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409-01

TRAVAUX DE DWORK

par Nicholas KATZ

Seminaire BOURBAKI

24e annee, 1971/72, n° 409 Fevrier 1972

Introduction.

This talk is devoted to a part of Dwork’s work on the variation of the

zeta function of a variety over a finite field, as the variety moves through

a family. Recall that for a single variety V/lF , its zeta function is

the formal series in t

Zeta(V/:IF ; ;t) = exp(03A3 tn n (# of points on V rational over lF 

q 
) .

As a power series it has coefficients in 2Z , and in fact it is a rational

function of t ~4~. We shall generally view it as a rational function of a

p-adic variable.

Suppose now we consider a one parameter family of varieties, i.e.

a variety V/JF [B1 . For each integer n ~ 1 and each point 03BBo ~ IFpn,

the fibre 
pn 

has a zeta function Zeta(V(03BB
o
)/IF 

pU 
;t). We want to

understand how this rational function of t varies when we vary h in the

algebraic closure of IF . Ideally, we might wish a "formula", of a p-adic
P

sort, for, say, one of the reciprocal zeroes of Zeta A natural

sort of "formula" would be a p-adic power series a(x) = 03A3 a n x with

coefficients 
p 

tending to zero, with the property :

for every n > 1 and for every B o E IF pn , let Xo E the algebraic

closure of Q 
p 

be the unique quantity lying over B 
o 

which satisfies

is a reciprocal zero of i.e., the numerator of
° 

P n-1

is divisible by (1 - )t).



Now it is unreasonable to expect such a formula unless we can at least

describe a priori which reciprocal zero it’s a formula for ! If, for example,

we knew a priori that one and only one of the reciprocal zeroes were a

p-adic unit, then we might reasonably hope for a formula for it. If, on the

other hand, we knew a priori that precisely v >_ 2 of the reciprocal zeroes

were p-adic units, we oughtn’t hope to single one out ; we could expect at

best that we could describe the polynomial of degree V which has those

v as its reciprocal zeroes. For instance, we might hope for a V X V matrix

A(X) with entries in Zp [[x]] , their coefficients tending to zero, so that

for each À E F , , the characteristic polynomial
n

is the above polynomial.

In another optic, zeta functions come from cohomology, and to study

their variation we should study the variation of cohomology. As Dwork

discovered in 1961-63 in his study of families of hypersurfaces, their

cohomology is quite rigid p-adically, forming a sort of structure on the base

now called an F-crystal. Thanks to crystalline cohomology, we now know that

this is a general phenomenon (cf. pt. 7 for a more precise statement). The

relation with the "formula" viewpoint is this : a formula a(x) for one root

is sub-F-crystal of rank 1, a formula A(x) for the v roots "at once" is

a sub-F-crystal of rank v .

So in fact this expose is about some of Dwork’s recent work on variation

of F-crystals, from the point of view of p-adic analysis. Due to space

limitations, we have systematically suppressed the Monsky-Washnitzer "over-

convergent" point of view in favor of the simpler but less rich "Krasner-

analytic" or "rigid analytic" one (but cf. [16]). Among the casualties are

Dwork’s work on "excellent Liftings of Frobenius", and on the p-adic use of the

Picard-Lefschetz formula, both of which are entirely omitted.



1. F-crystals (~1~,~2~).

In down-to-earth terms, an F-crystal is a differential equation on

which a "Frobenius" operates. Let us make this precise.

(1.0) Let k be a perfect field of characteristic p > 0 , W(k) its

Witt vectors, and S = Spec(A) a smooth affine W(k)-scheme. For each n >_ 0 ,

we put Sn 
= 

an affine smooth V n (k)-scheme, and for n = oo we

put S~ - the p-adic completion of S = Spec(lim A/p A). (Function theoreti-

cally, A‘~ - lim is the ring of those rigid analytic functions of

norm _ 1 on the rigid analytic space underlying S which are defined over

W(k) ). For any affine W(k)-scheme T and any k-morphism f o : To - S o ,

there exists a compatible system of V n (k)-morphisms f n : Tn 2014~ Sn with

f lifting fn (because T is affine and S smooth), or, equivalently, a

W(k)-morphism f : T~’ -~ S°° lifting f o . Of course, there is in general

no unicity in the lifting f .

