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ELABORATION OF 9.5.4 IN SERRE’S NX(p) BOOK

NICHOLAS M. KATZ

1. Introduction

In the very last paragraph of Serre’s book Lectures on NX(p), he
writes “An interesting fact is that the Sato-Tate conjecture is some-
times easier to prove in the higher dimensional case (d > 1) than in the
number field case, thanks to the information given by the geometric
monodromy (as done by Deligne in characteristic p, cf. [De 80]).” The
purpose of this note is to spell out how this is done. In the higher di-
mensional case, one can bring to bear monodromy techniques. It turns
out that a mild hypothesis “(H)” on the geometric monodromy is all
that is needed; one gets a natural “Sato-Tate group” K in the sense of
[Se-NX(p), 8.2.2], in whose space of conjugacy classes the equidistribu-
tion takes place. Questions of modularity do not arise.

The prototypical situation to be dealt with was first considered by
Birch [B], where he looked at the universal family of elliptic curves in
Weierstrass form y2 = x3−ax− b, a, b indeterminates, over the ground
ring W := Z[a, b, 1/6, 1/(4a3−27b2)]. It is the Spec of this ground ring
which is “higher dimensional”, and our concern is with equidistribution
properties of the unitarized Frobenius conjugacy classes attached to
the closed points P of Spec (W ). In this example, we may view the
parameter space X := Spec (W ) as a “scheme over S” in various ways,
for example, as a scheme over Z[1/6] or as a scheme over Z[1/6, a] or
as a scheme over Z[1/6, b]. The basic object of study in this example is
the lisse sheaf F on the parameter space X := Spec (W ) which is the
“H1 along the fibres” of the Weierstrass family. Birch showed that as p
grows,the Fp points of X := Spec (W ) have unitarized Frobenii which
are closer and closer to being distributed according to Sato-Tate. In
the general story to be developed below, Birch’s result is of the type
we call “packet by packet”, when viewing X := Spec (W ) as a scheme
over Z[1/6].

In these higher dimensional equidistribution questions, there are
three sorts of equidistribution which are relevant, which we call “packet
by packet”, “packetwise”, and “classical”. The first implies the second,
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cf. Prop. 5.2. In generic characteristic zero, the second is equivalent
to the third, cf. Lemma 3.6. The third is false in equicharacteristic
p > 0, cf. Remark 3.7.

2. The general setting: review of Pink’s theorem

In this section, we consider the following general situation. We are
given a noetherian normal connected scheme S, and a smooth S-scheme
f : X → S with geometrically connected fibres of dimension d ≥ 1. We
denote by η the generic point of S (i.e., η is the Spec of the function
field κ(S) of S), by η the Spec of a separable closure κ(S)sep of κ(S),
and by Xη and Xη the corresponding generic and geometric generic
fibres of X/S. The scheme X is itself normal and connected, and we
denote by ξ and ξ its generic and geometric generic points. Then ξ is
also a geometric point of Xη and of Xη. We have morphisms of pointed

(by ξ) schemes
Xη → Xη → X.

The fundamental groups are related as follows.

π1(Xη, ξ)C π1(Xη, ξ),

indeed we have the short exact sequence

1→ π1(Xη, ξ)→ π1(Xη, ξ)→ Gal(η/η)→ 1.

And we have
π1(Xη, ξ)� π1(X, ξ),

because both these groups are quotients of the absolute Galois group
of κ(X). We also have a right exact sequence

π1(Xη, ξ)→ π1(X, ξ)→ π1(S, η)→ 1,

cf. [Ka-La, Lemma 2]. Thus the image of π1(Xη, ξ) in π1(X, ξ) is

a normal subgroup of π1(X, ξ). We will denote this image group
πgeom1 (X/S, ξ)C π1(X, ξ), hence we have a short exact sequence

1→ πgeom1 (X/S, ξ)→ π1(X, ξ)→ π1(S, η)→ 1.

If we take an arbitrary geometric point x of X, and a “chemin” from
ξ to x, we get an isomorphism

π1(X, ξ) ∼= π1(X, x).

If we change the chemin, we change the isomorphism by an inner auto-
morphism of either source or target. Because πgeom1 (X/S, ξ)Cπ1(X, ξ),
the image in π1(X, x) of the normal subgroup πgeom1 (X/S, ξ)Cπ1(X, ξ)
is a well defined (i.e. independent of the choice of chemin) normal sub-
group of π1(X, x), which we denote πgeom1 (X/S, x)C π1(X, x). Because
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this subgroup is normal, to say that a given subgroup Γ of π1(X, x) lies
in πgeom1 (X/S, x) is a meaningful statement (i.e., independent of the
choice of chemin from x to ξ). More concretely, a given subgroup Γ of
π1(X, x) lies in πgeom1 (X/S, x) if and only if every π1(X, x)-conjugate
of Γ lies in πgeom1 (X/S, x), if and only if some π1(X, x)-conjugate of Γ
lies in πgeom1 (X/S, x).

The following theorem of Pink is proven in [Ka-ESDE, 8.18.2], de-
spite being imprecisely stated there. For the reader’s convenience, we
give the proof.

