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ABSTRACT
Inspired by work of Gross, we exhibit rigid local systems on the affine line whose monodromy groups
we conjecture to be the Suzuki and Ree groups, in characteristics 2 and 3 respectively. We give some
numerical evidence for these conjectures.

1. Introduction

In our earlier work [Katz preprint], we exhibited some
very simple one-parameter families of exponential sums
which gave rigid local systems on the affine line in charac-
teristic pwhose geometric (and usually arithmetic) mon-
odromy groups were SL(2, q), and we exhibited other
such families giving SU (3, q). [Here q is a power of the
characteristic p, and p is odd.] What we did there made
essential use of the work [Gross 10] of Dick Gross. That
work of Gross also discussed the Suzuki and Ree groups,
and Gross asked us if those groups entered into our
picture.

Our object here is to produce very simple one-
parameter families of exponential sums on the affine line
A1 in characteristic two (for Suzuki) and three (for Ree)
which give rigid local systems whose geometric and arith-
metic monodromy groups are the Suzuki and Ree groups,
respectively. For simplicity, let us discuss the situation
over Fp, p respectively 2,3. By the solution [Raynaud
94] of the Abhyankar conjecture, we know there exist
local systems on A1/Fp whose monodromy groups are
the Suzuki and Ree groups, respectively. Gross constructs
local systems onGm/Fpwith these groups asmonodromy
groups. Gross further tells us that explicit Kummer pull-
backs of his local systems give local systems on A1/Fp
with these same monodromy groups. We expect that our
local systems coincide with these Kummer pullbacks, cf.,
Section 4.

Our earlier work had two parts. The first was a theorem
of Kubert which assured us that certain one-parameter
families of exponential sums gave (rigid) local systems
whose geometric and arithmetic monodromy groups
were finite. The second was to show that these finite
groups were as asserted above.

CONTACT Nicholas M. Katz nmk@math.princeton.edu Department of Mathematics, Princeton University, Fine Hall, Princeton, NJ -, USA.

In the discussion below of Suzuki and Ree groups,
both of these parts are absent, replaced instead by con-
jectures. In Section 4, we explain what should be the rela-
tion between the families which will be the subject of our
conjectures and the local systems on Gm constructed by
Gross in the Suzuki and Ree cases.

We begin with the Suzuki groups. For q0 = 2n, n ≥
1, a power of 2, and q := 2q20, the Suzuki group Sz(q)
is a simple group of order q2(q2 + 1)(q − 1). Its lowest
dimensional nontrivial irreducible (complex) representa-
tions have dimension q0(q − 1). There are two of these.
Their complex-conjugate trace functions take values in
the ring Z[i] of Gaussian integers. The values assumed
are {−q0i,−q0,−1, 0, 1, q0i, q0(q − 1)}, cf., the end of
Suzuki’s paper [Suzuki 62].

The first problem we consider here is to exhibit,
for each q0 = 2n, n ≥ 1, a pair of complex-conjugate
rigid local system of rank q0(q − 1) on the affine line
A1/Fq in characteristic 2 whose geometric and arith-
metic monodromy groups are the group Sz(q), in each of
its two complex-conjugate irreducible representations of
dimension q0(q − 1).

We will write down explicit “candidate” pairs of
complex-conjugate rigid local system of rank q0(q − 1)
onA1/Fq, aboutwhichwemake two conjectures. The first
is that their monodromy groups are finite. The second
is that these finite monodromy groups are the asserted
Suzuki groups Sz(q).

We now turn to the Ree groups. For q0 = 3n,
n ≥ 1, a power of 3, and q = 3q20, the Ree group Ree(q)
is a simple group of order q3(q3 + 1)(q − 1). Its low-
est dimensional nontrivial irreducible (complex) repre-
sentation has dimension q2 − q + 1. It is orthogonally
self-dual. Its trace function takes values Z. The values
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2 N. M. KATZ

assumed are {1 − q,−1, 0, 1, 3, q2 − q + 1}, cf., the end
of Ward’s paper [Ward 66].

The second problem we consider here is to exhibit, for
each q0 = 3n, n ≥ 1, a rigid local system of rank q2 − q +
1 on the affine line A1/Fq in characteristic 3 whose geo-
metric and arithmetic monodromy groups are the group
Ree(q), in its irreducible representation of dimension
q2 − q + 1.

