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SERRE-TATE LOCAL MODULI 

par N. KATZ 

INTRODUCTION. It is now some sixteen years since Serre-Tate [13] disco- 

vered that over a ring in which a prime number p is nilpotent, the 

infinitesimal deformation theory of abelian varieties Is completely 

controlled by, and is indeed equivalent to, the infinitesimal deformation 

theory of their p-divisible groups. 

In the special case of a g-dimensional ordinary abelian variety 

over an algebraically closed field k of characteristic p ) 0 , they 

deduced from this general theorem a remarkable and unexpected structure 

of group on the corresponding formal moduli space ~ ; this structure 

identifies ~ with a g2-fold product of the formal multiplicative 

~m with itself. The most striking consequence of the existence group 

of a group structure on ~ is that it singles out a particular lifting 

(to some fixed artin local ring) as being "better" than any other, namely 

the lifting corresponding to the oriqin in ~ . The theory of this 

"canonical lifting" is by now fairly well understood (though by no means 

completely understood ; for example, when is the canonical lifting of 

a jacobian again a jacobian ?). 
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2 
A second consequence is the existence of g canonical coordinates 

2 
on ~ , corresponding to viewing ~ as (@m)g^ . It is natural to ask 

whether the traditional structures associated with deformation theory, 

e.g. the Kodaira-Spencer mapping, the Gauss-Manin connection on the de 

Rham cohomology of the universal deformation,.., have a particularly 

simple description when expressed in terms of these coordinates. We will 

show that this is so. In the late 1960's, Dwork (of. [3~, [47, [67) 

showed how a direct study of the F-crystal structure on the de Rham 

cohomology of the universal formal deformation of an ordinary elliptic 

curve allowed one to define a "divided-power" function "~" on ~ such 

that exp(~) existed as a "true" function on ~ , and such that this 

function exp(~) defined an isomorphism of functors ~ ~ m  " Messing 

in 1975 announced a proof that Dwork's function exp(~) coincided with 

the Serre-Tate canonical coordinate on ~ . Unfortunately he never 

published his proof. 

In the case of a g-dimensional ordinary abelian variety, Illusie 

[51 has used similar F-crystal techniques to define g2 divided-power 

functions Tij on ~ , and to show that their exponentials exp(~ij) 
2 

define an isomorphism of functors ~ ~-~ (~m)g 

In [81, we used a "uniqueness of group structure" argument to show 

that the Serre-Tate approach and the Dwork-Illusie approach both impose 

the same qroup structure on ~ . Here, we will be concerned with showing 

that the actual parameters provided by the two approaches coincide. This 

amounts to explicitly computing the Gauss-Manin connection on ~R of 

the universal deformation in terms of the Serre-Tate parameters. This 

problem in turn reduces to that of computing the Serre-Tate parameters 

of square-zero deformations of a canonical lifting in terms of the 

customary deformation-theoretic description of square-zero deformations, 

via their Kodaira-Spencer class. The main results are 3.7.1-2-3, 

4.3.1-2, 4.5.3, 6.O.1-2 
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For the sake of completeness, we have included a remarkably simple 

proof, due to Drinfeld [22, of the "general 's Serre-Tate theorem. 

TABLE OF CONTENTS 

I NTRODUCT ION 

i. DRINFELD'S PROOF OF THE SERRE-TATE THEOREM 

2. SERRE-TATE MODULI FOR ORDINARY ABELIAN VARIETIES 

3. FORMULATION OF THE MAIN THEOREM 

4. THE MAIN THEOREM : EQUIVALENT FORMS AND REDUCTION STEPS 

5. INTERLUDE : NORMALIZED COCYCLES AND THE eN-PAIRING 

6. THE END OF THE PROOF 

REFERENCES 



141 

I. DRINFELD'S PROOF OF THE SERRE-TATE THEOREM 

i.I. Consider a ring R , an integer N } 1 such that N kills R , 

and an ideal IC R which is nilpotent, say I v+l= 0 . Let us denote by 

R the ring R/I . For any functor G on the category of R-algebras, 
o 

we denote by G I the subfunctor 

GI(A) =Ker(G(A) ~ G(A/IA)) , 

and by G the subfunctor 

G(A) =Ker(G(A) ~ G(Ared)) . 

LEMMA i.i.i. I_~f G is a commutative formal Lie qroup over R , 

then the sub-qroup functor G I is killed by N v 

PROOF. In terms of coordinates XI,...,X n for G , we have 

([N~(X)) i=Nx i+ (des ~2 in X 1 ..... X n) ; 

as a point of GI(A) has coordinates in IA , and N kills R , hence 

A , we see that 

and more generally that 

12 

[N~(Gia)C G c i2a Gia+l 

for every integer a ~ 1 . As I v+l = 0 , the assertion is clear. Q.E.D. 

LEMMA 1.1.2. If G is an f.P.P.f, abe!ian sheaf over R (i.e. o__nn 

the cateqory of R-alqebras) such that G is locally representable by 

a formal Lie qroup, then N v kills G I . 

PROOF. Because I is nilpotent, we have GiC G , and hence 

GI = (G)I . The result now follows from i.i.i. Q.E.D. 

LEMMA 1.1.3. Le__~t G and H be f.p.p.f, abelian sheaves over R . 

Suppose that 
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Let G 
o 

Then 

N-torsion 

i) G i_ss N-divisible 

2) H is locally representable by a formal Lie qroup 

3) H is formally smooth. 

, H denote the inverse images of G , H on R = R/I . 
o -- o 

i) the groups HOmR_gp(G,H) and HOmRo_gp(Go,H o) have no 

2) the natural map "reduction mod I" 

Hom(G,H) ~ Hom(G ,H ) 
o o 

is inject~ve 

: G ~ H there exists a unique 3) for any homomorphism fo o o ' 

homomorphism "N~f '' : G ~ H which lifts N~fo 

: G ~ H lift to a 4) In order that a homomorphism fo o o 

(necessarily unique) homomorphism f : G ~ H , it is necessary and suffi- 

cient that the homomorphism "N~f" : G ~ H annihilate the sub-qroup 

N ~ 
GIN ~] =Ker(G ~ G) o_~f G . 

PROOF. The first assertion i) results from the fact that G , and 

so G , are N-divisible. For the second assertion, notice that the 
o 

kernel of the map involved is Hom(G,H I) , which vanishes because G is 

N-divisible while, by 1.1.2, H I is killed by N ~ . For the third asser- 

tion, we will simply write down a canonical lifting of NVfo (it's 

unicit~ results from part 2) above). The construction is, for any 

R-algebra A , the following : 

,,N~f,, 
G(A) ....... ->H(A) 

~ o d  I / ~ ×  (any lifting) 

f 
G(A/IA) o ~ H(A/IA) 

the final oblique homomorphism 

N ~ H(A/IA) × (an[ liftin~)~ H(A) 
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is defined (because by assumption H(A) -+~ H(A/IA)) and well-defined 

(because the indeterminacy in a lifting lies in HI(A) , a group which 

by 1.1.2 is killed by NV). For 4), notice that if f lifts to f , 
O 

then by unicity of liftings we must have NVf= "NVf" (because both lift 

NVfo ). Therefore "NVf '' will certainly annihilate G[Ng]. Conversely, 

suppose that "NVf '' annihilates G[N~ . Because G is N-divisible, 

we have an exact sequence 

N ~ 
0 > GIN ~3 • G ~ O , 0 , 

fro~ which we deduce that "N~f '' is of the form N~F for some homomor- 

phism F : G ~ H . 

To see that F lifts f , notice that the reduction mod I , F , 
o o 

of F satisfies NVFo=NVfo ; because Hom(Go,H o) has no N-torsion, 

we conclude that F ° fo ' as required. Q.E.D. 

1.2. We now "specialize" to the case in which N is a power of a 

n 
prime number p , say N = p 

Let us denote by ~(R) the category of abelian schemes over R , 

and by Def(R,R O) the category of triples 

(Ao,G,£) 

consisting of an abelian scheme A over R , a p-divisible 
o o 

(= Barsotti-Tate) group G over R , and an isomorphism of p-divisible 

groups over R 
O 

~-~Ao[P :G o 

THEOREM 1.2.1 (Serre-Tate). Let R be a ring in which ~ prime p 

is nilpotent, I c R as nilpotent ideal, R ° = R/I . Then the functor 

Q(R) ~ Def(R,R O) 

A ~ (Ao,A[ p ],natural ¢) 

is an equivalence of categories. 
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PROOF. We begin with full-faithfulness. Let A , B be abelian 

schemes over R . We suppose given a homomorphism 

fEp~°]: i[p ~] ~ B[p ] 

of p-divisible groups over R , and a homomorphism 

f :A ~ B 
o o o 

of abelian schemes over R ° such that fo[p ~] coincides with (f[P~])o " 

We must show there exists a unique homomorphism 

f:A ~ B 

which induces both f[p~] and f 
o 

Because both abelian schemes and p-divisible groups satisfy all 

the hypotheses of 1.1.3, we may make use of its various conclusions. The 

unicity of f , if it exists, follows from the injectivity of 

Hom(A,B) ~ Hom(Ao,B o) 

For existence, consider the canonical lifting "N~f '' of N~f : 
o 

"NVf": A ~ B . 

We must show that "N~f" kills A[N ~] . But because "N~f '' lifts 

N~f O , its associated map "N~f"[p ~] on p-divisible groups lifts 

N v F ~ (fo~ p ]). By unicity, we must have 

Therefore "Ngf" kills A[N ~] , and we find "N~f "=NvF , with F a 

lifting of fo " Therefore F[p ~] lifts fo[p ~] , so again by unicity 

we find F[p ~] = f[p~] 

It remains to prove essential surjectivity- We suppose given a 

triple (Ao,G,¢). We must produce an abelian scheme A over R which 

gives rise to this triple. Because R is a nilpotent thickening of 

R ° , we can find an abelian schem e B over R which lifts A O . The 
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isomorphism of abelian schemes over R 
O 

o 
B ~,A 
o o 

induces an isomorphism of p-divisible groups over R , 
o 

Bo[P ] o Lp ,Ao[P ; , 

and N~o[p ~] has a unique lifting to a morphism of p-divisible groups 

over R 

B[p ] N [~ ] ~ G 

This morphism is an isogeny, for an "inverse up to isogeny" is pro- 

vided by the canonical lifting of N ~ × (~o[ p ])-i ; the composition in 

either direction 

B[p ] ~ G 

N~(~[T])-I. 

is the endomorphism N 2~ (again by unicity). Therefore we have a short 

exact sequence 

0 ~ K ~ B[p ~] ~ G ~ 0 ; 

with Km B[N2~]. Applying the criterion of flatness "fibre by fibre" - 

(permissible because the formal completion of a p-divisible group over 

R along any section is a finite-dimensional formal Lie variety over R, 

so in particular flat over R) - we conclude that the morphism "N ~[p 3" 

is flat, because its reduction mod I , which is (multiplication by 

N ~) × (an isomorphism), is flat. 