Theorem 2.1. Let ` be a prime number (not assumed invertible on
S), F a lisse Q` sheaf on X of rank n ≥ 1.

(1) For every geometric point s of S, and every geometric point
x of the fibre Xs, when we view F as a representation ρx :
π1(X, x)→ AutQ`

(Fx), we have an inclusion

ρx(π1(Xs, x)) ⊂ ρx(π
geom
1 (X/S, x))

inside ρx(π1(X, x)).
(2) There exists a dense open set U ⊂ S such that if the geometric

point s lies in U , then for every geometric point x of the fibre
Xs we have an equality

ρx(π1(Xs, x)) = ρx(π
geom
1 (X/S, x))

inside ρx(π1(X, x)).

Proof. We first prove 1). The lisse Q` sheaf F descends to a lisse
Eλ-sheaf, for some finite extension Eλ/Q`, then to a lisse Oλ-sheaf
for Oλ the ring of integers in Eλ. So it suffices to prove 1) for each
of the lisse sheaves F/`nF . Fixing one such, we have a finite group
G, and a surjective homomorphism ρx,n : π1(X, x) � G. Denote by
H CG the image of πgeom1 (X/S, x). Then the quotient homomorphism
from π1(X, x)onto G/H factors through π1(S). Replacing S by the
finite étale covering S1 of itself which trivializes this homomorphism,
replacing s by a geometric point of S1 lying over s, replacing X/S by
XS1/S1, and replacing x by a geometric point x1 of XS1 lying over s1,
we reduce to treating the case when πgeom1 (X/S, x) and π1(X, x) have
the same image, here H. In this case, the asserted inclusion of 1) is
just the inclusion of ρx(π1(Xs, x)) in ρx(π1(X, x)).

We next show that for our fixed F/`nF , there is an open dense set
Un ⊂ S over which ρx,n(π1(Xs, x)) = ρx,n(πgeom1 (X/S, x). As above,
we may first base change to S1, then take for Un ⊂ S the image of
the dense open Un,1 ⊂ S1 we find. Then we consider the finite étale
H-torsor E → X. The equality ρx,n(π1(Xs, x)) = ρx,n(πgeom1 (X/S, x)
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holds precisely at the geometric points s over which the fibre Es (of
E viewed as S-scheme, say h : E → S) is connected, or, equivalently,
irreducible (remember E/S is lisse, everywhere of relative dimension
d. The number of irreducible components of Es is the dimension of
the stalk at s of the constructible sheaf R2dh!Q`. By construction, this
dimension is one at η, so is one on some dense open set. [See also
[De-Weil II, 1.11.5] for another approach to this “finite” case.]

To end the proof, we use Pink’s Lemma [Ka-ESDE, 8.18.3], which
insures that we can take for U the open set Un for n sufficiently large.
[The statement is that given a closed subgroup K ⊂ GL(n,Oλ), (here
the image ρx(π

geom
1 (X/S, x)), there is an integer ν with the following

property: if a closed subgroup H (here ρx(π1(Xs, x))) of K maps onto
the image of K in GL(n,Oλ/`νOλ), then H = K. See also [T, proof of
Thm. 2], [Se-CP4, &133, pp. 1-2], and [Se-MW, 10.6] for arguments
of this type.] �

3. Formulation of two equidistribution theorems

In this section, we suppose further that the noetherian normal con-
nected scheme S is a Z[1/`]-scheme of finite type. We fix a field em-
bedding ι : Q` ⊂ C, and a real number w. We fix a lisse Q` sheaf F
on X of rank n ≥ 1 which is ι-pure of weight w. For a fixed geometric
point x of X, we denote by

Garith,X,x ⊂ AutQ`
(Fx)

the Zariski closure in AutQ`
(Fx) of the image ρx(π1(X, x)), and by

Ggeom,X/S,x CGarith,X,x

the Zariski closure in Garith,X,x of the image ρx(π
geom
1 (X/S, x)).

For each closed point p of S, with residue field Fp and geometric
point p = Spec (Fp) lying over it, we have the fibre Xp/Fp and the
geometric fibre Xp/Fp. For a geometric point x of Xp, we denote by

Ggeom,Xp,x CGarith,Xp,x

the Zariski closures in Garith,X,x of the images of π1(Xp, x) and π1(Xp, x)
respectively.

In what follows, we will use some choice of chemin from x to the
geometric generic point ξ of X, drop the x from the notation, and view
all of the groups Ggeom,Xp , Garith,Xp , Ggeom,X/S, Garith,X as Zariski closed
subgroups of Garith,X , with inclusions

Ggeom,Xp CGarith,Xp ⊂ Garith,X ,

Ggeom,Xp ⊂ Ggeom,X/S,



ELABORATION 5

Ggeom,X/S CGarith,X ,

all well defined up to Garith,X-conjugation.
By Pink’s theorem we not only have

Ggeom,Xp ⊂ Ggeom,X/S

for every closed point p of S, but we have equality for all those p lying
in some dense open U ⊂ S.