In particular, noting by j the Frobenius automorphism of W(k),

there exists a o-linear endomorphism cp of S which lifts the p’th power

endomorphism of S o . The interplay between and c~ is given by :

Lemma 1.I. (Tate-Monsky [.24], [27]). Denote by  the completion of the

algebraic closure of the fraction field K of W(k) , and by (9~ its ring

of integers.

I.I.I. The successive inclusions between the sets below are all bijections

a) the C-valued points of S (as W(k)-scheme)

b) the continuous W(k)-homomorphisms A -> (~~
c ) " " A~ --~ ~

d) the closed points of S~ ® ~ . .



1.1.2. Every k-valued point e of S lifts uniquely to a W(k)-valued

point e of S°° which verifies c~ o e = e o j . In fact, for any isometric

extension 8 of 6 to C , e is the unique C-valued point of S which

lifts eo and verifies cp~ e 
= eo Q . The point e is called the

Cp-Teichmuller representative of e . The Teichmuller points of S (-valued

points e satisfying c~o e 
= eo 5) are in bijective correspondence with

the points of S with values in the algebraic closure k of k , and all

take values in W(k).

(1.2) Let H be a locally free S~-module of finite rank, with an integrable

connection V (for the continuous derivations of S~/W(k)) which is nilpotent.

This means that for any continuous derivation D of which is

p-adically topologically nilpotent as additive endomorphism of A , the

additive endomorphism V(D) of H is also p-adically topologically nilpotent.

For any affine W(k)-scheme T which is p-adically complete, any pair of maps

which are congruent modulo a divided-power ideal of T ((p), for example), the

connection V provides an isomorphism

This isomorphism satisfies

f

The universal example of such a situation T ~ S~ is provided by
g



the "closed divided power neighborhood of the diagonal" P.D,-p(S~), with its

two projections to S~ . . When, for examples, S is etale over(k) , 
is the spectrum of the ring of convergent divided power series over A~ in n

indeterminates, the formal expressions

whose coefficients a.. are elements of A which tend to zero (in

the p-adic topology of A CO ).

f

Any situation T ~ S 
~ 

of the type envisioned above can be

g
factored uniquely

’". 

and we have

In fact, giving the isomorphism subject to a cocycle

condition, is equivalent to giving the nilpotent integrable connection V .

(1.3) We may now define an F-crystal H = (H,V,F) as consisting of :

(1) a "differential equation" (H,V) as above

(2) for every lifting cp : S~ --! S~ of Frobenius, a horizontal

morphism

which becomes an isomorphism upon tensoring with Q .

For different liftings ~2 , , we require the commutativity of

the diagram below. (compare [11], section 5 and [12], section 2)



(1.4) Given a k-valued point e of So’ , let cp, and 03C62 be two liftings

of Frobenius, and e- and e- the corresponding Teichmuller representatives.
~ ~

By inverse image, we obtain two F-crystals on W(k) , and

~ ~
which are explicitly isomorphic

We thus obtain an F-crystal on W(k) (a free W(k)-module of finite rank

together with a (j-linear endomorphism which is an isomorphism over K) which

depends only on the point eo of So . . In case k is a finite field 1F 

n , 
,

then for every multiple, m , of n , the m-th iterate of the 03C3-linear

endomorphism is linear over W(IFpm). Its characteristic polynomial det(1 - IF)

is denoted

2. F-crystals over W(k) and their Newton polygons [19].

Theorem 2.(Manin-Dieudonné). Let (H,F) be an F-crystal over h/(k), and

suppose k algebraically closed.

2.1. H admits an increasing finite filtration of F-stable sub-modules



whose associated graded is free, with the following property. There exists

a sequence of rational numbers in "lowest terms"

such that

2.1.1. (Hi/Hi-1) ® K admits a K-base of vectors x which satisfy

Fni(x) = and its dimension is a multiple of n..