Therefore K is a finite flat subgroup of B[p 2n~] ; and so we may 

form the quotient abelian scheme of B by K : 

A = B/K 

N ~ ~ A Because K lifts Bo[ ] , this quotient a lifts Bo/So [N~3 ~-~Bo o' 

and the exact sequence 
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0 ~ K ~ B[p~ ~ G ~ 0 

induces a compatible isomorphism 

B~p ]/K -~G . Q.E.D. 

1.3. REM~. Let us return to the general situation of a ring R 

killed by an integer N)/ 1 , and a nilpotent ideal I C R , say with 

I~+l=o . Let G be an f.p.p.f, abelian sheaf over R , which is for- 

mally smooth and for which G is locally representable by a formal Lie 

group. The fundamental construction underlying Drinfeld's proof is the 

canonical homomorphism 

,,N ~ N ~ " : G(A/IA) × (any lifting)) G(A) 

for any R-algebra A . This homomorphism is functorial in A • It is 

also funetorial in G in the sense that if G' is another such, and 

f : G ~ G' is any homomorphism, we have a commutative diagram 

for any R-algebra A . 

.N ~ . 
G(A/IA) , G(A) 

i ,  N \ j  . 

G'(A/IA) , G' (A) 

There is in fact a much wider class of abelian-group valued functors 

on the category of R-algebras to which we can extend the construction 

of this canonical homomorphism. Rougkly speaking, any abelian-group- 

valued functor formed out of "cohomology with coefficients in G", where 

G is as above, will do. Rather than develop a general theory, we will 

give the most striking examples. 

EXAMPLE 1.3.1. Let F be any abelian-group-valued functor on 

R-algebras, and G as above, for instance G a smooth commutative 

group-scheme over R . Let DG(F) denote the "G-dual" of F , i.e. 

the functor on R-algebras defined, for an arbitrary R-algebra A , 

by 
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We define 

DG(F)(A) = lim Hom (F(B),G(B)) ~---- gp 

B an A-alg 

"N~" : DG(F)(A/IA ) w DG(F)(A ) 

as follows : given ~6 DG(F)(A/IA ) , "N~"~ 6 DG(F)(A ) 

limit, over A-algebras B , of the homomorphisms 

is the inverse 

F(B) G(B) 

F(B/IB) ~ • G(B/IB) 

If we take F to be a finite flat commutative group scheme over 

V 
R , and G = Sm ' then DG(F) is just the Cartier dual F of F . Since 

F is itself of this form (being (FV)V), we conclude the existence of 

a canonical homomorphism 

"N~" : F(A/IA) ~ F(A) 

functorial in variable R-algebras A and in variable finite flat commu- 

tative group-schemes over R . This example is due to Drinfeld [2~. 

EXAMPLE 1.3.2. Let X be any R-scheme, and G any smooth commu- 

tative group scheme over R , or any finite flat commutative group-scheme 

over R . Let i ~0 be an integer, and consider the functor on R-algebras 

~ (G) defined as 

• ~(G)(A) =H i f.p.p.f.(X®A,G) 
R 

Using the "N~"-homomorphism already constructed for G , we deduce by 

functoriality the required homomorphism 

functorial in variable A , G , and X in an obvious sense. 

If we take G=~ , we have 
m 

e~(G)(A) =Br(X~A) ..... 

~xI(G)(A) = Pic(X~A) , 
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2. SERRE-TATE MODULI FOR ORDINARY ABELIAN VARIETIES 

2.0. Fix an algebraically closed field k of characteristic p > 0 . 

We will be concerned with the infinitesimal deformation theory of an 

ordinary abelian variety A over k . Let A t be the dual abelian 

variety ; it too is ordinary, because it is isogenous to A . 

We denote by TpA(k) , TpAt(k) the "physical" Tate modules of A 

and A t respectively. Because A and A t are ordinary, these Tate 

modules are free ~ -modules of rank g= dim A= dim A t 
P 

Consider now an artin local ring R with residue field k , and 

an abelian scheme A over R which lifts A/k (i.e. we are qiven an 

isomorphism A® k ~-~A). Following a construction due do Serre-Tate, we 
R 

attach to such a lifting a ~ -bilinear form q(A/R;-,-) 
P 

q(~/R;-,-) : TpA(k) XTpAt(k) ~ ~m(R) = i+~ . 

This bilinear form, which if expressed in terms of ~ -bases of T A(k) 
P P 

and of TpAt(k) would amount to specifying g2 principal units in R , 

is the complete invariant of ~/R , up to isomorphism, as a lifting of 

A/k . The precise theorem of Serre-Tate is the following, in the case of 

ordinary abelian varieties. 

THEOREM 2.1. Let A be an ordinary abelian variety over an alqe- 

braically closed field k of characteristic p > 0 , and R an artin 

local rinq with residue field k . 

i) The construction 

~/R ~ q(~/R;-,-) 6 Hom~ (TpA(k)®TpA t(k),Gm (R)) 

P 

establishes a bijection between the set of isomorphism classes of liftinqs 

of A/k t_~o R and the qroup Hom z (TpA(k) ®TpAt(k),~m(R)). 

P 
^ 

2) If we denote by ~A/k the formal moduli space of A/k , 

the above construction for variable artin local rinqs R with residue 

field k defines an isomorphism of functors 
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^ 

~A/k ~ Hom~ (TpA(k) ® TpAt(k) ,~m ) 
P 

3) G~ven a liftinq ~%/R o__[f A/k , denote by At/R the dual 

abelian scheme, which is a liftinq of At/k . With the canonical identi- 

tt 
fication of A with A , we have the symmetry formula 

q(ih/R;~,~t) = q(~%t/R;~t,~ ) 

for any ~E TpA(k) ' ~tE TpAt(k) 

4) Suppose we are qiven two ordinary abelian varieties A , B 

over k , and liftinqs ~/R , 8/R . Let f : A ~ B be a homomorphism, and 

ft B t : ~ A t the dual homomorphism. The necessary and sufficient condition 

that f lift to a homomorphism f[ : ~ ~ B is that 

q(~%/R;~, ft(~ t) ) = q(S/R; f(~) ,8 t ) 

for every ~ E TpA(k) and every 8t E TpBt(k) (N.B. If the liftinq f[ 

exists, it is unique). 

CONSTRUCTION-PROOF. By the "general" Serre-Tate theorem, the functor 

abelian schemes~ ~ [abelian schemes over k together ] 
over R J ~with liftings of their p-divisible~ 

groups to R 

A/R ~ (~® k,~[~] ) 
R 

is an equivalence of categories. 

Thus if we are given A/k , it is equivalent to "know" A/R as a 

lifting of A/k or to know its p-divisible group Alp ~] as a lifting 

of A[p~]. Because A/k is ordinary, its p-divisible group is canoni- 

cally a product 

P 
of its toroidal formal group and its constant etale quotient. Similarly 

for A t . The e n-pairings (cf. chapter 5 for a detailed discussion) 
P 

e n : A[pn] × At[pn] ~ ~ n 

P P 
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restrict to give pairings 

e n : i[Pn] xAt(k)[pn] ~ ~ n 
P P 

which define isomorphisms of k-group-schemes 

lip n] ~-~Hom~(At(k)[pn],~ n ) , 
P 

and, by passage to the limit, an isomorphism of formal groups over k 

We denote by 

-~ Hom~ (TpAt(k),~m) 
P 

EA : i × TpAt(k) ~ ~m 

the corresponding pairing. 

Because R is artinian, the p-divisible group of ~ has a canonical 

structure of extension 

of the constant p-divisible group TpA(k) ® (~p/%) by ~ , which is 

the unique toroidal formal group over R lifting A . Because ~ and 

the A[pn]'s are toroidal, the isomorphisms of k-groups 

{ A[P~] ~-~ H°m~(At(k)[P n],~ n ) 
P 

^ -~ Hom~ (TpAt(k),~ m) 
P 

extend uniquely to isomorphisms of R-groups 

We denote by 
I 
~[P~] ~-~H°m~(At(k)[P n],~ n ) 

P 
^ -~ Hom~ (TpAt(k),~m) 

P 

:~[pn] ×At(k)[pn] ~ 
Ep n :A pn 

[ ~ ~×Tp At(k) ~ ~m 

the corresponding pairings. 

A straightforward Ext calculation (cf. [9], Appendix) shows that 

our extension 
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is obtained from the "basic" extension 

TpA(k TpA(k) ~ T A(k)@ (@p/ 0 ~ ) ~ ® Up P ~p) 0 

by "pushing out" along a unique homomorphism 

TpA(k) 

A(R) 

This homomorphism may be recovered from the extension 

as follows. Pick an integer n sufficiently large that the maximal ideal 

of R satisfies 

~n+l -- 0 . 

Because pE~ , and 

A(R) is killed by 

is a formal Lie group over R , every element of 

n 
p . Therefore we can define a group homomorphism 

,i ni~ p : A(k) w A(R) 

by decreeing 

xE A(k) ~ pn~x for any ~6A(R) lifting x . 