Recall (cf. [De-Weil II, 1.3.9 the first paragraph of its proof, and 3.4.1
(iii)]) that for each closed point p of S, the groupGgeom,Xp is semisimple.
In view of Pink’s theorem, the group Ggeom,X/S is semisimple.

For the rest of this note, we impose the following hypothesis (H) on
our data (X/S,F , ι):

Hypothesis (H) : ρ(π1(X)) ⊂ GmGgeom,X/S,

or, equivalently,
Garith,X ⊂ GmGgeom,X/S.

For each closed point p of S, we thus have

ρ(π1(Xp)) ⊂ GmGgeom,X/S.

Lemma 3.1. For each closed point p of S, there exists αp ∈ Q`
×

with
the following properties:

(1) For each finite extension k/Fp, and each point t ∈ Xp(k),

ρ(Frobk,t)/α
deg(k/Fp)
p ∈ Ggeom,X/S.

(2) For each closed point P of Xp (i.e., for each closed point P of
X which lies above p),

ρ(FrobP)/α
deg(FP/Fp)
p ∈ Ggeom,X/S.

Any αp satisfying either (1) or (2) is an `-adic unit, i.e. αp ∈ O×Q`
, the

lisse sheaf on Xp given by

Gp := (F|Xp)⊗ α−degp

is ι-pure of weight zero, and its associated representation ρGp maps
π1(Xp) to Ggeom,X/S.

Proof. If Xp has an Fp-rational point t, then any Frobenius element

Frobp,t is an element of degree one in π1(Xp). Choose any αp ∈ Q`
×

such that ρ(Frobp,t)/αp lies in Ggeom,X/S, this being possible by hy-
pothesis (H). If not, use the fact that in all large enough extensions
of Fp, there are rational points. Denote by kn the extension of de-
gree n of Fp. Then for n large, choose a point tn ∈ Xp(kn) and a
point tn+1 ∈ Xp(kn+1). Then choose Frobenius elements Frobkn+1,tn+1
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and Frobkn,tn in π1(Xp).Then the element γp := Frobkn+1,tn+1Frob
−1
kn,tn

is an element of degree one in π1(Xp). Choose any αp ∈ Q`
×

such
that ρ(γp)/αp lies in Ggeom,X/S, this being possible by hypothesis (H).
Now (1) holds because for any Frobenius element Frobk,t, the “ra-

tio” Frobk,tγ
−deg(k/Fp)
p is an element of degree zero in π1(Xp), so lies in

πgeom1 (Xp), which in turn maps by ρ to Ggeom,X/S by Pink’s theorem.
Unscrewing all this, we get (1). We get (2) by repeating this argument
with Frobk,t replaced by FrobP.

To see that αp ∈ O×Q`
, we argue as follows. We know that F has

an OQ`
-form, so det(ρ(γp)) lies in O×Q`

. But Ggeom,X/S is semisimple,

so det on it has finite order. Thus det(ρ(γp)/αp) is a root of unity,

and hence αp is an `-adic unit. To see that (F|Xp) ⊗ α−degp is ι-pure
of weight zero, use the fact that it is ι-pure of some weight (namely
w − 2 logq(|ι(αp)|) for q = #(Fp)). So we can read its weight from the
weight of its determinant. But ρGp maps π1(Xp) to Ggeom,X/S, where
every element has a determinant which is a root of unity. �

Remark 3.2. There may be several choices of αp. Indeed, the inde-
terminacy is precisely the finite group Gm ∩ Ggeom,X/S (finite because
Ggeom,X/S is semisimple). In what follows, we fix a choice of an αp for
each closed point p of S.

We now use the embedding ι : Q` ⊂ C to view C as a Q`-algebra,
so we can form the group Ggeom,X/S(C), which we view as a complex
semisimple Lie group in the “classical” topology. We denote by K a
choice of maximal compact subgroup of Ggeom,X/S(C).

Lemma 3.3. Let p be a closed point of S, P a closed point of X
lying over p. Then the semisimplification (in the sense of Jordan de-

composition) of ι(ρ(FrobP)/α
deg(FP/Fp)
p ) in Ggeom,X/S(C) is conjugate

in Ggeom,X/S(C) to an element of K, which is itself unique up to K-
conjugacy.

Proof. Because (F|Xp)⊗α−degp is ι-pure of weight zero, this semisimple
element in the semisimple group Ggeom,X/S(C) has all its eigenvalues
on the unit circle, so lies in a compact subgroup of Ggeom,X/S(C), hence
lies in a maximal compact subgroup of Ggeom,X/S(C), and all such are
Ggeom,X/S(C)-conjugate. That all ways to conjugate this element into
K lead to K-conjugate elements results from the Peter-Weyl theorem
(that conjugacy classes in K are determined by their traces in all irre-
ducible representations of K), Weyl’s unitarian trick (that irreducible
representations of K are the restrictions to K of (the image under ι
of) irreducible representations of Ggeom,X/S), and the fact that in any
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representation of Ggeom,X/S, an element and its semisimplification have
the same trace. �

Thus for each closed point P of X, we obtain a K-conjugacy class
θP, whose definition involves the rescaling by the chosen αp, for p the
closed point of S lying under P.