We have explicit candidate rigid local systems for the
Ree groups, Ree(32n+1), n ≥ 1. Exactly as in the Suzuki
case, we first conjecture that their monodromy groups are
finite, and second that these finite monodromy groups are
the asserted Ree groups.

2. The Suzuki case

We take ψ : (F2,+) → ±1 to be the nontrivial addi-
tive character of F2. We recall that the p-Witt vec-
tors, with p = 2, of length two haveW2(F2) ∼= Z/4Z, by
the explicit isomorphism [a, b] �→ a2 + 2b. We denote
byψ2 :W2(F2) ∼= Z/4Z → μ4(Z[i]) the faithful additive
character [a, b] �→ ia2+2b, i.e., the faithful additive char-
acter of Z/4Z given by n �→ in. This allows us to define
the usual Artin–Schreier sheaf Lψ(x) on A1/F2, and the
Artin–Schreier–Witt sheaf Lψ2([x,0]) on A1/F2.

We now turn to the definition of our candidate local
systems. Recall that q0 = 2n, n ≥ 1 and q = 2q20. We
denote by

t(q) := q − 2q0 + 1

the order of the Coxeter torus in Sz(q), cf., [Gross
10]. Thus t(8) = 5, t(32) = 25, t(128) = 113. We also
denote by

d(q) := q0(q − 1)

the degree of the lowest dimensional nontrivial irre-
ducible complex representations of Sz(q). Thus, d(8) =
14, d(32) = 124, d(128) = 1016. For each q = 2q20 =
22n+1, we define the polynomial fq(x) ∈ F2[x] as follows.

f8(x) := x15,
f32(x) := x125 + x3∗25,
f128 := x1017 + x5∗113 + x3∗113.

The general pattern is that for q = 22n+1,

fq(x) := x1+d(q) +
∑

1≤m≤n−1

x(2
m+1)t(q).

We now define, for each q = 22n+1, a rank one lisse
local system on A1/F2

Sq(x) := Lψ2([xt(q),0]) ⊗ Lψ( fq(x)) = Lψ2([xt(q), fq(x)]),

the last equality simply because in Witt vector addi-
tion, [a, b] = [a, 0] + [0, b]. We then form its Fourier
transform

Fq := FTψ (Sq).

This is a rigid local system on A1/F2, lisse of rank d(q),
pure of weight one. Its trace function is given at time t ∈ k,
k/F2 a finite extension, by the formula

Trace(Frobt,k|Fq) =
−

∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
t(q), fq(x)+ tx])).

We then twist this local system by a suitable constant
field twist.

Gq := Fq ⊗ β
−deg
q .

For q = 22n+1, we define

βq := 1 + i if n is odd,
βq := 1 − i if n is even.

The conjugate local system begins with

Lψ2([xt(q), fq(x)+x2t(q)]),

and twists its FTψ by the complex conjugate of β−1
q . The

point here is that for p-Witt vectors with p = 2, Witt vec-
tor addition is given by

[a, b] + [A,B] = [a + A, b+ B − aA].

Thus, for Witt vectors with entries in F2-algebras, we
have

−[a, b] = [a, b+ a2],

and hence the two input rank one local systems have
complex-conjugate traces in Z[i]. After Fourier trans-
form, their trace functions continue to be complex con-
jugate, because ψ takes integer (in fact ±1) values. After
twisting, the trace functions remain complex conjugates
of each other, but a priori now take values in Z[1/2][i].]

Conjecture 2.1. For each For q = 22n+1, n ≥ 1, the trace
function of the local system Gq on A1/F2 takes values in
Z[i].

One knows [Katz 90, 8.14.4] that the conjectured inte-
grality of traces implies that both the geometric and arith-
metic monodromy groups of Gq are finite.

Conjecture 2.2. For each q = 22n+1, n ≥ 1, after pull-
back toA1/Fq, the geometric and arithmetic monodromy
groups of Gq are the group Sz(q) in one of its irreducible
complex representations of degree d(q) = q0(q − 1).