If we restrict this homomorphism to A(k)[p n] , we fall into 

" n" p : A(k)[p n] ~ A(R) 

[(R) : 

For variable n , we have an obvious commutative diagram 

" n+l" A(k) [Pn+1] 

p / ~(R) 

/ " n" A(k) [pn] P 

so in fact we obtain a single homomorphism 

TpA(k) ~ ~(R) 
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as the composite 

" n" 
TpA(k) -*~A(k)~p n] P : ~(R) 

for any n }> 0 . This homomorphism is the required 
~/R " 

We are now ready to define q(A/R;-,-). We simply view 

homomorphism 

TpA(k) ~ ~(R) 

",, the pairing E A 
~L 

~Hom(Tpht(k),~m(R)) 

or, what is the same, as the bilinear form 

q(A/R;~,~t ) dfn E~(~A/R(~);% ) 

We summarize the preceding constructions in a diagram : 

as a 

isomorphism classes of} 

~/R lifting A/k 

Serre-Tate risomorphism classes of ] 

~[p~]/R lifting A[ p~]/k~ 

EXtR_gp(TpA(k) ® (~p/~p ,Hom~ (TpAt(k),~m) ) 
P 

"pushout" ~I ~I "~A/R" 

HOmR_gp(TpA(k),Hom ~ (TpAt(k),~m)) 
P 

Hom~ (TpA(k) ~ T At(k),~m(R)) 
p ~ P 

P 

Thus the truth of part i), and, by passage to the limit, of part 2), 

results from the "general" Serre-Tate theorem. To prove part 4), we 

argue as follows. Given the homomorphism f : A ~ B , we know by the 

general Serre-Tate theorem that it lifts to ~ : A ~ 8 if and only if 

it lifts to an ~ [p~] :~[p~] ~ B[p ~] . Such an ~[p~] will necessarily 

respect the structure of extension of Alp ~] and of B[p~ , so it will 
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necessarily sit in a commutative diagram of p-divisible groups over R : 

0 ~ Hom~ (TpAt(k),~m) ~ ~[p~ ~ TpA(k)® (~p/~p) ~ 0 
P 

0 ~ Hom~ ( T p B t ( k ) , ~  m) ~ ~ [ p ~  ~ T p B ( k ) ®  ( ~ p / ~ p )  ~ 0 . 
P 

C o n v e r s e l y ,  t h e  S e r r e - T a t e  t h e o r e m  a s s u r e s  u s  t h a t  we c a n  l i f t  f 

t o  an  ff  i f  we c a n  f i l l  i n  t h i s  d i a g r a m  w i t h  an  f f [ p ~ .  

B u t  t h e  n e c e s s a r i l y  and  s u f f i c i e n t  c o n d i t i o n  f o r  t h e  e x i s t e n c e  o f  an  

f f  [P~7 r e n d e r i n g  t h e  d i a g r a m  c o m m u t a t i v e  i s  t h a t  t h e  " p u s h  o u t "  o f  t h e  

t o p  e x t e n s i o n  b y  t h e  a r r o w  , , f t , ,  b e  i s o m o r p h i c  t o  t h e  " p u l l - b a c k "  o f  

the lower extension by the arrow "f". 

The "push-out" along ft of the upper extension is the element of 

EXtR_gp(TpA(k) ® ~p/~p,Hom~ (TpBt(k),~m)) 
P 

Hom~ (TpA(k)®TpBt(k),~m(R)) 
P 

defined by the bilinear pairing 

(~,St) ~ q(~/R;~,ft(st )) . 

The pull-back along f of the lower extension is the element of the 

same Ext group defined by the bilinear pairing 

(~,~t) ~ q(B/R;f(~),~t) 

Therefore ~[p~] , and with it ~ , exists if and only if we have 

q(~/R;~,ft (~t)) = q(B/R;f(~),~t) 

for every ~ E TpA(k) and every 8t 6 TpBt (k). 

It remains to establish the symettry formula 3), i.e. that 

q(A/R; ~, ~t ) = q~%t/R;~t , ~) i 

Choose an integer n such that the maximal ideal ~ of R satisfies 
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~n+l : 0 . 

Then the groups ~(R) and ~%T(R) are both killed by pn . Let ~(n) , 

~t(n) denote the images of ~ ' ~t under the canonical projections 

TpA(k) --~ A(k)[p n] , TpAt(k) --~ At(k)[p n] 

Then by construction we have 

~/R(e~) = pn"~(n) in A(R) 
^ 

i, n ~, 

~At/R(~) = p ~t(n) in ~%t(R) , 

and therefore we have 

Similarly, we have 

q(~/R;~,~ t) =EA(~A/R(~),~t ) 

But for any n the pairings E 
n A;p 

the e n-pairings on A , as follows. 
P 

LEMMA 2.2. Let n > 1 , x E~(R)[pn~ 

= E (~/R(~),~t(n)) A,p n 

= E n ( p ~(n),~t(n)) 
A,p 

q(~t/R;~t,~) = %t(%t/R(~t),~) 

= E t n (~ t (~t)'~(n)) 

n( pn ~t(n),~(n) ) . 
= %t, P 

are "computable" in terms of 

add yE At(k)[pn]. There exists 

an artin local rinq R' which is finite and flat over R , and a point 

Y6At(R')[pn] which lifts y6 At(k)[pn]. For any such R' and Y' , w--ge 

have the equality, inside ~ (R') , 
m 

E n(X,y) = e n(X,Y) 
A,p p 

PROOF OF LEMMA. Given y£ At(k)[p n] , we can certainly lift it to 

a point Y1 6 At(R) , simply because At(R) is smooth over R . The 
^ 

point pnYI =Y2 lies in At(R) . Because ~t is p-divisible, and R 
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is artin local, we can find an artin local 
^ 

over R and a point Y3 in ~t(R') such that Y2 = pnY3 " 

Y=YI-Y3 lies in ~t(R')[pnl , and it lifts Y 

Fix such a situation R' , Y . The restriction of the 

for A® R' 
R 

e : (AOR')[pn] X (~t®R')[pn] ~ ~ 
n R R n 

P P 

R' which is finite flat 

Then 

e n-pairing 
P 

to a map 

(~® R')[p n] XY ~ 
n R p 

is a homomorphism of toroidal groups over R' 

n R p 

whose reduction modulo the maximal ideal of 

toroidal groups over k 

R' is the homomorphism of 

defined by 

~[pn] ~ ~ n 

P 

e n(-,y) . 
P 

But the homomorphism of toroidal groups over R 

defined by 

n 
n 

P 

E (-,y) 
n A,p 

is another such lifting. By uniqueness of infinitesimal liftings of maps 

between toroidal groups, we have the asserted equality. Q.E.D. 

Now choose liftings 

Q(n) 6ACR) lifting ~(n) 6 ACk)[pn~ 

{ ~t(n) EAt(R) lifting ~t(n) E At(k)[p n] . 
^ 

Because n was chosen large enough that pn kill A(R) and At(R) , 

we have a priori inclusions 
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L%,R,r 2nl ~(n) 6 t )LP J 

~t(n) 6 ~t(R)[p2n] . 

KEY FORMULA 2.3. Hypotheses as above• we have the formula 

q(A/R; ~, ~t ) 
q(~t/R;~t,~) ep2n(~(n),~t(n)) 

PROOF OF KEY FORMULA. By the previous lemma, we can find an artin 

local ring R' which is finite and flat over R , together with points 

B(n) EA(R')[p n] lifting ~(n) 6 A(k)[pn~ 

Bt(n) 6At(R')[p n] lifting ~t(n) 6 At(k)[p n] 

We define the "error terms" 

@ (n)= ~(n)- B(n) in ~(R')[p2n~ 

@t(n) =~t (n)-Bt(n) in ~t (R')[p2n] 

In terms of these ~ , B , and @ , we have 

" n" dfn p ~(n) pn~(n) =pn@(n) 

" n" dfn pn~t(n n 
p % (n) ) = p ~t(n) 

We now calculate 

q(~/R;~,~t) = F. n ( p ~(n),~t(n)) 
~%,p 

" n" 
(by the previous lemma) = e n ( p ~(n),Bt(n)) 

P 

= e n(pn@(n),Bt(n)) , 
P 

= e 2n(@(n),Bt(n)) 
P 

and similarly 

q(~t/R;~t,~) = E t n ( p ~t (n)'~(n)) 
A ,p 

• ,f n. , 

= e n ~ p ~ttn),B~n))" "" 
P 

n 8 = e  n ( p  t ( n ) , B ( n ) )  
P 

= e  2 n ( ~ t ( n ) , B ( n ) )  
P 

= 1 / e  2 n ( B ( n ) , ~ t ( n ) )  # 

P 
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this last equality by the skew-symettry of the e 2n-pairing. 
P 

Therefore the "key formula" is equivalent to the following formula : 

e 2n(@(n),Bt(n)).e 2n(B(n),@t(n))=e 2n(~(n),St(n)) 
P P P 

To obtain this last formula~ we readily calculate 

e 2n(8(n),G~(n))= e 2n(B(n) +@(n),Bt(n) +@t(n)) 
P P 

= e 2n(B(n),Bt(n)).e 2n(@(n),@t(n)).e 2n(B(n),@t(n)).e 2n(@(n),Bt(n)). 
P P P P 

The first two terms in the product are identically one ; the first 

because B(n) and Bt(n) are killed by pn , so that 

e 2n(B(n),Bt(n))=e n(pnB(n),Bt(n))= e n(O,Bt(n))= 1 ; 
P P P 

the second because both @(n) and @t(n) lie in their respective formal 

groups A(R')[p 2n] and A~(R~)[p 2hI , and these groups are toroidal 

(the e 2n-pairing restricted to 
P ^ 

&[ p2n] ×~t[p2n] 

must be trivial, since it is equivalent to a homomorphism from a connected 

t~ 2n~ 
group, ~[p2n] , to an etale group, the Cartier dual of A tP ] , and 

any such homomorphism is necessarily trivial). Thus we have 

e 2n(@(n),@t(n)) = 1 , 
P 

and we are left with the required formula. Q.E.D. 