We now formulate two theorems concerning the equidistribution prop-
erties of the conjugacy classes θP.

To formulate the first, recall that for a scheme W of finite type over
Z, we denote by |W | the set of its closed points, and by πW : R>0 → Z
the counting function

πW (t) := #{P ∈ |W |, NP ≤ t}.

Theorem 3.4. Packetwise Equidistribution Suppose hypothesis
(H) holds. For t ∈ R>0 large enough that πX(t) > 0, denote by µ(≤ t)
the probability measure on K# defined by

µ(≤ t) := (1/πX(t))
∑

P∈|X|,NP≤t

δθP ,

i.e., it is the measure “average a function over all the closed points of
norm at most t”. Then as t→∞, the measures µ(≤ t) converge weakly
to the induced “Haar measure” of total mass one on K#: for every
continuous central C-valued function f on K, we have the integration
formula ∫

K

fdµHaar = lim
t→∞

∫
K

fdµ(≤ t).

We call this first theorem “packetwise equidistribution” because in
our successive approximating measures, we add on entire packets of
closed points, namely all those of given norm, as we pass from one
approximant to the next. The second theorem is “classical” equidistri-
bution, but is valid only when we are in generic characteristic zero.

Theorem 3.5. Classical Equidistribution Suppose that X has generic
characteristic zero and hypothesis (H) holds. As P varies over the
closed points of X, ordered by increasing NP (ties to be broken arbi-
trarily), the sequence of conjugacy classes θP is equidistributed in the
space K# of conjugacy classes of K for the induced “Haar measure” of
total mass one.

As Serre explains in [Se-NX(p), 9.2.1 small print], we have the fol-
lowing lemma.

Lemma 3.6. Suppose X has generic characteristic zero. Then Theo-
rems 3.4 and 3.5 are equivalent.
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Proof. That Theorem 3.5 implies Theorem 3.4 is obvious. To show that
Theorem 3.4 implies Theorem 3.5, we argue as follows. The scheme X
is irreducible of some dimension D = d + dim(S) ≥ 1. As X has
generic characteristic zero, Serre tells us [Se-NX(p), Cor. 9.2] that
πX(t) ∼ tD/D log(t). From this asymptotic, it follows that

πX(t+ 1)− πX(t) = o(πX(t)).

Serre gives an algebro-geometric argument for this estimate, in the
sharper form

πX(t+ 1)− πX(t) = O(tD−1).

Denote by g : X → Spec (Z[1/`]) the structural morphism. The fibres
all have dimension ≤ D− 1, so by the constructibility of the higher di-
rect images Rig!Q`, their vanishing for i > 2(D−1), the Lefschetz Trace
Formula, and Deligne’s fundamental estimates, we conclude that there
exists an upper boundM ∈ Z for the sum of the compact Betti numbers
of the fibres, and that we have the inequality #X(Fpn) ≤Mpn(D−1) for
all primes p 6= ` and all n ≥ 1. Now πX(t + 1) − πX(t) can only be
nonzero if the unique integer in (t, t+ 1] is a prime power pn, in which
case we are counting closed points of norm pn in X, and the number of
these is trivially bounded by #X(Fpn), which is O(pn(D−1)) = O(tD−1).

To deduce classical equidistribution from packetwise equidistribu-
tion, fix a continuous central function f on K which (by subtracting
a constant and rescaling we may assume) has

∫
K
fdµHaar = 0 and has

SupK |f(k)| ≤ 1. Fix ε > 0. For t large enough, we both

|
∫
K

fdµ(≤ t)| ≤ ε and πX(t+ 1)− πX(t) ≤ επX(t).

Then for any subset A of the set of closed points with norm in the
interval (t, t+ 1], we have

|
∑
NP≤t

f(θP) +
∑
P∈A

f(θP)| ≤ επX(t) + #A

≤ επX(t) + (πX(t+ 1)− πX(t)) ≤ 2επX(t) ≤ 2ε(πX(t) + #A).

�

Remark 3.7. Here is a simple example, along lines suggested by Serre,
to show that in equicharacteristic p > 0, classical equidistribution
is false. Take an odd prime p, S = Spec (Fp) and X = Gm/Fp =
Spec ([Fp[x, 1/x]). Pick a prime ` 6= p and view the quadratic charac-

ter χ2 : F×p → ±1 as taking values in Q`
×

, so giving a Kummer sheaf
Lχ2 on X. Here Ggeom,X/S = Garith,X = ±1. The class θP attached
to a closed point P of norm pn is the following: such a closed point is
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an irreducible monic polynomial f(x) ∈ Fp[x] with f(0) 6= 0, and its
θP ∈ ±1 is χ2((−1)nf(0)). According to the packetwise theorem, as
we look at all closed points of norm at most pn for large n, about half
give +1 and about half give −1. On the other hand, as we will see in
Theorem 5.1, it is also true that when we look at the closed points of
norm precisely pn+1, about half give +1 and about half give −1. But
for any p ≥ 11, there are more 1 closed points of norm pn+1 than there
are of all lower norms combined. So if we tag onto all the closed points
of norm at most pn only the half of the closed points of norm pn+1

giving +1, then of all these points, something like at least 2/3 give +1
instead of −1.