2.1.2. If a /n = 0 , then H itself admits a W(k) base of elements

x satisfying Fx = x , F is topologically nilpotent on H/H , and the

rank of H is equal to the stable rank of the p-linear endomorphism of

the k-space H/pH induced by F ; Ho is then called the "unit root part" of

H , or the "slope zero" part.

2.1.3. If (H,F) is deduced by extension of scalars from an F-cr stal

QHJF) over W(k ) , k a perfect subfield of k ~ then the filtration

descends to an IF-stable filtration of TH . In case k is a finite field

F 
, 

the eigenvalues of F on the i’th associated graded have p-adic
p
ordinal na./n..
20142014201420142014~ i i

2.2. The rational numbers a./n. are called the slopes of the F-crystal,

and the ranks of H./H. 1 are called the multiplicities of the slopes.

The slopes and their multiplicities characterize the F-crystal up to isogeny.



It is convenient to assemble the slopes and their multiplicities

in the Newton polygon

When (H,F) comes by extension of scalars from (IH,TF) over W(TF ), this

P
Newton polygon is the "usual" Newton polygon of the characteristic polynomial

P(jH;e ,IF P~ ,t), calculated with the ordinal function normalized by ord(p ) = 1 .

3. Local Results; F-crystals on W(k)frt ....t ]].

(3.0) The completion of S along a k-valued point e 
o 

of S 
0 

is (non-canoni-

cally) isomorphic to the spectrum of W(k)[[t..,...,t ]]. In this optic, the

set of W(k)-valued points of S lying over e 
o 

becomes the n-fold

product of pW(k) , and the set of OC-valued points of S lying over e
becomes the n-fold product of the maximal ideal of the values of

By inverse image, any F-crystal on S gives an F-crystal

on W(k)[[t...... ,t ]] . .



Proposition 3.1. Let (H,V,F) be an F-crystal over 

3.1.1. Let denote the ring of convergent divided

power series over W(k) (cf. 1,2 ). Then H ~ W(k) «t1,...,tn»

admets a b asis of horizontal (for V) sections.

3.1.2. Let K~~tl,...,tn~~ denote the ring of power series over K

which are convergent in the open polydisc of radius one (i.e.

series E a.. t....t i n such that for every real number

0 S r  1, Ir tends to zero). Then

H admits a basis of horizontal sections.

3.1.3. ,Every horizontal section of H ® W(k} «tl, " , , tn» 
’

fixed by F "extends" to a horizontal section of H (i.e. over

all of 

Proof: 3.1.1. is completely formal : the two homomorphisms

f,g : --~ W(k) «tl,...,tn» given by

f = natural inclusion, g = evaluation e at (0,...,0), followed

by the inclusion of W(k) in are congruent

modulo the divided power ideal (tl,...tn) of the p-adically

complete ring W(k)«tl,...,tn». Thus x(f,g) is an isomorphism

between H ® W(k)«tl,...,tn» with its induced connection and

the "constant" module H(0, ...,0} ~(k}W(k)«tl, , , , , tn» with

connection 1 @ d,

3.1.2. is more subtle. Let’s choose a particularly simple cp (as we

may using 1.3.1), the one which sends ti -> tl, i=l,...,n , and
is a-linear. Choose a basis of the free W(k)[[tl,...,tn]] module H ,

and let A denote the matrix of



--~ H. Denote by Y the matrix with entries in

W(k)«tl,...,tn» whose columns are a basis of horizontal sections

of H ® W(k)«tl,...,tn~> (a "fundamental solution matrix") ;

in the notation of (2) above,it’s the matrix of X(g,f). Because

is horizontal, we have the matricial relation

We must deduce that Y converges in the open unit polydisc.We know

this is true of A , as it even has coefficients in

W(k)[[t ,...,t ]]. Since A (0,...,0) is invertible over K by

definition of an F-crystal, we conclude that for any real number

0 ~ r  1, we have the implication

cp(Y) converges in the polydisc of radius r ===~ Y converges in

the polydisc of radius r . 

