda^{3}(\mathfrak{g}_{7}))(-1))$

= $(1/\#E)\Sigma_{t \text{ in } E}$ Trace(Frob_{E.t} $|\Lambda^{3}(g_{7}))$ + O(1/Sqrt(#E)).

We will show that for variable finite extensions E/k, we have

 $(1/\# E)\Sigma_{t \text{ in } E} \operatorname{Trace}(\operatorname{Frob}_{E,t} | \Lambda^{3}(g_{7})) = 1 + O(1/\operatorname{Sqrt}(\# E)).$ Let us temporarily admit this. Then we have

 $Trace(Frob_{E} \mid H_{c}^{2}(\mathbb{A}^{1} \otimes_{k} \overline{k}, \Lambda^{3}(\mathfrak{g}_{7}))(-1)) = 1 + O(1/Sqrt(\#E)).$

From this we first conclude that $H_c^2(\mathbb{A}^1 \otimes_k \overline{k}, \Lambda^3(\mathfrak{g}_7))(-1) \neq 0$. Since it has dimension at most one, we must have

dim $H_c^2(\mathbb{A}^1 \otimes_k \overline{k}, \wedge^3(9_7))(-1) = 1.$

Denote by A the scalar by which Frob_k acts on this one-dimensional space. For variable integers $n \ge 1$, we have

 $A^{n} = 1 + O(1/Sqrt(\#k)^{n}).$

Writing A as A^{n+1}/A^n for large n, we conclude that A = 1, as

required.

We now turn to proving that

 $(1/\#E)\Sigma_{t\ in\ E}\ Trace(Frob_{E,t}\ |\Lambda^3(g_7))\ =\ 1\ +\ O(1/Sqrt(\#E)).$ The third standard symmetric function S_3 is given in Newton symmetric functions N_i by

 $6S_3 = (N_1)^3 + 2N_3 - 3N_1N_2$ Thus for each t in E we have the identity $6Trace(Frob_{E,t} | \Lambda^{3}(g_{7}))$ = $(\text{Trace}(\text{Frob}_{E,t} | 9_7))^3 + 2\text{Trace}((\text{Frob}_{E,t})^3 | 9_7)$ -3Trace(Frob_{E,t} $|g_7$)Trace((Frob_{E,t})² $|g_7$). If we denote by E_n/E the extension of E of degree n, then $Trace((Frob_{E,t})^n | g_7) = Trace(Frob_{E_n,t} | g_7).$ So we have the identity $6Trace(Frob_{E,t} | \Lambda^3(g_7))$ = $(\text{Trace}(\text{Frob}_{E,t} | g_7))^3 + 2\text{Trace}(\text{Frob}_{E_3,t} | g_7)$ -3Trace(Frob_{E,t} |97)Trace(Frob_{E2,t} |97). So it suffices to show the following three statements: $(1/\#E)\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | g_7))^3 = 1 + O(1/\text{Sqrt}(\#E)),$ 1) $(1/\#E)\Sigma_{t \text{ in } E} \operatorname{Trace}(\operatorname{Frob}_{E_3,t} | 9_7) = 1 + O(1/\operatorname{Sqrt}(\#E)),$ 2)

3)
$$(1/\#E)\Sigma_{t \text{ in } E} \operatorname{Trace}(\operatorname{Frob}_{E,t} | 9_7)\operatorname{Trace}(\operatorname{Frob}_{E_2,t} | 9_7)$$

= -1+ O(1/Sqrt(#E)).

With the finite extension E/k fixed, let us write

A :=
$$-G(\psi_{-7,E}, \chi_{2,E})$$

for the quantity "A₇" of 1.3.4, relative to the field E. Then for any t in E, and any integer $n \ge 1$, we have

Trace(Frob_{En,t} 97)

= $(1/A^n)(-\Sigma_{x \text{ in } E_n} \psi_E(\text{Trace}_{E_n/E}(x^7 + tx))\chi_{2,E}(\text{Norm}_{E_n/E}(x)),$ with the convention that $\chi_{2,E}(0) = 0$. Thus the sum in 1) is

$$(1/\#E)(-1/A)^{3}\Sigma_{t \text{ in } E} \Sigma_{x,y,z \text{ in } E}$$

$$\psi_{E}(x^{7} + y^{7} + z^{7} + t(x+y+z))\chi_{2,E}(xyz).$$

The sum in 2) is

$$(1/\#E)(-1/A^3)\Sigma_{t \text{ in } E} \Sigma_{x \text{ in } E_3}$$

 $\psi_E(\text{Trace}_{E_3/E}(x^7 + tx))\chi_{2,E}(\text{Norm}_{E_3/E}(x)).$

The sum in 3) is

$$(1/\#E)(-1/A)(-1/A^2)\Sigma_{t \text{ in } E} \Sigma_{x \text{ in } E, y \text{ in } E_2}$$

 $\psi_E(x^7 + tx + Trace_{E_2/E}(y^7 + ty))\chi_{2,E}(xNorm_{E_2/E}(y)).$

In each of the three sums, we interchange the order of summation. Because the quantity t runs over the ground field E, and $\text{Trace}_{E_n/E}$ is E-linear, we can use the usual orthogonality relations for the nontrivial additive character ψ_E of E We find that the sum in 1) is

 $(-1/A)^{3}\Sigma_{x,y,z \text{ in } E, x+y+z = 0} \psi_{E}(x^{7} + y^{7} + z^{7})\chi_{2,E}(xyz).$ The sum in 2) is

 $(-1/A^{3})\Sigma_{x \text{ in } E_{3}}, \text{ Trace}_{E_{3}/E}(x)=0$

$$\psi_{\mathrm{E}}(\mathrm{Trace}_{\mathrm{Z}/\mathrm{E}}(\mathrm{x}^{7}))\chi_{2,\mathrm{E}}(\mathrm{Norm}_{\mathrm{E}_{\mathrm{Z}}/\mathrm{E}}(\mathrm{x})).$$

The sum in 3) is

$$(-1/A)(-1/A^2)\Sigma_{x \text{ in } E, y \text{ in } E_2, x+Trace_{E_2/E}(y)=0$$

$$\psi_{\mathrm{E}}(\mathrm{x}^{7} + \mathrm{Trace}_{\mathrm{E}_{2}/\mathrm{E}}(\mathrm{y}^{7}))\chi_{2,\mathrm{E}}(\mathrm{xNorm}_{\mathrm{E}_{2}/\mathrm{E}}(\mathrm{y})).$$

Thus what we must show is that (for 1))

$$\begin{split} \Sigma_{x,y,z \text{ in } E, x+y+z = 0} & \psi_{E}(x^{7} + y^{7} + z^{7})\chi_{2,E}(xyz) = (-A)^{3} + O(\textit{\texttt{\#}} E), \\ (\text{for } 2)) \\ \Sigma_{x \text{ in } E_{3}, \text{ Trace}_{E_{3}/E}(x)=0} & \psi_{E}(\text{Trace}_{E_{3}/E}(x^{7}))\chi_{2,E}(\text{Norm}_{E_{3}/E}(x)) \\ & = (-A)^{3} + O(\textit{\texttt{\#}} E), \\ (\text{for } 3)) \end{split}$$

 $\Sigma_{x \text{ in E, y in E}_{2}, x+\text{Trace}_{E_{2}/E}(y)=0}$

 $\psi_{\rm E}({\rm x}^7 + {\rm Trace}_{{\rm E}_2/{\rm E}}({\rm y}^7))\chi_{2,{\rm E}}({\rm xNorm}_{{\rm E}_2/{\rm E}}({\rm y})) = (-{\rm A})^3 + {\rm O}(\textit{\#}{\rm E}).$

The common feature of these last sums is that, in each, we have one of the three finite etale three-dimensional E-algebras B/E, and the sum is

 $\Sigma_{x \text{ in } B, \text{ Trace}_{B/E}(x) = 0} \psi_E(\text{Trace}_{B/E}(x^7))\chi_{2,E}(\text{Norm}_{B/E}(x)).$ Indeed, in the first case B is E×E×E, in the second case it is E₃, and in the third case it is E×E₂. We must show that

 $\Sigma_{\text{x in }B_{\text{tr=0}}} \ \psi_{\text{E}}(\text{Trace}_{\text{B/E}}(\text{x}^7)) \chi_{2,\text{E}}(\text{Norm}_{\text{B/E}}(\text{x})) \ = \ (-\text{A})^3 \ + \ O(\textit{\#}\text{E}).$

Denote by s_1 , s_2 , s_3 the polynomial functions on B which are the trace functions of the exterior powers of the left regular representation of B on itself. Thus for x in B we have

 $det(T - Reg(x)|B) = T^{3} - s_{1}(x)T^{2} + s_{2}(x)T - s_{3}(x).$

In particular, we have

 $s_1(x) = Trace_{B/E}(x), s_3(x) = Norm_{B/E}(x).$

Key Lemma 4.9 Let E be a field, B/E a finite etale E-algebra of dimension three.

1) For x in B, we have the identity

$$s_1(x^7) - s_1(x)^7 = -7(s_1(x)s_2(x) - s_3(x))((s_1(x)^2 - s_2(x))^2 + s_1(x)s_3(x)).$$

2) For x in B with Trace_{B/E}(x) = 0, we have the identity

$$Trace_{B/E}(x^7) = 7Norm_{B/E}(x)s_2(x)^2 = 7s_3(x)s_2(x)^2.$$

proof of Key Lemma Assertion 2) is the special case of 1) when $s_1(x) = 0$. To prove assertion 1), we may extend scalars from E to its algebraic closure, and so reduce to the case where B is $E \times E \times E$. For an element (x, y, z) in $E \times E \times E$, with elementary symmetric functions s_i , i = 1 to 3, we must show that

 $x^7 + y^7 + z^7 - (x + y + z)^7 = -7(s_1s_2 - s_3)((s_1^2 - s_2)^2 + s_1s_3).$

In terms of the characteristic polynomial

$$P(T) := T^3 - s_1 T^2 + s_2 T - s_3 = (T - x)(T - y)(T - z),$$

we have

$$s_1s_2 - s_3 = P(s_1) = (s_1 - x)(s_1 - y)(s_1 - z) = (y+z)(x+z)(x+y).$$

So the asserted identity is the following polynomial identity

 $x^7 + y^7 + z^7 - (x + y + z)^7$

= $-7(y+z)(x+z)(x+y)((x^2 + y^2 + z^2 + xy + xz + yz)^2 + (x+y+z)xyz)$, whose unenlightening verification we leave to the reader. QED for Key Lemma

View B as the E-points of the affine B-scheme B, whose R-valued points, for any E-algebra R, are given by $\mathfrak{B}(R) := B \otimes_E R$. As an E-scheme, B is noncanonically \mathbb{A}^3 . Denote by $B_{tr=0} \subset B$ the E-subspace of elements of trace zero, and $\mathfrak{B}_{tr=0}$ the corresponding closed subscheme of B: for any E-algebra R,

 $\mathfrak{B}_{\mathsf{tr}=0}(\mathsf{R}) = \mathsf{B}_{\mathsf{tr}=0} \otimes_{\mathsf{E}} \mathsf{R} = \mathsf{Ker}(\mathsf{Trace}_{\mathsf{B} \otimes_{\mathsf{F}} \mathsf{R}/\mathsf{R}} : \mathsf{B} \otimes_{\mathsf{E}} \mathsf{R} \to \mathsf{R}).$

Thus $\mathfrak{B}_{tr=0}$ is noncanonically \mathbb{A}^2 as an E-scheme.