4. Proof of the packetwise equidistribution theorem:
first reduction

Lemma 4.1. For Z any proper closed subscheme of X, we have the
estimate πZ(t) = o(πX(t)).

Proof. The scheme X, being smooth with geometrically connected fi-
bres over the connected normal Z[1/`]-scheme of finite type S, is itself
a connected, normal Z[1/`]-scheme of finite type, so is irreducible of
dimension D = d + dim(S). Any proper closed subscheme Z of X is
a finite union of irreducible Z[1/`]-schemes Zi of finite type, each of
dimension di ≤ D − 1.

When S, or equivalently X, has generic characteristic zero, Serre tells
us [Se-NX(p), Cor. 9.2] that πX(t) ∼ tD/D log(t). For each Zi which
is itself of generic characteristic zero, we have πZi

(t) ∼ tdi/di log(t).
For an irreducible component Zi which is an irreducible Fp-scheme
for some prime p, of dimension di ≤ D − 1, we argue as follows. If
di = 0, then πZi

(t) is bounded. If 1 ≤ di < D − 1, then by Noether
normalization applied to affine pieces we have an estimate of the form
#Zi(Fpn) = O(pndi) for variable n. So trivially the number of closed
points of norm at most pn is O(

∑n
j=1 p

jdi). The inner sum
∑n

j=1 p
jdi =

(pdi/(pdi − 1))(pndi − 1) ≤ 2pndi . Thus πZi
(t) = O(tdi) whenever t is a

power of p, and hence for all t > 0 (because πZi
(t) is increasing, and

only changes value when t is a power of p).
When S, or equivalently X, has generic characteristic p > 0, then

the algebraic closure of Fp in the function field κ(X) is a finite field Fq,
1In Gm/Fp, there are approximately pi/i closed points of given norm pi; the

exact number always lies within 2pi/2/i of pi/i. So the number of closed points of
norm at most pn is at most 2

∑
1≤i≤n p

i/i, while the number of closed points of

norm pn+1 is at least pn+1/2(n+ 1). What is true (a calculus exercise) is that for
any real t > 8, we have, for all n ≥ 1, the inequality tn+1/(n+ 1) > 4

∑
1≤i≤n t

i/i.
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and X/Fq is geometrically irreducible of dimension D. By Lang-Weil,
there exists a real constant C > 0 such that for all integers n ≥ 0,
#X(Fqn) ≥ qnD(1 − C/qn/2). So for large n (e.g., large enough that
qn/2 ≥ 2C), we have #X(Fqn) ≥ qnD/2. Similarly, for n large, the
number of closed points of degree qn is at least qnD/2n. So we trivially
have the estimate πX(t) ≥ tD/2 logq(t) whenever t is a large power of
q. So for all large t we have

πX(t) ≥ (t/q)D/2 logq(t/q) = q−DtD/(2(logq(t)−1)) ≥ q−DtD/3 logq(t).

�

Corollary 4.2. Let V ⊂ X be a dense open set. Then Theorem 3.4
holds on X if and only if it holds on V .

Proof. By Weyl’s criterion, the packetwise equidistribution theorem is
equivalent to the assertion that for every irreducible nontrivial repre-
sentation Λ of K, we have the estimate∑

P∈|X|, NP≤t

Trace(Λ(θP)) = o(πX(t)).

The assertion that it holds on V is that for each of these same Λ, we
have the estimate ∑

P∈|V |, NP≤t

Trace(Λ(θP)) = o(πV (t)).

Each summand Trace(Λ(θP)) has absolute value at most dim(Λ). So
the equivalence is immediate from the previous lemma, applied to the
proper closed subscheme Z := X \ V of X. �

We will use this corollary as follows. Recall that by Pink’s theorem,
there is an open dense set U ⊂ S such that for each closed point p of
U , we have

Ggeom,Xp = Ggeom,X/S.

By the corollary, it suffices to prove packetwise equidistribution on
V := f−1(U). Thus we reduce to proving universally the packetwise
equidistribution theorem for the situation (X/S,F , ι) under hypothesis
(H) and the additional hypothesis (AFG) (“all fibres good”):

Hypothesis (AFG) : for every closed point p ∈ S, Ggeom,Xp = Ggeom,X/S.
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5. A Stronger equidistribution theorem, when both
hypotheses (H) and (AFG) hold

In this section, we suppose both hypotheses (H) and (AFG) hold.
We arrange the closed points P into packets P (p, n) labeled by the
underlying closed point p of S and by the integer n ≥ 1 which is the
degree of FP/Fp. In other words, P (p, n) consists of the closed points
of Xp whose degree over Fp is n.

For each nonempty packet, denote by µ(P (p, n)) the measure on K#

defined by

µ(P (p, n)) := (1/#P (p, n))
∑

P∈P (p,n)

δθP .

