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SSSSuuuummmmmmmmaaaarrrryyyy We prove equidistribution results for certain exponential sums that arise in the work of
Kurlberg-Rudnick on "cat maps". We show (Theorems 1 and 2) that suitable normalizations of
these sums behave like the traces of random matrices in SU(2). We also show that as a suitable
parameter varies, the corresponding sums are statistically independent (Theorems 3 and 4). The
main tools are Deligne's Equidistribution Theorem, the Feit-Thompson Theorem, the Goursat-
Kolchin-Ribet Theorem, and Laumon's Theorem of Stationary Phase.

IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn,,,,    aaaannnndddd    SSSSttttaaaatttteeeemmmmeeeennnntttt    ooooffff    RRRReeeessssuuuullllttttssss
Fix a finite field k of oooodddddddd characteristic p and cardinality q, a nontrivial ^-valued additive

character ¥ of k,

¥ : (k, +) ¨ ^≠,

and a nontrivial ^-valued multiplicative character of k≠,

ç : (k, ≠) ¨ ^≠.
We extend ç to a function on all of k by defining ç(0) := 0.

Kurlberg-Rudnick [Kur-Rud], in their study of "cat maps", encounter the the ^-valued
function H(¥, ç) on k defined by

H(¥, ç)(t) := ‡x in k ¥(x2 + tx)ç(x).

It will be convenient to consider a "normalized" version F(¥, ç) of this function. Denote by

çquad the quadratic character of k≠. Recall that for any nontrivial ç, the Gauss sum G(¥, ç) is

defined by
G(¥, ç) := ‡x in k ¥(x)ç(x).

It is well known that |G(¥, ç)| = Sqrt(q).
Denote by A(¥, ç) the complex constant of absolute value q defined as the product

A(¥, ç) := ç(-1/2)(-G(¥, ç))(-G(¥, çquad)).

CCCChhhhoooooooosssseeee a square root B(¥, ç) of 1/A(¥, ç). With this choice, we define the ^-valued function 
F(¥, ç) on k by

F(¥, ç)(t) := -H(¥, ç)(t)(¥(t2/8)B(¥, ç)).

TTTThhhheeeeoooorrrreeeemmmm    1111 Notations as above, the function F(¥, ç) on k takes real values which lie in the closed
interval [-2, 2]. 

For each t in k, denote by ø(¥, ç)(t) in [0, π] the unique angle for which
F(¥, ç)(t) = 2cos(ø(¥, ç)(t)).
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Denote by µST the Sato-Tate measure (2/π)sin2(ø)dø on [0, π]. Denote by {Sn}n ≥ 1 the

orthonormal basis of L2([0, π], µST) given by

Sn(ø) := sin(nø)/sin(ø).

We interpret [0, π] as the space of conjugacy classes in the group SU(2), by mapping A in
SU(2) to the unique ø(A) in [0, π] for which trace(A) = 2cos(ø(A)). Then the Sato-Tate measure
becomes the measure induced on conjugacy classes by the (total mass one) Haar measure on
SU(2). The function Sn(ø) becomes the character of the unique n-dimensional irreducible

representation of SU(2). From this interpretation, and the representation theory of SU(2), we see
that Sn+1(ø) is a monic polynomial with integer coefficients Pn of degree n in S2(ø) = 2cos(ø).

Moreover, the sequence {Sn+1}n≥0 is obtained from the sequence {(2cos(ø))
n
}n≥0 by applying

Gram-Schmid orthonormalization. The CCCChhhheeeebbbbyyyycccchhhheeeevvvv    ppppoooollllyyyynnnnoooommmmiiiiaaaallllssss    ooooffff    tttthhhheeee    sssseeeeccccoooonnnndddd    kkkkiiiinnnndddd, Un, defined

by 
Un(cos(ø)) = Sn+1(ø), 

are thus related to our Pn by 

Un(u) = Pn(2u).

The representation theoretic interpretation of the functions Sn shows that have the

integration formula
—[0, π] SndµST = ∂n,1.

So if we expand a continuous  ^-valued function f on [0, π] into its "representation-theoretic
fourier series"

f = ‡n≥1 anSn,

then its integral against Sato-Tate measure is given by
—[0, π] fdµST = a1.

IIIInnnntttteeeerrrrlllluuuuddddeeee::::    rrrreeeevvvviiiieeeewwww    ooooffff    eeeeqqqquuuuiiiiddddiiiissssttttrrrriiiibbbbuuuuttttiiiioooonnnn
We now recall some basic notions of equidistribution. Given a compact Hausdorf space X

and a  Borel probability measure µ on X, a sequence of Borel probability measures µi on X is said

to converge "weak *" to µ if for every continuous ^-valued function f on X, we have the
integration formula

—X fdµ = limi¨‘ —X fdµi.