Remark 2.3. The Galois group Gal(Fq/F2) acts on Sz(q)
by conjugating the matrix entries (thinking of Sz(q) as
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EXPERIMENTAL MATHEMATICS 3

a subgroup of Sp(4, q), cf., [Wilson 10a]). This action
preserves the isomorphism class of each of the two irre-
ducible representations of dimension q0(q − 1) (simply
because the Galois group has odd order 2n + 1, so it can
only act trivially on a set with two elements). Therefore,
each of these representations extends (in several ways, the
indeterminacy being that we can twist any such exten-
sion by character of the cyclic group Gal(Fq/F2)) to a
representation of the semidirect product group Sz(q)�
Gal(Fq/F2). It is reasonable to expect that for Gq on
A1/F2, its arithmetic monodromy group is the image of
this semidirect product in one of the extended represen-
tations. However, the trace function of our Gq on A1/F2
has values in Q(i) (and conjecturally in Z[i]). So if our
expectation is correct, there should be a unique extended
representation whose trace has values in Z[i].

3. The Ree case

We take ψ : (F3,+) → μ3(Z[ζ3]) to be the one of the
two nontrivial additive character of F3. We denote by
χ2 : F×

3 → ±1 the quadratic character of F×
3 , extended to

all ofF3 by definingχ2(0) := 0. Thus, wemay speak of the
Artin–Schreier sheaf Lψ on A1/F3, and of the extension
by zero to A1/F3 of the Kummer sheaf Lχ2 on Gm/F3,
which we will denote j!Lχ2 ( j : Gm ⊂ A1 denoting the
inclusion).

We now turn to the definition of our candidate local
systems. Recall that q0 = 3n, n ≥ 1, and q = 3q20. We
denote by

t(q) := q − 3q0 + 1

the order of the Coxeter torus in Ree(q), cf., [Gross 10].
Thus t27 = 19, t243 = 217. We also denote by

d(q) := q2 − q + 1

the degree of the lowest dimensional nontrivial irre-
ducible complex representation of Ree(q). Thus, d(27) =
703, d(243) = 58807.

For each q = 3q20 = 32n+1, we define the polynomial
fq(x) ∈ F3[x] as follows.

f27(x) := x703 + 2x11∗19 + 2x7∗19 + 2x19,
f243(x) := x58807 + 2x29∗217 + 2x19∗217 + 2x217.

The general pattern is

fq(x) := xd(q) + 2x(3
n+1+2)t(q) + 2x(2∗3

n+1)t(q) + 2xt(q).

We thendefine, for each q = 32n+1 a rank one lisse local
system onGm/F3

Rq(x) := Lχ2(x) ⊗ Lψ( fq(x)).

We then form the Fourier transform of its extension by
zero,

Fq := FTψ ( j!Rq).

This is a rigid local system on A1/F3, lisse of rank d(q),
pure of weight one. Its trace function is given at time t ∈ k,
k/F3 a finite extension, by the formula

Trace(Frobt,k|Fq) =
−

∑
x∈k×

χ2(Normk/F3)(x))ψ(Tracek/F3 ( fq(x)+ tx)).

We then twist this local system by a suitable constant
field twist.

Gq := Fq ⊗ β−deg,

with

β := ψ(1)− ψ(−1) = 1 + 2ζ3 for ζ3 := ψ(1)

the quadratic Gauss sum over F3.

Conjecture 3.1. For each q = 32n+1, n ≥ 1, the trace
function of the local system Gq on A1/F3 takes values
in Z.

Conjecture 3.2. For each q = 32n+1, n ≥ 1, after pull-
back toA1/Fq, the geometric and arithmetic monodromy
groups of Gq are the group Ree(q) in its irreducible com-
plex representation of degree d(q) = qq − q + 1.

Remark 3.3. The Galois group Gal(Fq/F3) acts on
Ree(q) by conjugating the matrix entries (thinking of
Ree(q) as a subgroup of G2(q), cf., [Wilson 10b]. This
action (necessarily) preserves the isomorphism class
of the unique irreducible representation of dimension
q2 − q + 1. Therefore, this representation extends (in
several ways, the indeterminacy being that we can twist
any such extension by character of the cyclic group
Gal(Fq/F3)) to a representation of the semidirect prod-
uct groupRee(q)� Gal(Fq/F3). It is reasonable to expect
that on A1/F3, the arithmetic monodromy group is the
image of this semidirect product in one of the extended
representations. However, the trace function of our Gq on
A1/F3 has values in Q (and conjecturally in Z). So if our
expectation is correct, there should be a unique extended
representation whose trace has values in Z.