Theorem 5.1. Packet by packet Equidistribution Suppose that
both hypotheses (H) and (AFG) hold. Let (pi, ni) be a sequence of pairs
consisting of a closed point of S and a strictly positive integer. Suppose
that Npni

i tends archimedeanly to ∞. Then the sequence of measures
µ(P (pi, ni)) tends weakly to the induced “Haar measure” of total mass
one on K#.

Proposition 5.2. When hypotheses (H) and (AFG) hold, Theorem
5.1 implies Theorem 3.4.

Proof. For each nonempty packet, and each irreducible nontrivial Λ,
we consider the fraction

N(p, n,Λ)/#P (p, n)

with

N(p, n,Λ) :=
∑

P∈P (p,n)

Trace(Λ(θP)).

Theorem 5.1 is, by the Weyl criterion, the assertion that for each irre-
ducible nontrivial representation Λ ofK, the fractionsN(p, n,Λ)/#P (p, n)
tend to 0 as Npn tends to ∞. What we must prove is that for each
irreducible nontrivial Λ, the fractions∑

(p,n) with Npn≤tN(p, n,Λ)∑
(p,n) with Npn≤t #P (p, n)

tend to 0 as t tends archimedeanly to ∞.
It suffices to apply the following elementary lemma, whose proof is

left to the reader.

Lemma 5.3. Let an/bn be a sequence of fractions with an ∈ C and
bn ∈ R>0. Suppose that |an/bn| → 0 as n tends to ∞, and that

∑
i≤n bi
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tends to ∞ as n tends to ∞. Then the fractions
∑

i≤n ai∑
i≤n bi

tend to 0 as n

tends to ∞.

�

We now turn to the proof of Theorem 5.1. In [Ka-Sar, 9.6.10], ratios
similar to the ratios N(p, n,Λ)/#P (p, n) are considered. [The assump-
tion “(9.3.5.1)” stated there is used only to insure that Garith,X ⊂
GmGgeom,X/S.] That result is stated in terms of conjugacy classes
θk,s,αs,x attached to finite-field valued points of X, say x ∈ X(k), par-
titioned according to the underlying k-valued point s of S, with αs
there our α

deg(Fs/Fp)
p . It is proven there that there exist positive integer

constants A(X/S) and C(X/S,F) such that for each nonempty packet
P (p, n) with Npn ≥ 4A(X/S)2, and Fp,n/Fp the extension of degree n,
we have

#Xp(Fp,n) ≥ Npnd/2
and

| 1

#Xp(Fp,n)

∑
x∈Xp(Fp,n)

Trace(Λ(θFp,n,p,αn
p ,x))|

≤ 2C(X/S,F) dim(Λ)/Npn/2.
We now have only to turn this into an estimate for our fractions

N(p, n,Λ)/#P (p, n). To do this, we use the fact that closed points
P of Xp of degree n over Fp are simply the orbits of Gal(Fsepp /Fp) of
length n in Xp(Fp,n), and that each of the n points in such an orbit
gives rise to the same conjugacy class θP. The number of points of
Xp(Fp,n) which lie in Xp(Fp,n/r) for some divisor r ≥ 2 of n is at most

2(1 + A(X/S))Npnd/2. So the sum∑
x∈Xp(Fp,n)

Trace(Λ(θFp,n,p,αn
p ,x))

differs from the sum

nN(p, n,Λ)

by an error bounded by 2(1 +A(X/S))Npnd/2 dim(Λ). And #Xp(Fp,n)
differs from n#P (p, n) by at most 2(1 +A(X/S))Npnd/2. We conclude
that for Npn sufficiently large, we have the estimate

(∗) |N(p, n,Λ)/#P (p, n)| ≤ 4C(X/S,F) dim(Λ)/Npn/2.

This concludes the proof of Theorem 5.1.
Here is an application of Theorem 5.1. For each integer N > 1,

denote by P (N) the packet consisting of all the closed points of norm
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N . For each N such that P (N) is nonempty, denote by µ(P (N)) the
measure on K# defined by

µ(P (N)) := (1/#P (N))
∑

P∈P (N)

δθP .

Theorem 5.4. Norm by norm Equidistribution Suppose that both
hypotheses (H) and (AFG) hold. Then as N tends to ∞ over norms
of closed points of X, the measures µ(P (N)) on K# tends weakly to
the induced “Haar measure” of total mass one on K#.

Proof. Indeed, the packet P (N) is the disjoint union of those packets
P (p, n) for which Npn = N . For N large and P (N) nonempty, the
estimate (∗) shows that for each nontrivial irreducible Λ we have the
estimate

|(1/#P (N))
∑

NP=N

Trace(Λ(θP))| ≤ 4C(X/S,F) dim(Λ)/N1/2.

�

As another application of Theorem 5.1 and Lemma 5.3, we have the
following variant of the packetwise equidistribution theorem.

