Sato–Tate Equidistribution of Kurlberg–Rudnick Sums Nicholas M. Katz

Summary We prove equidistribution results for certain exponential sums that arise in the work of Kurlberg–Rudnick on "cat maps". We show (Theorems 1 and 2) that suitable normalizations of these sums behave like the traces of random matrices in SU(2). We also show that as a suitable parameter varies, the corresponding sums are statistically independent (Theorems 3 and 4). The main tools are Deligne's Equidistribution Theorem, the Feit–Thompson Theorem, the Goursat–Kolchin–Ribet Theorem, and Laumon's Theorem of Stationary Phase.

Introduction, and Statement of Results

Fix a finite field k of **odd** characteristic p and cardinality q, a nontrivial \mathbb{C} -valued additive character ψ of k,

$$\psi: (\mathbf{k}, +) \to \mathbb{C}^{\times},$$

and a nontrivial \mathbb{C} -valued multiplicative character of k^{\times} ,

 $\chi: (\mathbf{k}, \times) \to \mathbb{C}^{\times}.$

We extend χ to a function on all of k by defining $\chi(0) := 0$.

Kurlberg–Rudnick [Kur–Rud], in their study of "cat maps", encounter the the C–valued function $H(\psi, \chi)$ on k defined by

$$H(\psi,\chi)(t) := \sum_{x \text{ in } k} \psi(x^2 + tx)\chi(x).$$

It will be convenient to consider a "normalized" version $F(\psi, \chi)$ of this function. Denote by χ_{quad} the quadratic character of k[×]. Recall that for any nontrivial χ , the Gauss sum $G(\psi, \chi)$ is defined by

$$G(\psi, \chi) := \sum_{x \text{ in } k} \psi(x) \chi(x).$$

It is well known that $|G(\psi, \chi)| = Sqrt(q)$.

Denote by $A(\psi, \chi)$ the complex constant of absolute value q defined as the product

$$A(\psi, \chi) := \chi(-1/2)(-G(\psi, \chi))(-G(\psi, \chi_{quad})).$$

Choose a square root $B(\psi, \chi)$ of $1/A(\psi, \chi)$. With this choice, we define the C-valued function $F(\psi, \chi)$ on k by

$$\mathbf{F}(\psi,\chi)(\mathbf{t}) := -\mathbf{H}(\psi,\chi)(\mathbf{t})(\psi(\mathbf{t}^2/8)\mathbf{B}(\psi,\chi)).$$

Theorem 1 Notations as above, the function $F(\psi, \chi)$ on k takes real values which lie in the closed interval [-2, 2].

For each t in k, denote by $\theta(\psi, \chi)(t)$ in $[0, \pi]$ the unique angle for which $F(\psi, \chi)(t) = 2\cos(\theta(\psi, \chi)(t)).$

Denote by μ_{ST} the Sato–Tate measure $(2/\pi)\sin^2(\theta)d\theta$ on $[0, \pi]$. Denote by $\{S_n\}_{n \ge 1}$ the orthonormal basis of $L^2([0, \pi], \mu_{\text{ST}})$ given by

 $S_n(\theta) := \sin(n\theta) / \sin(\theta).$

We interpret $[0, \pi]$ as the space of conjugacy classes in the group SU(2), by mapping A in SU(2) to the unique $\theta(A)$ in $[0, \pi]$ for which trace(A) = $2\cos(\theta(A))$. Then the Sato–Tate measure becomes the measure induced on conjugacy classes by the (total mass one) Haar measure on SU(2). The function $S_n(\theta)$ becomes the character of the unique n–dimensional irreducible representation of SU(2). From this interpretation, and the representation theory of SU(2), we see that $S_{n+1}(\theta)$ is a monic polynomial with integer coefficients P_n of degree n in $S_2(\theta) = 2\cos(\theta)$.

Moreover, the sequence $\{S_{n+1}\}_{n\geq 0}$ is obtained from the sequence $\{(2\cos(\theta))^n\}_{n\geq 0}$ by applying Gram–Schmid orthonormalization. The **Chebychev polynomials of the second kind**, U_n, defined by

$$U_{n}(\cos(\theta)) = S_{n+1}(\theta),$$

are thus related to our P_n by

$$\mathbf{U}_{\mathbf{n}}(\mathbf{u}) = \mathbf{P}_{\mathbf{n}}(2\mathbf{u}).$$

The representation theoretic interpretation of the functions S_n shows that have the

integration formula

$$\int_{[0,\pi]} S_n d\mu_{ST} = \delta_{n,1}.$$

So if we expand a continuous \mathbb{C} -valued function f on $[0, \pi]$ into its "representation-theoretic fourier series"

$$f = \sum_{n \ge 1} a_n S_n,$$

then its integral against Sato-Tate measure is given by

$$\int_{[0,\pi]} f d\mu_{ST} = a_1.$$

Interlude: review of equidistribution

We now recall some basic notions of equidistribution. Given a compact Hausdorf space X and a Borel probability measure μ on X, a sequence of Borel probability measures μ_i on X is said to converge "weak *" to μ if for every continuous C-valued function f on X, we have the integration formula

$$\int_{X} f d\mu = \lim_{i \to \infty} \int_{X} f d\mu_{i}.$$

If this integration formula holds for a set of test functions f_n whose finite \mathbb{C} -linear combinations are uniformly dense in the space of all continuous functions on X, then it holds for all continuous functions f.

In many applications, the measures μ_i arise as follows. For each i, one is given a nonempty finite set X_i , and a map $\theta_i : X_i \to X$

of sets. One takes for μ_i the average of the Dirac delta measures $\delta_{\theta_i(x)}$ as x runs over X_i :

$$\mu_{\mathbf{i}} := (1/|\mathbf{X}_{\mathbf{i}}|) \sum_{\mathbf{x} \text{ in } \mathbf{X}_{\mathbf{i}}} \delta_{\theta_{\mathbf{i}}(\mathbf{x})}.$$

More concretely, for any continuous C-valued function f on X,

$$\int_{\mathbf{X}} \mathbf{f} d\mu_{\mathbf{i}} = (1/|\mathbf{X}_{\mathbf{i}}|) \sum_{\mathbf{x} \text{ in } \mathbf{X}_{\mathbf{i}}} \mathbf{f}(\theta_{\mathbf{i}}(\mathbf{x})).$$

In this situation, if the measures μ_i converge weak * to μ , we will say that the points $\theta_i(x)$, as x varies in X_i, are "approximately equidistributed" in X for the measure μ .