Lemma 4.10 Over the algebraic closure \overline{E} of E, the polynomial function on $\mathbb{B}_{tr=0}$ given by $s_2(x)^2s_3(x)$ is homogeneous of degree seven, and not a seventh power.

proof Immediate reduction to the case $E = \overline{E}$, when B is $E \times E \times E$, with coordinates (x, y, z). Then $B_{tr=0}$ is the subspace x+y+z=0, which we endow with coordinates x and y. Then $s_2^2s_3$ is the function

 $(xy + x(-y - x) + y(-x - y))^2 xy(-x-y) = -(x^2 + xy + y^2)^2 xy(x+y).$ This polynomial is visibly not a seventh power in the UFD $\overline{E}[x,y]$, since it is divisible just once by the irreducible polynomial x. QED

Uniformity Lemma 4.11 Given integers $n \ge 1$ and $d \ge 1$, there exists a constant C(n, d) such that for any algebraically closed field k, for any prime ℓ invertible in k, and for any polynomial f in n variables of degree $\le d$ over k, we have $\dim H_c^{n-1}((f=0 \text{ in } \mathbb{A}^n), \overline{\mathbb{Q}}_{\ell}) \le C(n, d)$.

proof This is a special case of [Ka-Betti, Theorem 1 on page 31 and Corollary, page 34]. QED

We can now complete the proof of the theorem. We must show that

 $\Sigma_{\text{x in }B_{\text{tr=0}}} \psi_{\text{E}}(\text{Trace}_{\text{B/E}}(\text{x}^7))\chi_{2,\text{E}}(\text{Norm}_{\text{B/E}}(\text{x})) = (-\text{A})^3 + O(\texttt{\#E}).$

In view of the identity above, the sum in question is

 $\Sigma_{x \text{ in } B_{tr=0}} \psi_{E}(7s_{3}(x)s_{2}(x)^{2})\chi_{2,E}(s_{3}(x)).$

If x has $s_2(x)$ nonzero, we can put $s_2(x)^2$ inside the $\chi_{2,E},\;$ so the sum is

$$\begin{split} \Sigma_{\text{x in } B_{\text{tr=0}}} & \psi_{\text{E}}(7 \text{s}_{3}(\text{x}) \text{s}_{2}(\text{x})^{2}) \chi_{2,\text{E}}(\text{s}_{3}(\text{x}) \text{s}_{2}(\text{x})^{2}) \\ & + \Sigma_{\text{x in } B_{\text{tr=0}},\text{s}_{2}(\text{x}) = 0} \chi_{2,\text{E}}(\text{s}_{3}(\text{x})). \end{split}$$

The second sum is trivially O(#E). Indeed, each summand in it is either 0 or ±1, and there are at most 27#E summands, one for each element x of B which has $s_1(x) = s_2(x) = 0$. Such elements are solutions in B of an equation $x^3 = \alpha$ for some α (namely $s_3(x)$) in E. Fix α in E. As B is a product of at most 3 fields, in each of which x^3 = α has at most three solutions, the equation $x^3 = \alpha$ has at most 27 solutions in B.

So we must show that

$$\Sigma_{\text{x in }B_{\text{tr=0}}} \psi_{\text{E}}(7s_{3}(x)s_{2}(x)^{2})\chi_{2,\text{E}}(s_{3}(x)s_{2}(x)^{2}) = (-A)^{3} + O(\#E).$$

For this, we argue as follows. Consider the function

$$\mathfrak{f}:=\mathfrak{s}_3\mathfrak{s}_2^2:\,\mathfrak{B}_{\mathsf{tr}=0}\,\to\,\mathbb{A}^1$$

Then

$$\begin{split} & \Sigma_{x \text{ in } B_{tr=0}} \ \psi_{E}(7s_{3}(x)s_{2}(x)^{2})\chi_{2,E}(s_{3}(x)s_{2}(x)^{2}) \\ &= \Sigma_{\alpha \text{ in } E^{x}} \ \psi_{E}(7\alpha)\chi_{2,E}(\alpha) \#\{x \text{ in } B_{tr=0} \text{ with } f(x)=\alpha\} \end{split}$$

Because f is homogeneous of degree seven, and not a seventh power, for each $\alpha \neq 0$ in \overline{E} , f = α is a smooth, geometrically irreducible curve. So we have $R^2f_!\overline{\mathbb{Q}}_{\ell} \mid \mathbb{G}_m \cong \overline{\mathbb{Q}}_{\ell}(-1)$, and $R^1f_!\overline{\mathbb{Q}}_{\ell} \mid \mathbb{G}_m$ becomes constant after pullback by the seventh power map [7]: $\mathbb{G}_m \to \mathbb{G}_m$. In particular, $R^1f_!\overline{\mathbb{Q}}_{\ell} \mid \mathbb{G}_m$ is lisse, and tamely ramified at both 0 and ∞ , cf. [Ka-ESDE, pp. 322-323]. By the Lefschetz Trace formula, we have

$$\sum_{\alpha \text{ in } E^{\times}} \psi_{E}(7\alpha) \chi_{2,E}(\alpha) \# \{x \text{ in } B_{tr=0} \text{ with } f(x)=\alpha \}.$$

=
$$\Sigma_{\alpha \text{ in } E^{\times}} \psi_{E}(7\alpha) \chi_{2,E}(\alpha)(q - \text{Trace}(\text{Frob}_{E,\alpha} | R^{1}f_{!}\overline{\mathbb{Q}}_{\ell}))$$

=
$$qG(\psi_{7,E}, \chi_{2,E})$$

$$\begin{split} &- \Sigma_{\alpha \text{ in } E^{\times}} \psi_{E}(7\alpha) \chi_{2,E}(\alpha) \text{Trace}(\text{Frob}_{E,\alpha} \mid \mathbb{R}^{1}f_{!}\overline{\mathbb{Q}}_{\ell}) \\ &= -q\chi_{2,E}(-1)(-G(\psi_{-7,E}, \chi_{2,E})) \\ &- \Sigma_{\alpha \text{ in } E^{\times}} \text{ Trace}(\text{Frob}_{E,\alpha} \mid \mathcal{L}_{\psi_{7,E}} \otimes \mathcal{L}_{\chi_{2,E}} \otimes \mathbb{R}^{1}f_{!}\overline{\mathbb{Q}}_{\ell}) \\ &= -q\chi_{2,E}(-1)A \\ &- \text{Trace}(\text{Frob}_{E} \mid \mathbb{H}_{c}^{2}(\mathbb{G}_{m} \otimes_{E}\overline{\mathbb{E}}, \mathcal{L}_{\psi_{7,E}} \otimes \mathcal{L}_{\chi_{2,E}} \otimes \mathbb{R}^{1}f_{!}\overline{\mathbb{Q}}_{\ell}) \\ &+ \text{Trace}(\text{Frob}_{E} \mid \mathbb{H}_{c}^{1}(\mathbb{G}_{m} \otimes_{E}\overline{\mathbb{E}}, \mathcal{L}_{\psi_{7,E}} \otimes \mathcal{L}_{\chi_{2,E}} \otimes \mathbb{R}^{1}f_{!}\overline{\mathbb{Q}}_{\ell}). \end{split}$$

As noted above, $R^1f_!\overline{\mathbb{Q}}_{\ell} \mid \mathbb{G}_m$ is lisse, and tamely ramified at both 0 and ∞ . So the lisse sheaf $\mathcal{L}_{\psi7,E} \otimes \mathcal{L}_{\chi_{2,E}} \otimes R^1f_!\overline{\mathbb{Q}}_{\ell}$ on \mathbb{G}_m is totally wild at ∞ (and tame at 0). Therefore we have

 $\mathrm{H_c}^2(\mathbb{G}_{\mathrm{m}}\otimes_{\mathrm{E}}\overline{\mathrm{E}},\, \mathbb{L}_{\psi_{7,\mathrm{E}}}\otimes\mathbb{L}_{\chi_{2,\mathrm{E}}}\otimes\, \mathbb{R}^1\mathrm{f}_!\overline{\mathbb{Q}}_\ell) \,=\, 0.$

The group $H_c^1(\mathbb{G}_m \otimes_E \overline{E}, \mathcal{L}_{\psi_{7,E}} \otimes \mathcal{L}_{\chi_{2,E}} \otimes \mathbb{R}^1_{f_!} \overline{\mathbb{Q}}_{\ell})$ is mixed of weight ≤ 2 , and its dimension is

$$\begin{split} &-\chi_{c}(\mathbb{G}_{m}\otimes_{E}\overline{E}, \mathbb{L}_{\psi_{7,E}}\otimes\mathbb{L}_{\chi_{2,E}}\otimes\mathbb{R}^{1}f_{!}\overline{\mathbb{Q}}_{\ell}) \\ &= \operatorname{Swan}_{\infty}(\mathbb{L}_{\psi_{7,E}}\otimes\mathbb{L}_{\chi_{2,E}}\otimes\mathbb{R}^{1}f_{!}\overline{\mathbb{Q}}_{\ell}) \\ &= \operatorname{rank}(\mathbb{R}^{1}f_{!}\overline{\mathbb{Q}}_{\ell} \mid \mathbb{G}_{m}) \leq C(2, 7), \end{split}$$

for C(2, 7) the constant of the Uniformity Lemma above. Thus we have

$$\begin{split} \Sigma_{x \text{ in } B_{tr=0}} & \psi_{E}(7s_{3}(x)s_{2}(x)^{2})\chi_{2,E}(s_{3}(x)s_{2}(x)^{2}) \\ & = -q\chi_{2,E}(-1)A + O(\#E). \end{split}$$

But we have

$$A^2 = q \chi_{2,E}(-1),$$

cf. 1.2.3. This concludes the proof of the G_2 Inclusion Theorem. QED

G₂ Theorem 4.12 [Ka-ESDE, 9.1.1] Let p be a prime which is either 5, 11, or a prime p > 15. For any finite field k of characteristic p, for any prime $\ell \neq p$, and for any choice of nontrivial additive character ψ of k, the lisse sheaf \mathcal{F}_7 has

 $G_{geom} = G_{arith} = G_2.$

proof We first note that the two assertions are equivalent. Indeed, since \mathcal{F}_7 and \mathcal{G}_7 have the same G_{geom} , the second assertion implies the first. Since G_{arith} for \mathcal{G}_7 lies in G_2 by Theorem 4.8, for \mathcal{G}_7 we have inclusions $G_{geom} \subset G_{arith} \subset G_2$. So the first assertion implies the second. We will prove the first.