In order to complete our proof of the symettry formula, then, we 

must explain why 

e 2n(~(n),~t(n))= 1 , 
P 

for some choice of liftings ~(n) , ~t(n) of ~(n) and ~t(n) 

Let us choose liftings 

~(2n) 6a(R) , lifting ~(2n) 6 A(k)[p 2n] { 
gt(2n) E~t(R) , i i f t i n g  ~t(2n) 6 Nt(k)[p2n] 

to R . 
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Then the points 

pnG(2n) , pnGt(2n) 

are liftings to R of ~(n) and ~t(n) 

to show that 

respectively. Thus it suffices 

n 
e 2n(pn~(2n),p Gt(2n)) : 1 . 
P 

But in any case we have 

n 
e 2n(pnG(2n),pnGt(2n))= (e 3n(G(2n),Gt(2n)))P 
P P 

The quantity e 3n(G(2n),Gt(2n)) lies in 
P 

3n(R) c i+~= ~m(R) 
P 

and our choice of n , large enough that ~m+l= 0 , guarantees that 

~m(R) is killed by pn Q.E.D. 
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3. FORMULATION OF THE MAIN THEOREM 

3.0. Fix an algebraically closed field k of characteristic p > 0 , 

and an ordinary abelian variety A over k . The Serre-Tate 

q-construction defines an isomorphism 

~A/k ~-~Hom~ (TpA(k)® TpAt(k),~m ) 
P 

of functors on the category of artin local rings with residue field k . 

In particular, it endows ~ with a canonical structure of toroidal 

formal Lie group over the Witt vectors W = W(k) of k . 

Let ~ denote the universal formal deformation of A/k . In this 

section we will state a fundamental compatibility between the group 

structure on ~ and the crystal structure on the de Rham cohomology of 

~ , as refected in the Kodaira-Spencer mapping of "traditional" 

deformation theory. 

In order to formulate the compatibility in a succinct manor, we 

must first make certain definitions. 

^ 

3.1. Let ~ denote the coordinate ring of ~ . Given elements 

E TpA(k) ' ~t 6 TpAt(k) , we denote by 

q(~,~t) 6 ~× 

^ 

the inversible function on ~ defined by 

q(~,~t ) = q(~/~ : ~,~t ) • 

Here are two characterizations of these functions q(~,~t ) . The 

isomorphism 

~ Hom~ (TpA(k) ®TpA t(k),~m ) 
P 

gives rise to an isomorphism 

TpA(k) ~ TpAt(k) ~-* Homw_gp(~,~ m) . 

Under this isomorphism, we have 
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~ s t ~ q(~,~t ) , 

i.e. the functions q(~,~t ) are precisely the characters of the formal 

torus ~ . 

In particular, if we pick a ~p-basis ~i ..... ~g of TpA(k) and a 

~p-basis ~t,l,...,~t,g of TpAt(k) , then the g2 quantities 

Tij = q(~i,~t,j)- 1 £ 

define a ring isomorphism 

w[[Ti,j]j =~ 

We will not make use of this isomorphism. 

Given an artin local ring R with residue field k , and a lifting 

~/R of A/k , there is a unique continuous "classifying" homomorphism 

f • / R  : ~ ~ R 

for which we have an R-isomorphism of liftings 

The image of q(~,~t ) 

A/R ~ ®  R . 

under this classifying map is given by the formula 

fA/R(q(~,~t)) = q(A/R;~,~t) 

3.2. For each linear form 

6 Hom~ (TpA(k) ® TpAt(k),~p) , 
P 

we denote by D(~) the translation-invariant (for the group structure 
^ 

on ~) continuous derivation of ~ into itself given 

D(~)(q(~,~t)) = ~(~® ~t).q(~,~ t) 

Formation of D(~) defines a ~ -linear map 
P 

Hom~ (TpA(k)®TpAt(kl,~p) ~ Lie(~/W) , 
P 

whose associated W-linear map is the isomorphism 

Hom~ (TpA(k) ®TpAt(k),W) -~-~Lie(~/W) 
P 
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deduced from the inverse of the q-isomorphism of W-groups 

-~Hom~ (TpA(k)®TpAt(k),~m) 
P 

by applying the functor "Lie". 

3.3. We next introduce certain invariant one-forms on 

~(~t) E ~?~ . 

For each artin local ring R with residue field k , and each lifting 

A/R of A/k , we have given a canonical isomorphism of formal groups 

over R 

~ Hom~ (TpAt(k),~m) 
P 

This isomorphism yields an isomorphism 

TpAt(k) -~ Hom R_gp(~,~m ) , 

say 

I (~t) ~t 

If we denote by dT/T the standard invariant one-form on m 

define an invariant one-form 

, we can 

~(~t ) 6 ~/R:~/R 

by the formula 

O~(~t) = I (at)*(dT/T) = dl (~t)/~ (~t) 

Equivalently, the construction of c0(a t ) sits in the diagram 

TpA t (k) -~ HOmR_g p (~, ~m ) 

~Lie 

~t ~ °J(~t)~H°mR-gp(Lie(~%/R)'~a ) 

" a  11 
M o r e  f u n c t o r i a l l y ,  we c a n  i n t r o d u c e  t h e  r i n g  R [ e ] - - R + R e  , e 2 =  0 , 

o f  d u a l  n u m b e r s  o v e r  R . T h e n  t h e  L i e  a l g e b r a  L i e ( & / R )  i s  t h e  s u b g r o u p  



of ~(R[~]) defined by 

Lie(~/R) = Ker 

= Ker 

(the second equality because R 
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of ~%(R[e]) e~ 0 ~%(R) 

of i(R[~]) ~-0 I(R) 

is an artin local ring). Let us denote by 

• : . .~/R × Lie(~%/R) ~ R 

the natural duality pairing of 

for any L E Lie(~/R) , 

1 + ~(~t).L =l(~t) (L) 

or equivalently 

If we choose an integer 

(~,L) ~ ~.L 

and Lie. Then we have the formula, 

1 +£~(~t ).L= EA(L,~ t) 

n large enough that 

E Lie(~m/R ) 

pnR= O , we will have 

Lie (~%/R) C~(R[ ~] )[pn] 

so we may rewrite this last formula as 

i + £~(~t).L= E n(L,~t(n)) 
~;p 

Finally, if we choose an artin local ring R' which is finite and flat 

over R , and a point 

yE~t(R')[pn] lifting at(n ) E At(k)[p n] , 

we may, by lemma 2.2, rewrite this last formula in 

l+~(~t)-L= e n(L,Y) 
P 

The construction of ~(~t ) defines a ~p-linear 

Tp At(k) ~ ~a/R ' 

~t ~ ~(~t ) 

homomorphism 

which, in view of the isomorphism 

~-~Hom~ (TpAt(k),~m) , 
P 
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induces an R-linear isomorphism 

TpAt(k) ~ R -~/R " 

P 

The evident functoriality of this construction for variable situations 

A/R , shows that it extends uniquely to the universal formal deformation 

~/~ , i.e. to a ~ -linear homomorphism 
P 

TpAt(k) ~ ~/~ 

~t ~ w(~t) 

which is compatible with the canonical identifications 

~/~ ® ~ - ~ - ~ / R  

whenever ~/R is a lifting of A/k to an artin local ring R with 

residue field k , and R is viewed as an %niv-algebra in the 

via the classifying homomorphism fA/R : R ~ R of A/R . 

The associated R-linear map is an isomorphism 

3.4. The 

TpAt(k) ® R ~-~/~ • 

P 

R-linear dual of the isomorphism 

Tp At(k) ® R ~ ~%/R 

is obtained by applying the functor "Lie" to the isomorphism 

~-~ Hom~ (TpAt(k),~m) 
P 

Its inverse provides an R-isomorphism 

Hom~ (TpAt(M),%) ® R ~-~ Lie(A/R) , 
p 

P 

which yields, upon passing to the limit, an R-isomorphism 

Hom~ (TpAt(k),%) ® R ~->Lie(#~/~) 
p 

P 

The "underlying" ~ -linear homomorphisms 
P 

{ HOm~p(TpAt(k),%) ~ Lie<~%/R) 

" ~ Lie (~/~) 
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will be denoted 

v V 
~t L(~t) 

It is immediate from the definition of L(~) that for any situation 

~/R , any ~t E TpAt(k) and any <6 Hom~ (TpAt(k),~p) , we have the 
P 

formula 

~(~t).L(~V) = ~t.~Vt in 
P 

3.5. Let us make explicit the functoriality of the constructions 

~(~t ) , L(~t ) under morphisms. Thus suppose we have two ordinary abelian 

varieties A , B over k , liftings of them A/R , B/R to an artin local 

ring R with residue field k , and an R-homomorphism 

lifting a k-homomorphism 

f : A~ B . 

LEMMA 3.5.1. Under the induced map 

we have the formula 

~* (~(8t)) = ~(ft(st)) 

for any 8 t 6 TpBt(k). 

PROOF. This is immediate from the definition of the 00-construction 

and the commutativity (by rigidity of toroidal groups |) of the diagram 

N, Hom(TpAt(k),~m ) 

I ff ~ Oft 

~> Hom(TpBt(k) ,~m ) Q.E.D. 

LEMMA 3.5.2. Under the induced map 

~. : Lie(A/R) ~ Lie(B/R) , 
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we have the formula 

V 
~. (L(~t)) 

V E Hom(TpAt(k ) for any a t ,~p). 

PROOF. The same. Q.E.D. 

V t 
= L(~tof ) 

LEMMA 3.5.3. Under the induced map 

~ : HI(s,~8) ~ HI(A,~) 

Lie(St/R) ~-~ Lie(~t/R) 

we have the formula 

* t (L(~V)) = ft. (L(~V')) = L(~Vof) 

~v f o r  any  6 H o m ( T p B ( k ) , ~ p ) .  

PROOF. T h i s  i s  t h e  c o n c a t e n a t i o n  o f  t h e  p r e v i o u s  lemma and t h e  

of the identification of HI(&,~) with Lie(~t/R). Q.E.D. functoriality 

3.6. We next recall the definition of the Kodaira-Spencer mapping. 

First consider a lifting A/R of A/k to an artin local ring R with 

residue field k . Such an R has a unique structure of W= W(k)-algebra. 

This W-algebra structure on R allows us to view ~ as a W-scheme. 