In our applications below, (X, μ) will first be $([0, \pi], \mu_{ST})$, and the test functions will be the functions $S_n(\theta)$. Later (X, μ) will be the r-fold self product of $([0, \pi], \mu_{ST})$ with itself, and the test functions will be the r-fold products

$$S_{n_1, n_2,...,n_r}(\theta_1,..., \theta_r) = \prod_j S_{n_j}(\theta_j).$$

Thus, concretely, a sequence of Borel probability measures μ_i on $[0, \pi]$ converges weak * to the Sato–Tate measure μ_{ST} if and only if

 $\lim_{i \to \infty} \int_{[0, \pi]} S_n d\mu_i = 0, \text{ for each } n \ge 2.$

[The point is that $\int_{[0,\pi]} S_n d\mu_{ST} = 0$ for $n \ge 2$, while S_1 is the constant function 1, and so each $\int_{[0,\pi]} S_1 d\mu_i$ and $\int_{[0,\pi]} S_1 d\mu_{ST}$ is 1.]

Similarly, for any $r \ge 1$, a sequence of Borel probability measures μ_i on $[0, \pi]^r$ converges weak * to the Sato–Tate measure $(\mu_{ST})^r$ if and only if for each r–tuple $(n_1, ..., n_r)$ of strictly positive integers with $\sum_j n_j \ge r+1$, we have

$$\lim_{i \to \infty} \int_{[0, \pi]^r} (\prod_j S_{n_j}(\theta_j)) d\mu_i = 0.$$

Return to Statement of Results

Given a finite field k of odd characteristic, and a pair (ψ, χ) as above, we view the formation of the angle $\theta(\psi, \chi)(t)$ as defining a map from k to $[0, \pi]$. We form the corresponding probability measure $\mu(k, \psi, \chi)$ on $[0, \pi]$, defined by

$$\mu(\mathbf{k}, \psi, \chi) := (1/q) \sum_{\mathrm{t in } \mathbf{k}} \delta_{\theta(\psi, \chi)(\mathrm{t})}$$

i.e. for any \mathbb{C} -valued continuous function f on $[0, \pi]$, we have

$$\int_{[0,\pi]} \mathrm{fd}\mu(\mathbf{k},\psi,\chi) := (1/q) \sum_{\mathrm{t in } \mathbf{k}} \mathrm{f}(\theta(\psi,\chi)(\mathbf{t})).$$

Theorem 2 Take any sequence of data (k_i, ψ_i, χ_i) in which each k_i has characteristic at least 7, and in which $q_i := Card(k_i)$ is strictly increasing. Then the angles $\{\theta(\psi_i, \chi_i)(t)\}_{t \text{ in } k_i}$ are approximately equidistributed in the interval $[0, \pi]$ with respect to the Sato–Tate measure μ_{ST} , in the sense that as $i \to \infty$, the measures $\mu(k_i, \psi_i, \chi_i)$ tend weak * to the Sato–Tate measure μ_{ST} . More precisely, for any integer $n \ge 2$, and any datum (k, ψ, χ) with k of characteristic at least 7 we have the estimate

 $|\int_{[0,\pi]} S_n d\mu(k,\psi,\chi)| = |(1/q) \sum_{t \text{ in } k} S_n(\theta(\psi,\chi)(t))| \le n/Sqrt(q).$

Another way to state this last result is in terms of "semi-circle measure"

$$\mu_{\text{scir}} := (2/\pi) \text{Sqrt}(1 - u^2) \text{d}u$$

on the closed interval [-1, 1], which corresponds to Sato–Tate measure on $[0, \pi]$, via $u := \cos(\theta)$. By means of this change of variable, the functions $\{S_{n+1}(\theta)\}_{n\geq 0}$ become the Chebychev polynomials of the second kind $\{U_n(u)\}_{n\geq 0}$, and the measure $\mu(k, \psi, \chi)$ on $[0, \pi]$ becomes the measure $\nu(k, \psi, \chi)$ on [-1, 1] defined by

 $\nu(\mathbf{k}, \psi, \chi) := (1/q) \sum_{\text{t in } \mathbf{k}} \delta_{\mathbf{F}(\psi, \chi)(\mathbf{t})/2},$ i.e. for any C-valued continuous function f on [-1, 1], we have $\int_{[-1, 1]} f d\nu(\mathbf{k}, \psi, \chi) := (1/q) \sum_{\text{t in } \mathbf{k}} f(\mathbf{F}(\psi, \chi)(\mathbf{t})/2).$

Theorem 2 bis Take any sequence of data (k_i, ψ_i, χ_i) in which each k_i has characteristic at least 7, and in which $q_i := \operatorname{Card}(k_i)$ is strictly increasing. Then the real numbers $\{F(\psi, \chi)(t)/2\}_{t \text{ in } k}$ are approximately equidistributed in the interval [-1, 1] with respect to the semicircle measure μ_{scir} , in the sense that as $i \to \infty$, the measures $\nu(k_i, \psi_i, \chi_i)$ tend weak * to the semicircle measure μ_{scir} . More precisely, for any integer $n \ge 1$, and any datum (k, ψ, χ) with k of characteristic at least 7, we have the estimate

$$|\int_{[-1, 1]} U_n d\nu(k, \psi, \chi)| = |(1/q) \sum_{t \text{ in } k} U_n(F(\psi, \chi)(t)/2)| \le (n+1)/Sqrt(q)$$

In the next theorem, we consider several χ 's simultaneously. Fix an integer $r \ge 1$. Given a finite field k of odd characteristic, a nontrivial additive character ψ of k, and r distinct nontrivial multiplicative characters $\chi_1, \chi_2, ..., \chi_r$ of k[×], we define a map from k to $[0, \pi]^r$ by

 $\mathbf{t} \mapsto \boldsymbol{\theta}(\boldsymbol{\psi},\boldsymbol{\chi}'\mathbf{s})(\mathbf{t}) := (\boldsymbol{\theta}(\boldsymbol{\psi},\boldsymbol{\chi}_1)(\mathbf{t}), \boldsymbol{\theta}(\boldsymbol{\psi},\boldsymbol{\chi}_2)(\mathbf{t}), ..., \boldsymbol{\theta}(\boldsymbol{\psi},\boldsymbol{\chi}_r)(\mathbf{t})).$

We form the corresponding probability measure $\mu(\mathbf{k}, \psi, \chi'\mathbf{s})$ on $[0, \pi]^{\mathbf{f}}$, defined by

$$\mu(\mathbf{k}, \psi, \chi'\mathbf{s}) := (1/q) \sum_{\mathsf{t} \text{ in } \mathbf{k}} \delta_{\theta(\psi, \chi_{\mathbf{s}})(\mathsf{t})}$$

i.e. for any \mathbb{C} -valued continuous function f on $[0, \pi]$, we have

 $\int_{[0,\pi]^{\mathbf{r}}} \mathrm{fd}\mu(\mathbf{k},\psi,\chi'\mathbf{s}) := (1/q) \sum_{\mathrm{t in } \mathbf{k}} \mathrm{f}(\theta(\psi,\chi'\mathbf{s})(\mathbf{t})).$