For p > 15, this is proven in [Ka-ESDE, 9.1.1]. In fact, a slight modification of the argument given there divides into two parts. One first uses the hypothesis p > 15 to insure, via [Ka-MG, Prop. 5], that \mathcal{F}_7 is Lie-irreducible. One then shows, via Gabber's theorem on prime-dimensional representations [Ka-ESDE, 1.6],that in any characteristic $p \neq 2$, $p \neq 7$ for which \mathcal{F}_7 is Lie irreducible, G_{geom}^{0} is either SO(7) or G_2 or the image PSL(2) of SL(2) in Sym⁶(std₂). Since G_{geom} lies in G_2 by the G_2 Inclusion Theorem 4.8, either G_{geom} is G_2 , or G_{geom}^{0} is the image PSL(2) of SL(2) in Sym⁶(std₂), in which case G_{geom} lies in the normalizer in G_2 of this PSL(2). But PSL(2) is its own normalizer in G_2 , indeed it is its own normalizer in SO(7) (because every automorphism of PSL(2) is inner, PSL(2) is an irreducible subgroup of SO(7), and SO(7) contains no nontrivial scalars). So either G_{geom} is G_2 or it is PSL(2). The PSL(2) case is ruled out just as in the proof of Theorem 3.7.

It remains to show that for p = 5 or 11, \mathcal{F}_7 is Lie-irreducible. By Lemma 3.4, we may take for k the prime field \mathbb{F}_P . By Lemma 3.5, if \mathcal{F}_7 is not Lie-irreducible, then it has finite G_{geom} , and a power of every $\operatorname{Frob}_{E,t} | \mathcal{F}_7$ is scalar. Suppose that G_{geom} is finite. Because $\mathfrak{P}_7 := \mathcal{F}_7 \otimes (-G(\psi_{-7}, \chi_2))^{deg}$ has trivial determinant, every eigenvalue of $\operatorname{Frob}_{E,t} | \mathcal{F}_7$ will be of the form

(a root of unity)(-G($\psi_{-7,E}, \chi_{2,E}$))

= $(a \text{ root of unity})(\# E)^{1/2}$.

Consequently, for every finite extension E of F_p, and for every t in E, Trace(Frob_{E,t} | ∓₇) is divisible by (#E)^{1/2} as an algebaic integer. But the sum

 $Trace(Frob_{E,t} | \mathcal{F}_7) = -\Sigma_{x \text{ in } E^{\times}} \chi_{2,E}(x)\psi_E(x^7 + tx)$

lies in the ring $\mathbb{Z}[\varsigma_p]$, and the field $\mathbb{Q}(\varsigma_p)$ has a unique p-adic valuation \mathcal{P} . If we normalize the valuation by

 $\operatorname{ord}_{\mathcal{P},E}(\#E) = 1,$

then the finiteness of ${\rm G}_{\rm geom}$ for ${\rm F}_7$ implies that for every (E, t) as above we have

 $\operatorname{ord}_{\mathcal{P},E}(\operatorname{Trace}(\operatorname{Frob}_{E,t} | \mathcal{F}_7)) \ge 1./2.$

In the case when p = 11, one sees by a direct calculation that ord $\mathcal{P}, \mathbb{F}_{11}^{(\mathrm{Trace}(\mathrm{Frob}_{\mathrm{F}_{11},1} \mid \mathbb{F}_7))} = 3/10.$

In the case p = 5, one sees by a direct calculation that ord $\mathbb{P}_{\mathbb{F}_{25}}(\operatorname{Trace}(\operatorname{Frob}_{\mathbb{F}_{25},1} | \mathbb{F}_7)) = 1/4.$

In neither case do we have divisibility by $(\#E)^{1/2}$ in $\mathbb{Z}_p[\varsigma_p]$, much less in the ring of algebraic integers. Therefore G_{geom} is not finite in either case, and hence \mathcal{F}_7 is Lie-irreducible in both characteristics 5 and 11, as required.

Let us explain briefly how to do such calculations. In $\mathbb{Z}_p[\varsigma_p]$, the quantity $\pi := \varsigma_p - 1$ is a uniformizing parameter, the residue field is \mathbb{F}_p , ord $p_{\mathcal{F}_p}(\pi) = 1/(p-1)$, and

$$\begin{split} \mathbb{Z}_p[\varsigma_p]/(p) &= \mathbb{Z}_p[\varsigma_p]/(\pi^{p-1}) \cong \mathbb{F}_p[\pi]/(\pi^{p-1}). \end{split}$$
 For $\operatorname{ord}_{\pi} := (p-1)\operatorname{ord}_{\mathcal{P},\mathbb{F}_p}(\text{i.e., } \operatorname{ord}_{\pi}(\pi) = 1)$, we are to show that $\operatorname{ord}_{\pi}(\operatorname{Trace}(\operatorname{Frob}_{\mathbb{F}_{25},1} \mid \mathfrak{F}_7)) = 3$, for p = 11, $\operatorname{ord}_{\pi}(\operatorname{Trace}(\operatorname{Frob}_{\mathbb{F}_{25},1} \mid \mathfrak{F}_7)) = 2$, for p = 5. Now for any element f in $\mathbb{Z}_p[\varsigma_p]$, with image mod p $\Sigma_{i=0 \text{ to } p-2} a_i \pi^i$, coefficients a_i in \mathbb{F}_p in the ring $\mathbb{F}_p[\pi]/(\pi^{p-1})$, we have $\operatorname{ord}_{\pi}(f) \ge p-1$ if and only if all $a_i = 0$, and, if some $a_i \ne 0$, then $\operatorname{ord}_{\pi}(f) = M$ inimum i such that $a_i \ne 0$. So the problem is to calculate the image in $\mathbb{Z}_p[\varsigma_p]/(\pi^{p-1}) \cong \mathbb{F}_p[\pi]/(\pi^{p-1})$ of the sum $\begin{aligned} &\text{Trace}(\text{Frob}_{E,t} \mid \mathcal{F}_7) = -\Sigma_{x \text{ in } E^{\times}} \ \chi_{2,E}(x)\psi_E(x^7 + tx). \end{aligned}$ We may assume that $\psi(1) = \zeta_p = 1 + \pi$. Then

$$\begin{split} & \Sigma_{x \text{ in } E^{\times}} \chi_{2,E}(x) \psi_{E}(x^{7} + tx) \\ &= \Sigma_{x \text{ in } E^{\times}} \chi_{2}(N_{E/\mathbb{F}_{p}}(x)) \psi(\text{Trace}_{E/\mathbb{F}_{p}}(x^{7} + tx)) \\ &= \Sigma_{x \text{ in } E^{\times}} \chi_{2}(N_{E/\mathbb{F}_{p}}(x))(1 + \pi)^{(\text{Trace}_{E}/\mathbb{F}_{p}(x^{7} + tx))} \\ &= \Sigma_{x \text{ in } E^{\times}} x^{(\#E - 1)/2} \Sigma_{i=0 \text{ to } p-2} \text{Binom}(\text{Trace}_{E/\mathbb{F}_{p}}(x^{7} + tx), i)\pi^{i}, \end{split}$$

in $\mathbb{Z}_p[\varsigma_p]/(\pi^{p-1}) \cong \mathbb{F}_p[\pi]/(\pi^{p-1})$. We have written Binom(x, i) for the i'th binomial coefficient as a function of its "numerator":

Binom(x, i) := 1, i = 0,

:= x(x-1)...(x - (i-1))/i!, for $1 \le i \le p-2$.

Thus the coefficients a_i in the expansion of -Trace(Frob_{E,t} \mid F_7) are the quantities in \mathbb{F}_p given by

$$a_i = \sum_{x \text{ in } E^{\times}} x^{(\#E - 1)/2} \text{Binom}(\text{Trace}_{E/\mathbb{F}_p}(x^7 + tx), i).$$

But the power sums over \boldsymbol{E}^{\times} are given by

$$\begin{split} \Sigma_{x \text{ in } E^{\times}} x^{k} &= -1 \text{ in } \mathbb{F}_{p}, \text{ if } k \equiv 0 \mod (\textit{\textit{\#}} E - 1), \\ &= 0, \text{ otherwise.} \end{split}$$

Thus $a_0 = 0$. To compute a_i for $1 \le i \le p-2$ we first write #E as p^d , second we expand

$$Trace_{E/\mathbb{F}_p}(x^7 + tx) = \Sigma_{k=0 \text{ to } d-1} (x^{7p^k} + t^{p^k}x^{p^k})$$

as a polynomial in x with coefficients in $\mathbb{F}_p[t]$, third we expand Binom(Trace_{E/ \mathbb{F}_p}(x⁷ + tx), i) as a polynomial in x with coefficients in $\mathbb{F}_p[t]$, and finally we sum up the coefficients of all monomials of the form x^k, with k of the form

$$(\#E - 1)/2 + r(\#E - 1)$$

for $r = 0, 1, 2, \dots$ We leave to the reader the verification that this calculation leads to the asserted conclusions

$$\operatorname{ord}_{\pi}(\operatorname{Trace}(\operatorname{Frob}_{\mathbb{F}_{11},1} | \mathfrak{F}_7)) = 3, \text{ for } p = 11,$$
$$\operatorname{ord}_{\pi}(\operatorname{Trace}(\operatorname{Frob}_{\mathbb{F}_{25},1} | \mathfrak{F}_7)) = 2, \text{ for } p = 5.]$$