If this integration formula holds for a set of test functions fn whose finite ^-linear combinations

are uniformly dense in the space of all continuous functions on X, then it holds for all continuous
functions f. 

In many applications, the measures µi arise as follows. For each i, one is given a nonempty

finite set Xi, and a map øi : Xi ¨ X
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of sets. One takes for µi the average of the Dirac delta measures ∂øi(x) as x runs over Xi:

µi := (1/|Xi|)‡x in Xi
 ∂øi(x).

More concretely, for any continuous ^-valued function f on X,
—X fdµi = (1/|Xi|)‡x in Xi

 f(øi(x)).

In this situation, if the measures µi converge weak * to µ, we will say that the points øi(x), as x

varies in Xi, are "approximately equidistributed" in X for the measure µ.

In our applications below, (X, µ) will first be ([0, π], µST), and the test functions will be

the functions Sn(ø). Later (X, µ) will be the r-fold self product of ([0, π], µST) with itself, and the

test functions will be the r-fold products 
Sn1, n2,...,nr

(ø1,...., ør) = °j Snj
(øj).

Thus, concretely, a sequence of Borel probability measures µi on [0, π] converges weak *

to the Sato-Tate measure µST if and only if

limi¨‘ —[0, π] Sndµi = 0, for each n ≥ 2.

[The point is that —[0, π] SndµST = 0 for n ≥ 2, while S1 is the constant function 1, and so each 

—[0, π] S1dµi and —[0, π]S1dµST is 1.]

Similarly, for any r ≥ 1, a sequence of Borel probability measures µi on [0, π]r converges

weak * to the Sato-Tate measure (µST)r if and only if for each r-tuple (n1, ..., nr) of strictly

positive integers with ‡j nj ≥ r+1, we have

limi¨‘ —[0, π]r (°j Snj
(øj))dµi = 0.

RRRReeeettttuuuurrrrnnnn    ttttoooo    SSSSttttaaaatttteeeemmmmeeeennnntttt    ooooffff    RRRReeeessssuuuullllttttssss
Given a finite field k of odd characteristic, and a pair (¥, ç) as above, we view the

formation of the angle ø(¥, ç)(t) as defining a map from k to [0, π]. We form the corresponding
probability measure µ(k, ¥, ç) on [0, π], defined by

µ(k, ¥, ç) := (1/q)‡t in k ∂ø(¥, ç)(t),

i.e. for any ^-valued continuous function f on [0, π], we have
—[0, π] fdµ(k, ¥, ç) := (1/q)‡t in k f(ø(¥, ç)(t)).

TTTThhhheeeeoooorrrreeeemmmm    2222 Take any sequence of data (ki, ¥i, çi) in which each ki has characteristic at least 7, and

in which qi := Card(ki) is strictly increasing. Then the angles {ø(¥i, çi)(t)}t in ki
 are approximately

equidistributed in the interval [0, π] with respect to the Sato-Tate measure µST, in the sense that as

i ¨ ‘, the measures µ(ki, ¥i, çi) tend weak * to the Sato-Tate measure µST. More precisely, for

any integer n ≥ 2, and any datum (k, ¥, ç) with k of characteristic at least 7 we have the estimate
|—[0, π] Sndµ(k, ¥, ç)| = |(1/q)‡t in k Sn(ø(¥, ç)(t))| ≤ n/Sqrt(q).
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Another way to state this last result is in terms of "semi-circle measure" 

µscir := (2/π)Sqrt(1 - u2)du 

on the closed interval [-1, 1], which corresponds to Sato-Tate measure on [0, π], via u := cos(ø).
By means of this change of variable, the functions {Sn+1(ø)}n≥0 become the Chebychev

polynomials of the second kind {Un(u)}n≥0, and the measure µ(k, ¥, ç) on [0. π] becomes the

measure √(k, ¥, ç) on [-1, 1] defined by
√(k, ¥, ç) := (1/q)‡t in k ∂F(¥, ç)(t)/2,

i.e. for any ^-valued continuous function f on [-1, 1], we have
—[-1, 1] fd√(k, ¥, ç) := (1/q)‡t in k f(F(¥, ç)(t)/2).