Theorem 3 Fix $r \ge 1$. Take any sequence of data $(k_i, \psi_i, \chi_i | s)$ in which each k_i has characteristic at least 7, and in which $q_i := Card(k_i)$ is strictly increasing. Then the r-tuples of angles

$$\{\theta(\psi_i,\chi_i's)(t)\}_{t \text{ in } k_i}$$

are approximately equidistributed in $[0, \pi]^r$ with respect to $(\mu_{ST})^r$, in the sense that as $i \to \infty$, the measures $\mu(k_i, \psi_i, \chi_i s)$ tend weak * to to $(\mu_{ST})^r$. More precisely, for any r tuple of strictly positive integers $(n_1, n_2, ..., n_r)$ with $\sum_j n_j \ge r+1$, and any datum $(k, \psi, \chi's)$ with k of characteristic at least 7, we have the estimate

$$|\int_{[0,\pi]^r} S_{n_1,n_2,...,n_r} d\mu(k,\psi,\chi's)| = |(1/q) \sum_{t \text{ in } k} S_{n_1,n_2,...,n_r} (\theta(\psi,\chi's)(t))| \le (\prod_i n_i)/Sqrt(q).$$

In terms of semicircle measure, the measure $(\mu_{ST})^r$ on $[0, \pi]^r$ becomes the measure

 $(\mu_{\text{scir}})^{r}$ on $[-1, 1]^{r}$, the test functions

$$S_{n_1 + 1,...,n_r + 1}(\theta_1,...,\theta_r)$$

become the functions

$$\mathbf{U}_{n_1, \dots, n_r}(\boldsymbol{\theta}' \mathbf{s}) \coloneqq \prod_j \mathbf{U}_{n_j(u_j)}.$$

The measures

$$\mu(\mathbf{k}, \psi, \chi'\mathbf{s}) := (1/q) \sum_{\mathsf{t} \text{ in } \mathbf{k}} \delta_{\theta(\psi, \chi'_{\mathsf{s}})(\mathsf{t})}$$

on $[0, \pi]^r$ become the measures

$$\nu(\mathbf{k}, \psi, \chi'\mathbf{s}) := (1/q) \sum_{\text{t in } \mathbf{k}} \delta_{F(\psi, \chi'\mathbf{s})(t)/2}$$

on [-1, 1]^r.

Theorem 3 bis Fix $r \ge 1$. Take any sequence of data $(k_i, \psi_i, \chi_i s)$ in which each k_i has characteristic at least 7, and in which $q_i := Card(k_i)$ is strictly increasing. Then the r-tuples in $[-1, 1]^r$

$$\{F(\psi, \chi's)(t)/2\}_{t \text{ in } k}$$

are approximately equidistributed in $[-1, 1]^r$ with respect to $(\mu_{scir})^r$, in the sense that as $i \to \infty$, the measures $v(k_i, \psi_i, \chi_i's)$ tend weak * to to $(\mu_{scir})^r$. More precisely, for any nonzero r-tuple of nonnegative integers $(n_1, n_2, ..., n_r)$, we have the estimate

$$\begin{split} \| \int_{[-1, 1]^{r}} U_{n_{1}, n_{2}, \dots, n_{r}} d\nu(k, \psi, \chi' s) \| &= |(1/q) \sum_{t \text{ in } k} U_{n_{1}, n_{2}, \dots, n_{r}} (F(\psi, \chi' s)(t)/2) | \\ &\leq (\prod_{i} (n_{i} + 1)) / \text{Sqrt}(q). \end{split}$$

Here is a strengthening of Theorem 3, where we vary not just χ but the pair (ψ, χ) . Given ψ and χ , we denote by $\overline{\psi}$ and $\overline{\chi}$ the complex conjugate characters

$$\overline{\psi}(\mathbf{x}) := \psi(-\mathbf{x}) = 1/\psi(\mathbf{x}),$$

$$\overline{\chi}(\mathbf{x}) := \chi(\mathbf{x}^{-1}) = 1/\chi(\mathbf{x}).$$

Fix an integer $r \ge 1$. Given a finite field k of odd characteristic, suppose we are given r pairs

$$\{(\psi_i, \chi_i)\}_{i=1 \text{ to } r}$$

each consisting of a non-trivial additive character ψ_i and a nontrivial multiplicative character χ_i . Suppose that for all $i \neq j$, we have

$$(\psi_i, \chi_i) \neq (\psi_j, \chi_j)$$
, and $(\psi_i, \chi_i) \neq (\overline{\psi}_j, \overline{\chi}_j)$.

[Equivalently, the (ψ_i, χ_i) and their complex conjugates form 2r distinct pairs.] We define a map from k to $[0, \pi]^r$ by

$$\mathbf{t} \mapsto \theta(\psi'\mathbf{s}, \chi'\mathbf{s})(\mathbf{t}) := (\theta(\psi_1, \chi_1)(\mathbf{t}), \theta(\psi_2, \chi_2)(\mathbf{t}), \dots, \theta(\psi_r, \chi_r)(\mathbf{t})).$$

We form the corresponding probability measure $\mu(\mathbf{k}, \psi'\mathbf{s}, \chi'\mathbf{s})$ on $[0, \pi]^{\mathbf{r}}$, defined by

 $\mu(\mathbf{k},\psi,\chi'\mathbf{s}) := (1/q) \sum_{\mathsf{t} \text{ in } \mathbf{k}} \delta_{\theta(\psi'\mathbf{s},\chi'\mathbf{s})(\mathsf{t})}$ i.e. for any C-valued continuous function f on [0, π], we have

 $\int_{[0,\pi]^{\mathbf{r}}} \mathrm{fd}\mu(\mathbf{k},\psi,\chi'\mathbf{s}) := (1/q) \sum_{\mathrm{t in } \mathbf{k}} \mathrm{f}(\theta(\psi'\mathbf{s},\chi'\mathbf{s})(\mathbf{t})).$