QED

Theorem 4.13 For any finite field k of characteristic 13, for any prime $\ell \neq 13$, and for any choice of nontrivial additive character ψ of k, consider the lisse sheaf \mathcal{G}_7 on \mathbb{A}^1/k and its corresponding representation ρ : $\pi_1(\mathbb{A}^1/k) \rightarrow SO(7)$. Denote by G_{arith} the Zariski closure in SO(7) of $\rho(\pi_1(\mathbb{A}^1/k))$. Then

 $G_{arith} = G_{geom} =$ the finite subgroup PSL(2, \mathbb{F}_{13}) of G_2 , where PSL(2, \mathbb{F}_{13}) is viewed inside G_2 by one of its two sevendimensional irreducible representations (both of which have image in G_2 , cf. [Co-Wa]).

proof We first treat the case when k is the prime field \mathbb{F}_{13} , and ψ is (the image under ι of) the C-valued additive character $x \mapsto \exp(2\pi i x/13)$. Because

$$p = 13 > 7 = rank(9_7),$$

Lemma 3.5 tells us that either g_7 is Lie-irreducible, or its G_{geom} is a finite primitive irreducible subgroup of SO(7), and indeed of G_2 , by the G_2 Inclusion Theorem 4.8, As explained in the proof of Theorem 4.12 above, if g_7 is Lie-irreducible, then its G_{geom} is G_2 . If G_{geom} is G_2 , then G_{arith} lies in the normalizer of G_2 inside SO(7), and this normalizer is just G_2 itself, cf. Lemma 4.4. So if G_{geom} is not finite, we have

 $G_{geom} = G_{arith} = G_2.$

If G_{geom} is finite, then G_{arith} is finite, by [Ka-ESDE, 8.14.3.1], and G_{geom} is a normal subgroup of G_{arith} . Therefore, if G_{geom} is finite, then G_{arith} is itself a finite primitive irreducible subgroup of G_2 . Every $\rho(Frob_{E,t})$ then lies in G_{arith} , and, by Chebotarev, every element of G_{arith} is of this form. But

 $Trace(\rho(Frob_{E,t})) := Trace(Frob_{E,t} | g_7)$

:=
$$(1/G(\psi_{-7,E}, \chi_{2,E}))\Sigma_{x \text{ in } E^{\times}} \chi_{2,E}(x)\psi_{E}(x^{7} + tx)$$

visibly has values in the field $\mathbb{Q}(\varsigma_{13})$ of thirteenth roots of unity. We claim that $\text{Trace}(\rho(\text{Frob}_{\mathbb{F}_{13},1}))$ does not lie in \mathbb{Q} . Indeed, using the fact that for x nonzero in \mathbb{F}_{13} , x is a square if and only if $x^6 = 1$ in

 \mathbb{F}_{13} , we readily compute

 $Trace(\rho(Frob_{F_{1,3},1})) = (-1/Sqrt(13))\Sigma_{x \text{ in } F_{1,3}} \times \chi_{2}(x)\psi(x^{7} + x)$

=
$$(-1/\text{Sqrt}(13))\Sigma_{x \text{ in } \mathbb{F}_{13}^{\times}} \chi_2(x)\psi((x^6 + 1) x)$$

= $(-1/Sqrt(13))\Sigma_{x \text{ in } \mathbb{F}_{13}^{\times}, x \text{ a square }}\psi(2x)$

+
$$(-1/Sqrt(13))\Sigma_{x \text{ in } \mathbb{F}_{13}^{\times}, x \text{ nonsquare }}(-1)\psi(0)$$

= $(-1/\text{Sqrt}(13))(1/2)\Sigma_{u \text{ in } \mathbb{F}_{13}} (2u^2)$

+6/Sqrt(13)

- = $(-1/2Sqrt(13))(-1 + \Sigma_{u \text{ in } \mathbb{F}_{13}} \psi(2u^2)) + 12/2Sqrt(13)$
- = $(-1/2Sqrt(13))(-1 + G(\psi_2, \chi_2)) + 12/2Sqrt(13)$
- = $(-1/2Sqrt(13))(-1 + \chi_2(2)G(\psi, \chi_2)) + 12/2Sqrt(13)$
- = $(-1/2Sqrt(13))(-1 G(\psi, \chi_2)) + 12/2Sqrt(13)$
- = (1/2Sqrt(13))(13 + Sqrt(13))
- = (1 + Sqrt(13))/2.

Thus if G_{geom} is not G_2 , then G_{arith} is a finite primitive irreducible subgroup of G_2 , the character of whose given seven-dimensional representation has values in the field $Q(\varsigma_{13})$, and not all of the character values lie in Q.

On the other hand, the finite primitive irreducible subgroups G of G_2 have been classified by Cohen-Wales [Co-Wa]. The list of possibilities, in Atlas notation, is

L₂(13) (i.e. PSL(2, F₁₃)) L₂(8) (i.e. PSL(2, F₈)) L₂(7).2 (i.e., PGL(2, F₇))

 $U_3(3)$ or $U_3(3).2$ (i.e. $U_3(3)$ or $G_2(2)$)

Of these, only the first has a seven-dimensional irreducible representation whose character takes values, some irrational, in the field $Q(\varsigma_{13})$. [In fact, $L_2(13)$ has two seven-dimensional irreducible representations, and both have this property.] Indeed, all seven-dimensional irreducible representations of the other groups have character values lying in the following fields:

 $L_2(8) \qquad \mathbb{Q}(\varsigma_9)$

 $\begin{array}{ll} L_{2}(7).2 & \mathbb{Q} \\ U_{3}(3) & \mathbb{Q}(\varsigma_{4}) \\ U_{3}(3).2 & \mathbb{Q}. \end{array}$

But the intersection of $\mathbb{Q}(\varsigma_{13})$ with any of the fields \mathbb{Q} , $\mathbb{Q}(\varsigma_4)$, $\mathbb{Q}(\varsigma_9)$ is \mathbb{Q} itself. So if G_{geom} is not G_2 , then G_{arith} is the finite group PSL(2, \mathbb{F}_{13}). Conveniently, this group is simple. As G_{geom} is an irreducible (and hence nontrivial) normal subgroup of G_{arith} , we see that if G_{arith} is PSL(2, \mathbb{F}_{13}), then $G_{geom} = G_{arith} = PSL(2, \mathbb{F}_{13})$.

To summarize our situation so far: with $k = \mathbb{F}_{13}$ and ψ the image under ι of $x \mapsto \exp(2\pi i x/13)$, G_{arith} and G_{geom} for the lisse sheaf 9_7 on \mathbb{A}^1/k are on a very short list:

either $G_{arith} = G_{geom} = G_2$,

or $G_{arith} = G_{geom} = PSL(2, \mathbb{F}_{13}).$

We now explain how to rule out the G_2 possibility. We do this through a consideration of fourth moments, cf. [Ka-LFM, 112-113]. For G_2 in its seven-dimensional representation std₇, we have

 $M_4(G_2, std_7) = 4.$

[We focus on M_4 because for PSL(2, \mathbb{F}_{13}), in either of its irreducible seven-dimensional representations, we have (using the ATLAS [CCNPW-Atlas] character tables available in GAP [GAP])

 $M_4(PSL(2, \mathbb{F}_{13}), std_7) = 5.$]

On the other hand, we have

 $\mathsf{M}_4(\mathsf{G}_{\mathsf{geom}},\,\mathfrak{G}_7)\,=\,\mathrm{dim}\mathsf{H}_{\mathsf{c}}^{\,2}(\mathbb{A}^1\!\otimes_k\!\overline{\mathsf{k}},\,(\mathfrak{G}_7)^{\,\otimes\,4})(-1).$

Supose now that $G_{arith} = G_{geom} = G_2$. Then

 $H_c^2(\mathbb{A}^1 \otimes_k \overline{k}, (9_7)^{\otimes 4})(-1)$

is four-dimensional, and ${\rm Frob}_k$ acts on it as the identity. Thus for any finite extension field E/k, we have

 $Trace(Frob_{E}, H_{c}^{2}(\mathbb{A}^{1} \otimes_{k} \overline{k}, (9_{7})^{\otimes 4})(-1)) = 4.$

The group $H_c^{1}(\mathbb{A}^1 \otimes_k \overline{k}, (\mathfrak{g}_7)^{\otimes 4})(-1)$ is mixed of weight ≤ -1 . Using the Euler-Poincare formula, we see that

$$\operatorname{dim}_{c}^{1}(\mathbb{A}^{1} \otimes_{k} \overline{k}, (\mathfrak{g}_{7}) \otimes 4)(-1) = 4 - \chi(\mathbb{A}^{1} \otimes_{k} \overline{k}, (\mathfrak{g}_{7}) \otimes 4)$$
$$= 4 + \operatorname{Swan}_{\infty}((\mathfrak{g}_{7}) \otimes 4) - \operatorname{rank}((\mathfrak{g}_{7}) \otimes 4).$$

Because 9_7 has all ∞ -slopes $\leq 7/6$, we have

 $\operatorname{Swan}_{\infty}((\mathfrak{g}_7)^{\otimes 4}) \leq (7/6)\operatorname{rank}((\mathfrak{g}_7)^{\otimes 4}).$

Thus we have

 $\dim \mathrm{H}_{\mathrm{c}}^{1}(\mathbb{A}^{1} \otimes_{k} \overline{k}, (9_{7})^{\otimes 4})(-1) \leq 4 + (1/6)\mathrm{rank}((9_{7})^{\otimes 4})$

$$\leq 4 + 7^4/6 = 4 + 2401/6 = 404.1666...$$

Thus we have

 $\mathrm{dim}\mathrm{H_{c}}^{1}(\mathbb{A}^{1}\otimes_{k}\overline{k},(\mathfrak{G}_{7})^{\bigotimes 4})(-1)\leq 404.$

From the Lefschetz Trace formula, we now find that for any finite extension E/k, we have the estimate

 $|4 - (1/\#E)\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | g_7))^4|$

= $|\text{Trace}(\text{Frob}_E | H_c^1(\mathbb{A}^1 \otimes_k \overline{k}, (9_7)^{\otimes 4})(-1)| \le 404/\text{Sqrt}(\#E)$, and consequently the upper bound

$$\begin{split} |(1/\# E)\Sigma_{t \text{ in } E} (\operatorname{Trace}(\operatorname{Frob}_{E,t} \mid \mathfrak{G}_7))^4| &\leq 4 + 404/\operatorname{Sqrt}(\# E). \\ \text{Since } \mathfrak{F}_7 \text{ is } \mathfrak{G}_7 \otimes (-\mathsf{G}(\psi_{-7}, \chi_2))^{\deg}, \text{ we can rewrite this as} \end{split}$$