Because A is smooth over R , we have a locally splittable short exact 

sequence on A 

The coboundary map in the long exact sequence of cohomology 
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1 5 H 1 (]i 
-~R = H°(A'a~/R) " (A,~ ® R/W) 

R 

\~ \ II (base-change for A/R) 

K°d'\ " HI(A'@A) ~R ~/W 

\ 

L i e  (at/R) ® a~/W , 
R 

d e f i n e s  t h e  K o d a i r a - S p e n c e r  m a p p i n g  

Kod : --~A/R w Lie(At/R) ® al 
R R / ~  " 

By passage to the limit, we obtain the Kodaira-Spencer mapping in the 

universal case : 

Kod : ~/~ 

(with the convention that ~/W 

Lie(~t/z) ®~/W 

denotes the continuous one-forms). 

3.7. In this section we state three visibly equivalent forms 

(3.7.1-2-3) of the fundamental compatibility. 

MAIN THEOREM 3.7.1. Under the canonical Dairinq 

. : ~ X Lie(~t/R)~ ----~ ~ 
-~t/~ /w /w ' 

we have the formula 

~(~).Kod(~(~t) ) = dlog(q(~,~t)) 

for any &6 TpA(k) (viewed as TpAtt(k) 

and any ~t 6 TpAt(k). 

MAIN THEOREM (bis) 3.7.2. Choose a 

V V 
and denote by ~i' .... ~g 

formula 

, so that ~(~) is defined), 

~p-basis__ ~i ..... ~g6 TpA(k), 

the dual base of Hom(TpA(k),~p) , we have the 

Kod(~(~t) ) = Zi L(~V)i ®dlOg q(~i,~t) 

for any ~t E TpAt(k). 
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For each continuous derivation D of ~ into itself consider the 

map Kod(D) defined by 

_~/~ Kod m Lie(~t/{ ) ® ~/W 

K o d ( D ~  ll® D 

Lie (~t/e) 

For each element 

e E Hom(TpA(k) ® TpAt(k),~p) , 

and each element 

~t E TpAt(k) , 

we denote by 

*~t  E Hom(TpA(k),~p) 

the element defined by 

( ~ . o t ) ( ~ )  = e ( ~ ® ~ t )  • 

MAIN THEOREM (ter) 3.7.3. We have the formula 

Kod(D(~))(~(~t) ) = L(~*~t) 

for any ~t E TpAt(k) and any ~ 6 Hom(TpA(k)®TpAt(k),~p). 

Equivalently, for any ~ E TpA(k) , we have the formula 

~(~).Kod(D(~))(~(~t)) = ~(~®a t) . 
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4. THE MAIN THEOREM : EQUIVALENT FORMS AND REDUCTION STEPS 

4.0. Our proof falls naturally into two parts. In the first part, 

we make use of the canonical Frobenius endomorphism ~ of ~ to trans- 

form the Main Theorem into a theorem (4.3.1.2) giving the precise struc- 

ture of the Gauss-Manin connection on the De Rham cohomology of the 

universal formal deformation ~/~ . We then make use of the "rigidity" 

of these various actors in the universal situation to show that the 

Main Theorem in its Gauss-Manin reformulation follows from an exact 

formula (4.5.3) for the Serre-Tate q-parameters of square-zero defor- 

mations of the canonical lifting. 

The second part of the proof, which amounts to verifying 4.5.3, is 

given in chapters 5 and 6. 

4.1. Let ~ denote the absolute Frobenius automorphism of W=W(k). 

For any W-scheme X , we denote by X (~) the W-scheme obtained from 

X/W by the extension of scalars 

cartesian diagram of schemes 

X (~) 

Spec (W) 

W ~ W . Thus we have a tautological 

E 
• X 

1 
Spec(~) ; Spec(W) 

LEMMA 4.1.1. We have a natural isomorphism 

(~A/k) (~) ~ ~ A~'a) /k 
under which 

E*(q(~,~t )) ( , q(~(~),~(~t )) 

PROOF. Let R be an artin local ring with residue field k , and 

A/R an abelian scheme lifting A/k . Then A(~)/R (~) is a lifting of 

A(~)/k . Because ~ is an automorphism, this construction defines a 

bijection 

~A/k(R) ~ ~A( ~)/k (R(~)) 

which is functorial for variable R. If we apply it to ~ , we find a 
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bijection ^ 

~A/k ( ~ ) 

H 
^ ^ 

Horn 
f c t r ( Z~A/k ' ~A/k 

) 

id 

The element of Hom((~A/k) (0"),,,~A(O,)/k ) 

,~ (~). (~(=)) 

If 

H°mfctr((~A/k) (~) ) 
"~A(~)/k 

corresponding to the identity 

map is the required isomorphism. Alternatively, this isomorphism is the 

classifying map for the formal deformation of A(~)/k provided by 

~(~ )/~ (~) 

By "transport of structure", we have for every A/R , the formula 

(q(A/R;~,~t)) = q(a(~)/R(~);~(~),~(~t) ) , 

and hence we have 

Z*(q(~,~t)) = q(~(~),~(~t )) Q.E.D. 

LEMMA 4.1.1.1. The behaviour of the constructions ~(~t ) , L(~) 

under the construction 

is expressed by formulas 

{ 
a/R~a(~)/R (~) 

Z*(~(~t) ) = ~(~(~t )) 
V L(~0-1) 

(L(~t)) = 

PROOF. This is obvious by "transport of structure". Q.E.D. 

Given ~/R , we denote by ~'/R the quotient of ~ by the "cano- 

nical subgroup" A[p~ of ~ . The morphism "projection onto the quotient" 

F : ~ ~ A' 
can 

lifts the absolute Frobenius morphism 

F: A ~ A (~) 
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LEMMA 4.1.2. For ~ E TpA(k) and ~t E TpAt(k) , we have the formulas 

{ F(~)=~(~) , V(~(~)) =p~t 

q(A'/R;~(~),~(~t)) = (q(A/R;~,~t))P 

PROOF. Because the morphism F can 

lifting criterion yields the formula 

exists, and lifts F , the 

q(A/R;~,V(~(~t))) = q(A'/R;F(~),~(~t)) 

It is visible that 

F(~) = ~(~) 

Applying this to A t , we have 

F(~t) =~(~t ) 

for ~ E T A(k) . 
P 

for ~t 6 TpAt(k) 

Because VF= P , we find, upon applying V , the formula 

P~t =V(~(~t)) Q.E.D. 

LEMMA 4.1.3. Let ~t6 TpAt(k) , and VE Hom(TpA(k),Zp) 

Consider the elements 

~(~t ) 6~/R = HO(A,~ 1 
A/R ) , 

~(~(~t )) ~'/R 
m(~ V) E Lie(At/R) ~ HI(A,~) 

L(~Vo~ -I) E Lie((At)'/R) ~ HI(A',~, 

Unde. r the morphism F induced by can 

. 

F :J% ~ A' , can 

we have the formulas 

F~an(~(~(~t))) = p~(~t ) 

F~an(L(~Vo~-l)) = L(~ v) . 

PROOF. By !emma 3.5.1, we have 

Fcan(~O(ff(~t ))) = 0J(Vff(~t)) = 0](p~ t) 
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while by lemma 3.5.3 we have 

F~an(L(~Vo~-l)) = L(~Voff-loF) = L(~ V) Q.E.D. 

If we apply the construction 

~/R ~ - ~ ' / R  
^ 

to the universal formal deformation ~/~A/k of A/k , we obtain a formal 
^ 

~'/~.i k~! of A(~)/k . It's classifying map is the unique deformation 

morphism 

such that 

^ ^ N 

~(~(~)) ~ ~, 

The expression of ~ on the coordinate rings is glven, by lemma 4.1.1, as 

~E*(q(~,~t) ) = q(~,~t )p 

In terms of the structure of toroidal formal Lie group over W imposed 
^ 

upon ~A/k by Serre-Tate, the morphism ~ may be characterized as the 

unique qroup homomorphism which reduces mod p to the absolute Frobenius. 

The isomorphism 

allows us to view F 
can 

^ 

~A/k 

LEMMA 4.1.4. Let ~t 

elements 

~C~(~)) - ~, 

as a morphism of formal abelian schemes over 

F : ~-~(M(~)) 
can 

E TpAt(k ) , V E Hom(TpA(k),~p) . Consider the 

Under the morphism 

{ ~(~t ) ~ ~/9 L(~ v) E Lie(~t/R) ~ HI(~,@~) 

F ~ induced by 
can 

F :~ ~ ¢*(~(~)) , 
can 
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we have the formulas 

F. ¢*E~(~(~t) ) = p~(~t ) can 

F* ~*E*(L(~V))  h (~  v 
can = ) 

PROOF. This follows immediately from 4.1.3 and 4.1.1.1. 

COROLLARY 4.1.5. The ~ and L constructions define isomorphisms 

TpAt(k) ~ {~ ~/~ I F*can~*E*(~) =p~} 

such that Fcan~E*(L) = L . 

be a ~ -basis of T At(k) . Then PROOF. Let ~l,t,...,~g,t P P 

~(~l,t ) ..... ~(~g,t ) is an R-basis of ~/~ . Given ~6~ , it has a 

unique expression 

= E fi i) f E i ~(~t, ' i ' 

whence 

Fca n* ~E~(~) = E #*E*(fi).p~(~t,i) 

Therefore, as R is torsion-free, we see that 

F #*E (~) = p~ 
can 

<~ ~'~E~(f.) = f. for i= 1 ..... g . 
1 1 

But i t  i s  o b v i o u s  t h a t  a f u n c t i o n  f 6  ~ s a t i s f i e s  ~ * E * ( f )  = f i f  and 

only if f is a constant in 
P 

The p r o o f  o f  t h e  s e c o n d  a s s e r t i o n  i s  e n t i r e l y  a n a l o g o u s .  

4.2. Consider the de Rham cohomology of ~/~ , sitting in its Hodge 

exact sequence 
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0 

Lie (~t/g) 

TpAt(k) ® R II 
L®I 

P 
Hom(TpA(k) ,~p) ® ~ . 