4. Comments on the conjectures: Relation to the
work of Gross

ForG either Sz(q) or Ree(q), Gross [Gross 10] constructs
a G-torsor on Gm/Fq whose inertia group at 0 is the
Coxeter torus in G. When we push out this torsor by one
of the representations of G with which we are concerned,
we get a local system Grq on Gm/Fq of rank d(q) whose
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4 N. M. KATZ

geometric and arithmetic monodromy groups are G in
that representation. When we pull backGrq by the t(q)’th
powermap, the resultingKummer pullback is lisse on (i.e.,
has a unique lisse extension to) A1/Fq. It is this local sys-
tem which we conjecture to be our Gq.

So one test that our local systemGq (or equivalentlyFq)
should pass is that its restriction toGm descends through
the t(q)’th power map on t-space. It is to ensure this that
our polynomial fq(x) is a polynomial in xt(q). Notice that
in both the Ree and Suzuki cases, t(q) divides the degree
of fq(x). In the Suzuki case, we have

d(q)+ 1 = t(q)(q0 + 1),

while in the Ree case we have

d(q) = t(q)(q + 3q0 + 1).]

To see the descent, consider first the Suzuki case.Write
the formula for the trace at a nonzero t ,

Trace(Frobt,k|Fq) =
−

∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
t(q), fq(x)+ tx]),

and make the substitution x �→ x/t . Then the trace is

−
∑
x∈k

ψ2(TraceW2(k)/W2(F2)([x
t(q)/tt(q), fq(x/t )+ x]),

in which only powers of tt(q) appear.
In the Ree case, remember that t(q) = q − 3q0 + 1 is

odd, so the formula for the trace at a nonzero t is

Trace(Frobt,k|Fq) =
−

∑
x∈k×

χ2(Normk/F3)(x
t(q)))ψ(Tracek/F3 ( fq(x)+ tx)).

Then the same substitution x �→ x/t gives the trace as

−
∑
x∈k×

χ2(Normk/F3)(x
t(q)/tt(q)))

×ψ(Tracek/F3 ( fq(x/t )+ x)),

in which only powers of tt(q) appear.
Our conjecture also has consequences for the local sys-

tem Grq on Gm. Recall that the local system Gq is a rigid
local system on A1 (because it is the Fourier transform of
a rank one local system), cf., [Katz 96 preprint, 2.0.2 and
3.0.1]. If Gq is the t(q)’th power pullback of Grq, then Grq
must itself be rigid, which does not seem obvious. Here is
the argument, due to Lei Fu.

Lemma 4.1 (Lei Fu). Over an algebraically closed field, let
j : U ⊂ P1 be the inclusion of a dense open set, A a Q�-
local system (� invertible in k). Let f : P1 → P1 be a finite
morphism (i.e., a nonconstant rational function) which is

generically étale, and which makes V := f−1(U ) a finite
stale covering of U . Call this map

fU : V → U.

Denote by J : V ⊂ P1 the inclusion. Then, we have the
inequality of dimensions

dimH1(P1, j�A) ≤ dimH1(P1, J� fU �A).
Proof. We have the commutation relation

f ◦ J = j ◦ fU .

Because f is a finite morphism, we have

H1(P1, J� fU �A) = H1(P1, f�J� fU �A)
= H1(P1, j� fU � fU

�A).
Nowuse the fact thatQ�U is a direct factor of fU �Q�V , and
hence thatA is a direct factor of fU � fU

�A. Then j�A is a
direct factor of j� fU � fU

�A, and the assertion on dimen-
sions is obvious. �
Corollary 4.2. If A is irreducible and fU �A is both irre-
ducible and rigid, thenA is rigid.

Proof. Apply the lemma to End(A) and the t(q)’th power
map, remembering that for an irreducibleA, rigidity is the
vanishing of H1(P1, j�End(A)). �

Another consequence forGrq is that Swan∞(Grq)must
be q0 + 1 in the Suzuki case, and q + 3q0 + 1 in the Ree
case (simply because pullback by the t(q)’th power map
multiplies Swan∞ by t(q), and Swan∞(Gq) is d(q)+ 1 in
the Suzuki case, and is d(q) in the Ree case).