 $|(1/\#E)^{3}\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} \mid \mathbb{F}_{7}))^{4}| \leq 4 + 404/\text{Sqrt}(\#E).$

Taking for E the field of cardinality 13^5 , we have Sqrt(#E) = 609.338..., so for this field, we find the estimate

 $|(1/\#E)^3\Sigma_{t \text{ in } E} (\operatorname{Trace}(\operatorname{Frob}_{E,t} | \mathcal{F}_7))^4| \le 4.6631.$ But machine calculation shows that for this field, we have

 $(1/\# E)^{3}\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | \mathcal{F}_{7}))^{4} = 4.9992....$ This rules out the G₂ possibility, and so concludes the proof that for $(\mathbb{F}_{13}, x \mapsto \exp(2\pi i x/13))$, any $\ell \neq 13$ and any $\iota : \overline{\mathbb{Q}}_{\ell} \subset \mathbb{C}, \mathfrak{G}_{7}$ has

 $G_{arith} = G_{geom} = PSL(2, \mathbb{F}_{13}).$

Once we have treated that case, we argue as follows. For any finite extension k of \mathbb{F}_{13} , any $\ell \neq 13$ and any nontrivial additive character ψ of k, \mathfrak{G}_7 has the same G_{geom} , namely PSL(2, \mathbb{F}_{13}), and its G_{arith} is a finite (by [Ka-ESDE, 8.14.3.1]) group inside G_2 (by 4.8) which contains G_{geom} as a normal subgroup. Since G_{geom} is a finite primitive irreducible subgoup of G_2 , a fortiori G_{arith} is itself a finite primitive irreducible subgoup of G_2 . Every element of G_{arith} has trace in the field $\mathbb{Q}(\varsigma_{13})$, and already $G_{geom} = PSL(2, \mathbb{F}_{13})$ contains elements whose trace does not lie in Q. So by the previous classification argument, we conclude that $G_{arith} = PSL(2, F_{13})$. QED

Theorem 4.14 For k the prime field \mathbb{F}_3 of characteristic 3, for any prime $\ell \neq 3$, and for any choice of nontrivial additive character ψ of k, consider the lisse sheaf \mathcal{G}_7 on \mathbb{A}^1/k and its corresponding representation $\rho: \pi_1(\mathbb{A}^1/k) \to SO(7)$. Denote by G_{arith} the Zariski closure in SO(7) of $\rho(\pi_1(\mathbb{A}^1/k))$. Then

 G_{arith} = the finite subgroup $G_2(2)$ = $U_3(3).2$ of G_2 , G_{geom} = the finite subgroup $U_3(3)$ of G_2 .

proof Our first task is to prove that G_{geom} is finite. By Lemma 3.5, either G_{geom} is G_2 , or it is a finite irreducible subgroup of G_2 (thanks to 4.8). We rule out the G_2 possibility by a consideration of sixth moments. For G_2 in its seven-dimensional representation std₇, simpLie [MPR] tells us that

 $M_6(G_2, std_7) = 35.$

[We focus on M_6 because for $U_3(3)$ in the unique seven-dimensional representation std₇ which lands it in G_2 , we have (using the ATLAS [CCNPW-Atlas] character tables in GAP [GAP])

 $M_6(U_3(3), std_7) = 41,$

and this is the lowest moment that distinguishes $U_3(3)$ from G_2 itself.]

If $\rm G_{geom}$ is $\rm G_2,$ then, exactly as explained in the proof of Theorem 4.13 above, we have

 $\dim_{\mathrm{L}_{c}}^{1}(\mathbb{A}^{1}\otimes_{k}\overline{k},(\mathfrak{g}_{7})^{\otimes 6})(-1)$

 \leq [35 + (1/6)7⁶] = [19643.1666...] = 19643, and hence we have the estimate, for any finite extension E/F₃,

 $|(1/\#E)\Sigma_{t \text{ in } E} (Trace(Frob_{E,t} | g_7))^6| \le 35 + 19643/Sqrt(#E).$

Taking E to be the field of 3^{16} elements, the error term is

19643/Sqrt(**#**E) = 19643/3⁸ = 2.9939...< 3.

So if G_{geom} is G_2 , we have

 $|(1/\#E)\Sigma_{t \text{ in } E} (Trace(Frob_{E,t} | g_7))^6| < 38,$

for E the field of 3^{16} elements. But machine calculation, for which I am indebted to Chris Hall, shows that as t varies over this E, the values assumed by Trace(Frob_{E,t} | 9_7) and their frequencies are given by the following table:

J	0
<u>value</u>	<u>how many times assumed</u>
-2	398763
-1	13899820
0	19474298
1	4782969
2	3586680
3	897080
7	7111.

Thus we find

 $(1/\#E)\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | g_7))^6$

Therefore G_{geom} is not G_2 , and hence is a finite irreducible subgroup of G_2 . Then G_{arith} is also finite, so G_{arith} is itself a finite irreducible subgroup of G_2 .

We now show that G_{geom} is a primitive irreducible subgroup of G_2 (i.e., primitive as a subgroup of GL(7)). Suppose not. By Cohen-Wales [Co-Wa, page 448], an imprimitive irreducible finite subgroup of G_2 is either $L_2(7) \cong L_3(2) = GL(3, \mathbb{F}_2)$, or a possibly nonsplit extension of a three-dimensional \mathbb{F}_2 -space by some subgroup of $L_3(2)$. So we have a group homomorphism

$$G_{geom} \rightarrow L_2(7),$$

which is either injective, or whose kernel is a group of order prime to p = 3. This leads to a contradiction, as follows. The group $L_2(7)$ has two irreducible three dimensional representations, both of which are necessarily faithful (because $L_2(7)$ is a simple group). Pick one, say

 Λ , and consider the lisse sheaf $\mathfrak{G}_7(\Lambda)$ of rank 3 on $\mathbb{A}^1/\overline{\mathbb{F}}_3$ corresponding to the composite homomorphism

$$\pi_1^{\text{geom}}(\mathbb{A}^1/\mathbb{F}_3) \rightarrow \mathcal{G}_{\text{geom}} \rightarrow \mathcal{GL}(3).$$

By [Ka-ESDE, 7.2.4], $\mathcal{G}_7(\Lambda)$ has the same highest ∞ -slope as \mathcal{G}_7 ,

namely 7/6. But any ∞ -slope occurs with multiplicity some multiple of its denominator, so an ∞ -slope 7/6 cannot occur in any lisse sheaf on $\mathbb{A}^1/\overline{\mathbb{F}}_3$ of rank less than six. Therefore G_{geom} is primitive.

Since G_{geom} is primitive, a fortiori G_{arith} is primitive. Already over the field of 3^4 elements, direct calculation shows that both ±2 occur as traces of Frobenius elements. Of the primitive irreducible subgroups of G_2 [Co-Wa. Theorem page 449], namely $L_2(13)$, $L_2(8)$, $L_2(7).2$, $U_3(3)$ and $U_3(3).2$, only the last two contain both elements of trace 2 and elements of trace -2 in a seven-dimensional representation which lands them in G_2 . Therefore G_{arith} is either $U_3(3)$ or $U_3(3).2$. Now $U_3(3)$ is a simple group, and it is the only nontrivial proper normal subgroup of $U_3(3).2$. So we have either

or

 $\begin{aligned} & G_{geom} = G_{arith} = U_3(3).2, \\ & G_{geom} = G_{arith} = U_3(3), \end{aligned}$

or

 $G_{geom} = U_3(3), G_{arith} = U_3(3).2.$

We first show that G_{geom} cannot be $U_3(3).2$. Indeed, we have (using the ATLAS [CCNPW-Atlas] character tables available in GAP [GAP]) $M_6(U_3(3).2, std_7) = 36$, and the calculation over the field of 3^{16} elements which ruled out G_2 also rules out this possibility. Thus if G_{geom} is primitive, it is $U_3(3)$. Supposing this to be the case, we next show $G_{arith} \neq G_{geom}$. For if not, then we would have

 $G_{geom} = G_{arith} = U_3(3).$

In this case, we would have, for any finite extension ${\rm E}/{\mathbb{F}}_3,$ the estimate

$$|M_{6}(U_{3}(3), \text{ std}_{7}) - (1/\#E)\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | g_{7}))^{6}|$$

 $\leq [41 + (1/6)7^6]/Sqrt(\#E) = 19649/Sqrt(\#E).$

Taking for E the field of 3^{15} elements, the error term is

19649/3^{7.5} = 5.187....< 6,

and hence for this field we would have

 $(1/\#E)\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | g_7))^6 > 35.$

But machine calculation, for which I am indebted to Chris Hall, shows that as t varies over this E, the values assumed by $\mathsf{Trace}(\mathsf{Frob}_{E,t} \mid 9_7)$ and their frequencies are given by the following table:

<u>value</u>	<u>how many times assumed</u>
-1	5380840
0	4782969
1	3587227
3	597871

Thus we find

 $(1/\# E)\Sigma_{t \text{ in } E} (\text{Trace}(\text{Frob}_{E,t} | g_7))^6$

 $= 444816026/3^{15} = 30.999....$

Therefore we conclude that

$$G_{geom} = U_3(3), G_{arith} = U_3(3).2.$$

QED

Corollary 4.15 Let k be a finite field of characteristic 3, ℓ any prime $\ell \neq 3$, and ψ a nontrivial additive character ψ of k. Consider the lisse sheaf $9_7 = 9_7(k, \psi)$ on \mathbb{A}^1/k . Then its G_{geom} and G_{arith} are given by the following recipe. 1) If deg(k/F₃) is odd, then

$$G_{arith} = U_3(3).2,$$

$$G_{geom} = U_3(3).$$
2) If deg(k/F₃) is even, then

 $G_{geom} = G_{arith} = U_3(3).$

proof First consider the case when ψ is obtained by composition with the trace from a nontrivial additive character of the prime field F₃. Then $9_7(k, \psi)$ on \mathbb{A}^1/k is the pullback of the lisse sheaf 9_7 on $\mathbb{A}^1/\mathbb{F}_3$ considered in the previous theorem, for which G_{geom} is $U_3(3)$, of index two in $G_{arith} = U_3(3).2$. So the assertion is obvious in this case.