On the other hand, writing Y = E Y.. , , we have

= E a(Yi, " , , in) ti pil .. , ti pln 1 , whence for any real r ~ 0 ,’ i n 1 i n
we have the implication

Y converges in the polydisc of radius r ~ cp(Y) converges in

the polydisc of radius 

Since Y has entri.es in ,..., tn» , it converges

in the polydisc of radius r - , hence, iterating our two

implications, in the polydisc of radius r1/pno 
n 

for every n ;

as 1, we are done.

3.1.3. is similar to 3.1.2, only easier. If y is a column vector

with entries in W(k)«tl,...,tn» satisfying



then for every integer m ~ 1 we have

Since is congruent to modulo 

we have a limit formula for y

which shows that y has entries in 

Q.E.D.

Remark 3.2. 3.1.2 shows that "most" differential equations do not

admit any structure of F-crystal. For example, the differential equation
n

for exp(tp) is nilpotent provided n ~ 1, but its local solutions

around any point a E 0 converge only in the disc of radius

. 

lll

The meaning of 3,1.2 is this : for any two points el,e2 of

S~ with values in 0 Q which are sufficiently near (congruent modulo

p , the connection provides an explicit isomorphism of the two

@ -modules e*1(H) and If the two points are further apart,

but still congruent modulo the maximal ideal 3.1.2

says the connection still gives an explicit isomorphism of the

(-vector spaces 0 E and e~(ll) ~ ~ .



4. Global results : gluing together the "unit root" arts thm 4.1)

(4.0) Given an F-crystal H = (H,V,F) and an integer n z 0,

we denote by H(-n) the F-crystal (H,V,p n F). An F-crystal of the

form H(-n) necessarily has all its slopes ~ n , though the converse

need not be true.

Theorem 4.1. Suppose k algebraically closed, and H an F-crystal on

S such that at every k- valued point of S, its Newton polygon begins

with a side of slope zero , always of the same length v z 1

(i.e., point by point, the unit root part has rank ~). Suppose

further that there exists a locally free submodule Fil c H such

that H/Fil is locally free of rank B’ , , and such that for every lifting

Cp of Frobenius, we have

F() c p H .

Then there exists a sub-crystal U ~ H , of rank v , whose underlying

module U is transversal to Fil (H = U 0 Fil) such that

4.1.1. F is an isomorphism on U .

4.1.2. The connection V on U prolongs to a stratification.

4.1.3. The quotient F-crystal H/U is of the form V(-1).

4.1.4. The extension of F-crystals 0 -~ U ~ H -~ H/U ~ 0

splits when pulled back to W(k) along any

W(k)-valued point of S 00 .

4.1.5. If the situation (H, Fil) on S /W(k) comes by

extension of scalars from a situation (H, Fi1) on

~ /W(k ), k a perfect subfield of k, the F-crystal

U descends to an F-cr stal y on S ’/W(k ) 0



Proof. We may assume Fil, H and H/Fil are free, say of ranks

r-v, r and v . In terms of a basis of H adopted to the filtration

Fil c H , the matrix of for some fixed choice of cp is

of the form

The hypothesis that there be v unit root point by point means D

is invertible. Let’s begin by finding for a free submodule UCH

which is transversal to Fil and stable by This means

finding an r-v X v matrix , such that the submodule of H spanned

by the colums of

(I denoting the V X v identity matrix) is stable under 

But

so that F-stability of I 
is equivalent to having

or equivalently (D being invertible) that ~ satisfy



Because the endomorphism of r-VXV matrices given by

00

is a contraction mapping in the p-adic topology of A , it has a

unique fixed point.

In order to prove that U is horizontal, it suffices to do

so over the completion of S along any closed point e 
o 

of S 
o 

.

Let e be the 03C6-Teichmuller point of S~ with values in W(k)

lying over e 
o 

. By hypothesis, e*(H) contains B; fixed points

of which span a direct factor of e*(H), which is necessarily

transverse to By 3.1.3, these fixed points extend to horizontal

sections over which span a direct

factor of H(e), still transversal to Fil(e). Write these sections

as column vectors :

By’transversality we have 81 invertible. The fixed-point property is

or equivalently



Let’s = 82-81 -1 ; we have

so ~ satisfies )4 = (pAc~’(~t) + C) ~ (1+pD lBcp~(I~)) 1D 1 ,

Since the endomorphism of v(W(k)~~tl,...,tn~~) defined by 4.1.7 is

still a contraction mapping in its p-adic topology, it follows that ~

is its unique fixed point, and hence that ~ is the power series expansion

of our global fixed point ~ near e o . This proves that

4.1.8. the inverse image U(e) of U over W(k)[[t1,...,tn]] is the

module spanned by the horizontal fixed points of in H(e) . Hence

U(e) is horizontal, and stratified, which proves 4.1.2.

