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A SIMPLE ALGORITHM FOR CYCLIC VECTORS 


Statement of Results. Let R be a commutative ring with unit, 
a :R -t R a derivation of R to itself, and t E R an element with a(t)= 1. We 
denote by Ra = Ker(8) the subring of "constants." For any constant a E 

Ra, the element t + a of R also satisfies a(t + a )  = 1. 
Fix an integer iz r 1, and a triple ( V ,  D ,  Z ' )  consisting of a free 

R-module V of rank 12,  an additive mapping D :  V -t V satisfying 

for all f E R ,  v E V ,  and an R-basis Z' = (eo,. . . , el,- of V .  
An element v E V is said to be a cyclic vector for ( V ,D) if v,  Dv, . . . , 

D U p 1 ( v )is an R-basis of V; a basis of this form is called a cyclic basis. 
Suppose now that ( n  - I ) !  is invertible in R .  For each constant a E Ra,  

we define an element c(Z' , t - a )  in V by the formula 

THEOREM Suppose that R is a local Z [ l / ( n  l)!]-algebra whose 1. -

maximal ideal coiztaii?~ t - a. Then c ( Z ,  t - a )  is a cyclic vector. 

THEOREM2. Let R be a ring iiz which ( n  - I ) !  is invertible, and let k 
be a sub-field of Ra. Suppose that # ( k )  > n(iz - I ) ,  and let 00,a l ,  . . . , 

be 1 + n(iz - 1) distinct elenzeizts of k .  Then Zariski locally on 
Spec(R),  one of the vectors c ( Z ,  t - a;),0 5 i 5 n(n - I ) ,  is a cyclic 
vector. 
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Proofs. We first compute the derivatives of c ( 2 ,  t - a) .  For this, we 
introduce the elements 

c(i,,j)E V, indexed by i,,iintegers 2 0, 

defined inductively as follows: 

By definition of c ( 2 ,  t - a),  we have 

Successively applying D, we easily verify by induction on i that for i r 0 we 
have 

A straightforward induction on i +j shows that for i + . j  5 n - 1,we 
have 

and so in particular we have 

(***) c(i, 0) = e; for i = 0, 1, . . . , n - 1. 

Therefore (**) yields the congruence 

D 'c (2 ,  t - a )  ej mod ( t  - a)V, for 0 _i i 5 12 - 1, 
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from which Theorem 1 follows, by Nakayama's lemma. 
To prove Theorem 2,  we argue as follows. For 0 5 i 5 IZ  - 1 ,  and 

variable X E R ,  we define elements c i ( Z ,  X )  in V by 

In A U ( V ) ,we visibly have 

with P ( X )  the value at X of a polynomial P ( T )  E R [ T ] of degree 
5 I Z ( I Z  - 1). By (***), we have c i ( z ,  0 )  = ei, so 

At X = t - a with a constant, (**) gives 

c i ( Z ,  t  - a )  = Dic(Z ,  t  - a) .  

Therefore c ( z ,  t  - a ) is a cyclic vector if and only if P(t - a ) lies in R '. 
We must show that the ideal I in R generated by the 1 + n(lz - 1 )  

values P(t - a;)is the unit ideal. Let us write explicitly 

Then 

But for i # , j ,  the differences ( t  - a;)- ( t  - a;) = a, - ai lie in k ', so in 
R '; hence the van der Monde determinant 

lies in R '. Therefore the ideal I is equal to the ideal generated by the coef- 
ficients vo, . . . , Y,,(,,-~,of P ( X ) .But vo = P(0) = 1 .  Q.E.D.  
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Reinavks. (1) Suppose 2 = (eo,. . . ,el,- ,) is a cyclic basis to begin 
with, i.e., eo is a cyclic vector and ei = Dieo for 0 5 i 5 iz - 1. Then 
c(0, 0) = eo, and c(0, j )  = 0 f o r j  > 0. Therefore c ( 2 ,  t - a )  = eo is the 
cyclic vector we began with. 

(2) Suppose R is a field, and n 2 2. If (n - I)! is not invertible in R ,  
(V, D )  may admit no cyclic vector. For take a prime numberp, R = Fl,(t), 
a = d / d t ,  V = R u ,  D ( f l ,  . . . ,f,,)= (af,, . . . , af,,). Because dl' = 0, we 
have Dl' = 0, so (V, D )  admits no cyclic vector if p 5 iz - 1. 

(3) Suppose R is a field, iz 2 2, and (n - I)! invertible in R .  For a 
suitably chosen basis d ,  c ( d ,  t )  can vanish. Indeed, if eo is a cyclic vector, 
and if ei = D1eo for 0 Ii 5 n - 2, then 

so we can solve for el,- to force c ( 2 ,  t) = 0. 
(4) If R is a field in which (12 - I)! is invertible, and which is a finitely 

generated extension of an algebraically closed subfield k of Ra,  then we can 
use Theorem 1 to produce cyclic vectors. Notice first that for any finite 
subset S of R ,  there exists a a-stable k-subalgebra Ro of R which is finitely 
generated as a k-algebra, and which contains S (in terms of generators x l ,  
. . . ,XN of R / k ,  write each a(xi) and each s E S as a ratio of k-polynomials 
in the xi's whose denominators are nonzero in R ;  then take for Ro the 
k-subalgebra of R generated by the xi and by the inverses of the denomina- 
tors of both the a(x,) and the s E S). Given (V, D ,  d )  over R ,  we apply this 
to the set S consisting of t and of the n2 coefficients a;; of the connection 
matrix, defined by 

Over the resulting Ro, we have a canonical descent (Vo, D ,  d )  of the origi- 
nal (V, D, d )  over R .  For any k-valued point of X = Spec(Ro), we have 
ring inclusions Ro c Ox,,c R ,  and by Theorem 1 we know that c ( d ,  t -
t(x)) is a cyclic vector for Vo ORoOX,,,., -SO a fortiori c ( 2 ,  t t(x)) is a cyclic 
vector for V = VoOK(,R itself. 

(5) The heuristic which leads to considering c ( 2 ,  t) is the following. 
Suppose R = C[[t]], a = d / d t .  If ho, . . . , h ,,-, is a horizontal R-basis of 
V, i.e., an R-basis with Dh, = 0 for 0 5 i 5 n - 1, then 
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is obviously a cyclic vector. Now given any v E V, the t-adically convergent 
series (cf. [2], proof of 8.9) 

is the unique solution of 

S v mod tV,  D(S) = 0.  

Therefore if Z = (eo, . . . , el,- l)  is any R-basis of V, then (do, . . . , c?,,-~) 
is, by Nakayama's lemma, a horizontal R-basis, and consequently 

is a cyclic vector. But if v E V is a cyclic vector, then so, by Nakayama's 
lemma, is v + t"vo for any vo E V , simply because, for 0 5 i 5 n - 1, 

Di(v + tnvo)= Div mod tlZ-'V. 

Therefore in the above double sum, we may neglect all terms with.j -k 
k 2 n , to conclude that 

is a cyclic vector. But this last vector is easily seen to be c(Z,  t). 
(6) The proof of Theorem 2 also yields the following variant: If R is a 

ring in which (iz(iz - I))! is invertible, then Zariski locally on Spec(R), one 
of the vectors c ( z , t - i), 0 5 i 5 iz(n - I),  is a cyclic vector. 
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