TTTThhhheeeeoooorrrreeeemmmm    2222    bbbbiiiissss  Take any sequence of data (ki, ¥i, çi) in which each ki has characteristic at least 7,

and in which qi := Card(ki) is strictly increasing. Then the real numbers {F(¥, ç)(t)/2}t in k are

approximately equidistributed in the interval [-1, 1] with respect to the semicircle measure µscir, in

the sense that as i ¨ ‘, the measures √(ki, ¥i, çi) tend weak * to the semicircle measure µscir.

More precisely, for any integer n ≥ 1, and any datum (k, ¥, ç) with k of characteristic at least 7, we
have the estimate

|—[-1, 1] Und√(k, ¥, ç)| = |(1/q)‡t in k Un(F(¥, ç)(t)/2)| ≤ (n+1)/Sqrt(q).

In the next theorem, we consider several ç's simultaneously. Fix an integer r ≥ 1. Given a
finite field k of odd characteristic, a nontrivial additive character ¥ of k, and r distinct nontrivial

multiplicative characters ç1, ç2, ..., çr of k≠, we define a map from k to [0, π]r by

t ÿ ø(¥, ç's)(t) := (ø(¥, ç1)(t), ø(¥, ç2)(t), ..., ø(¥, çr)(t)). 

We form the corresponding probability measure µ(k, ¥, ç's) on [0, π]r, defined by
µ(k, ¥, ç's) := (1/q)‡t in k ∂ø(¥, ç's)(t)

i.e. for any ^-valued continuous function f on [0, π], we have
—[0, π]r fdµ(k, ¥, ç's) := (1/q)‡t in k f(ø(¥, ç's)(t)).

TTTThhhheeeeoooorrrreeeemmmm    3333 Fix r ≥ 1. Take any sequence of data (ki, ¥i, çi's) in which each ki has characteristic at

least 7, and in which qi := Card(ki) is strictly increasing. Then the r-tuples of angles 

{ø(¥i, çi's)(t)}t in ki
 

are approximately equidistributed in [0, π]r with respect to (µST)r, in the sense that as i ¨ ‘, the

measures µ(ki, ¥i, çi's) tend weak * to to (µST)r. More precisely, for any r tuple of strictly positive

integers (n1, n2, ..., nr) with ‡j nj ≥ r+1, and any datum (k, ¥, ç's) with k of characteristic at least

7,we have the estimate



Sato-Tate Equidistribution of Kurlberg-Rudnick Sums-5

|—[0, π]r Sn1,n2,...,nr
dµ(k, ¥, ç's)| = |(1/q)‡t in k Sn1,n2,...., nr

(ø(¥, ç's)(t))| ≤ (°i ni)/Sqrt(q).

In terms of semicircle measure, the measure (µST)r on [0, π]r becomes the measure

(µscir)
ron [-1, 1]r, the test functions

Sn1 + 1,...,nr + 1(ø1,..., ør)

become the functions
Un1, ..., nr

(ø's) := °j Unj(uj)
.

The measures
µ(k, ¥, ç's) := (1/q)‡t in k ∂ø(¥, ç's)(t)

on [0, π]r become the measures
√(k, ¥, ç's) := (1/q)‡t in k ∂F(¥, ç's)(t)/2

on [-1, 1]r.
TTTThhhheeeeoooorrrreeeemmmm    3333    bbbbiiiissss Fix r ≥ 1. Take any sequence of data (ki, ¥i, çi's) in which each ki has characteristic

at least 7, and in which qi := Card(ki) is strictly increasing. Then the r-tuples in [-1, 1]r

{F(¥, ç's)(t)/2}t in k

are approximately equidistributed in [-1, 1]r with respect to (µscir)
r, in the sense that as i ¨ ‘, the

measures √(ki, ¥i, çi's) tend weak * to to (µscir)
r. More precisely, for any nonzero r-tuple of

nonnegative integers (n1, n2, ..., nr), we have the estimate

|—[-1, 1]r Un1,n2,...,nr
d√(k, ¥, ç's)| = |(1/q)‡t in k Un1,n2,...., nr

(F(¥, ç's)(t)/2)| 

≤ (°i (ni + 1))/Sqrt(q).

Here is a strengthening of Theorem 3, where we vary not just ç but the pair (¥, ç). Given ¥
and ç, we denote by ä¥ and äç the complex conjugate characters

ä¥(x) := ¥(-x) = 1/¥(x),

äç(x) := ç(x-1) = 1/ç(x).
Fix an integer r ≥ 1. Given a finite field k of odd characteristic, suppose we are given r

pairs 
{(¥i, çi)}i=1 to r, 

each consisting of a non-trivial additive character ¥i and a nontrivial multiplicative character çi.