In neither the Suzuki nor the Ree case do we have a
conceptual explanation for the precise form of the poly-
nomial fq(x), which we found through computer exper-
iments. These experiments are, at least so far, compatible
with the idea that our local systems Gq do have integral
traces, that their traces are among the (very few, seven for
the Suzuki groups and six for the Ree groups) traces of
elements of the groupG in the representation in question,
and that the traces of our local systems are distributed
like the traces of random elements of these groups. Caveat
Emptor.

5. Numerical data: The Suzuki case

Recall that q0 = 2n, q = 22n+1, n ≥ 1. In either irre-
ducible representation of Sz(q) of dimension q0(q − 1),
the traces attained are

{−q0i, −q0, −1, 0, 1, q0i, q0(q − 1)}.
Thanks to Frank Luebeck [Lübeck 17], using CHEVIE
[Geck 96], the fraction of elements in Sz(q) with these
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EXPERIMENTAL MATHEMATICS 5

traces is known to be

FracSz(q) :=
{
1
2q
,

1
q2
,

q0(q0 − 1)
2(q − 2q0 + 1)

,
q20 − 1
q − 1

,

q0(q0 + 1)
2(q + 2q0 + 1)

,
1
2q
,

1
q2(q2 + 1)(q − 1)

}
.

We calculated, for our local systems Gq, the traces of
Frobenius obtained at the Fqd points of A1 for various q
and some low d. We tabulate the multiplicity with which
each trace occurs, in the order listed above. Below this tab-
ulation, we list the “expected” multiplicities, by which we
mean that we round the table of rational numbers

FracSz(q)qd.

For Sz(8), we have

d = 2,

Found = {6, 1, 13, 27, 15, 2, 0}
Expected = {4, 1, 13, 27, 15, 4, 0}.

d = 3,

Found = {28, 9, 109, 219, 111, 36, 0}
Expected = {32, 8, 102, 219, 118, 32, 0}.

d = 4,

Found = {240, 40, 845, 1755, 975, 240, 1}
Expected = {256, 64, 819, 1755, 945, 256, 0}.

d = 5,

Found = {2080, 520, 6605, 14043, 7503, 2016, 1}
Expected = {2048, 512, 6554, 14043, 7562, 2048, 1}.

For Sz(32), we have

d = 2,
Found = {20, 1, 246, 495, 250, 12, 0}

Expected = {16, 1, 246, 495, 250, 16, 0}.
For Sz(128), we have

d = 2,
Found = {72, 1, 4060, 8127, 4086, 56, 0}

Expected = {64, 1, 4060, 8127, 4068, 64, 0}.
For Sz(512), we have

d = 1,
Found = {1, 0, 136, 255, 120, 0, 0}

Expected = {8, 1, 123, 248, 125, 8, 0}.
For Sz(2048), we have

d = 1,
Found = {0, 0, 496, 1023, 528, 1, 0}

Expected = {0, 0, 512, 1023, 512, 0, 0}.

For Sz(8192), we have

d = 1,
Found = {0, 0, 259, 507, 233, 1, 0}

Expected = {0, 0, 250, 500, 250, 0, 0}.

6. Numerical data: The Ree case

Recall that q0 = 3n, q = 32n+1, n ≥ 1. In the irreducible
representation of Ree(q) of dimension q(q − 1), the
traces attained are

{1 − q, −1, 0, 1, 3, q(q − 1)}.
Thanks to Frank Luebeck [Lübeck 17], using CHEVIE
[Geck 96], the fraction of elements in Ree(q) with these
traces is known to be

FracRee(q) :=
{
1
q3
,
3
8
,

q(q − 2)
3(q2 − q + 1)

,
q3 + q2 − 4
4q2(q − 1)

,

q − 3
24(q + 1)

,
1

q3(q3 + 1)(q − 1)

}
.

We calculated, for our local systems Gq, the traces of
Frobenius obtained at the Fqd points of A1 for various q
and some low d. We tabulate the multiplicity with which
each trace occurs, in the order listed above. Below this tab-
ulation, we list the “expected” multiplicities, by which we
mean that we round the table of rational numbers

FracRee(q)qd.

What we found, to our complete astonishment, is that
for each of the first five Ree groups Ree(32n+1) with 1 ≤
n ≤ 5, calculating traces for our Gq over Fq (i.e. with d =
1), we get perfect agreement with what is “expected,” bet-
ter thanwith some higher values of dwhenwe could com-
pute them. We have no explanation of this. Here is the
data.