In the general case, the nontrivial additive character is of the form ψ_{α} , with ψ as in the case above, and α some element of k^{\times} . Consider first the case in which α is a seventh power in k^{\times} , i.e., $\alpha = \beta^{7}$ for some β in k^{\times} . We claim that there exists an isomorphism of lisse sheave on \mathbb{A}^{1}/k ,

$$\Im_7(\psi_{\mathsf{B}}7,\,\mathbf{k})\cong \,[\mathbf{t}\,\mapsto\,\beta^6\mathbf{t}]^{\boldsymbol{\star}} \Im_7(\psi,\,\mathbf{k}).$$

To show this, it suffices to show that both sides have the same trace function, since this by Chebotarev implies that they have isomorphic semisimplifications as $\pi_1(\mathbb{A}^1/k)$ -representations, and both are $\pi_1(\mathbb{A}^1/k)$ -irreducible. For E/k a finite extension, and t in E, we readily calculate

 $Trace(Frob_{E,t} | g_7(\psi_\beta 7, k))$

$$= (1/G(\psi_{-7\beta}7_{,E}, \chi_{2,E}))\Sigma_{x \text{ in } E} \psi(\beta^{7}\text{Trace}_{E/k}(x^{7} + tx))\chi_{2,E}(x)$$

$$= \chi_{2,E}(\beta^{7})(1/G(\psi_{-7,E}, \chi_{2,E}))$$

$$\times \Sigma_{x \text{ in } E} \psi(\text{Trace}_{E/k}((\beta x)^{7} + \beta^{6}t(\beta x)))\chi_{2,E}(x))$$

$$= \chi_{2,E}(\beta)(1/G(\psi_{-7,E}, \chi_{2,E}))$$

$$\times \Sigma_{x \text{ in } E} \psi(\text{Trace}_{E/k}(x^{7} + \beta^{6}tx))\chi_{2,E}(\beta^{-1}x))$$

$$= (1/G(\psi_{-7,E}, \chi_{2,E}))\Sigma_{x \text{ in } E} \psi(\text{Trace}_{E/k}(x^{7} + \beta^{6}tx))\chi_{2,E}(x))$$

$$= \text{Trace}(\text{Frob}_{E,\beta}6_{t} \mid Q_{7}(\psi, k))$$

= Trace(Frob_{E.t} | [t $\mapsto \beta^{6}$ t]* $9_{7}(\psi, k)$).

Therefore there exists an isomorphism of lisse sheave on $\mathbb{A}^{1/k}$,

 $\Im_7(\psi_{\mathsf{B}}7,\,k) \cong \, [\mathfrak{t} \,\mapsto\, \beta^6\mathfrak{t}]^{\boldsymbol{*}} \Im_7(\psi,\,k).$

Now $\mathcal{G}_7(\psi, \mathbf{k})$ and $[\mathbf{t} \mapsto \beta^6 \mathbf{t}]^* \mathcal{G}_7(\psi, \mathbf{k})$ have the same G_{arith} as each other, and the same G_{geom} as each other. So the corollary holds for $\mathcal{G}_7(\psi_B 7, \mathbf{k})$.

To treat the general case, we reduce to the previous case, as follows. By Lemma 3.4, we know that G_{geom} is $U_3(3)$. We also know that G_{arith} is a finite subgroup of G_2 which contains G_{geom} , and hence G_{arith} is either $U_3(3)$ or is $U_3(3).2$. Thus G_{arith} is either equal to G_{geom} , or G_{arith} contains G_{geom} with index two. To determine which case we are in, we may pass from k to any finite extension of odd degree, and look there. But any α in k[×] becomes a seventh power in an odd degree extension of k. [If k contains no nontrivial seventh roots of unity, every element α of k[×] is a seventh power. If k contains the seventh roots of unity, then either α is already a seventh power, or the polynomial X^7 - α is irreducible over k, in which case α becomes a seventh power in an extension of odd degree seven.] So we are reduced to the previous case. QED

Remark 4.16 One cannot fail to be struck by the fact that in the two characteristics p = 3 and p = 13 for which g_7 has a finite G_{geom} , that finite group is the \mathbb{F}_p points of a Chevalley group, i.e., $U_3(3) = PSU(3, \mathbb{F}_3)$ in characteristic 3, and $L_2(13) = PSL(2, \mathbb{F}_{13})$ in characteristic 13. This raises two obvious questions. 1) Can one give conceptual, rather than computational, proofs of the results for characteristics 3 and 13?

2) Can one find a "diophantinely meaningful" lisse sheaf of rank seven on $\mathbb{A}^1/\mathbb{F}_8$ with $G_{geom} = L_2(8)$? On $\mathbb{A}^1/\mathbb{F}_7$ with $G_{geom} = L_2(7)$.2?

(5) Application to explicit G_2 equidistribution

(5.1) Given a finite field k of characteristic p = 5, p = 11, or p > 15, a nontrivial C-valued additive character of k, and an element t in k, we define a conjugacy class

in UG₂ as follows. Pick any prime $\ell \neq p$, and any field embedding ι : $\overline{\mathbb{Q}}_{\ell} \to \mathbb{C}$. Then ι induces an isomorphism $\mu_p(\overline{\mathbb{Q}}_{\ell}) \cong \mu_p(\mathbb{C})$, so there is a unique $\overline{\mathbb{Q}}_{\ell}$ -valued additive character $\widetilde{\Psi}$ of k which, after ι , becomes the chosen ψ . Using this $\widetilde{\psi}$, we construct the lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf

 \mathfrak{g}_7 on \mathbb{A}^1/k , with its corresponding representation

 $(5.1.1) \qquad \rho: \pi_1(\mathbb{A}^1/k) \to \operatorname{G}_2(\overline{\mathbb{Q}}_\ell).$

For t in k = $\mathbb{A}^1(k)$, the element $\rho(\operatorname{Frob}_{k,t})$ in $G_2(\overline{\mathbb{Q}}_\ell)$ is in fact semisimple [because $\operatorname{H}_c^1(\mathbb{G}_m \otimes_k \overline{k}, \mathcal{L}_{\chi_2(x)} \otimes \mathcal{L}_{\psi(x^7 + tx)})$ is a direct factor of $\operatorname{H}^1(\mathbb{C} \otimes_k \overline{k}, \overline{\mathbb{Q}}_\ell)$, for C the complete nonsingular model of the curve in \mathbb{A}^3 defined by $y^2 = x$, $z^q - z = x^7 + tx$]. The element $\iota\rho(\operatorname{Frob}_{k,t})$ in $G_2(\mathbb{C})$ has its eigenvalues on the unit circle, so, being semisimple lies in a compact subgroup of $G_2(\mathbb{C})$, and hence is conjugate to an element of the chosen maximal compact subgroup UG₂. There is a general argument of Deligne, given in [Ka-GKM, 3.3], which assures us that the resulting element of UG₂ is itself unique up to UG₂-conjugacy. The resulting conjugacy class we define to be $\theta(k, \psi, t)$. In the case at hand, we can use Lemma 4.2 to give a more down to earth description of this conjugacy class. It is the unique conjugacy class whose characteristic polynomial is given by (5.1.2) det(1 -T $\theta(k, \psi, t)$)

$$= \iota L(\mathbb{G}_m/k, \mathcal{L}_{\chi_2(x)} \otimes \mathcal{L}_{\psi_\ell(x^n + tx)}, T/(-G(\tilde{\psi}_{-7}, \chi_2))$$

$$= \exp(\Sigma_{m \ge 1} (S(m, k, \psi, t)/((-G(\psi_{-7}, \chi_2))^m))T^m/m),$$

where we write $k_{\rm m}/k$ for the extension of degree m, and where we write S(m, k, $\psi,$ t) for the complex number -

(5.1.3) $S(m, k, \psi, t) := \sum_{x \text{ in } k_m, x \neq 0} \chi_{2,k_m}(x) \psi_{k_m}(x^7 + tx).$

(5.2) Applying Deligne's general equidistribution theorem, in the form [Ka-GKM, 3.6], to this situation ,and remembering that 9_7 has highest ∞ -break 7/6 at ∞ , we get the following theorem. **Theorem 5.3** In any sequence of data (k_i , ψ_i), with

 k_i a finite field of characteristic p = 5, p = 11, or p > 15,

 ψ_i a nontrivial C-valued additive character of k_i , in which $\#k_i \to \infty$, the $\#k_i$ conjugacy classes $\{\vartheta(k_i, \psi_i, t)\}_{t \text{ in } k_i}$ become equidistributed for normalized (total mass one) Haar measure in the space UG₂[#] of conjugacy classes of UG₂. For any continuous central function

 $h: UG_2 \rightarrow \mathbb{C},$

we have the integration formula

 $\int_{UG_2} h(A) dA = \lim_{i \to \infty} (1/\#k_i) \Sigma_{t \text{ in } k_i} h(\vartheta(k_i, \psi_i, t)).$

More precisely, for k a finite field of characteristic p = 5, p = 11, or p > 15, ψ a nontrivial C-valued additive character of k, and Λ a nontrivial unitary representation of UG₂, we have the estimate

 $|(1/\#k)\Sigma_{t \text{ in } k} \operatorname{Trace}(\Lambda(\vartheta(k, \psi, t)))| \leq \dim(\Lambda)/6\operatorname{Sqrt}(\#k).$

Remark 5.4 We get the constant in this last estimate as follows. The representation Λ extends to a representation of G₂, so we can

signs-53-41

form the lisse sheaf $\Lambda(g_7)$. It has $H_c^i(\mathbb{A}^1 \otimes_k \overline{k}, \Lambda(g_7)) = 0$ for $i \neq 1$, and

(5.5) We now take the "direct image" of this result by the trace (in the seven-dimensional representation)

Trace : $UG_2 \rightarrow [-7, 7]$.

As I learned from Serre [Se], the traces of elements of UG₂ all lie in the closed interval [-2, 7]. Indeed, from the known shape of a maximal torus in G₂, namely all matrices of the form Diag(1, a, 1/a, b, 1/b, ab, 1/ab), these traces are precisely the image of the map $[0, 2\pi] \times [0, 2\pi] \rightarrow \mathbb{R}$,

 $(x, y) \mapsto 1 + 2\cos(x) + 2\cos(y) + 2\cos(x+y).$

It is then a calculus exercise to see that the maximum, 7, occurs at (0, 0), and that the minimum, -2, occurs at $(2\pi/3, 2\pi/3)$ and at $(4\pi/3, 4\pi/3)$.