P 

Let us denote by 

1 
FiX(HDR) , p-FiX(~R) 

the ~p-SUbmodules of ~R(~/~) defined as 

H~ F* ~*E* Fix = {~ 6 R can (~) = ~} 

p-Fix = {~ 6~R F* ~*Z*(~) =p~} can 

LEMMA 4.2.1. The maps a , b in the Hodqe exact sequence 

0 ,TpAt(k>®~ a ~ b ,~)® 
Z R(~/~) Hom(TpA(k) Z e 

P P 

induce isomorphisms 

a 
(i) TpAt(k) "-'~ p-FiX(~R) 

(2) Hom(TpA(k),~p) ~ Fix(~R) . 

,0 

PROOF. (i) Let ~ ~ p-Fix . By 4.1.5, it suffices to show that 

lies in ~/~ . For this, it suffices to show that the projection of 

in H'(~,~) vanishes. But this projection lies in p-Fix(H'(~,~)) ; 

V 
in terms of a ~p-basis ~'l of Hom(TpA(k),~p) , we have 

p r o j ( g )  = Z f i L ( ~  ) , 

* O * Z * ( p r o j ( ~ ) )  = ~ ~ * ~ * ( f i  ) 5 ( ~ )  , p p r o j ( g )  = F e a  n 

whence the coefficients f. E ~ satisfy 
1 

~*E*(fi) = Pfi 

Because ~ is flat over ~ and p-adically separated, R/p~% is 
P 

reducedt as reduces mod p to the absolute Frobenius endomor- 

phism of e/p~ , we infer that f. = O . 
1 
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(2) By 4.1.4, the endomorphism Fca n of ~/~ is p-adically 

nilpotent, and therefore we have 

FiX(~R) N ~/~ = 0 . 

This means that the projection b induces an injective map 

FiX(dR ) proj r Fix(HI(~,@~)) 

H o m ( T p A ( k ) , ~ p ) )  

V 
To s e e  t h a t  i t  i s  s u r j e c t i v e ,  f i x  a n  e l e m e n t  ~ E H o m ( T p N ( k ) , ~ p ) )  , a n d  

E t ~  w h i c h  p r o j e c t s  t o  L (~  v)  B e c a u s e  L ( ~  v)  c h o o s e  a n y  e l e m e n t  go R " 
* ~*Z* 

is fixed by Fca n , each of the sequence ~o,~i .... of elements of 

~ R defined inductively by 

~n+l = Fcan (~n) 

also projects to L(~V). Therefore for every n ~O we have 

n o 
W 

applying the endomorphism F #*E m times, we see by 4.1.4 that 
can 

m 

~an~*E* m ~n+m- ~m = (F ) (~n) 6 p ~/~ 

Therefore the sequence ~n converges, in the p-adic topology on ~R ' 

to an element ~ which projects to L(~ ~) and which by construction 

lies in FiX(~R). 

For each element ~ E Hom(TpA(k),~p) , we denote by 

Fix(~ ) 6 Fix( R ) 

the unique fixed point which projects to L(~V). Formation of Fix(~ v) 

defines the isomorphism inverse to b : 

Fix 
Hom(TpA(k),~p) . ,"FiX(dR) 

b 

COROLLARY 4.2.2. The construction "Fix" provides the unique 

~-splittin q of the Hodge exact sequence which respects the action of 

F ~*~ : 
can 
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0 ~ OJ~./~{ ~ H~R(~/a) ~ HI(~,@~.) ~ 0 

Lie (~t/a) 

TpAt(k) ® R' Fix® IIL® 1 

Hom(TpA(k) ,2[p) ® ~ . 

4.3. In this section we will give further equivalent forms of the 

Main Theorem, this time formulated in terms of the Gauss-Manin connection 

on ~ ~R (~/~ ) " 

MAIN THEOREM (quat) 4.3.1. L@t a I ..... ~g be a ~p-basis of 

V V 
TpA(k), ~i ..... ~g the dual basis of Hom(TpA(k),~p). Under the Gauss- 

M~Din connection 

V : I ~ R ( ~  ) ~ ~R(~/~)®~/W 

w e have the formulas 

V(~(~t) ) = E Fix(~)@dlog q(~i,~t) 
i 

V(Fix(~V)) = O 

TpAt(k V for any ~tE ) , and ~ny ~ E Hom(TpA(k),~p). 

For each continuous derivation D of ~ into itself we denote by 

V(D) the map defined by 

v ~  [I®D 

MAIN THEOREM (cinq) 4.3.2. We have the formulas 

V(D(~))(~(~t)) = Fix(e~t) 

V(D(~))(Fix(~V)) = O , 

for every atE TpAt(k) , VE Hom(TpA(k),~p) , e E Hom(TpA(k) ®TpAt(k),~p). 
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Let us explain why 4.3.1-2 are in fact equivalent to 3.7.1-2-3. 

That 4.3.1 and 4.3.2 are equivalent to each other is obvious. The impli- 

cation (4.3.1 .... > (3.7.2) comes from the fact that the Kodaira-Spencer 

mapping Kod is the "associated graded", for the Hodge filtration, of 

the Gauss-Manin connection, i.e. from the commutativity of the diagram 

] i prOj® 1 

HI( ' % ) ® 

~'~Lie (~t/R) ® ~/w " 

{~i } 

It remains to deduce (4.3.1) from (3.7.2). 

V 
of T A(k) and of the dual base ~. of 

p l 

show that 

In terms of a ~ base 
P 

Hom(TA(k),~) , we must 
P P 

V 
V(~(~t)) = Z Fix(~ i) ® dlog q(~i,~t) 

V(Fix(~V)) = O . 

To show this, we must exploit the functoriality of the Gauss-Manin 

connection. Because we have a morphism 

Fcan :~ -~ ~*(~(~)) = ~ ® R . . , 

the induced map on cohomology is a horizontal map 

. . D1R(~ q R  (~ Fca n : @*Z (H /R),v) ~ ( /~),v) 

Concretely, this means that we have a commutative diagram 

~R(~/~ ) V for ~/~ ) ~R (~/~) ® ~/w 

~R(~*(~(~ ))/~) ......... V, for **(~(~))/~, ~R (~*(~(~))/~) ® ~/W 

[Fca n IFcan ® id 

1 R v for ~/R HIR (;~/~) ® ~/w 
H6R¢~/ ) • . 
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D(~) 

mula 

LEMMA 4.3.3. For any ~ E Hom(TpA(k) ® TpAt(k),~n) 

i 
under the Gauss-Mani n connection on H~R(~/ ) 

, the action of 

satisfies the for- 

V(D(e) (Fcan~ Z (~)) = PFca n (V(D(e))(~)) 

for any elements ~E 4R(~/~) . 

PROOF. Let {~i}i and {~t,j}j be ~p-bases of TpA(k)• 

T At(k) respectively. Then the one-forms 
P 

form an ~-base of 

~ij = dlog q(~i,~t,j 

~ /W " The formula 

~*~*(q(~'~t )) = q(~'~t 
)P 

and of 

shows that the ~.. satisfy 
13 

~*~*(~ij ) = P ~ij 

Given ~ 6 H~R(~/~)D , we can write 

the coefficients 

v(~) = 

lij 6 ~R(~/R) 

E I. ® ~ ; 
1,j e 13 i,j 

are given by the formula 

lij = V(D(~ij))(~) • 

where we denote by {@i,j} E Hom(TpA(k)®TpAt(k),~p) 

the basis {~i ® ~t,j}i,j of TpA(k) ®TpAt(k). 

the dual basis to 

The commutativity of our diagram gives 

V(Fcan~*2*(~)) = ~ F*can~*E*(Xij)®~*~*(~ij) 

p E F* *E* 
= ~ (lij)®~. • can 13 

Thus we find 

* ~*E* 
V(D(~ij))(Fcan~*Z*(~)) = p Fca n (hi, j ) 

I] 
~*~*(V(D(~ij)) (g)) P Fca n 

The assertion for any £ follows by ~p-linearity. Q.E.D. 
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COROLLARY 4.3.4. I__ff ~ 6 ~R(~/~) satisfies 

F ~*E (~) = ~ ~ with ~ ~ W , can 

then for any ~ 6 Hom(TpA(k) ®TpAt(k),~p) , the element 

V(D(g))(~) E ~R(~/R ) satisfies 

~*~ * 
p F (V(D(e))(~)) = k V(D(~))(~) 

can 

In particular, we have the implications 

~FiX(~R) ----->V(D(~))(~) = O 

(p-FiX(~R) -~--> V(D(~))({) (FiX(~R) 

PROOF. The first and last assertions are immediate from 4.3.3. If 

~ 6 Fix(~R) , then the element ~' =V(D(~))(~ satisfies 

~, = p F ~ ~(~,) 
. can 

- pn(Fcan~)*E*)n(~ ) 

= 0 . Q.E.D. 

Armed with 4.3.4, we can deduce (4.3.1) from (3.7.2). 

According to 3.7.2, we have 

Kod(~(~t)) = ~ L(~)®dlog q(~i,~t) . 

Therefore we have 

V 
Kod(D(e))(~(~t) ) = 2 ~(~i ® at)L(~i) 

But the element Kod(D(~))(~(~t) ) 6 Lie(~t/R) is the projection of 

1 ~ . 
V(D(~))(~(~ t) E ~R(~ ) Therefore we have a congruence 

V(D(~))(~(~t) ) m Z ~(~i ®~t)Fix(~ ) mod ~/R 

But ~(~t ) lies in p-FiX(~R) (by 4.2.1) ; therefore (4.3.4) shows us 

that ?(D(~))(~(~t)) lies in FiX(~R). Therefore the above congruence 

is in fact an equality (because FiX(~R) N ~= O) : 
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V 
V(D(~))(~(~t)) = ~l e(~i® ~t)Fix(~i) 

= FiX(~l ~(~i® ~t)'~i ) 

= Fix(~ t) Q.E.D. 

4.4. In this section we will conclude the first part of the proof 

of 3.7.1 as outlined in 4.0. The key is provided by 4.3.4. 