Theorem 4 Fix $r \ge 1$. Take any sequence of data $(k_i, \psi_i s, \chi_i s)$ as above (i.e. we are given r distinct pairs $(\psi_{ij}, \chi_{ij})_{j=1}$ to r which together with their complex conjugates form 2r distinct pairs) in which each k_i has characteristic at least 7, and in which $q_i := Card(k_i)$ is strictly increasing. Then the r-tuples of angles

$$\{\theta(\psi_i s, \chi_i s)(t)\}_{t \text{ in } k_i}$$

are approximately equidistributed in $[0, \pi]^r$ with respect to $(\mu_{ST})^r$, in the sense that as $i \to \infty$, the measures $\mu(k_i, \psi_i, \chi_i | s)$ tend weak * to to $(\mu_{ST})^r$. More precisely, for any r tuple of strictly positive integers $(n_1, n_2, ..., n_r)$ with $\sum_j n_j \ge r+1$, and any datum $(k, \psi | s, \chi | s)$ with k of characteristic at least 7, we have the estimate

$$\begin{aligned} &|\int_{[0, \pi]^{r}} S_{n_{1}, n_{2}, \dots, n_{r}} d\mu(k, \psi' s, \chi' s)| \\ &= |(1/q) \sum_{t \text{ in } k} S_{n_{1}, n_{2}, \dots, n_{r}} (\theta(\psi' s, \chi' s)(t))| \leq (\prod_{i} n_{i}) / \text{Sqrt}(q). \end{aligned}$$

Remark Theorem 3 is the special case of Theorem 4 in which all the ψ_i are equal to a single ψ [The point is that $\psi \neq \overline{\psi}$, because the characteristic p is odd.]

In terms of semicircle measure, the measures $\mu(\mathbf{k}, \psi'\mathbf{s}, \chi'\mathbf{s}) := (1/q) \sum_{t \text{ in } \mathbf{k}} \delta_{\theta(\psi, \chi', \mathbf{s})(t)}$

on $[0, \pi]^r$ become the measures

$$v(\mathbf{k}, \psi'\mathbf{s}, \chi'\mathbf{s}) := (1/q) \sum_{\mathsf{t} \text{ in } \mathbf{k}} \delta_{\mathbf{F}(\psi'\mathbf{s}, \chi'\mathbf{s})(\mathsf{t})/2}$$

on [-1, 1]^r.

The statement of Theorem 4 becomes

Theorem 4 bis Fix $r \ge 1$. Take any sequence of data $(k_i, \psi_i 's, \chi_i 's)$ as above (i.e. we are given r distinct pairs $(\psi_{i_j}, \chi_{i_j})_{j=1}$ to r which together with their complex conjugates form 2r distinct pairs) in which each k_i has characteristic at least 7, and in which $q_i := Card(k_i)$ is strictly increasing. Then the r-tuples in $[-1, 1]^r$,

$$\{F(\psi's, \chi's)(t)/2\}_{t \text{ in } k},\$$

are approximately equidistributed in the r-fold product $[-1, 1]^r$ with respect to the r-fold product

measure $(\mu_{scir})^r$ in the sense that as $i \to \infty$, the measures $\mu(k_i, \psi_i, \chi_i's)$ tend weak * to to $(\mu_{scir})^r$. More precisely, for any nonzero r-tuple of nonnegative integers $(n_1, n_2, ..., n_r)$, we have the estimate

$$\begin{split} | \int_{[-1, 1]^r} U_{n_1, n_2, \dots, n_r} d\nu(k, \psi' s, \chi' s) | \\ &= |(1/q) \sum_{t \text{ in } k} U_{n_1, n_2, \dots, n_r} (F(\psi' s, \chi' s)(t)/2) | \\ &\leq (\prod_i (n_i + 1)) / \text{Sqrt}(q) \end{split}$$

Proofs of the theorems

Let us fix the finite field $k = \mathbb{F}_q$. For any pair (ψ, χ) consisting of a nontrivial additive character ψ and a nontrivial multiplicative character χ , both ψ and χ take values in the field $\mathbb{Q}(\xi_p, \xi_{q-1})$, viewed as a subfield of \mathbb{C} . The quantity $A(\psi, \chi)$ is an algebraic integer in $\mathbb{Q}(\xi_p, \xi_{q-1})$, which is a unit outside of p. If we adjoin to $\mathbb{Q}(\xi_p, \xi_{q-1})$ the square roots $B(\psi, \chi)$ of the $1/A(\psi, \chi)$ for all the finitely many such pairs (ψ, χ) , we get a finite extension F/Q inside \mathbb{C} , in which the $B(\psi_i, \chi_i)$ are algebraic numbers, and units outside of p. The functions $H(\psi, \chi)$ and $F(\psi, \chi)$ take values in the number field K.

Now pick a prime number $\ell \neq p$, an algebraic closure $\overline{\mathbb{Q}}_{\ell}$ of the field \mathbb{Q}_{ℓ} of ℓ -adic numbers, and an embedding of the number field F into $\overline{\mathbb{Q}}_{\ell}$. Extend this embedding to a field isomorphism $\mathbb{C} \cong \overline{\mathbb{Q}}_{\ell}$. By means of this isomorphism, we may and will view the characters ψ and χ , and the functions $H(\psi, \chi)$ and $F(\psi, \chi)$, as taking values in $\overline{\mathbb{Q}}_{\ell}$. The quantity $B(\psi, \chi)$ is an ℓ -adic unit in $\overline{\mathbb{Q}}_{\ell}$.

On the affine line $\mathbb{A}^{1}\otimes k$, we have the Artin–Schreier sheaf \mathcal{L}_{ψ} and the (extension by zero across 0 of) the Kummer sheaf \mathcal{L}_{χ} . The $\overline{\mathbb{Q}}_{\ell}$ -sheaf $\mathcal{L}_{\psi(x^2)}\otimes \mathcal{L}_{\chi(x)}$ on $\mathbb{A}^{1}\otimes k$ is lisse on $\mathbb{G}_{m}\otimes k$ of rank one, and it vanishes at x=0. Its naive Fourier Transform NFT $_{\psi}(\mathcal{L}_{\psi(x^2)}\otimes \mathcal{L}_{\chi(x)})$, cf. [Ka–GKM, 8.2], will be denoted $\mathcal{H}(\psi, \chi)$:

$$\mathcal{H}(\psi,\chi) := \mathrm{NFT}_{\psi}(\mathcal{L}_{\psi}(\chi^2) \otimes \mathcal{L}_{\chi}(\chi)).$$

Because $\mathcal{L}_{\psi(x^2)} \otimes \mathcal{L}_{\chi(x)}$ is a geometrically irreducible middle extension on \mathbb{A}^1 which is pure of weight zero, lisse of rank one on \mathbb{G}_m , ramified but tame at 0 and with Swan conductor 2 at ∞ , its naive Fourier Transform $\mathcal{H}(\psi, \chi)$ is a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf of rank 2 on \mathbb{A}^1 , which is geometrically irreducible and pure of weight one. Its trace function is given as follows. For a finite extension E/k, denote by ψ_E (resp. χ_E) the nontrivial character of E obtained by composing ψ (resp. χ) with the relative trace Trace_{E/k} (resp. the relative norm Norm_{E/k}). For any point t in E = $\mathbb{A}^1(E)$, we have

$$\operatorname{Trace}(\operatorname{Frob}_{t,E} \mid \mathcal{H}(\psi, \chi)) = -\sum_{x \text{ in } E} \psi_E(x^2 + tx)\chi_E(x).$$