Theorem 5.5. Partial packetwise Equidistribution Suppose that
both hypotheses (H) and (AFG) hold. Let (pi, ni) be a sequence of pairs
consisting of a closed point of S and a strictly positive integer. Suppose
that Npni

i tends archimedeanly to ∞. Then as d → ∞ the sequence of
measures on K#

νd :=
1∑

1≤i≤d #P (pi, ni)

∑
1≤i≤d

∑
P∈P (pi,ni)

δθP

tends weakly to the induced “Haar measure” of total mass one on K#.

For example, we could take any sequence (pi, 1) with closed points of
S whose norms tend archimedeanly to∞. If S has generic characteris-
tic zero, we could further restrict to using only closed points with prime
fields as residue fields (cf. [Se-NX(p), 9.1.4]), and we could choose any
infinite subset of these if we wish.

Remark 5.6. Even when X has generic characteristic zero, it will not
be the case in general that the collection of closed points in ∪iP (pi, ni)
satisfies classical equidistribution. For example, we might choose the
sequence Npni

i to be so lacunary that at each approximating step we add
on more points than we had before (i.e. #P (pd+1, nd+1) ≥

∑
1≤i≤d #P (pi, ni)).
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6. A variant: “eliminating” S

In this section, we suppose hypothesis (H) holds, and we make an
additional hypothesis (Sm) on the base S.

(1) If S has generic characteristic zero, we suppose given a number
field L and an integer N such that S is a smooth OL[1/N`]-
scheme with geometrically connected fibres of some common
dimension e ≥ 0.

(2) If S has characteristic p > 0, we suppose given a finite field Fq
such that S is a smooth, geometrically connected Fq-scheme of
dimension e ≥ 0.

For ease of reference, we denote by S0 the scheme Spec (OL[1/N`]),
respectively Spec (Fq), in the two cases.

Lemma 6.1. Under hypotheses (H) and (Sm) on (X/S,F , ι), the sit-
uation (X/S0,F , ι) satisfies hypothesis (H).

Proof. Denote by η0 the geometric generic point of S0. Then η, the
geometric generic point of S, lies over η0, so the homomorphism

π1(Xη, ξ)→ π1(X, ξ)

factors as
π1(Xη, ξ)→ π1(Xη0 , ξ)→ π1(X, ξ).

Thus the Zariski closure groups are related by

Ggeom,X/S ⊂ Ggeom,X/S0 ⊂ Garith,X ⊂ GmGgeom,X/S ⊂ GmGgeom,X/S0 ,

the penultimate inclusion by hypothesis (H). Thus

Garith,X ⊂ GmGgeom,X/S0 ,

as required. �

The groupGgeom,X/S0 is semisimple, and being caught betweenGgeom,X/S

and GmGgeom,X/S must be µnGgeom,X/S for some integer n ≥ 1.
When we apply Theorem 3.4 to this (X/S0,F , ι) situation, we are

getting packetwise equidistribution of conjugacy classes, call them θ0P,

in the space (µnK)# of conjugacy classes of the group µnK, instead of
packetwise equidistribution of conjugacy classes θP in the space K# of
conjugacy classes of the group K.

To see how the two results differ, start with (X/S,F , ι), and a lisse
rank one Q`-sheaf L on S. Denote by L1 the pullback of L to X.
Now consider the situation (X/S,F ⊗L1, ι). From the point of view of
the packetwise equidistribution theorem for X/S, nothing has changed,
since L1 is trivial on Xη. We simply do not see L1. However, from the
point of view of X/S0, we might very well see it.
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Here is a concrete example. Choose an integer n ≥ 1, and denote by
R the cyclotomic ring R := Z[ζn, 1/6n]. Take ` = 2,

S0 = Spec (R),

S = Spec (R[g3, 1/g3]) = Gm/R,

X = Spec (R[g2, g3, 1/g3, 1/(g
3
2 − 27g23)]).

Over X we have the Weierstrass family W/X, affine equation y2 =
4x3− g2x− g3. For F on X its H1 along the fibres, Ggeom,X/S is SL(2)
(indeed, on each geometric fibre of X/S, the j-invariant is noncon-
stant). Since F is of rank 2, we certainly haveGarith,X ⊂ GmGgeom,X/S =
GL(2). Now take for L on S = Gm/R a Kummer sheaf Lχ(g3) with χ
a character of order n. Then F ⊗ L1 on X has Ggeom,X/S0 = µnSL(2).

7. Another variant

In the situation of the previous section, (X/S/S0,F , ι) with (X/S,F , ι)
satisfying hypotheses (H) and (Sm), there is a stronger hypothesis we
could impose, hypothesis (H1):

Hypothesis(H1) : Ggeom,X/S = Garith,X ,

in other words ρ(π1(X)) ⊂ Ggeom,X/S. In this case, the inclusions
Ggeom,X/S ⊂ Ggeom,X/S0 ⊂ Garith,X show that

Ggeom,X/S = Ggeom,X/S0 .

So for packetwise equidistribution on X of all the θP’s there is no differ-
ence between the result for (X/S,F , ι) and the result for (X/S0,F , ι).
There is however the difference that if hypothesis (AFG) holds for both
(X/S,F , ι) and for (X/S0,F , ι), then in Theorems 5.1 and 5.5, we get
to select finer packets in the X/S context than in the X/S0 context.