4.1.9. The matrices ~ = S2sî1 and S 1 cp#(S 1 1) with entries in

JLi are the local expansion of the global matrices 1~

and + D respectively. This is an example of analytic continuation

par excellence.

To see that U is F-stable, notice that once we know it’s

horizontal, it suffices for it to be for one choice of cp (as

it is), thanks to 1.3.1. In terms of the new base of H , adopted to

H = FilaeU , the matrix of F(q3) is



which proves 4.1.1 and 4.1.3. That 4.1.5 holds is clear from the

"rational" way 11 was determined.

It remains to prove 4.1.4. The matrix of F in M (W(k))
looks like

in a base adopted to H = Fil ~ U , with d invertible. It’s again a

fixed point problem, this time to find 
a 

matrix E E M ’ so

that the span of the column vectors .pE is F-stab1e. But

so F-stability is equivalent to the equation

Thus E must be a fixed point of E --~ Q 

which is again a contraction of Mv r-v(W(k)) , . Q.E.D.



5. Hodge F-crystals (~20~)

5.0. A Hodge F-crystal is an F-crystal (H,B7, F) together with

a finite decreasing "Hodge filtration" H = ... by

locally free sub-modules with locally free quotients, subject to the

transversality condition

Its Hodge numbers are the integers rank 

A Hodge F-crystal is called divisible if for some lifting

tp of Frobenius, we have

It is rather striking that if p is sufficiently large that Fil = 0 ,

then 5.0.2 will hold for every choice of 03C6 if it holds for one.

[To see this, one uses the explicit formula (1.3.1) for the variation

of with ~ , , transversality (5.0.1), and the fact that the function

f(n) = ord(pn/n! ) satisfies f (n) ~ inf(n, p-1) for n ~ 1 .]

The Hodge polygon assosciated to the Hodge numbers hO, hl,...
is the polygon which has slope V with multiplicity hV : :



By looking at the first slopes of all exterior powers, one sees:

Lemma 5.1. The Newton polygon of a divisible Hodge F-crystal is always

above (in the (x, y) lane) its Hodge polygon.

5.2. A Hodge F-crystal is called autodual of weight N if H is

given a horizontal autoduality  , > : H Q9 H such that

5.2.1 the Hodge filtration is self-dual, meaning = 

,

5.2.2 F is pN-symplectic, meaning that for x, y ~ H , and any

lif,~ ting tp , we have F(cp) (c~y)> = y> ) , .

The Newton polygon of an autodual Hodge F-crystal of weight N

is symmetric, in the sense that its slopes are rational numbers in [0, N]

such that the slopes a and N-a occur with the same multiplicity.

As an immediate corollary of 4.1, we get

Corollary 5.3. Let (H,~j, F, Fil,  , >) be an autodual divisible

Hodge F-crystal, whose Newton polygon over every closed point of So
has slope zero with multiplicity ho . . Then H admits a three-step



filtration

with:

5.3.1. U the "unit root" part of H , , from 4.1.

5.3.2. is of the form V~(-N) , , where V~ is a unit-root

F-crvstal (its F is an isomorphism).

5.3.3. JL(U)/U is of the form Hl(-l) , where H1 is an autodual

divisible Hodge F-crystal of weight N-2 .

Similarly, we have

Corollary 5.4. S_ uppo,se (H,~ , F, Fil) ,is a Hodge F-crystal whose

Newton polygon coincides with its Hodge polygon over every closed point

of S . Then H admits a finite increasing filtration

such that

5.4.1. Ui/Ui+1 is of the form Vi(-i) , with unit-root F-prystal

( F an isomorphism)

5.4.2. the filtration is transverse to the Hodge filtration:

H = .

