
SIMPLE THINGS WE DON’T KNOW

NICHOLAS M. KATZ

Abstract. This is a quite faithful rendering of a Colloquio De
Giorgi I had the honor to give at Scuola Normale Superiore on
March 21, 2012. The idea was to explain some open problems in
arithmetic algebraic geometry which are simple to state but which
remain shrouded in mystery.

1. An interactive game: dimension zero

Suppose I give you an integer N ≥ 2, and tell you that I am thinking
of a monic integer polynomial f(X) ∈ Z[X] whose discriminant ∆(f)
divides some power of N . I tell you further, for every prime number p
not1 dividing N , the number

np(f) := #{x ∈ Fp|f(x) = 0 in Fp}
of its solutions in the prime field Fp := Z/pZ. You must then tell me
the degree of the polynomial f .

In this “infinite” version, where I tell you the np(f) for every good
prime, your task is simple; the degree of f is simply the largest of the
np(f). Indeed, np(f) = deg(f) precisely when p is a prime which splits
completely in the number field Kf := Q(the roots of f). By Cheb-
otarev, this set of primes is infinite, and has density 1/#Gal(Kf/Q).

If you do not have infinite patience, you may hope that you can
specify a constantXN , depending only onN , such that it will be enough
for me to tell you np(f) only for the good primes which are ≤ XN . Alas,
this cannot be done. Whatever constant XN you choose, I will pick an
integer a ≥ 2 such that Na > XN , and take for my f the cyclotomic
polynomial ΦNa(X), whose roots are the primitive Na’th roots of unity.
With this choice of f , we have np(f) = 0 for all good primes p ≤ Na.
Indeed, with this choice of f , np(f) vanishes for a good prime p unless
p ≡ 1 mod Na, in which case np(f) = deg(f)(= φ(Na) = Na−1φ(N),
φ being Euler’s φ function.). But the condition that p be congruent to
1 mod Na certainly forces p > Na. In particular, we have np(f) = 0
for all good primes p ≤ Na.

1We will call such a prime a good prime (for this problem).
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2. An interactive game: curves

In this game, I give you an integer N ≥ 2, and tell you that I am
thinking of a (proper, smooth) curve C/Z[1/N ] (with geometrically
connected fibres). Once again I tell you, for every good prime p, the
number

np(C) := #C(Fp),

the number of its points with values in Fp. You must then tell me the
common genus g of the geometric fibres of C.

What is your strategy? You know that, by Weil [Weil], the number
np(C) is approximately p+ 1. More precisely, if we write

np(C) = p+ 1− ap(C),

so that the data of the integers np(C) is equivalent to the data of the
integers ap(C), then we have the Weil bound

|ap| ≤ 2g
√
p.

A natural guess is that you can recover the integer 2g as the limsup
of the ratios |ap|/

√
p as p varies over all good primes. You might even

hope to recover 2g as the limsup of the ratios ap/
√
p. Or you might

make the more modest guess that you can recognize 2g as being the
largest even integer such that, on the one hand, we have |ap|/

√
p ≤ 2g

but for at least one good prime we have |ap|/
√
p > 2g − 2. Or you

may be more ambitious and require that there are infinitely many good
primes p with |ap|/

√
p > 2g − 2.

The sad truth is that, except in some very special cases, none of
these guesses is known to be correct. Let us first discuss the two cases
where something is known, namely g = 0 and g = 1.

In the case of genus 0, then ap(C) = 0 for every good p, and all
guesses are hence correct.

In the case of genus one, the modest guess that we will have ap(C) 6=
0 for infinitely many good p is easy to establish. First, we may re-
place our genus one curve C, which may not have a Q-rational point,
by its Jacobian, without changing the number of mod p points. Now
C/Z[1/N ] has a group(scheme) structure. In particular, each set C(Fp)
has the structure of a finite abelian group. For any prime p not
dividing 3N which splits completely in the number field Q(C[3] :=
the points of order 3), we know both that C(Fp) contains a subgroup
of order 9, namely all the nine points of order dividing 3, and that p
must be congruent to 1 mod 3 (this last fact because by the en pair-
ing, once we have all the points of order any given n invertible in our
field, that same field contains all the n’th roots of unity). So from the
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equality np(C) = p+ 1− ap(C), we get the congruences

ap(C) ≡ p+ 1 mod 9, p ≡ 1 mod 3,

which together give the congruence

ap(C) ≡ 2 mod 3

for every prime p not dividing 3N which splits completely in Q(C[3]).
In the g = 1 case, the truth of the Sato-Tate conjecture, estab-

lished for non-CM2 elliiptic curves by Harris, Taylor et al, cf [BGHT],
[CHT],[HST], [T] leads easily to a proof that the most precise guess
is correct in genus one. We will explain how this works in the next
sections.