(5.6) Denote by

(5.6.1) $\mu_{G_{2}, \text{ trace}} := \text{Trace}_{*}(\text{normalized Haar measure on UG}_{2})$

the direct image probability measure on [-2, 7]. Thus for h(x) a continuous C-valued function on [-2, 7], (5.6.2) \int [-2,7] h(x)dµG₂, trace := \int UG₂ h(Trace(A))dA.

Corollary 5.7 In any sequence of data (k_i, ψ_i) as in Theorem 4.8 above, the $\#k_i$ real numbers

 $\{-S(1, k_i, \psi_i, t)/(-G(\psi_{-7}, \chi_2))\}_{t \text{ in } k_i},$

become equidistributed in [-2, 7] for the measure μ_{G_2} , trace.

(5.8) For each prime p = 5, p = 11, or p > 15, take for ψ the additive character of \mathbb{F}_p given by

(5.8.1) $\psi(x) := \exp(2\pi i x/p).$

Then for t in \mathbb{F}_p , we have

(5.8.2) $-S(1, \mathbb{F}_p, \psi, t)/(-G(\psi_{-7}, \chi_2))$

=
$$(1/G(\psi_{-7}, \chi_2))\Sigma_{x \text{ in } \mathbb{F}_p, x \neq 0} \chi_2(x)\psi(x' + tx).$$

On the other hand,

(45.8.3)
$$G(\psi_{-7}, \chi_2) = \chi_2(-7)G(\psi, \chi_2).$$

In the classical notation, and using quadratic reciprocity, we have (5.8.4) $\chi_2(-7) = (-7/p) = (p/7)$.

By Gauss, we have

(5.8.5)
$$G(\psi, \chi_2) = Sqrt(p), \text{ if } p \equiv 1 \mod 4,$$

=
$$iSqrt(p)$$
, if $p \equiv 3 \mod 4$.

Thus for $p \equiv 1 \mod 4$, we have

$$(5.8.6) -S(1, \mathbb{F}_{p}, \psi, t)/(-G(\psi_{-7}, \chi_{2})) =$$

$$(p/7)p^{-1/2}\Sigma_{x \text{ in } \mathbb{F}_p} (x/p) \operatorname{Cos}(2\pi(x' + tx)/p).$$

For $p \equiv 3 \mod 4$, we have (5.8.7) $-S(1, \mathbb{F}_p, \psi, t)/(-G(\psi_{-7}, \chi_2)) = (p/7)p^{-1/2} \sum_{x \text{ in } \mathbb{F}_p^{\times}} (x/p)Sin(2\pi(x^7 + tx)/p).$

Corollary 5.9 As $p \rightarrow \infty$, the p real numbers { $(p/7)p^{-1/2}\Sigma_{x \text{ in } \mathbb{F}_{p}^{\times}} (x/p)Cos(2\pi(x^{7} + tx)/p)$ }_{t mod p}, if $p \equiv 1 \mod 4$, $\{(p/7)p^{-1/2}\sum_{x \text{ in } \mathbb{F}_p^{\times}} (x/p)\operatorname{Sin}(2\pi(x^7 + tx)/p)\}_t \mod p, \text{ if } p \equiv 3 \mod 4, \text{ become equidistributed in [-2, 7] for the measure } \mu_{G_2, \text{ trace on the closed interval [-2, 7].}$

(5.10) We do not know an explicit formula for the measure $\mu_{G_2,trace}$ on [-2, 7]. However, most of its mass is concentrated in the interval [-2, 2]. More precisely, we have the following tail estimate.

Tail Estimate 5.11 For any real t in (0, 7], we have the estimate $\mu_{G_2,trace}([t, 7]) \leq Min(1/t^2, 4/t^4, 35/t^6, 455/t^8).$

In particular, we have the estimatesq

 $\mu_{G_2, trace}([2, 7]) \le 1/2^2 < 1/4,$

 $\mu_{G_2,trace}([3, 7]) \le 4/3^4 < 1/20,$

 $\mu_{G_2,trace}([4, 7]) \le 455/4^8 < 1/144,$

µ_{G2,trace}([5, 7]) ≤ 455/5⁸ < 1/858,

 $\mu_{G_2, trace}([6, 7]) \le 455/6^8 < 1/3691.$

Proof The first few even moments $M_{2k} := M_{2k}(G_2, \text{ std}_7)$ of G_2 in its seven dimensional representation std₇ are given (with help from simpLie [MPR]) by

 $M_2 = 1, M_4 = 4, M_6 = 35, M_8 = 455.$

By the unitarian trick, we have

$$\begin{split} M_{2k} &= \int_{UG_2} (\mathrm{Trace}(A))^{2k} \mathrm{d}A = \int_{[-2,7]} x^{2k} \mathrm{d}\mu_{G_2,\mathrm{trace}}. \\ \text{Now for any probability measure } \mu \text{ on } \mathbb{R}, \text{ with even moments} \\ m_{2k}(\mu) &:= \int_{\mathbb{R}} x^{2k} \mathrm{d}\mu, \end{split}$$

and for any real t > 0, we have the inequality

 $m_{2k}(\mu) := \int_{\mathbb{R}} x^{2k} d\mu \ge \int_{|x| \ge t} x^{2k} d\mu \ge t^{2k} \mu(\{x \text{ with } |x| \ge t\}),$ and the consequent Chebychev inequality

 $\mu(\{x \text{ with } |x| \ge t\}) \le m_{2k}(\mu)/t^{2k}.$

Applying this with μ the measure $\mu_{G_2,trace},$ we find the asserted

inequality. QED

(6) Application to explicit SO(n) equidistribution

(6.1) The results are entirely analogous to those in the G_2 case. We state them explicitly for ease of later reference.

(6.2) Fix an odd integer $n = 2d + 1 \ge 3$, $n \ne 7$. Recall that

(6.2.1) $\epsilon(n) := (-1)^d$.

A compact form of SO(n) is the real group SO(n, R) for the quadratic form Σ_i (x_i)². Because n is odd, onjugacy classes in SO(n, R) are

determined by their charateristic polynomials.

(6.3) Let us say that a characteristic p is "good for n" if the following condition 6.3.1 holds.

(6.3.1) For any finite field k of characteristic p, for any prime $\ell \neq p$, and for any nontrivial $\overline{\mathbb{Q}}_{\ell}$ -valued additive character ψ of k, the lisse

sheaf \mathcal{F}_n on \mathbb{A}^1/k has $G_{geom} = SO(n)$.

(6.4) We know that, given an odd $n \ge 3$, all but finitely many p are good for n, but in general we don't know exactly which are not. (6.5) Given a finite field k of characteristic p which is good for n, a nontrivial \mathbb{C} -valued additive character of k, and an element t in k, we define a conjugacy class

θ(k,ψ, t)

in SO(n, \mathbb{R}) just as we did in the G₂ case. It is the unique conjugacy class whose characteristic polynomial is given by

(6.5.1) $det(1 - T\vartheta(k, \psi, t))$

= $\exp(\sum_{m \ge 1} (S(m, k, \psi, t)/((-G(\psi_{\epsilon(n)n}, \chi_2))m))T^m/m),$

where we write $k_{\rm m}/k$ for the extension of degree m, and where we write S(m, k, $\psi,$ t) for the complex number

(6.5.2) $S(m, k, \psi, t) := \sum_{x \text{ in } k_m, x \neq 0} \chi_{2,k_m}(x) \psi_{k_m}(x^n + tx).$

Applying Deligne's general equidistribution theorem to this situation in the form [Ka-GKM, 3.6],and remembering that 9_n has highest ∞ -break n/(n-1) at ∞ , we get the following theorem. **Theorem 6.6** In any sequence of data (k_i , ψ_i), with

 \boldsymbol{k}_i a finite field of characteristic p which is good for n,

 ψ_i a nontrivial C-valued additive character of k_i ,

in which $\#k_i \rightarrow \infty$, the $\#k_i$ conjugacy classes $\{\vartheta(k_i, \psi_i, t)\}_{t \text{ in } k_i}$

become equidistributed for normalized (total mass one) Haar measure in the space SO(n, \mathbb{R})[#] of conjugacy classes of SO(n, \mathbb{R}). For any continuous central function

 $h: SO(n, \mathbb{R}) \rightarrow \mathbb{C},$

we have the integration formula

 $\int_{SO(n, \mathbb{R})} h(A) dA = \lim_{i \to \infty} (1/\#k_i) \Sigma_{t \text{ in } k_i} h(\vartheta(k_i, \psi_i, t)).$

More precisely, for k a finite field of characteristic p > 2n + 1 not dividing the integer $2nN_1(n-1)N_2(n-1)$, ψ a nontrivial C-valued additive character of k, and Λ a nontrivial unitary representation of SO(n) we have the estimate

 $|(1/\#k)\Sigma_{t \text{ in } k} \operatorname{Trace}(\Lambda(\vartheta(k, \psi, t)))| \leq \dim(\Lambda)/n\operatorname{Sqrt}(\#k).$

(6.7) We now take the "direct image" of this result by the trace Trace : SO(n, \mathbb{R}) \rightarrow [2 -n, n],

and define

(6.7.1)

 $\mu_{SO(n), trace} := Trace_{*}(normalized Haar measure on SO(n, R)).$ Corollary 6.8 In any sequence of data (k_i, ψ_i) as in Theorem 5.6 above, the #k_i real numbers

 $\{-S(1, k_i, \psi_i, t)/(-G(\psi_{\epsilon(n)n}, \chi_2))\}_{t in k_i}$

become equidistributed in [2 - n, n] for the measure $\mu_{SO(n)}$, trace.