In particular, for t in k, we have

 $\operatorname{Trace}(\operatorname{Frob}_{t,k} \mid \mathcal{H}(\psi, \chi)) = -H(\psi, \chi)(t).$

Now define a second geometrically irreducible lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf of rank 2 on $\mathbb{A}^{1}\otimes k$, $\mathcal{F}(\psi, \chi)$, now pure of weight zero, to be the following twist of $\mathcal{H}(\psi, \chi)$:

$$\mathcal{F}(\psi,\chi) := \mathcal{H}(\psi,\chi) \otimes \mathcal{L}_{\mu(t^2/8)} \otimes B(\psi,\chi)^{\text{deg}}.$$

For any finite extension E/k, and any point t in E, we have

 $\operatorname{Trace}(\operatorname{Frob}_{t,E} | \mathcal{F}(\psi, \chi))$

=
$$(\text{Trace}(\text{Frob}_{t,k} | \mathcal{H}(\psi, \chi))\psi_{E}(t^{2}/8)B(\psi, \chi)^{\text{deg}(E/k)})$$
.

In particular, for t in k, we have

Trace(Frob_{t.k} |
$$\mathcal{F}(\psi, \chi)$$
) = F(ψ, χ)(t).

Lemma 1 The lisse rank two sheaf $\mathcal{F}(\psi, \chi)$ on $\mathbb{A}^{1} \otimes k$ has trivial determinant. Equivalently, the determinant of the lisse rank two sheaf $\mathcal{H}(\psi, \chi)$ on $\mathbb{A}^{1} \otimes k$ is given by

$$\det(\mathcal{H}(\psi,\chi)) \cong \mathcal{L}_{\psi(-t^{2}/4)} \otimes A(\psi,\chi)^{\deg}.$$

proof By Chebotarov, it suffices to prove that for any finite extension E/k, and for any t in E, we have

$$\det(\operatorname{Frob}_{t,E} \mid \mathcal{H}(\psi,\chi)) = \mathcal{L}_{\psi_E(-t^2/4)} \otimes \operatorname{A}(\psi,\chi)^{\deg(E/k)}.$$

By the Hasse–Davenport theorem, the Gauss sum $G(\psi_E, \chi_E)$ over E is related to the Gauss sum $G(\psi, \chi)$ over k by

$$(-G(\psi_{\mathrm{F}},\chi_{\mathrm{F}})) = (-G(\psi,\chi))^{\mathrm{deg}(\mathrm{E/k})}.$$

In view of the definition of $A(\psi, \chi)$, we have

$$A(\psi_{\rm E}, \chi_{\rm E}) = A(\psi, \chi)^{\rm deg(E/k)}$$
.

So it is the same to prove

$$\det(\operatorname{Frob}_{t,E} \mid \mathcal{H}(\psi_E, \chi_E)) = \mathcal{L}_{\psi_E(-t^{2/4})} \otimes \operatorname{A}(\psi_E, \chi_E).$$

So we are reduced to proving universally that for any t in k, we have

$$\det(\operatorname{Frob}_{t,k} \mid \mathcal{H}(\psi,\chi)) = \mathcal{L}_{\psi(-t^2/4)} \otimes A(\psi,\chi).$$

For this we use the classical Hasse–Davenport argument, cf. [Ka–MG, p. 53]. From the definition of $\mathcal{H}(\psi, \chi)$ as a naive Fourier Transform, we have

 $\det(1 - \mathrm{TFrob}_{\mathbf{L},\mathbf{k}} \mid \mathcal{H}(\psi, \chi))$

$$= \det(1 - \mathrm{TFrob}_{k} \mid \mathrm{H}^{1}{}_{c}(\mathbb{G}_{\mathrm{m}} \otimes \overline{k}, \mathcal{L}_{\psi(x^{2} + tx)} \otimes \mathcal{L}_{\chi(x)}))$$

As this H^1_c is the only nonvanishing cohomology group, the Lefschetz Trace formula expresses the L-function on $\mathbb{G}_m^{\otimes k}$ with coefficients in $\mathcal{L}_{\psi(x^2 + tx)} \otimes \mathcal{L}_{\chi(x)}$ as

$$L(\mathbb{G}_{\mathrm{m}}^{\otimes \mathrm{k}}, \mathcal{L}_{\psi(\mathrm{x}^{2} + \mathrm{tx})} \otimes \mathcal{L}_{\chi(\mathrm{x})})(\mathrm{T})$$

= det(1 - TFrob_{k} | H^{1}_{c}(\mathbb{G}_{\mathrm{m}}^{\otimes \mathrm{k}}, \mathcal{L}_{\psi(\mathrm{x}^{2} + \mathrm{tx})} \otimes \mathcal{L}_{\chi(\mathrm{x})}))

Because this H^1_c has dimension 2, we obtain the determinant in question as the coefficient of T^2 in the power series expansion of the L-function:

$$det(\operatorname{Frob}_{t,k} | \mathcal{H}(\psi, \chi))$$

= coef. of T² in L(\mathbb{G}_m^{\infty} k, \mathcal{L}_{\psi(x^2 + tx)} \otimes \mathcal{L}_{\chi(x)})(T).

From the additive expression of this abelian L-function as a sum over all effective divisors on $\mathbb{G}_{m^{\otimes k}}$, i.e. over all monic polynomials in k[X] with nonzero constant term, we see that for any

integer $d \ge 1$, the coefficient of T^d is

 $\sum_{\text{monic f of deg. d, } f(0) \neq 0} \psi(\sum_{\text{roots } \alpha \text{ of } f} (\alpha^2 + t\alpha)) \chi(\prod_{\text{roots } \alpha \text{ of } f} (\alpha))$

Denote by $S_i(f)$ and by $N_i(f)$ the elementary and the Newton symmetric functions of the

roots of f. Then the coefficient of T^d is

$$\sum_{\text{monic f of deg. d. } f(0) \neq 0} \psi(N_2(f) + tS_1(f))\chi(S_d(f))$$

The expression of N_2 in terms of S_1 and S_2 is

$$N_2 = (S_1)^2 - 2S_2.$$

So all in all we find that the coefficient of T^d is

$$\sum_{\text{monic f of deg. d, } f(0) \neq 0} \psi(S_1(f))^2 + tS_1(f) - 2S_2(f))\chi(S_d(f)).$$

Now a monic f of degree d with $f(0) \neq 0$ is precisely given by its coefficients, which are the elementary symmetric functions of its roots:

$$f(X) = X^{d} - S_{1}(f)X^{d-1} + S_{2}(f)X^{d-2} + \dots + (-1)^{d}S_{d}(f)$$

So we may write the coefficient of T^d as

$$\Sigma_{s_1,s_2,\ldots,s_d}$$
 in k, $s_d \neq 0 \psi(s_1^2 + ts_1 - 2s_2)\chi(s_d)$.