Suppose that for all i ± j, we have
(¥i, çi) ± (¥j, çj), and (¥i, çi) ± (ä¥j, äçj).

[Equivalently, the (¥i, çi) and their complex conjugates form 2r distinct pairs.] We define a map

from k to [0, π]r by
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t ÿ ø(¥'s, ç's)(t) := (ø(¥1, ç1)(t), ø(¥2, ç2)(t), ..., ø(¥r, çr)(t)).

We form the corresponding probability measure µ(k, ¥'s, ç's) on [0, π]r, defined by
µ(k, ¥, ç's) := (1/q)‡t in k ∂ø(¥'s, ç's)(t)

i.e. for any ^-valued continuous function f on [0, π], we have
—[0, π]r fdµ(k, ¥, ç's) := (1/q)‡t in k f(ø(¥'s, ç's)(t)).

TTTThhhheeeeoooorrrreeeemmmm    4444 Fix r ≥ 1. Take any sequence of data (ki, ¥i's, çi's) as above (i.e. we are given r distinct

pairs (¥ij
, çij

)j=1 to r which together with their complex conjugates form 2r distinct pairs) in which

each ki has characteristic at least 7, and in which qi := Card(ki) is strictly increasing. Then the r-

tuples of angles 
{ø(¥i's, çi's)(t)}t in ki

 

are approximately equidistributed in [0, π]r with respect to (µST)r, in the sense that as i ¨ ‘, the

measures µ(ki, ¥i, çi's) tend weak * to to (µST)r. More precisely, for any r tuple of strictly positive

integers (n1, n2, ..., nr) with ‡j nj ≥ r+1, and any datum (k, ¥'s, ç's) with k of characteristic at least

7,we have the estimate
|—[0, π]r Sn1,n2,...,nr

dµ(k, ¥'s, ç's)|

= |(1/q)‡t in k Sn1,n2,...., nr
(ø(¥'s, ç's)(t))| ≤ (°i ni)/Sqrt(q).

RRRReeeemmmmaaaarrrrkkkk Theorem 3 is the special case of Theorem 4 in which all the ¥i are equal to a single ¥ [The

point is that ¥ ± ä¥, because the characteristic p is odd.]

In terms of semicircle measure, the measures
µ(k, ¥'s, ç's) := (1/q)‡t in k ∂ø(¥, ç's)(t)

on [0, π]r become the measures
√(k, ¥'s, ç's) := (1/q)‡t in k ∂F(¥'s, ç's)(t)/2

on [-1, 1]r.
The statement of Theorem 4 becomes
TTTThhhheeeeoooorrrreeeemmmm    4444    bbbbiiiissss Fix  r ≥ 1. Take any sequence of data (ki, ¥i's, çi's) as above (i.e. we are given r

distinct pairs (¥ij
, çij

)j=1 to r which together with their complex conjugates form 2r distinct pairs)

in which each ki has characteristic at least 7, and in which qi := Card(ki) is strictly increasing. Then

the r-tuples in [-1, 1]r,
{F(¥'s, ç's)(t)/2}t in k,

are approximately equidistributed in the r-fold product [-1, 1]r with respect to the r-fold product
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measure (µscir)
r in the sense that as i ¨ ‘, the measures µ(ki, ¥i, çi's) tend weak * to to (µscir)

r.

More precisely, for any nonzero r-tuple of nonnegative integers (n1, n2, ..., nr), we have the

estimate
|—[-1, 1]r Un1,n2,...,nr

d√(k, ¥'s, ç's)|

= |(1/q)‡t in k Un1,n2,...., nr
(F(¥'s, ç's)(t)/2)| 

≤ (°i (ni + 1))/Sqrt(q)

PPPPrrrrooooooooffffssss    ooooffff    tttthhhheeee    tttthhhheeeeoooorrrreeeemmmmssss
Let us fix the finite field k = Éq. For any pair (¥, ç) consisting of a nontrivial additive

character ¥ and a nontrivial multiplicative character ç, both ¥ and ç take values in the field 
$(≈p, ≈q-1), viewed as a subfield of ^. The quantity A(¥, ç) is an algebraic integer in 

$(≈p, ≈q-1), which is a unit outside of p. If we adjoin to $(≈p, ≈q-1) the square roots B(¥, ç) of

the 1/A(¥, ç) for all the finitely many such pairs (¥, ç), we get a finite extension F/$ inside ^, in
which the B(¥i, çi) are algebraic numbers, and units outside of p. The functions H(¥, ç) and 

F(¥, ç) take values in the number field K.
Now pick a prime number … ± p, an algebraic closure ä$… of the field $… of …-adic numbers,

and an embedding of the number field F into ä$…. Extend this embedding to a field isomorphism ^

¶ ä$…. By means of this isomorphism, we may and will view the characters ¥ and ç, and the

functions H(¥, ç) and F(¥, ç), as taking values in ä$…. The quantity B(¥, ç) is an …-adic unit in ä$….