5.4.3. if (H,~, F, Fil) admits an autoduality of weight N , the

filtration by the Ui is autodual : 
= 

UN-1_i ’



Remark 5.5. F-crystals and p-adic representations.

The category of "unit-root" F-crystals on S~ (F an iso-

morphism), such as the V, occurring in 5.4, is equivalent to the
i

category of continuous representations of the fundamental group 03C01(So)

on free Z£ -modules of finite rank (I,e., to the category of "constant
P

tordu" £tale p-adic sheaves on S ).
o

[Given H and a choice of O , , one shows successively that for each

n k 0 , there exists a finite étale covering T of S over which
n n

admits a basis of fixed points of F(O).o* . The fixed points

form a free ZZ/pn+1ZZ module of rank = rank (H) ,on which Aut(T_ /S ) ,
n n

hence 03C01(Sn) * acts. For n variable, these representations fit

together to give the desired p-adic representation of . This

construction is inverse to the natural functor from constant tordu p-adic

£tale sheaves on S to F-crystals on with F invertible].
o

6. A conjecture on the L-function of an F-crystal.

6.0. Suppose H is an F-crystal on . Denote by £~ 

q n

the points of S with values in :IF n which are of degree precisely n
o q

over IF . The L-function of H is the formal power series in
q 

~

l + tV( lF )[[t]] defined by the infinite product (cf. [13], [26])
q

When H is a unit root F-crystal, its L-function is the L-function



associated to the corresponding etale p-adic sheaf (cf. ~13~, [26J).

Conjecture 6.1. (cf.[8], [13])

6.1.1. L(H; t) is p-adically meromorphic.

6.1.2. if H is a unit root F-crystal, denote by M the corresponding

p-adic etale sheaf on S , and by H (M) the etale cohomology groups

with compact supports of the geometric fibre S = So q 
with

coefficients in M . These are S 
P 
-modules of finite rank, zero for

i > dim S , on which acts. Let f denote

the inverse of the automorphism x > xq . . Then the function

has neither zero nor pole on the circle It I = 1 .

Remarks 6.1.1. is (only) known in cases where the F-crystal H on S

"extends" to the Washnitzer-Monsky weak completion S of S ([23]) ,

in which case it follows from the Dwork-Reich-Monsky fixed point formula

([4], [25], [24]). Unfortunately, such cases are as yet relatively rare

(but cf. [10] for a non-obvious example). It is known ([12a]) that when

So then L(H; t) is meromorphic in the closed disc 1 .

The extension to general S of this result should be possible by the

methods of ([25]); it would at least make the second part 6.1.2 of the

conjecture meaningful. As for 6.1.2 itself, it doesn’t seem to be known

for any non-constant M . Even for M = ZZp , when L = zeta of S ,

6.1.2 has only been checked for curves and abelian varieties.



7. F-crystals from geometry ( (1 ~, ~2 ~)
00

Let f : X --~ S be a proper and smooth morphism, with

geometrically connected fibres, whose de Rham cohomology is locally free

(to avoid derived categories!). Crystalline cohomology tells us that for

each integer i ~ 0 > the de Rham cohomology H1 = Rlf.~.(~ / S~) with its

Gauss-Manin connection ~ is the underlying differential equation of an

F-crystal H i on S 
°° 

. When k is finite, say lF , then for every point

e of S with values in lF n , 3 the inverse image X of X over e
o o q 

° 

e o 0

is a variety over IFqn , 3 and its zeta function is given by (cf. 1.4)

00

If in addition we suppose that the Hodge cohomology of X/S is locally free,

and that X/S is projective, then according to Mazur [20], the Hodge

F-crystal H is divisible, provided that p > i

For every p and i we have c:p H , and the p-linear

endomorphism of = 

o

(f : X > S denoting the "reduction modulo p " of f : X 2014> 

is the classical Hasse-Witt operation, deduced from the p’th power endo-

morphism of @~ X . Thus if Hasse-Witt is invertible, we may apply 4.1 to

o .. ~ 1
the situation H~ , 

When is a smooth hypersurface in of degree prime

to p which satisfies a mild technical hypothesis of being "in general

position" , Dwork gives ([5], [7]) an a priori description of an



00

F-crystal on S whose underlying differential equation is (the primitive

part of with its Gauss-Manin connection, and whose characteristic

polynomial is the "interesting factor" in the zeta function ([14]).