For Ree(27), we have

d = 1,

Found = {0, 10, 9, 7, 1, 0}
Expected = {0, 10, 9, 7, 1, 0}.

d = 2,

Found = {0, 280, 225, 196, 28, 0}
Expected = {0, 273, 233, 196, 26, 0}.

d = 3,

Found = {1, 7381, 6300, 5298, 703, 0}
Expected = {1, 7381, 6300, 5298, 703, 0}.

d = 4,

Found = {28, 199108, 170325, 143052, 18928, 0}
Expected = {27, 199290, 170091, 143052, 18980, 0}.
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6 N. M. KATZ

For Ree(243) we have

d = 1,
Found = {0, 91, 81, 61, 10, 0}

Expected = {0, 91, 81, 61, 10, 0}.
d = 2,

Found = {0, 22204, 19521, 14884, 2440, 0}
Expected = {0, 22143, 19601, 14884, 2420, 0}.
For Ree(37 = 2187) we have

d = 1,
Found = {0, 820, 729, 547, 91, 0}

Expected = {0, 820, 729, 547, 91, 0}.
For Ree(39 = 19683) we have

d = 1,
Found = {0, 7381, 6561, 4921, 820, 0}

Expected = {0, 7381, 6561, 4921, 820, 0}.
For Ree(311 = 177147) we have

d = 1,
Found = {0, 66430, 59049, 44287, 7381, 0}

Expected = {0, 66430, 59049, 44287, 7381, 0}.

Appendix: The limiting cases Sz(2) and Ree(3)

In this section, we see what happens if we apply our con-
structions in the “q0 = 1” case.

The group Sz(2) is isomorphic to the ax + b group
over F5. It has a pair of complex-conjugate linear char-
acters of order 4.

Lemma 7.1. For Sz(2), our local system G2 has arithmetic
and geometric monodromy groups equal to the image μ4
of Sz(2) in either of its one-dimensional representations of
order 4.

Proof. For Sz(2), i.e., the case q = 2, q0 = 1, we have
d(2) = q0(q − 1) = 1 and t(2) = q − 2q0 + 1 = 1. The
polynomial f2(x) is x2, the input local system is

S2(x) := Lψ2([x,0]) ⊗ Lψ(x2) ∼= Lψ2([x,0]) ⊗ Lψ(x),
and our local system F2 is F2 := FTψ (S2). The twist-
ing factor β2 is 1 − i. The local system G2 is lisse of rank
d(2) = 1, so is geometrically of finite order on A1/F2, of
some 2-power orderN. Hence for some γ ∈ Q�

×
wehave

G⊗N
2

∼= Q� ⊗ γ deg.

But at the points t = 0 and t = 1 in A1(F2), we have the
equalities

Trace(Frobt=0,F2 (G2) = −(1 − i)/β2 = −1,
Trace(Frobt=1,F2 (G2) = −(1 + i)/β2 = −i.

The first shows that γ = 1, i.e., G2 is arithmetically of
finite order. As G2 has traces in Q(i) which are roots of
unity, it has traces in μ4. The second equality shows that
the arithmetic monodromy group is all of μ4. The two
inequalities together show that the ratio of the traces at
the two F2 points is i, and hence that the geometric mon-
odromy group is all of μ4. �

The Ree group Ree(3) is not simple, but its derived
group, of index 3, is the simple group SL(2, 8). Indeed,
Ree(3) is Aut(SL(2, 8)), the semidirect product of
SL(2, 8) with Gal(F8/F2), this latter group acting entry-
wise on SL(2, 8). For Ree(3), with q = 3, q0 = 1, we have

d(3) = 32 − 3 + 1 = 7, t(3) = 3 − 3 + 1 = 1,
f3(x) = x7 + 2x5 + 2x3 + 2x.

With this input data, we form the local system

F3 := FTψ (Lχ2(x) ⊗ Lψ( f3(x))),
and its twist

G3 := F3 ⊗ β−deg

for β the quadratic Gauss sum over F3.
The Ree group Ree(3) has three irreducible represen-

tations of degree 7, precisely one of which is orthogo-
nally self-dual. Its traces are {−2,−1, 0, 1, 7}. From the
character tables in Magma, where Ree(3) is Chevalley-
Group(“2G”,2,3) [Bosma 13, 65.2.1, p. 1881], we see that
the fraction of elements of Ree(3) with these traces is
{1/27, 3/8, 1/7, 4/9, 1/1512} (which are also the frac-
tions Lübeck’s table gives setting q = 3).