This expression shows that for d > 2 the coefficient of T^d vanishes (because the sum of $\chi(s_d)$ over nonzero s_d vanishes), as it must. The coefficient of T^2 is

$$\begin{split} & \sum_{s_1, s_2 \text{ in } k, s_2 \neq 0} \psi((s_1^2 + ts_1 - 2s_2)\chi(s_2) \\ &= (\sum_{s_1 \text{ in } k} \psi(s_1^2 + ts_1))(\sum_{s_2 \text{ in } k^{\times}} \psi(-2s_2)\chi(s_2)). \end{split}$$

The second factor is $\chi(-1/2)G(\psi, \chi)$, and the first factor is

$$\begin{split} \Sigma_{s_1 \text{ in } k} \, \psi(s_1^2 + ts_1) &= \sum_{s_1 \text{ in } k} \psi((s_1 + t/2)^2 - t^2/4) \\ &= \psi(-t^2/4) \sum_{s \text{ in } k} \psi(s^2) \\ &= \psi(-t^2/4) G(\psi, \chi_{\text{quad}}) \end{split}$$

Putting this all together, we find that det(Frob_{t,k} | $\mathcal{H}(\psi, \chi)$), the coefficient of T² in the L function, is indeed equal to

$$\chi(-1/2)G(\psi,\chi)\psi(-t^2/4)G(\psi,\chi_{quad}) = \psi(-t^2/4)A(\psi,\chi),$$

as asserted. QED

Lemma 2 For $p \ge 7$, the lisse rank two sheaf $\mathcal{F}(\psi, \chi)$ on $\mathbb{A}^{1} \otimes \mathbb{K}$ has geometric monodromy group G_{geom} equal to SL(2), and under the ℓ -adic representation ρ of $\pi_1 := \pi_1(\mathbb{A}^{1} \otimes \mathbb{K})$ corresponding to $\mathcal{F}(\psi, \chi)$, we have $\rho(\pi_1) \subset G_{geom}(\overline{\mathbb{Q}}_{\ell})$.

proof We have already proven that $\mathcal{F}(\psi, \chi)$ has trivial determinant, so we trivially have the inclusions

 $\rho(\pi_1) \subset \mathrm{SL}(2)(\overline{\mathbb{Q}}_\ell)$

and

$$G_{\text{geom}} \subset SL(2).$$

So it remains only to prove that G_{geom} contains SL(2). As the sheaf $\mathcal{F}(\psi, \chi)$ is geometrically irreducible and starts life on $\mathbb{A}^{1} \otimes k$, its G_{geom} is a semisimple subgroup of GL(2). So its identity component $(G_{geom})^0$, being a connected semisimple subgroup of GL(2), is either the group SL(2), or it is the trivial group. So either G_{geom} contains SL(2), or G_{geom} is a finite irreducible subgroup Γ of GL(2, $\overline{\mathbb{Q}}_{\ell}$). For $p \ge 7$, the second case cannot occur, thanks to the n = 2 case of the Feit–Thompson theorem [F–T]: for any $n \ge 2$, any finite subgroup Γ of GL($n, \overline{\mathbb{Q}}_{\ell}$) and any prime p > 2n+1, any p–Sylow subgroup Γ_1 of Γ is both normal and abelian. Our Γ is a finite quotient of $\pi_1(\mathbb{A}^{1} \otimes \overline{k})$, so it has no nontrivial quotients of order prime to p. The quotient Γ/Γ_1 is prime to p, hence trivial, and hence $\Gamma = \Gamma_1$. Then Γ is abelian, which is impossible since it is an irreducible subgroup of GL(2, $\overline{\mathbb{Q}}_{\ell}$). QED

Lemma 3 Let (ψ_i, χ_i) for i=1,2 be two pairs, each consisting of a nontrivial additive character ψ_i and a nontrivial multiplicative character χ_i . Put $\mathcal{F}_i := \mathcal{F}(\psi_i, \chi_i)$. Suppose that $(\psi_1, \chi_1) \neq (\psi_2, \chi_2)$ and that $(\psi_1, \chi_1) \neq (\overline{\psi}_2, \overline{\chi}_2)$ Then for any lisse rank one $\overline{\mathbb{Q}}_\ell$ -sheaf L on $\mathbb{A}^{1 \otimes \overline{\mathbf{k}}}$, the sheaves $\mathbb{L} \otimes \mathcal{F}_1$ and \mathcal{F}_2 are not geometrically isomorphic (i.e., isomorphic as lisse $\overline{\mathbb{Q}}_\ell$ -sheaves on $\mathbb{A}^{1 \otimes \overline{\mathbf{k}}}$) and the sheaves $\mathbb{L} \otimes \mathcal{F}_1$ and $(\mathcal{F}_2)^{\vee}$ are not geometrically isomorphic.

proof Since \mathcal{F}_2 has $G_{geom} = SL(2)$, \mathcal{F}_2 is geometrically self-dual, so it suffices to show that $L \otimes \mathcal{F}_1$ and \mathcal{F}_2 are not geometrically isomorphic. Since \mathcal{F}_i is a twist of $\mathcal{H}_i := \mathcal{H}(\psi_i, \chi_i)$ by a lisse rank one sheaf, it suffices to show that for any lisse rank one $\overline{\mathbb{Q}}_\ell$ -sheaf L on $\mathbb{A}^{1 \otimes \overline{k}}$, the sheaves $L \otimes \mathcal{H}_1$ and \mathcal{H}_2 are not geometrically isomorphic.

If L is tame at ∞ , then L, being lisse on $\mathbb{A}^{1 \otimes \overline{k}}$, is trivial. So in this case we must show that \mathcal{H}_1 is not geometrically isomorphic to \mathcal{H}_2 . We know that $\det(\mathcal{H}_i) = \mathcal{L}_{\psi_i(-t^2/4)}$. So if $\psi_1 \neq \psi_2$, then \mathcal{H}_1 and \mathcal{H}_2 have non–isomorphic determinants. Indeed, if if $\psi_1 \neq \psi_2$, then there exists an

 $\alpha \neq 1$ in k[×] for which $\psi_1(x) = \psi_2(\alpha x)$, and so

$$\det(\mathcal{H}_1) \otimes (\det(\mathcal{H}_2)^{\vee} \cong \mathcal{L}_{\psi_1((\alpha-1)t^2/4)}$$

is geometrically nontrivial, because it has Swan conductor two at ∞ .