The identification of Dwork’s F with the crystalline F follows from

[14] and (as yet unpublished) work of Berthelot and Meredith (c.f. the

Introduction to [2]) relating the crystalline and Monsky-Washnitzer theories

([23], [24]). Dwork’s F-crystal is isogenous to a divisible one for

every prime p ( ~7 ~, lemma 7.2).



8. Local study of ordinary curves : Dwork’s period matrix T ([11])

7.0. Let f : X be a proper smooth curve

of genus 1 . It’s crystalline H is an autodual (cup-product)

divisible Hodge F-crystal of weight 1. We assume that it is ordinary,

in the sense that modulo p its Hasse-Witt matrix is invertible, or

equivalently that its Newton polygon is

(this means geometrically that the jacobian of the special fibre has

pg points of order p). Let’s also suppose k algebraically closed,

and denote by e the homomorphisme "evaluation at

(0,...,0)": ...,t ]] ----~ W(k) . By 2.1.2 and 4.14 ,
e*(H1) admits a symplectic base of F-eigenvectors

By 3,1.2, this base is the value at (0,...,0) of a horizontal base

of ~~~~l’°°°’ ~n~~’ which ~~ continue to note ~l ’°°°’~g ’
03B21,...,03B2g . F°r each Choice Of lifting o , We have



According to 3.1.3, the sections extend to horizontal

sections over ’’all’’ of Hl, where they span the submodule U of

4.1; in general the ~i do not extend to all of H

We now wish to express the position of the Hodge filtration

Fill c: H in terms of the horizontal "frame" provided by the and

S.. Since H1 - U (B Fill is a decomposition of H1 in submodules

isotropic for , > , there is a base 03C91,...,03C9g of Fill dual

to the base of U.

In H ~ K~~tl,.,.,tn~~ , the differences 

orthogonal to U , hence lie in U :

The matrix T = (T..) is Dwork’s "period matrix" ; it has entries in

W(k) Differentiating 7.0.4 via the

Gauss-Manin connection, we see :

Lemma 7.1. T is an indefinite integral of the matrix of the

mapping "cup-product with the Kodaira-Spencer class" : for every

continuous W(k)-derivation D of D(T) is

the matrix of the composite



expressed in the dual bases ~ , 1 " , ,~ g and 0.1, ...,(1 .

Lemma 7.2. For any lifting cp of Frobenius, we have the following

congruences on the ~i~ : i

Proof. Applying to the defining equation (7.0.4), we get

Subtracting p times(7.0.4),we are left with

Since the left side lies in we get

To prove that T.(0,...,0) E pW(k), choose a lifting (p

which preserves (0,...,0), for instance, = t p for i = 1,..,n,

and evaluate (7.21 ) at (0,...,0) :

which implies T..(0, ... ,0) E p W ( k) !



7.3. According to a criterion of Dieudonné and Dwork (~3~), these

congruences for p 9~ 2 imply that the formal series

lie in and have constant terms in 1 + pW(k).

(When p = 2 , we cannot define q.. unless Tij has constant term = 0 (4),
in which case we would again have the in W(k)[[t-, ...,t ]]).

It is expected that the g2 principal units q.. in

W(k)[[t.,,...,t ’]] are the Serre-Tate parameters of the particular

lifting to of the jacobian of the special fibre

of X given by the jacobian of X/W(k)[[tl,...,tn]] (cf. [18], [22]).

This seems quite reasonable, because over the ring of ordinary

divided power series W(k) tl,...,tn> , p#2 , such liftings are

known to the parameterized by the postion of the Hodge filtration,

([21]), which is precisely what (T..) is.

Proposition 7.4. The following conditions are equivalent

7.4.1. The Gauss-Manin connection on H extends to a stratification

(i.e. horizontal section of extend to

horizontal sections of HI)

7.4.2. Every horizontal section of ...,t )) is bounded in the

open unit polydisc (i.e, liesin p-mH1 for some m).