3. A “baby” version of the Sato-Tate conjecture

Let us begin with quick excursion into the world of compact Lie
groups. For each even integer 2g ≥ 2, we denote by USp(2g) the
“compact symplectic group”. We can see it concretely as the inter-
section of the complex symplectic group Sp(2g,C) (take the standard
symplectic basis ei, fi, 1 ≤ i ≤ g in which (ei, ej) = (fi, fj) = 0 for all
i, j and (ei, fj) = δi,j) with the unitary group U(2g) (where the same
ei, fi, 1 ≤ i ≤ g form an orthonormal basis). Or we can see USp(2g)
as a maximal compact subgroup of Sp(2g,C), or we can see it as the
“compact form” of Sp(2g,C).

What is relevant here is that USp(2g) is given to us with a 2g-
dimensional C-representation, and in this representation every element
has eigenvalues consisting of g pairs of complex conjugate numbers of
absolute value one. Consequently, every element has its trace a real
number which lies in the closed interval [−2g, 2g].

For any closed subgroup K of USp(2g), we also have a given 2g-
dimensional representation, whose traces lie in the closed interval [−2g, 2g].
Out of this data, we construct a “Sato-Tate measure” µK , a Borel
probability measure on the closed interval [−2g, 2g]. Here are three
equivalent descriptions of the measure µK . In all of them, we begin
with the Haar measure µHaar,K on K of total mass one. We have the
trace, which we view as a continuous map

Trace : K → [−2g, 2g].

In the fancy version, we define µK := Trace?(µHaar,K). More concretely,
for any continuous R-valued function f on the closed interval [−2g, 2g],

2In the CM case, Deuring proved that we are dealing with a Hecke character,
and the required equidistribution for these goes back to Hecke.
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we impose the integration formula∫
[−2g,2g]

fdµK :=

∫
K

f(Trace(k))dµHaar,K .

For an interval I ⊂ [−2g, 2g], indeed for any Borel-measurable set
I ⊂ [−2g, 2g], its measure is given by

µK(I) := µHaar,K({k ∈ K| Trace(k) ∈ I}).
With these definitions in hand, we can state the “baby”3 Sato-Tate

conjecture.

Conjecture 3.1. Given an integer N ≥ 2, and a projective smooth
curve C/Z[1/N ] with geometrically connected fibres of genus g ≥ 1,
there exists a compact subgroup K ⊂ USp(2g) such that the sequence
{ap(C)/

√
p}good p is equidistributed in [−2g, 2g] for the measure µK.

This equidistribution means that for any continuous R-valued func-
tion f on the closed interval [−2g, 2g], we have the integration formula∫

[−2g,2g]
fdµK = lim

X→∞
(1/πgood(X))

∑
p≤X,p good

f(ap(C)/
√
p),

where we have written πgood(X) for the number of good primes up to
X.

We now explain how the truth of this baby Sato-Tate conjecture for
a given curve C/Z[1/N ] implies that

2g = limsumgood p ap(C)/
√
p.

We must show that for any real ε > 0, there are infinitely many good
primes p for which ap(C)/

√
p lies in the interval (2g−ε, 2g]. For this we

argue as follows. In any probability space, there are at most countably
many points (“atoms”) which have positive measure, cf. [Feller, page
135]. So at the expense of replacing the chosen ε by a smaller one,
we may further assume that the point 2g − ε is not an atom for the
measure µK

4. The the open set (2g− ε, 2g] has a boundary of measure
zero, and hence [Serre, Prop. 1, I-19] we may apply the integration

3“Baby” because it is the trace consequence of the “true” Sato-Tate conjecture,
which we will not go into here. See [FKRS] for a plethora of numerical evidence in
the case g = 2.

4The point 2g is never an atom for the measure µK . Indeed, the only element
of a compact subgroup K ⊂ USp(2g) with trace 2g is the identity, and this point
has positive measure in K if and only if K is finite. But if K were finite, then
equidistribution would imply that ap(C)/

√
p = 2g for infinitely many good primes

p. But the equality ap(C) = 2g
√
p holds for no p, simply because ap is an integer,

while 2g
√
p is not.
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formula above to the characteristic function of this open set. Thus we
get

µK((2g − ε, 2g] = lim
X→∞

#{p ≤ X, p good, ap(C)/
√

p > 2g − ε}
#{p ≤ X, p good}

.