We next recover χ_i from \mathcal{H}_i . For this, we recall that

$$\mathcal{H}_{\mathbf{i}} := \mathrm{NFT}(\mathcal{L}_{\psi_{\mathbf{i}}(\mathbf{x}^2)} \otimes \mathcal{L}_{\chi_{\mathbf{i}}(\mathbf{x})}).$$

Laumon's stationary phase decomposition [Lau–TF] of $\mathcal{H}_i(\infty)$ (:= \mathcal{H}_i as a representation of the inertia group I(∞)) has the form

$$\mathcal{H}_i(\infty) = \mathcal{L}_{\chi_i}^- \ \oplus \ \mathcal{M}_i$$

with \mathcal{M}_i a one-dimensional representation of I(∞) of Swan conductor two. [In the notation of [Ka-ESDE, 7.4.1],

$$\begin{split} \mathcal{L}_{\chi_{i}}^{-} &= \mathrm{FTloc}(0,\infty)^{(\mathcal{L}_{\psi_{i}}(x^{2})\otimes\mathcal{L}_{\chi_{i}}(x))},\\ \mathcal{M}_{i} &= \mathrm{FTloc}(\infty,\infty)^{(\mathcal{L}_{\psi_{i}}(x^{2})\otimes\mathcal{L}_{\chi_{i}}(x)).]} \end{split}$$

Looking at the determinant of $\mathcal{H}_{i}(\infty)$, we see that the above decomposition of $\mathcal{H}_{i}(\infty)$ is

$$\begin{split} \mathcal{H}_{i}(\infty) &\cong \mathcal{L}_{\chi_{i}}^{-} \oplus \mathcal{L}_{\chi_{i}} \otimes \det(\mathcal{H}_{i}) \\ &\cong \mathcal{L}_{\chi_{i}}^{-} \oplus \mathcal{L}_{\chi_{i}} \otimes \mathcal{L}_{\psi_{i}(-t^{2}/4)}. \end{split}$$

Thus we recover χ_i from \mathcal{H}_i from looking at the tame part of $\mathcal{H}_i(\infty)$.

So $\chi_1 \neq \chi_2$, then \mathcal{H}_1 cannot be geometrically isomorphic to \mathcal{H}_2 .

Thus, if either $\psi_1 \neq \psi_2$, or if $\chi_1 \neq \chi_2$, then \mathcal{H}_1 is not geometrically isomorphic to \mathcal{H}_2 .

Suppose now that L is not tame at ∞ , but that $L \otimes \mathcal{H}_1 \cong \mathcal{H}_2$ geometrically. Looking at $I(\infty)$ representations, we have

$$\mathsf{L} \otimes \mathcal{H}_1(\infty) \cong \mathsf{L} \otimes \mathcal{L}_{\chi_1}^- \oplus \mathsf{L} \otimes \mathcal{L}_{\chi_1} \otimes \mathcal{L}_{\psi_1(-\mathsf{t}^{2}/4)}$$

while

$$\mathcal{H}_2(\infty) \cong \mathcal{L}_{\chi_2}^- \oplus \mathcal{L}_{\chi_2} \otimes \mathcal{L}_{\psi_2(-t^2/4)}.$$

There is at most one decomposition of a two-dimensional $I(\infty)$ representation as the sum of a tame character and of a nontame character. Since L is not tame at ∞ , $L \otimes \mathcal{L}_{\chi_1}^-$ is not tame at ∞ . So in

matching the terms, we must have

$$\mathbb{L} \otimes \mathcal{L}_{\chi_1}^- \cong \mathcal{L}_{\chi_2} \otimes \mathcal{L}_{\psi_2(-t^{2/4})},$$

i.e.,

$$\mathbf{L} \otimes \mathcal{L}_{\psi_2(\mathfrak{t}^{2/4})} \cong \mathcal{L}_{\chi_2} \otimes \mathcal{L}_{\chi_1}$$

as $I(\infty)$ -representation. Thus $L \otimes \mathcal{L}_{\psi_2(t^{2/4})}$ is tame at ∞ . As $L \otimes \mathcal{L}_{\psi_2(t^{2/4})}$ is lisse on $\mathbb{A}^{1 \otimes \overline{k}}$, it is trivial. Thus we get

$$L \cong \mathcal{L}_{\psi_2(-t^{2/4})}, \text{ and } \chi_1 = \overline{\chi_2}.$$

Interchanging the indices and repeating the argument, we get

$$\mathbf{L}^{\vee}\cong\mathcal{L}_{\psi_1(-\mathbf{t}^{2/4})}.$$

Thus we have $\mathcal{L}_{\psi_2(-t^2/4)} \cong \mathcal{L}_{\psi_1(t^2/4)}$. From this we conclude that $\psi_1 = \overline{\psi}_2$. So if L is not tame, the existence of a geometric isomorphism $L \otimes \mathcal{H}_1 \cong \mathcal{H}_2$ implies that $(\psi_1, \chi_1) = (\overline{\psi}_2, \overline{\chi}_2)$. QED

Lemma 4 For any pair (ψ, χ) consisting of a nontrivial additive character ψ and a nontrivial multiplicative character χ , the lisse sheaf $\mathcal{F} := \mathcal{F}(\psi, \chi)$ as $I(\infty)$ -representation is the direct sum of two inverse characters, each of Swan conductor two:

$$\mathcal{F}(\infty) \cong \mathcal{L}\chi \otimes \mathcal{L}\psi(t^2/8) \ \oplus \ \mathcal{L}\chi \otimes \mathcal{L}\psi(-t^2/8)$$

proof Indeed, we have seen that $\mathcal{H} := \mathcal{H}(\psi, \chi)$ as $I(\infty)$ -representation is given by

$$\mathcal{H}(\infty) \cong \mathcal{L}_{\chi}^{-} \oplus \mathcal{L}_{\chi} \otimes \det(\mathcal{H})$$
$$\cong \mathcal{L}_{\chi}^{-} \oplus \mathcal{L}_{\chi} \otimes \mathcal{L}_{\psi(-t^{2}/4)}$$

Therefore \mathcal{F} , being an α^{deg} twist of $\mathcal{F} \otimes \mathcal{L} \psi(t^2/8)$, has $I(\infty)$ -representation given by

$$\mathcal{F}(\infty) \cong \mathcal{L}\chi \otimes \mathcal{L}\psi(t^2/8) \oplus \mathcal{L}\chi \otimes \mathcal{L}\psi(-t^2/8).$$
 QED

Lemma 5 Fix an integer $r \ge 1$. Suppose that the characteristic p of k is at least 7. Suppose we are given r pairs $\{(\psi_i, \chi_i)\}_{i=1 \text{ to } r}$, each consisting of a non-trivial additive character ψ_i and a nontrivial multiplicative character χ_i . Suppose that for all $i \ne j$, we have

$$(\psi_i, \chi_i) \neq (\psi_j, \chi_j)$$
, and $(\psi_i, \chi_i) \neq (\overline{\psi}_j, \overline{\chi}_j)$.