On the affine line !1ºk, we have the Artin-Schreier sheaf Ò¥ and the (extension by zero

across 0 of) the Kummer sheaf Òç. The  ä$…-sheaf Ò¥(x2)‚Òç(x) on !1ºk is lisse on ´mºk of

rank one, and it vanishes at x=0. Its naive Fourier Transform NFT¥(Ò¥(x2)‚Òç(x)), cf. [Ka-

GKM, 8.2], will be denoted Ó(¥, ç):
Ó(¥, ç) := NFT¥(Ò¥(x2)‚Òç(x)).

Because Ò¥(x2)‚Òç(x) is a geometrically irreducible middle extension on !1 which is pure of

weight zero, lisse of rank one on ´m, ramified but tame at 0 and with Swan conductor 2 at ‘, its

naive Fourier Transform Ó(¥, ç) is a lisse ä$…-sheaf of rank 2 on !1, which is geometrically

irreducible and pure of weight one. Its trace function is given as follows. For a finite extension E/k,
denote by ¥E (resp. çE) the nontrivial character of E obtained by composing ¥ (resp. ç) with the

relative trace TraceE/k (resp. the relative norm NormE/k). For any point t in E = !1(E), we have

Trace(Frobt,E | Ó(¥, ç)) = -‡x in E ¥E(x2 + tx)çE(x).

In particular, for t in k, we have
Trace(Frobt,k | Ó(¥, ç)) = -H(¥, ç)(t).
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Now define a second geometrically irreducible lisse ä$…-sheaf of rank 2 on !1ºk, Ï(¥, ç),

now pure of weight zero, to be the following twist of Ó(¥, ç):

Ï(¥, ç) := Ó(¥, ç)‚Ò¥(t2/8)‚B(¥, ç)deg.

For any finite extension E/k, and any point t in E, we have
Trace(Frobt,E | Ï(¥, ç)) 

= (Trace(Frobt,k | Ó(¥, ç))¥E(t2/8)B(¥,ç)deg(E/k).

In particular, for t in k, we have
Trace(Frobt,k | Ï(¥, ç)) = F(¥, ç)(t).

LLLLeeeemmmmmmmmaaaa    1111 The lisse rank two sheaf Ï(¥, ç) on !1ºk has trivial determinant. Equivalently, the

determinant of the lisse rank two sheaf Ó(¥, ç) on !1ºk is given by

det(Ó(¥, ç)) ¶ Ò¥(-t2/4)‚A(¥,ç)deg.

pppprrrrooooooooffff By Chebotarov, it suffices to prove that for any finite extension E/k, and for any t in E, we
have

det(Frobt,E | Ó(¥, ç)) = Ò¥E(-t2/4)‚A(¥,ç)deg(E/k).

By the Hasse-Davenport theorem, the Gauss sum G(¥E, çE) over E is related to the Gauss sum

G(¥, ç) over k by

(-G(¥E, çE)) = (-G(¥, ç))deg(E/k).

In view of the definition of A(¥, ç), we have

A(¥E, çE) = A(¥,ç)deg(E/k).

So it is the same to prove
det(Frobt,E | Ó(¥E, çE)) = Ò¥E(-t2/4)‚A(¥E,çE).

So we are reduced to proving universally that for any t in k, we have
det(Frobt,k | Ó(¥, ç)) = Ò¥(-t2/4)‚A(¥,ç).

For this we use tha classical Hasse-Davenport argument, cf. [Ka-MG, p. 53]. From the
definition of Ó(¥, ç) as a naive Fourier Transform, we have

det(1 - TFrobt,k | Ó(¥, ç))

= det(1 - TFrobk | H1
c(´mºäk, Ò¥(x2 + tx)‚Òç(x)))

As this H1
c is the only nonvanishing cohomology group, the Lefschetz Trace formula expresses

the L-function on ´mºk with coefficients in Ò¥(x2 + tx)‚Òç(x) as

L(´mºk, Ò¥(x2 + tx)‚Òç(x))(T)

= det(1 - TFrobk | H1
c(´mºäk, Ò¥(x2 + tx)‚Òç(x))).