8. Some examples

In this section, we illustrate the general theory with a few concrete
examples. We begin with curves. Fix a genus g ≥ 1, and a monic poly-
nomial f2g(X) ∈ Z[X] of degree 2g whose discriminant ∆ is nonzero.
We consider the one-parameter family of genus g curves, paramenter
λ, given in affine form as

Y 2 = f2g(X)(X − λ)

over the parameter space X := Spec (Z[λ, 1/(2f2g(λ)∆)]), say π : C →
X. On X we have the lisse sheaf F := R1π!Q2, which is pure of weight
one. We take S := Spec (Z[1/(2∆)]). Here one has [Ka-Sar, 10.1.16]
Ggeom,X/S = Sp(2g) and Garith,X = GSp(2g), so hypothesis (H) holds.
In this example, (AFG) also holds.
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Here is another curve example. Begin with a monic polynomial
f2g+1(X) ∈ Z[X] of degree 2g + 1. Denote by δ the gcd of the co-
efficients of the second derivative f ′′2g+1 of f2g+1. Consider the two-
parameter family of genus g curves, parameters A,B, given in affine
form as

Y 2 = f2g+1(X) + AX +B

over the parameter spaceX := Spec (Z[A,B, 1/(2δ∆)]), for ∆ ∈ Z[A,B]
the discriminant of f2g+1(X)+AX+B (which is nonzero, cf. [Ka-ACT,
3.5]). Here we may take S := Spec (Z[1/(2δ)]), or we may take S :=
Spec (Z[A, 1/(2δ]). For either choice of S, one has [Ka-Sar, 10.3.1,
10.3.2] Ggeom,X/S = Sp(2g) and Garith,X = GSp(2g), so hypothesis (H)
holds.

Here are some hypersurface examples, cf. [Ka-Sar, 10.4.9] and [De-Weil II,
4.4.1]. Take integers d ≥ 3 and n ≥ 1, with (n, d) 6= (2, 3), and consider
the universal family of smooth projective hypersurfaces of dimension n
and degree d, say π : Xn,d → Hn,d. Fix a prime `, take X := Hn,d[1/`]
and S := Spec (Z[1/`]). When n is odd, we take F on X[1/`] to be
Rnπ?Q`, which is lisse of rank

prim(n, d) := ((d− 1)/d)((d− 1)n+1 − (−1)n+1)

and pure of weight n. Here Ggeom,X/S = Sp(prim(n, d)), Garith,X =
GSp(prim(n, d)), and hypotheses (H) and (AFG) both hold. When
n is even, we take F on X[1/`] to be Primnπ?Q`(n/2) (cf. [Ka-Sar,
11.4.8] for the definition of Primn), which is lisse of rank prim(n, d) and
pure of weight zero. We have Ggeom,X/S = Garith,X = O(prim(n, d)).
Here hypotheses (H1) and (AFG) both hold.

9. Examples where Hypothesis (H) fails

Let us begin with S a noetherian connected scheme of finite type
over Z[1/`], and F0 a lisse Q` sheaf on S of rank n ≥ 2 which is ι-pure
of weight zero, such that in the representation ρ0 of π1(S) which F0

“is”, the image of π1(S) is not abelian2. Now take any X/S which is
smooth, with geometrically connected fibres of some dimension d ≥ 1,
and take F on X to be the pullback of F0. Then on each geometric
fibre of X/S, F is constant, hence Ggeom,X/S is the trivial subgroup of
GL(n). But the group Garith,X is the group Garith,S ⊂ GL(n) (because

2For example, take ` = 776887, take S to be the Spec of Z[1/776887], and take
F0 as follows. The polynomial x7−x−1 over Q has Galois group the full symmetric
group S7, and the discriminant of this polynomial is −776887. We take for F0 the
lisse Q` sheaf on S of rank 7 incarnating this representation ρ0 : π1(S) � S7 ⊂
GL(7) (here the inclusion S7 ⊂ GL(7) is by the usual permutation action on the
coordinates).
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F was the pullback from S of F0), and this group is not abelian. So
Hypothesis (H) does not hold. While Jordan-semisimplified Frobenius
classes from π1(S) may or may not be equidistributed (in some or all
of the various senses of equidistribution discussed above) in a compact
form3 of Garith,S, the moral of this example is that invoking an X/S
and pulling back to X will never help us.

Here is another example where Hypothesis (H) does not hold. Take
for S0 the Spec of Z[1/2`], and for X/S0 the product Gm × Gm, with
coordinates x, y. Take χ to be the quadratic character, and take F on
X to be the direct sum of the two Kummer sheaves

F := Lχ(x) ⊕ Lχ(xy).
Then

Ggeom,X/S0 = Garith,X = µ2 × µ2,

and Hypothesis (H) holds for X/S0. However, if we take S to be Gm/S0

and view X as lying over S by the second projection, then Ggeom,X/S is
the group µ2, embedded diagonally in µ2×µ2. So for X/S, Hypothesis
(H) does not hold.
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