For each i = 1 to r, put

$$\mathcal{F}_{\mathbf{i}} := \mathcal{F}(\psi_{\mathbf{i}}, \chi_{\mathbf{i}}),$$

and denote by

$$\rho_{\mathbf{i}}: \pi_{\mathbf{1}}(\mathbb{A}^{1} \otimes \mathbf{k}) \to \mathrm{SL}(2, \overline{\mathbb{Q}}_{\ell})$$

the ℓ -adic representation which \mathcal{F}_i "is". Consider the lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathcal{G} on $\mathbb{A}^{1 \otimes k}$, defined as the direct sum

$$\mathcal{G} := \bigoplus_{i=1 \text{ to } r} \mathcal{F}_i$$

Denote by

$$\rho := \bigoplus_{i=1 \text{ to } r} \rho_i : \pi_1(\mathbb{A}^{1 \otimes k}) \to \prod_{i=1 \text{ to } r} \operatorname{SL}(2, \overline{\mathbb{Q}}_{\ell})$$

the ℓ -adic representation which \mathcal{G} "is". Then the group G_{geom} for \mathcal{G} is the largest possible, namely $\prod_{i=1 \text{ to } r} SL(2)$.

proof By Lemma 2, the geometric monodromy group G_i of each \mathcal{F}_i is SL(2). So the geometric monodromy group G for \mathcal{G} is a closed subgroup of $\prod_{i=1 \text{ to } r} G_i$ which maps onto each factor. By the Goursat–Kolchin–Ribet theorem [Ka–ESDE, 1.8.2], it results from Lemma 3 that $G^{0,\text{der}}$ is the

full product $\prod_{i=1 \text{ to } r} G_i^{0,\text{der}}$. Since each G_i is SL(2), $G^{0,\text{der}}$ is the full product $\prod_{i=1 \text{ to } r} SL(2)$. Since G is in any case a subgroup of this product, we have $G = \prod_{i=1 \text{ to } r} SL(2)$. QED

Theorem 4 now result immediately from Deligne's Equidisribution Theorem [De–Weil II, 3.5], cf. [Ka–GKM, 3.6, 3.6.3], [Ka–Sar, 9.2.5, 9.2.6], applied to the sheaf \mathcal{G} of Lemma 5. A maximal compact subgroup K of $\prod_{i=1}$ to r SL(2, C) is the product group $\prod_{i=1}$ to r SU(2). Its space of conjugacy classes is the product space $[0, \pi]^r$, with measure the r–fold self–product of the Sato–Tate measure μ_{ST} . Its irreducible representations are precisely the tensor products of irreducible representation. There is one irreducible representation of the i'th factor of each dimension $n \ge 1$, given by Symm^{n–1}(std(i)). Its character is the function $S_n(\theta)$. So the **nontrivial** irreducible representations of the product group

$$\prod_{i=1 \text{ to } r} SU(2)$$

are the tensor products

 $\otimes_{i=1 \text{ to } r} \operatorname{Symm}^{n_i-1}(\operatorname{std}(i))$

with all $n_i \ge 1$ and at least one $n_i > 1$. This representation has dimension $\prod_{i=1 \text{ to } r} n_i$. Its character is $\prod_{i=1 \text{ to } r} S_{n_i}(\theta_i)$.

The sheaf \mathcal{G} of Lemma 5 has all its ∞ -slopes equal to two. For each point t in k, the image $\rho(\operatorname{Frob}_{t,k})^{ss}$ in $\prod_{i=1 \text{ to } r} \operatorname{SL}(2, \overline{\mathbb{Q}}_{\ell})$, when viewed in $\prod_{i=1 \text{ to } r} \operatorname{SL}(2, \mathbb{C})$ via the chosen field isomorphism of $\overline{\mathbb{Q}}_{\ell}$ with \mathbb{C} , is conjugate in $\prod_{i=1 \text{ to } r} \operatorname{SL}(2, \mathbb{C})$ to an element of $K = \prod_{i=1 \text{ to } r} \operatorname{SU}(2)$, which is itself well-defined up to conjugacy in K. The resulting conjugacy class is none other that the r-tuple

 $(\theta(\psi_1, \chi_1)(t), \theta(\psi_2, \chi_2)(t), ..., \theta(\psi_r, \chi_r)(t)).$

So Theorem 4 is just Deligne's Equidisribution Theorem applied to \mathcal{G} . The "more precisely" estimate results from [Ka–GKM, 3.6.3] and the fact that \mathcal{G} is lisse on \mathbb{A}^1 and has highest ∞–slope two.

In more concrete terms, each $F(\psi_i, \chi_i)(t)$ is the trace of of a conjugacy class in SU(2), hence is real and lies in [-2, 2]. This gives Theorem 1. Theorem 2 is the special case r=1 of Theorem 4, and Theorem 3 is the special case "all ψ_i equal" of Theorem 4.

References

[De-Weil II] Deligne, P., La conjecture de Weil II, Pub. Math. I.H.E.S. 52 (1981), 313-428.

[F-T] Feit, W., and Thompson, J., On groups which have a faithful representation of degree less that (p-1)/2, Pacific Math. J. 4 (1961), 1257–1262.

[Ka–ESDE] Katz, N., *Exponential sums and differential equations*, Annals of Math. Study 124, Princeton Univ. Press, 1990.

[Ka–GKM] Katz, N., *Gauss sums, Kloosterman sums, and monodromy groups*, Annals of Math. Study 116, Princeton Univ. Press, 1988.

[Ka–MG] Katz, N., On the monodromy groups attached to certain families of exponential sums, Duke Math. J. 54 No. 1 (1987), 41–56.

[Ka–Sar] Katz, N., and Sarnak, P., *Random Matrices, Frobenius Eigenvalues, and Monodromy*, A.M.S. Colloquium Publications 45, 1999.

[Kol] Kolchin, E., Algebraic groups and algebraic independence, Amer. J. Math. 90 (1968), 1151–1164.

[Kur–Rud] Kurlberg, P., and Rudnick, Z., Value distribution for eigenfunctions of desymmetrized quantum maps, preprint, December, 2000.

[Lau–TF] Laumon, G., Transformation de Fourier, constantes d'équations fonctionelles et conjecture de Weil, Pub. Math. I.H.E.S. 65 (1987), 131–210.

[Ri] Ribet, K., Galois action on division points of abelian varieties with real multiplication, Amer. J. Math. 98 (1976), 751–805.