But the set {k ∈ K,Trace(k) > 2g − ε} is open in K and contains the
identity, so has strictly positive mass for Haar measure; this mass is,
by definition, the µK measure of (2g − ε, 2g]. Thus we have

lim
X→∞

#{p ≤ X, p good, ap(C)/
√

p > 2g − ε}
#{p ≤ X, p good}

> 0,

and hence there are infinitely many good p for which ap(C)/
√
p >

2g − ε5.

4. Integrality consequences

For any compact subgroup K ⊂ USp(2g), the moments Mn,K :=∫
[−2g,2g] x

ndµK , n ≥ 0, of the measure µK are nonnegative integers.

Indeed, the n’th moment Mn,K is the integral
∫
K

(Trace(k))ndµHaar,K ,
which is the multiplicity of the trivial representation 1 in the n’th
tensor power std⊗n2g of the given 2g-dimensional representation std2g
of K. So the baby Sato-Tate conjecture predicts that for our curve
C/Z[1/N ], for each integer n ≥ 0, the sums

(1/πgood(X))
∑

p≤X,p good

(ap(C)/
√
p)n

not only have a limit as X → ∞, but also that this limit is a non-
negative integer. Indeed, the baby Sato-Tate conjecture for C/Z[1/N ]
holds with a specified compact subgroup K ⊂ USp(2g) if an only if6

the above limit exist for each n ≥ 0 and is equal to the n’th moment
Mn,K .

5If we keep our original ε, and allow the possibility that 2g − ε is an atom, we
can argue as follows. We take a continuous function f with values in [0, 1] which is
1 on the interval [2g − ε/2, 2g] and which is 0 in [−2g, 2g − ε]. Then we have the
inequality

lim inf
X→∞

#{p ≤ X, p good, ap(C)/
√

p > 2g − ε}
#{p ≤ X, p good}

≥

≥
∫
[−2g,2g]

fdµK ≥
∫
(2g−ε/2, 2g]

fdµK = µK((2g − ε/2, 2g]) > 0

and we conclude as above.
6On a closed interval, a Borel probability measure is determined by its moments.
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5. Some test cases

There is a conjectural recipe for the compact subgroup K ⊂ USp(2g)
attached to a given C/Z[1/N ] in terms of the `-adic representation of
Gal(Q/Q) on the `-adic Tate module of the Jacobian of C/Z[1/N ]. We
will not go into that recipe here, except to say that it predicts that we
will have K = USp(2g) precisely when this `-adic representation has
an open image in the group GSp(2g,Q`) of symplectic similitudes. A
marvelous theorem [Zarhin] of Zarhin asserts that this is the case for
any hyperelliptic curve y2 = h(x) with h(x) ∈ Q[x] a polynomial of
degree n ≥ 5 whose Galois group over Q is either the alternating group
An or the full symmetric group Sn.

When K = USp(2g), all the odd moments vanish, and one knows
exact formulas for the first few even moments: M0,USp(2g) = 1, and for
0 < 2k ≤ 2g one has

M2k,USp(2g) = 1× 3× ...× (2k − 1).

By a theorem of Schur, the truncated exponential series en(x) :=∑
0≤k≤n x

k/k! has Galois group An if 4 divides n, and Sn otherwise,
cf. [Coleman] for a beautiful exposition of Schur’s theorem. Moreover,
Coleman shows that the discriminant of en(x) is (−1)n(n−1)/2(n!)n, so
the only bad primes for y2 = en(x), whose genus is Floor((n−1)/2), are
those p ≤ n. By a theorem of Osada [Osada, Cor. 3], the galois group
of hn(x) := xn − x− 1 is Sn. The discriminant of hn(x) has much less
regular behavior. It grows very rapidly, and often is divisible by huge
primes7. So the bad primes for y2 = hn(x), of genus Floor((n− 1)/2),
are somewhat erratic. In any case, for either of these curves, the baby
Sato-Tate conjecture predicts that the sums

(1/πgood(X))
∑

p≤X,p good

(ap(C)/
√
p)d

tend to 0 for d odd, and for d = 2k ≤ 2g tend to

M2k,USp(2g) = 1× 3× ...× (2k − 1).

There is no integer n ≥ 5 for which either of these statements is
known, either for Schur’s curve y2 = en(x) or for Osada’s curve y2 =
hn(x).

Another striking but unknown consequence of baby Sato-Tate for
these curves is this. Because the group USp(2g) contains the scalar −1,
the measure µUSp(2g) on [−2g, 2g] is invariant under x 7→ −x. So for

7For example, with n = 17, the discriminant is the prime
808793517812627212561, for n = 22 the prime factorization of the discrimi-
nant is 5× 69454092876521107983605569601.
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these two curves, the sets {good p, ap(C) > 0} and {good p, ap(C) < 0}
should8each have Dirichlet density 1/2.

Much remains to be done.
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