Because this H1
c has dimension 2, we obtain the determinant in question as the coefficient of T2 in

the power series expansion of the L-function:
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det(Frobt,k | Ó(¥, ç)) 

= coef. of T2 in L(´mºk, Ò¥(x2 + tx)‚Òç(x))(T).

From the additive expression of this abelian L-function as a sum over all effective divisors on
´mºk, i.e. over all monic polynomials in k[X] with nonzero constant term, we see that for any

integer d ≥ 1, the coefficient of Td is

‡monic f of deg. d, f(0)±0 ¥(‡roots å of f(å
2 + tå))ç(°roots å of f (å))

Denote by Si(f) and by Ni(f) the elementary and the Newton symmetric functions of the

roots of f. Then the coefficient of Td is
‡monic f of deg. d, f(0)±0 ¥(N2(f) + tS1(f))ç(Sd(f)).

The expression of N2 in terms of S1 and S2 is

N2 = (S1)2 - 2S2.

So all in all we find that the coefficient of Td is

‡monic f of deg. d, f(0)±0 ¥(S1(f))2 + tS1(f) - 2S2(f))ç(Sd(f)).

Now a monic f of degree d with f(0) ± 0 is precisely given by its coefficients, which are the
elementary symmetric functions of its roots:

f(X) = Xd - S1(f)Xd-1 + S2(f)Xd-2 + ... + (-1)dSd(f).

So we may write the coefficient of Td as

‡s1,s2, ...sd in k, sd ± 0 ¥(s1
2 + ts1 - 2s2)ç(sd).

This expression shows that for d > 2 the coefficient of Td vanishes (because the sum of ç(sd) over

nonzero sd vanishes), as it must. The coefficient of T2 is

‡s1,s2 in k, s2 ± 0 ¥((s1
2 + ts1 - 2s2)ç(s2)

= (‡s1 in k ¥(s1
2 + ts1))(‡s2 in k≠ ¥(-2s2)ç(s2)).

The second factor is ç(-1/2)G(¥, ç), and the first factor is

‡s1 in k ¥(s1
2 + ts1) = ‡s1 in k ¥((s1 + t/2)2 - t2/4) 

=¥(- t2/4)‡s in k ¥(s2)

=¥(- t2/4)G(¥, çquad).

Putting this all together, we find that det(Frobt,k | Ó(¥, ç)), the coefficient of T2 in the L

function, is indeed equal to 

ç(-1/2)G(¥, ç)¥(- t2/4)G(¥, çquad) = ¥(-t2/4)A(¥, ç),

as asserted. QED
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LLLLeeeemmmmmmmmaaaa    2222 For p ≥ 7, the lisse rank two sheaf Ï(¥, ç) on !1ºk has geometric monodromy group

Ggeom equal to SL(2), and under the …-adic representation ® of π1 := π1(!1ºk) corresponding to

Ï(¥, ç), we have ®(π1) fi Ggeom(ä$…).

pppprrrrooooooooffff We have already proven that Ï(¥, ç) has trivial determinant, so we trivially have the
inclusions

®(π1) fi SL(2)(ä$…)

and 
Ggeom fi SL(2).

So it remains only to prove that Ggeom contains SL(2). As the sheaf Ï(¥, ç) is geometrically

irreducible and starts life on !1ºk, its Ggeom is a semisimple subgroup of GL(2). So its identity

component (Ggeom)0, being a connected semisimple subgroup of GL(2), is either the group

SL(2), or it is the trivial group. So either Ggeom contains SL(2), or Ggeom is a finite irreducible

subgroup Æ of GL(2, ä$…). For p ≥ 7, the second case cannot occur, thanks to the n = 2 case of the

Feit-Thompson theorem [F-T]: for any n ≥ 2, any finite subgroup Æ of GL(n, ä$…) and any prime

p > 2n+1, any p-Sylow subgroup Æ1 of Æ  is both normal and abelian. Our Æ is a finite quotient of

π1(!1ºäk), so it has no nontrivial quotients of order prime to p. The quotient Æ/Æ1 is prime to p,

hence trivial, and hence Æ = Æ1. Then Æ is abelian, which is impossible since it is an irreducible

subgroup of GL(2, ä$…). QED

LLLLeeeemmmmmmmmaaaa    3333 Let (¥i, çi) for i=1,2 be two pairs, each consisting of a nontrivial additive character ¥i
and a nontrivial multiplicative character çi. Put Ïi := Ï(¥i, çi). Suppose that (¥1, ç1) ± (¥2, ç2)

and that (¥1, ç1) ± (ä¥2, äç2) Then for any lisse rank one ä$…-sheaf L on !1ºäk, the sheaves L‚Ï1

and Ï2 are not geometrically isomorphic (i.e., isomorphic as lisse ä$…-sheaves on !1ºäk) and the

sheaves L‚Ï1 and (Ï2)£ are not geometrically isomorphic.