7.4.3. The Tij are all bounded in the open unit polydisc (i.e., lie

in for some m).



7.4.4. The T~ all lie in W(k)[[t~...~]].

7.4.5. The T.. all lie in 

Proof. Using the congruences 7.2, we get 7.4.3 ~=~ 7.4.4 $=~ 7.4.5, by

choosing for 03C6 the lifting = t? for i = 1, ...,n. By 7.0.4,

7.4.1 ~=~ 7.4.4 and 7.4.2 ~ 7.4.3.

QED.

Corollary 7.5. Suppose is an elliptic curve with ordinary

special fibre, and that the induced curve over k~t]/(t ) is non-constant.

Then every horizontal section of II is a W(k)-multiple of a-, ,

the horizontal fixed point of F in H

Proof. The non-constancy modulo (p,t ) means precisely that the Kodaira-

Spencer class in . -, , 
T) is non-zero, which for an elliptic

curve is equivalent to the non-vanishing modulo (p,t) of the composite

mapping :

whose matrix is -:2014 . Thus 2014r2014 ~ (p,t), and hence by 7.4 there exists

an unbounded horizontal section of Writing it a

a a1 + b ~l K, we must have b * 0 because a1 is bounded.

Hence Sl is unbounded, hence any bounded horizontal section is a

K-multiple of , and = W(k)a1 .

The interest of this corollary is that it describes the

filtration U purely in terms of the differential equation (i.e.,

without reference to F) as being the span of the horizontal sections

of Hl (the "bounded solutions" of the differential equation).

(cf. [_9], pt. 4 where this is worked out in great detail for



Legendre’s family of elliptic curves]. The general question of when

the filtration by slopes can be described in terms of growth conditions

to be imposed on the horizontal sections of Hl@ K~~t~~ is not at

all understand.



8. An example (~6~, ~10~). Let’s see what all this means in a concrete

case . the ordinary part of Legendre’s family of elliptic curves. We take

p # 2, the polynomial 03A3(-1)j ( p-1 2 j ) 03BBj of degree p-1/2,

S the smooth ?L p-scheme and X/S

the Legendre curve whose affine equation is y2 - 
The De Rham Hl is free of rank 2, on wand w’, where

w is the class of the differential of the first

kind dx/y

8.0

cu’ _ ~( d ) (u,~ ) .

The Gauss-Manin connection is specified by the relation

The Hodge filtration is H1~Fil1 ~ H1 = span of w . The cup-product is

given by ~tu,w> _ cu’ ,w’> = 0 ; bj,.u’> = -tu’ ,w> _ -2/~(1-~) .

Horizontal sections are those of the form 

where f is a solution of the ordinary differential equation ( ’= -.2014)

For any point a e V(lE’ ) for which )H(a),a.(I-cL)(*I
q

we know by 7.5 and 4,I that the V(1F )-module of solutions in
q

IU(1F )[[t-a]] of the differential equation 9.2 is free of rank one, and
q

is generated by a solution whose constant term is I. Denote this

solution f . According to 4,1.9, the ratis f’/f is the local
a a a

expression of a "global" funntion q e the p-adic completion of

R Now choose a lifting 03C6 of Frobenius, say the
P

one with 03C6*(03BB) = 03BBp . For each Teichmuller point a , there exists

a unit C in IU(lF), such that the function C f f ) is the
G q a a a a

local expression of the I x I matrix of on the rank one module U.
.-

(*) H(x) modulo p is the Hasse invariant = I x I Hasse-Witt matrix.



This is just the spelling out of 4.1.9, the constant Ca so chosen

as to make C03B1f03B1 a fixed point of F. In terms of this matrix,

call it a(X), we have a formula for zeta :

For each ao E 1F n 
such that y2 - X(X-1)(X-ao) is the

affine equation of an ordinary elliptic curve Ea , , denote by
0

a ~ W(IF pn) its Teichmuller representative. The unit root of the

numerator of Zeta (Ea 
0 

is

This formula, known to Dwork by a completely different approach in 1957,

([6]) was the starting point of his application of p-adic analysis

to zeta t
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