THEOREM 4.4.1. ................ Let eE TpA(k) ' ~t E TpAt(k). There exists a 

(necessarily unique) character Q(~,st ) o__ff ~ such that 

~(~).Kod(~(~ t) = dlog Q(~,~t ) 

PROOF. Let {~'}l be a ~p-basls of TpA(k), {~t,j} a 

of TpAt(k), and ei,j the basis of Hom(TpA(k)®TpAt(k),~p) 

{~i ® ~'l,j} " Then for any element ~ C H IR(~/R) , we have 

v(~) = E V(D(~ij))(~)®dlog q(~i,~t,j) 
i,j 

In particular, for ~ = ~(~t ) we find 

v(cC(~t) ) = E V(D(~ij))(~(~t))~dlog q(~i,~t,j) 
i,j 

By 4.3.4 and 4.2.1, we have 

V(D(~ij))(0~(~t) ) E FiX(~R) ; 

so for fixed ~t ' there exist unique elements 

V 
~ij E Hom(TpA(k),~p) 

such that 

V 
?(D(eij)) (~(~t)) = Fix(~ij) 

Thus we obtain a formula of the form 

V 
v(0~(~t) ) = X Fix(~ij)®dlog q(~i,~t,j) 

i,j 

with certain elements ~,~j E Hom(TpA(k),~p) depending upon 

Passing to the associated graded, we obtain a formula 

t 

~[ -has i s 
P 
dual to 
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V 
Kod(~0(at) ) = E L(~ij)®dlog q(~i,~t,j) 

i,j 

Therefore for ~6 T A(k) , we have 
P 

V 
~(~).Kod(~0(~t) ) = E (~.~ij)dlog q(~i,~t,j) 

i,j V 

-- d l o g (  ~ ( q ( ~ i , ~ t  ' ) )  13)  
i , j  J 

COROLLARY 4 . 4 . 2 .  F o r  ~ 6 TpA(k)  , ~ t  E T p A t ( k )  , and. 

e 6 Hom(TpA(k)  ® T p A t ( k )  , ~ p )  , we h a v e  

c 0 ( ~ ) . K o d ( D ( ~ ) ) ( c e ( ~ t ) ) _  _ __ = a c o n s t a n t  i n  ~' 
P 

Q.E.D. 

COROLLARY 4.4.3. Suppose for every inteqer n ~ 1 we can find a 

homomorphism 

f : ~ ~ W =W (k) 
n n n 

such that we have 

fn(~(~).Kod(D(~))(~(~t))) = ~(~® ~t ) in W n , 

for every ~6 TpA(k), ~t6 TpAt(k), ~nd ~ 6 Hom(TpA(k) ®TpAt(k),~p). 

Then the Main Theorem 3.7.4 holds, i.e. we have 

~(~).Kod(D(~))(~(~t)) = ~(~® a t) in 

PROOF. This is obvious from 4.4.2, because the natural map 

~ lim W is injeetive ! 
p * n 

4.5. In this section we will exploit 4.4.3 to give an infinitesimal 

formulation of the Main Theorem. 

Let R be any artin local ring with residue field k (e.g. 

R=Wn(k)). By the Serre-Tate theorem, there is a unique abelian scheme 

Acan/R lifting A/k for which 

= 1 for all ~E TpA(k) , a t 6 TpAt(k) q(Acan/R;~,~ t) 

This is the "canonical lifting", to R , of A/k . It's classifying 

homomorphism 
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f :~ ~ R 
can 

is the unique W-linear homomorphism for which 

= 1 , for all ~ 6 TpA(k) ' ~t £ Tp At(k) fcan(q(~, ~t) ) 

Let D be any continuous derivation of 

can define a homomorphism 

by defining, for, r 6 ~ , 

into itself. Then we 

fcan,D : ~ ~ R[~ ( 2 = O) 

fcan,D(r ) ~dfn fcan (r) + fcan(D(r)) 

The corresponding abelian scheme over R[E] 

A dfn ~® RE~] 
can,D 

is a first order deformation of Acan/R . 

Consider its associated locally splittable short exact sequence on 

A can,D : 

0 ~ ~A ® ~ ~ ~i ~R ~ ~i 
can,D R[~] [~]/R Acan, Acan,JR[~] ~ 0 . 

It's reduction modulo E is a short exact sequence on Aca n , 

® de > ~i IAcan ~ ~A /R ~ 0 
0 > ~Aca n R can,D/R can 

0 ~ ~ ×d~ ~Ican, D/R , ~i ~- . ~ 0  
Aca n A Acan Acan/R 

which sits in a commutative diagram 

R 

~)~r fcan, D can 

fcan 

0 .... ~ ~ Xd E ~ ~i D/R ~i 
Acan Acan, Aca n ~ Acan/R ~ 0 . 
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Let us denote by 

exact cohomology sequence 

H o (Acan ' ~i 
Aca~R ) 

can/R 

the coboundary map in the associated long 

HI (Acan' @A ) 
can 

, Lie ( Atan/P0 

From the commutative diagram (4.5.1) above, we see that 

LEMMA 4.5.2. For ~6 TpA(k) and ~t E TpAt(k) , we have the formulas 

f~an(KOd(D)(~(~t)) = ~(f~an(~(~t))) 

fcan(~(~).Kod(D)(~(~t))) = f~an(~(~)).~(f~an(~(~t)) 

MAIN THEOREM 4.5.3. Hypotheses and notations as above, the 

q-parameters o_~f Acan,D/R[¢ ] are qiven by the formula 

q(~can,D/R[~];~,~ t) = i+ ¢f~an(~(~)).~(f~an(~(~t))) . 

Let us explain why 4.5.3 is equivalent to 3.7.1-2-3-4 . Suppose 

first that 3.7.1 holds. Then 

~(~).Kod(~(~t) ) = dlog(q(~,~t)) 

Therefore we have 

~(~).Kod(D) (~(~t)) = 

Applying the homomorphism 

D(q(~,~t)) 

q(~,~t ) 

f :~ ~ R , can 

we obtain 

fcan(~(~).Kod(D)(~(~t)) = 
f (D 
can 
f can 

q(~,~t ) 

q(~,~t ) 

li 

fcan (D q(e,et ) 

Because Acan,D/R[~] has classifying map fcan,D ' we have 
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q(Acan,D/R[¢];~,a t) = fcan,D(q(~,~t)) 

= fcan(q(~,~t)) + ~fcan(D(q(~,~t)) 

= 1 +~fcan(~(~).Kod(D)(~(~t))) 

% 

= 1 + Cf*can(~(~))'~(fcan(~(~t))) 

Conversely, suppose that 4.5.3 holds. 

Equating coefficients of ¢ , we obtain 

fcan(D(q(~,~t)) = f~an(~(~)).~(fcan(~(~t)) 

II I[ 

fcan(Dlog q(~,~t )) = fcan(~(~).Kod(D)(~(~t)) 

Taking for D one of the derivations D(~) , e 6 Hom(TpA(k) ®TpAt(k),%) 

we obtain an equality 

fean(~( ~®~t )) = fcan(~(~).Kod(D(~)(~(~t))) 

Taking for R the rings W , we thus fulfill the criteria of 4.4.3. 
n 

Q.E.D. 
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5. INTERLUDE : NORMALIZED COCYCLES AND THE eN-PAIRING 

5.0. Let S be a scheme, and ~ : X ~ S a proper and smooth 

S-scheme with geometrically connected fibres (i.e., ~*~X =@S )' given 

together with a marked section x : S ~ X : 

X 

As explained in (~ii]), under these conditions we may view the relative 

Picard group Pic(X/S) dfn Pic(X)/Pic(S) as the subgroup of Pic(X) 

consisting of Ker(Pic(X) x*> Pic(S)). Intrinsically, this means that 

we view Pic(X/S) as the group of isomorphism classes of pairs (£,~) 

consisting of an invertible @X-mOdule £ together with an @s-basis 

e of the invertible @S-mOdule x*(£). In terms of Cech cocycles, it is 

convenient to introduce the subsheaf K × of (@X)× consisting of 

"functions which take the value 1 along x" ; it which sits in the 

tautological exact sequence 

0 ' Kx (~X) X ~x > >x.( S ) ~0 . 

Then we have a natural isomorphism 

Pic(X/S) = HI(X,K ×) , 

while the assumption ~.@X= @S (and consequently ~.(@X)X= @S ) guaren- 

tees that 

H°(X,K X) = {i} 

This means that if a normalized cocycle (i.e. one with values in 

KX), 

f. , 6 F(h~ n ~.;K ×) 
z] z 3 

represents the zero-element of Pic(X/S), then there exist unique func- 

tions 
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fi E F(h i ,K ×) 

such that {f. ~} is the boundary of the normalized cochain {f.} : 
13 l 

fij = fi/fj 

The functor Picx/S on the category of S-schemes is defined by 

T, >Pic(x ~ T/T) 

It's Lie algebra 

Lie(Picx/s) ~fn Ker(Pic(X[¢]/S[~]) , Pic(X/S)) 

is easily described in terms of normalized additive cocycles as follows. 

Let K + be the subsheaf of OX consisting of "functions which take the 

value zero along x", which sits in the exact sequences 

+ 
O > K )~ > 

X 

Just as above we have a natural isomorphism 

while 

x.(~ s) • O 

x 
-~ KX/s ~ O . 

HI(x,I+~K +) ~ Lie(PiCx/s) 

H°(X,I+~K +) = {I} . 

Although normalized cocycles are extremely convenient for certain 

calculations, as we shall see, they bring about no essential novelty 

over a local base. 

LEMMA 5.0.1. I_ff Pic(S) = 0 (e.g. i_~f S is the spectrum of a local 

rinq) the inclusion K Xc (~X)× induces an isomorphism 

Pie(X/S) = HI(x,K ×) ,f~>-Hl(x,~) = Pie(X) . 

If S is affine, the inclusion K+c @X induces an isomorphism 

Lie(Picx/S) = HI(x,I+¢K +) ~HI(x,I~¢~X) 

N 
Ker(Pic(X[¢]) ~ Pie(X)) . 

Q.E.D. 
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PROOF. Obvious from the long cohomology sequences. 

5.1. Suppose that X/S is an abelian scheme, with marked point 

• O 

x= O . The dual aDelian scheme xt/s is the subfunctor PlCx/S of 

PiCx/s which classifies those (£,~) whose underlying £ becomes 

algebraically equivalent to zero on each geometric fibre of X/S . 