(6.9) For each prime p which is good for n, take for ψ the additive character of \mathbb{F}_p given by

(6.9.1) $\psi(x) := \exp(2\pi i x/p).$

Then for t in \mathbb{F}_p , we have

(6.9.2)
$$-S(1, \mathbb{F}_p, \psi, t)/(-G(\psi_{\varepsilon(n)n}, \chi_2))$$

$$= (1/\mathsf{G}(\psi_{\epsilon(n)n}, \, \chi_2)) \Sigma_{x \text{ in } \mathbb{F}_{p, \, x \neq 0}} \, \chi_2(x) \psi(x^n + tx).$$

On the other hand,

(6.9.3) $G(\psi_{\varepsilon(n)n}, \chi_2) = \chi_2(\varepsilon(n)n)G(\psi, \chi_2).$

In the classical notation, and using quadratic reciprocity, we have (6.9.4) $\chi_2(\epsilon(n)n) = (\epsilon(n)n/p) = (p/n),$

where (p/n) is the the extended Jacobi symbol: for n with prime

 $\begin{aligned} & \text{factorization } n = \Pi_{i}(\ell_{i})^{e(i)}, \\ & (6.9.5) \quad (p/n) := \Pi_{i}(p/\ell_{i})^{e(i)}. \\ & \text{For } p \equiv 1 \mod 4, \text{ we have} \\ & (6.9.6) \quad -S(1, \mathbb{F}_{p}, \psi, t)/(-G(\psi_{\epsilon(n)n}, \chi_{2})) = \\ & (p/n)p^{-1/2}\Sigma_{x \text{ in } \mathbb{F}_{p}^{\times}} (x/p)\text{Cos}(2\pi(x^{n} + tx)/p). \end{aligned}$

Corollary 6.10 As $p \rightarrow \infty$, the p real numbers $\{(p/n)p^{-1/2}\Sigma_{x \text{ in } \mathbb{F}_{p}^{\times}}(x/p)\operatorname{Cos}(2\pi(x^{n} + tx)/p)\}_{t \mod p}, \text{ if } p \equiv 1 \mod 4,$ $\{(p/n)p^{-1/2}\Sigma_{x \text{ in } \mathbb{F}_{p}^{\times}}(x/p)\operatorname{Sin}(2\pi(x^{n} + tx)/p)\}_{t \mod p}, \text{ if } p \equiv 3 \mod 4,$ become equidistributed in [2 - n, n] for the measure $\mu_{SO(n)}$, trace

(6.11) We do not know an explicit formula for the measure $\mu_{SO(n), \text{ trace}}$ on [-2-n, n]. However, most of its mass is concentrated in the interval (-2, 2). To formulate more precise tail estimates, recall that for an positive even integer 2k, we define (2k)!! := $\prod_{\ell=1 \text{ to } k} (2k+1-2\ell) = (2k-1)(2k-3)...(3)(1)$.

One knows [Rains, Theorem 3.4] that the even moments of SO(n) in its standard representation std_n are given by

 $M_{2k} := M_{2k}(SO(n), std_n) = (2k)!!, for k \le n.$

[This is proven for O(n) in [Rains, Theorem 3.4]; as n is odd, O(n) is $SO(n) \times \{\pm 1\}$, so the two groups have the same even moments.] By exactly the same Chebychev argument as in the proof of 5.11, we find

Tail Estimate 6.12 For any odd $n \ge 3$, and any real t > 0, we have the estimate

 $\mu_{SO(n), trace}(\{x \text{ with } |x| \ge t\}) \le Min_{k=1 \text{ to } n}((2k)!!/t^{2k}).$

In particular, for odd $n \ge 5$ we have the estimates

 $\mu_{SO(n), trace}(\{x \text{ with } |x| \ge 2\}) \le 3/2^4 < 1/5,$

 $\mu_{SO(n), trace}(\{x \text{ with } |x| \ge 3\}) \le (3)(5)(7)/3^8 < 1/62,$

signs-53-47

 $\mu_{SO(n), trace}(\{x \text{ with } |x| \ge 4\}) \le (3)(5)(7)(9)/4^{10} < 1/1109.$

(7) Application to the Katz-Sarnak measures $\nu(-, c)$

(7.1) A second flavor of application of our \mathcal{F}_n results is to the eigenvalue location measures v(-, c) of [Ka-Sar, 13.1]. Here $r \ge 1$ is an integrer, c (c(1), ..., c(r)) in \mathbb{Z}^r is an "offset vector", i.e. 0 < c(1) < c(2) < ... < c(r).(7.1.1)For n = 2d + 1 with $d \ge c(r)$, the eigenvalues of an element A of $SO(n, \mathbb{R})$ are of the form 1. $e^{\pm i\phi(1)}$. $e^{i\phi(2)}$ $e^{\pm i\phi(d)}$. (7.1.2)for a unique sequence of angles (7.1.3) $0 \le \varphi(1) \le \varphi(2) \le \dots \le \varphi(d) \le \pi.$ Formation of any given $\varphi(i)$ defines a continuous central function on SO(n, ℝ), (7.1.4) $A \mapsto \phi(i)(A)$. We rescale this function, and call it $\vartheta(i)$: (7.1.5) $\vartheta(i)(A) := n\varphi(i)(A)/2\pi$. Given the offset vector c, we define the continuous central function $F_c: SO(n, \mathbb{R}) \rightarrow \mathbb{R}^r$ (7.1.6)

 $F_{c}(A) := (\vartheta(c(1))(A), ..., \vartheta(c(r))(A)).$

We then define the probability measure $\nu(c, SO(n, \mathbb{R}))$ on \mathbb{R}^r to be (7.1.7)

 $\nu(c, SO(n, \mathbb{R})) := (F_c)_*(normalized Haar measure on SO(n, \mathbb{R})).$ (7.2) Given a finite field k of characteristic p which is good for n, and a nontrivial C-valued additive character ψ of k, we define the probability measure $\nu(c, k, \psi, SO(n, \mathbb{R}))$ on \mathbb{R}^r by averaging over the images, by F_c , of the conjugacy classes $\vartheta(k, \psi, t)$, t in k:

(7.2.1) $\nu(c, k, \psi, SO(n, \mathbb{R})) := (1/\#k) \Sigma_{t \text{ in } k} \delta_{F_{c}}(\vartheta(k, \psi, t))$

As an immediate consequence of the general equdistribution theorem, we find the following corollary.

Corollary 7.3 Fix $r \ge 1$, and c an offset vector in \mathbb{Z}^r . Suppose n = 2d + 1 is an odd integer with $d \ge c(r)$. In any sequence of data (k_i, ψ_i) as

in the theorem above, the $\# k_i$ points $\{F_c(\vartheta(k_i, \psi_i, t))\}_{t \text{ in } k_i}$ in \mathbb{R}^r

become equidistributed for the measure $\nu(c, SO(n, \mathbb{R}))$. In other words, the measures $\nu(c, k_i, \psi_i, SO(n, \mathbb{R}))$ tend weak \star to the

measure $\nu(c, SO(n, \mathbb{R}))$ as $i \rightarrow \infty$.

(7.4) We now take the large n limit, cf. [Ka-Sar, 13.8].

Theorem 7.5 In any sequence of pairs (k_i, ψ_i) in which $char(k_i) \rightarrow \infty$, we have the following double limit formula for the probability measure $\nu(-, c)$ on \mathbb{R}^r . For any bounded continuous \mathbb{C} -valued function h on \mathbb{R}^r , we have the integration formula

 $\int_{\mathbb{R}^{r}} h d\nu(-, c)$ = $\lim_{v \to \infty} \int_{\mathbb{R}^{r}} h d\nu(c, k_{i}, \psi_{i}, SO(n, \mathbb{R})).$

Remark 7.6 We need to have $char(k_i)$ tending to ∞ to be sure that for each odd n, $char(k_i)$ is "good for n" provided that i is sufficiently large. At present, we do not which, if any, primes p are good for every odd n \ge 3 which is prime to p. We could avoid these problems by working intead with the sheaves $\mathcal{F}_{n,odd,\leq 3}$ or $\mathcal{F}_{n,odd}$, since, by Theorems 3.11 and 3.12, every prime p > 5 not dividing n is good for them.

References

[Adams] Adams, J. F., *Lectures on exceptional Lie groups*, Chicago Lectures in Mathematics, University of Chicago Press, 1996

[Asch] Aschbacher, M., Chevalley groups of type G_2 as the group of a trilinear form, J. Alg. 109 (1987), 193–259.

[Co-Wa] Cohen, A., and Wales, D., Finite subgroups of $G_2(\mathbb{C})$, Comm. Alg. 11 (1983), 441-459.

[CCNPW-Atlas] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray, Oxford University Press, Oxford, 1985.

[Dav-Has] Davenport, H., and Hasse, H., Die Nullstellen der

Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1934), 151–182.

[De-Weil II] Deligne, P., La conjecture de Weil II, Pub. Math. I.H.E.S. 52 (1981), 313-428.

[GAP] Lehrstuhl D für Mathematik, RWTH Aachen, GAP, computer program, available from http://www-gap.dcs.st-and.ac.uk/~gap

[Ka-Betti] Katz, N., Sums of Betti numbers in arbitrary characteristic, Finite Fields and their Applications 7 (2001), 29-44.

[Ka-ESDE] Katz, N., *Exponential sums and differential equations*, Annals of Math. Study 124, Princeton Univ. Press, 1990.

[Ka-GKM] Katz, N.,*Gauss sums, Kloosterman sums, and monodromy groups,* Annals of Math. Study 116, Princeton Univ. Press, 1988.

[Ka-LFM] Katz, N., L-functions and monodromy: four lectures on Weil II. Adv. Math. 160 (2001), no. 1, 81--132.

[Ka-MG] Katz, N., On the monodromy groups attached to certain families of exponential sums, Duke Math. J. 54 No. 1 (1987), 41-56.

[Ka-SMD] Katz, N., A semicontinuity result for monodromy under degeneration. Forum Math. 15 (2003), no. 2, 191–-200.

[Ka-Sar] Katz, N., Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy. A.M.S. Colloq. Pub. 45, A.M.S., 1999.

[K-L-R] Keating, J. P., Linden, N., Rudnick, Z, Random matrix theory, the exceptional Lie groups and L-functions, J. Phys. A: Math. Gen. 36 (2003) 2933-2944.

[Lau-TF] Laumon, G., Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Pub. Math. I.H.E.S. 65 (1987), 131-210.

[MPR] Moody, R. V., Patera, J., and Rand, D. W., simpLie, Version 2.1,

signs-53-50

Macintosh Software for Representations of Simple Lie Algebras, December, 2000, available from http://www.crm.umontreal.ca/~rand/simpLie.html

[Rains] Rains, E. M., Increasing subsequences and the classical groups, Electron. J. Combin. 5 (1998), no. 1, Research Paper 12, 9 pp. (electronic)

[Sch] Schouten, J.A., Klassifigizierung der alternierenden Groszen dritten Grades in 7 Dimensionen, Rend. Circ. Matem. Palermo 55 (1931), 77-91.

[Se] Serre, J.-P., personal communication, March 7, 2002.

[Se-SousGp] Serre, J.-P., Sous-groupes finis des groupes de Lie, Séminaire Bourbaki 1998-99, Exposé 864.

[Spr] Springer, T. A., *Linear Algebraic Groups, Second Edition,* Birknauser, 1998.