pppprrrrooooooooffff Since Ï2 has Ggeom = SL(2), Ï2 is geometrically self-dual, so it suffices to show that

L‚Ï1 and Ï2 are not geometrically isomorphic. Since Ïi is a twist of Ói := Ó(¥i, çi) by a lisse

rank one sheaf, it suffices to show that for any lisse rank one ä$…-sheaf L on !1ºäk, the sheaves

L‚Ó1 and Ó2 are not geometrically isomorphic.

If L is tame at ‘, then L, being lisse on !1ºäk, is trivial. So in this case we must show that
Ó1 is not geometrically isomorphic to Ó2. We know that det(Ói) = Ò¥i(-t2/4). So if ¥1 ± ¥2,

then Ó1 and Ó2 have non-isomorphic determinants. Indeed, if if ¥1 ± ¥2, then there exists an 
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å ± 1 in k≠ for which ¥1(x) = ¥2(åx), and so

det(Ó1)‚(det(Ó2)£ ¶ Ò¥1((å-1)t2/4) 

is geometrically nontrivial, because it has Swan conductor two at ‘.

We next recover çi from Ói.
 For this, we recall that

Ói := NFT(Ò¥i(x
2)‚Òçi(x)).

Laumon's stationary phase decomposition [Lau-TF] of Ói(‘) (:= Ói as a representation of the

inertia group I(‘)) has the form
Ói(‘) = Òäçi 

 ·  ˜i

with ˜i a one-dimensional representation of I(‘) of Swan conductor two. [In the notation of

[Ka-ESDE, 7.4.1], 

Òäçi
 = FTloc(0, ‘)(Ò¥i(x

2)‚Òçi(x)), 

˜i = FTloc(‘, ‘)(Ò¥i(x
2)‚Òçi(x)).]

Looking at the determinant of Ói(‘), we see that the above decomposition of Ói(‘) is 

Ói(‘) ¶ Òäçi
  ·  Òçi

‚det(Ói)

¶ Òäçi
  ·  Òçi

‚Ò¥i(-t2/4).

Thus we recover çi from Ói from looking at the tame part of Ói(‘).

So ç1 ± ç2, then Ó1 cannot be geometrically isomorphic to Ó2.

Thus, if either ¥1 ± ¥2, or if ç1 ± ç2, then Ó1 is not geometrically isomorphic to Ó2.

Suppose now that L is not tame at ‘, but that L‚Ó1 ¶ Ó2 geometrically. Looking at I(‘)

representations, we have

L‚Ó1(‘) ¶ L‚Òäç1
  ·  L‚Òç1

‚Ò¥1(-t2/4)

while
Ó2(‘) ¶ Òäç2

  ·  Òç2
‚Ò¥2(-t2/4).

There is at most one decomposition of a two-dimensional I(‘) representation as the sum of a tame
character and of a nontame character. Since L is not tame at ‘, L‚Òäç1

 is not tame at ‘. So in

matching the terms, we must have
L‚Òäç1

 ¶ Òç2
‚Ò¥2(-t2/4), 

i.e.,
L‚Ò¥2(t2/4) ¶ Òç2

‚Òç1

as I(‘)-representation. Thus L‚Ò¥2(t2/4) is tame at ‘. As L‚Ò¥2(t2/4) is lisse on !1ºäk, it is

trivial. Thus we get
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L ¶ Ò¥2(-t2/4), and ç1 = äç2.

Interchanging the indices and repeating the argument, we get

L£ ¶ Ò¥1(-t2/4).

Thus we have Ò¥2(-t2/4) ¶ Ò¥1(t2/4). From this we conclude that ¥1 = ä¥2. So if L is not tame,

the existence of a geometric isomorphism L‚Ó1 ¶ Ó2 implies that (¥1, ç1) = (ä¥2, äç2). QED

LLLLeeeemmmmmmmmaaaa    4444 For any pair (¥, ç) consisting of a nontrivial additive character ¥ and a nontrivial
multiplicative character ç, the lisse sheaf Ï := Ï(¥, ç) as I(‘)-representation is the direct sum of
two inverse characters, each of Swan conductor two:

Ï(‘) ¶ Òäç‚Ò¥(t2/8)  ·  Òç‚Ò¥(-t2/8). 
pppprrrrooooooooffff Indeed, we have seen that Ó := Ó(¥, ç) as I(‘)-representation is given by

Ó(‘) ¶ Òäç  ·  Òç‚det(Ó)

¶ Òäç  ·  Òç‚Ò¥(-t2/4).