Computer experiments support the following
conjecture.

Conjecture 7.2. For Ree(3), the local system G3 has inte-
ger traces, and its geometric and arithmetic monodromy
groups on A1/F3 are the group Ree(3) in its orthogonal
seven-dimensional irreducible representation.

Here is some data for Ree(3).

d = 6,
Found = {21, 280, 112, 315, 1}

Expected = {27, 273, 104, 324, 0}.
d = 7,

Found = {84, 820, 301, 981, 1}
Expected = {81, 820, 312, 972, 1}.

d = 8,
Found = {252, 2440, 949, 2916, 4}

Expected = {243, 2460, 937, 2916, 4}.
d = 9,

Found = {729, 7381, 2812, 8748, 13}
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Expected = {729, 7381, 2812, 8748, 13}.
d = 10,

Found = {2160, 22204, 8401, 26244, 40}
Expected = {2187, 22143, 8436, 26244, 39}.

Given that Ree(3) contains SL(2, 8) as a normal sub-
group of index three, it is natural to wonder what hap-
pens if we take our local system G3 and pull it back by the
Artin–Schreier covering t �→ t3 − t of A1/F3. Computer
experiments support the following conjecture.

Conjecture 7.3. The pullback local system

H3 := [t �→ t3 − t]�G3

onA1/F3 has integer traces, it hasGgeom = SL(2, 8) and it
has Garith = Ree(3) in its orthogonal seven-dimensional
irreducible representation. If we pull back H3 to A1/F33 ,
it has Ggeom = Garith = SL(2, 8) in the unique irreducible
seven-dimensional representation of SL(2, 8)with integer
traces.

Remark 7.4. We are surprised to find, at least conjec-
turally, SL(2, 8) occurring “naturally” in characteristic 3
rather than 2.

If this conjecture is correct, it has the following equidis-
tribution consequence, cf., [Katz and Sarnak 99, 9.7.13].
The group SL(2, 8) has three cosets inside Ree(3). Fix an
isomorphism of the quotient Ree(3)/SL(2, 8) ∼= Z/3Z. If
we let d → ∞ through d’s in a fixed congruence class
mod 3, the traces we find should become equidistributed
according to the distribution of traces of our given rep-
resentation on elements of the corresponding coset of
SL(2, 8). Looking at the character table of Ree(3), we see
that

(0) In coset 0, the subgroup SL(2, 8), the traces
attained are

{−2,−1, 0, 1, 7},
and the fraction of elements with these traces is

{1/9, 1/8, 3/7, 1/3, 1/504}.
[These are also the traces, and fractions of
occurrence, in the unique irreducible seven-
dimensional representation of SL(2, 8)with inte-
ger traces.]

(± 1) In each of the two cosets 1 and −1, the traces
attained are {−1, 1}, and the fraction of elements
with these traces is {1/2, 1/2}.

So, when we compute traces of the pullback local
system H3 over degree d extensions of F3 with d 
= 0
mod 3, we expect to find only {−1, 1} as traces, and
approximately equal occurrences of each. When we

compute over degree d extensions with 3|d, we expect to
find the traces {−2,−1, 0, 1, 7} in approximate fractions
{1/9, 1/8, 3/7, 1/3, 1/504}.

Here is some data forH3, first for the coset 0, the group
SL(2, 8).

d = 3,
Found = {3, 3, 12, 9, 0}

Expected = {3, 3, 12, 9, 0}.
d = 6,

Found = {63, 84, 336, 243, 3}
Expected = {81, 91, 312, 243, 1}.

d = 9,
Found = {2187, 2460, 8436, 6561, 39}

Expected = {2187, 2460, 8436, 6561, 39}.
Here are data for extensions F3d with d 
= 0 mod 3,

where what we expect is equal occurrences of −1 and 1.

d = 1, Found = {3, 0}.
d = 2, Found = {6, 3}.
d = 4, Found = {36, 45}.
d = 5, Found = {108, 135}.
d = 7, Found = {1053, 1134}.
d = 8, Found = {3240, 3321}.
d = 10, Found = {29646, 29403}.
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