Therefore Ï, being an ådeg twist of Ï‚Ò¥(t2/8), has I(‘)-representation given by

Ï(‘) ¶ Òäç‚Ò¥(t2/8)  ·  Òç‚Ò¥(-t2/8). QED

LLLLeeeemmmmmmmmaaaa    5555 Fix an integer r ≥ 1. Suppose that the characteristic p of k is at least 7. Suppose we are
given r pairs {(¥i, çi)}i=1 to r, each consisting of a non-trivial additive character ¥i and a

nontrivial multiplicative character çi. Suppose that for all i ± j, we have

(¥i, çi) ± (¥j, çj), and (¥i, çi) ± (ä¥j, äçj).

For each i =1 to r, put
Ïi := Ï(¥i, çi),

and denote by

®i : π1(!1ºk) ¨ SL(2, ä$…)

the  …-adic representation which Ïi "is". Consider the lisse ä$…-sheaf Ì on !1ºk, defined as the

direct sum 
Ì := ·i=1 to r Ïi.

Denote by

® : = ·i=1 to r ®i. : π1(!1ºk) ¨ °i=1 to r SL(2, ä$…)

the …-adic representation which Ì "is". Then the group Ggeom for Ì is the largest possible,

namely °i=1 to r SL(2).

pppprrrrooooooooffff By Lemma 2, the geometric monodromy group Gi of each Ïi is SL(2). So the geometric

monodromy group G for Ì is a closed subgroup of °i=1 to r Gi which maps onto each factor. By

the Goursat-Kolchin-Ribet theorem [Ka-ESDE, 1.8.2], it results from Lemma 3 that G0,der is the
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full product °i=1 to r Gi
0,der. Since each Gi is SL(2), G0,der is the full product °i=1 to r SL(2).

Since G is in any case a subgroup of this product, we have G = °i=1 to r SL(2). QED

Theorem 4 now result immediately from Deligne's Equidisribution Theorem [De-Weil II,
3.5], cf. [Ka-GKM, 3.6, 3.6.3], [Ka-Sar, 9.2.5, 9.2.6], applied to the sheaf Ì of Lemma 5. A
maximal compact subgroup K of °i=1 to r SL(2, ^) is the product group °i=1 to r SU(2). Its

space of conjugacy classes is the product space [0, π]r, with measure the r-fold self-product of the
Sato-Tate measure µST. Its irreducible representations are precisely the tensor products of

irreducible representations of the factors. For the i'th factor SU(2), denote by std(i) its standard
two-dimensional representation. There is one irreducible representation of the i'th factor of each

dimension n ≥ 1, given by Symmn-1(std(i)). Its character is the function Sn(ø). So the nnnnoooonnnnttttrrrriiiivvvviiiiaaaallll

irreducible representations of the product group 
°i=1 to r SU(2)

are the tensor products

‚i=1 to r Symmni-1(std(i))

with all ni ≥ 1 and at least one ni >  1. This representation has dimension °i=1 to r ni. Its character

is °i=1 to r Sni
(øi).

The sheaf Ì of Lemma 5 has all its ‘-slopes equal to two. For each point t in k, the image

®(Frobt,k)ss in °i=1 to r SL(2, ä$…), when viewed in °i=1 to r SL(2, ^) via the chosen field

isomorphism of ä$… with ^, is conjugate in °i=1 to r SL(2, ^) to an element of 

K = °i=1 to r SU(2), which is itself well-defined up to conjugacy in K. The resulting conjugacy

class is none other that the r-tuple
(ø(¥1, ç1)(t), ø(¥2, ç2)(t), ..., ø(¥r, çr)(t)).

So Theorem 4 is just Deligne's Equidisribution Theorem applied to Ì. The "more precisely"

estimate results from [Ka-GKM, 3.6.3] and the fact that Ì is lisse on !1 and has highest ‘-slope
two.

In more concrete terms, each F(¥i, çi)(t) is the trace of of a conjugacy class in SU(2), hence

is real and lies in [-2, 2]. This gives Theorem 1. Theorem 2 is the special case r=1 of Theorem 4,
and Theorem 3 is the special case "all ¥i equal" of Theorem 4.
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