Because abelian varieties "have no torsion", the torsion subgroup-functor 

lies in X t i e. for any integer N and any S-scheme T , • w of PiCx/s 

we have 

Xt(T)[~] = PiCx/s(T)[N] 

According to a fundamental theorem, for any integer N the two endomor- 

phisms 

N 
Picx/s ~Picx/s 

PiCx/s ~tNx/s] * ~ PiCx/s 

coincide on the subgroup X t (cf. [12]). 

5.2. The eN-pairing as defined in Oda [13] 

eN : X[N] × Xt[N] ~N 

may be described simply in terms of normalized cocycles. Thus suppose 

we are given points 

Y 6 X(S)[N] , I E Pic(X/S)[N] 

Choose a normalized cocycle representing I , say 

fij E ~(UiN hj,K ×) 

with respect to some open covering h.l of X . Then as [Nx/s]~(I) is 

the zero element in Pic(X/S), the normalized cocycle 

[Nx/s]~(fij) 6 F([N]*(hi) N [N]*(hj),K ×) 

respect to the covering {[N]-l(Ni )} must be the boundary of a with 

unique normalized cochain 
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fi 6 r([N]-l(hil,K× ) ; 

[N]*(fij ) = fi/fj 

NOW view Y6 X(S)[N] as a morphism 

The open sets Y-I(LNj-I" " 

sections 

Y : S ~ X . 

(hi)) form an open covering of S ; and the 

fi(Y) = Y*(fi ) 6 F(y-I([N]-I(h. )),@~) 
1 

× 
patch together to give a global section over S of @S ; (because on 

overlaps we have 

fi (Y) . 
= (IN] (fij))(Y) = fij(NY) = fij(O) = 1 , 

3 

as the cocycle f.. is normalized). 
13 

Oda's definition of the eN-pairing (as the effect of translation 

by Y on a nowhere vanishing section of the inverse of [N]*(£) , £ a 

line bundle representing I) means that we have the formula 

× 
eN(Y,I) = the global section of @S given 

locally by 1 / f i ( Y )  

( O f  c o u r s e  o n e  c a n  v e r i f y  d i r e c t l y  t h a t  t h i s  g l o b a l  s e c t i o n  o f  ~× i s  
S 

i n d e p e n d e n t  o f  t h e  o r i g i n a l  c h o i c e  o f  n o r m a l i z e d  c o c y c l e  r e p r e s e n t i n g  

X , b u t  t h i s  " i n d e p e n d e n c e  o f  c h o i c e "  i s  a l r e a d y  a c o n s e q u e n c e  o f  i t s  

i n t e r p r e t a t i o n  v i a  t h e  e N - p a i r i n g ) .  

5 . 3 .  S u p p o s e  now t h a t  t h e  s c h e m e  S i s  k i l l e d  b y  a n  i n t e g e r  N . 

H e r e  a r e  t w o  n a t u r a l  h o m o m o r p h i s m s  

P i e ( x / s ) [  N] ~ ~X/S " 

The first, which we will denote 

is defined via the eN-pairing and the observation that, because N 
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kills S , we have Lie(X/S) c X(S[¢])[N]. We define ~o(1) as a linear 

form on Lie(X/S) , by requiring 

eN(L,l) = 1 + ¢OJN(1).L . 

Given our "explicit formula" for the aN-pairing, we can translate 

this in terms of normalized cocycles, as follows. 

Begin with a normalized cocycle f for I , and write 
13 

[N]*(fij ) = fi/fj 

for a unique normalized $-cochain { fi } ; then we have 

OJN(~) = -dfi/f i on [N]-l(h i) . 

(One can verify directly that this formula defines a global one-form on 

X , independently of the choice of normalized cocycle representing 1 , 

but this independence follows from the aN-interpretation). 

The second, which we will denote 

l ~ "dlog(N) " (l) 

has nothing to do with the fact that X/S is an abelian scheme. Given 

I ~ Pic(X/S)[N] , choose a normalized cocycle 

fij 6 ['(him hj;K x) 

representing it. Then (fij) N is a normalized cocycle, for the same 

covering, which represents NI = 0 in Pic(X/S). Therefore there exist 

unique functions 

such that 

We define 

gi E F(hi,K× ) 

(fij) N = gi/gj 

"dlog(N)"(l) = dgi/g i on ~. l 

Choice of a cohomologous normalized cocycle flj = fij(hi/hj ) would lead 

(by uniqueness) to functions gi gi(hi )N ' = ; as N kills S , and hence 
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X , we have 

dlog(gi)' = dlog gi +N dlog h i = dlog gi ' 

so our construction is well-defined. 

For any integer M~ 1 , S will also be killed by NM , and so we 

have homomorphisms 

~NM ' "dlog(NM)" : Pic(X/S)[NM] ~X/S- 

From their explicit descriptions via normalized cocycles, it is clear 

that they sit in a commutative diagram 

Pic(X/S)[NM] 

"dlog(~ M[= [M] ~ 

Pic(X/S)[N] 

LEMMA 5.4. I_~f N kills S , then for any I 6 Pic(X/S)[N 2] we have 

"dlog(N2)"(X) =-~N2(X) in ~X/S " 

PROOF. Let us begin with a normalized cocycle f.. representing 
13 

, with respect to some open covering {h.} . Then 
1 

[N]~(fij) represents [N]~(I) = NX , on the covering [N]-l(h i) 

~.. represents N~ = [N]~(1) , on the covering h. 
13 i 

We compute "dlog(N2)"(l) = "dlog(N)"(Nl) = "dlog(N)"([N]*(l)) by 

using the normalised cocycle for [N]*(I) given by 

[N]~(fij) on the covering [N]-l(~i ) . 

There exist unique functions 

fij 6 F([N]-I(ui),K× ) 

such that 

([N]*(fijllN = hi/h j , 
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and by definition we have 

"dlog(N)"([N] ~(~)= dhi/h i on [N]-l(hi) . 

Similarly, we compute 0JN2(l) = 0iN(IN ] ~(l)) = ~N(NX) 

normalized cocycle for NX given by 

fij) N on the covering h. 
1 

There exist unique functions 

H i 6 F([N]-I(hi),K× ) 

by using the 

such that 

IN] ((fij) N) = Hi/H j , 

and by definition we have 

~NCNI) = -dHi/H i on [N]-l(h i) . 

By uniqueness, we must have H. = h. , and hence we find 
1 1 

~N2(X) = ~NCNX) -~--"dlog(Nl"([N]*(ll) = "dlogCN2I"(X) . Q.E.D. 

COROLLARY 5.5. Let k be an algebraically closed field of charac- 

teristic p > 0 , A/k an ordinary abelian variety, R an artin local 

ring with residue field k , and X/R an abelian scheme lifting A/k 

For any n sufficiently larqe that pn kills R , we have a commutative 

diagram 

T Xt(R) 
p 

Xt(R)[p n] 

reduce mod.~%.~T A t(k) 
P 

w(~ t) 

" ~ ~X/R _-dlog(p n) ,, 

PROOF.From the description (3.3) of the ~t ~ ~(~t ) 

of the e n-pairing, it is obvious that the diagram 
P 

construction in terms 
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{ (l(n)} T Xt(R) , T A(k) 
P P 

X (n) xt (R) [Pn] oJ ' ~X/R 
n 

P 

is commutative. By the previous lemma, we have 

o~ n(l(n)) = 0~ 2n(l(2n)) = -"dlog(p 2n)''(l(2n)) = -"dlog(p n) "(l(n)) 

P P Q.E.D. 
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6. THE END OF THE PROOF 

6.0. Let k be an algebraically closed field of characteristic 

p > 0 , and A/k an ordinary abelian variety over k . We fix an artin 

local ring R with residue field k . Having fixed R , we denote by 

X/R the canonical lifting of A/k to R . 

We denote by 

the homomorphisms 

{ ~ ,- a)(~t ) E -~X/R 

: ~ ~0(~) E ~_xt/R 

Tp At(k) ' --~X/R 

TpA( k ) ~ _~Xt/R 

Let R[~] denote the dual numbers over R (~2= 0). We fix an 

abelian scheme X/R[¢] which lifts X/R . We denote by 

: ~X/R ~ HI(X'0x) = Lie(Xt/R) 

the coboundary in the long exact cohomology sequence attached to the 

short exact sequence of sheaves on X 

0 ~ O'X " /R X ~ /R '~ 0 . 

AS explained at the end of chapter 4, our Main Theorem in all it 

equivalent forms results from the following "intrinsic" form of 4.5.3. 

THEOREM 6.0.1. The Serre-Tate q-parameters of X/R[ ¢] are qiven 

by the formula 

q(~/R[,] ;~,~t ) = i + ¢0~(~).~(~(~t) ) 

By the symmetry formula (2.1.4), it is equivalent to prove 

THEOREM 6.0.2. The Serre-Tate q-parameters o_~f (x)t/R['] are 

qiven by the formula 
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q((X)t/R[~J;~t,~)~ " " = 1 + £~(~) .~ (~(~t) ) 

We will deduce 5.0.2 from a sequence of lemmas. 

LEMMA 6.1. The natural maps "reduction modulo the maximal ideal 

are bijective. 

TpX(R) ~.TpX(k) = TpA(k) 

Xt(k) = T At(k) TpXt(R) ~ Tp P 

PROOF. First of all, the maps are injective, for their kernels are 
^ ^ 

the groups TpX(R), TpXt(R) ; as the groups X(R) and Xt(R) are killed 

by pn = 0 , as soon as the maximal ideal ~ of R satisfies ~n+l 

their T's are reduced to zero. 
P 

For surjectivity, we must use the fact that X/R is canonical, 

i.e., has q(X/R;~,~ t) = 1 . This means that for all n sufficiently 

large, the map 

: k n ~X/R TpA(k) ~, A( )[p ] , ~ X(R) 

, ~(n) ...... ~ pnx (any lifting of ~(n) in X(R)) 

vanishes, i.e. the "reduction mod ~" map is surjective for n>) 0 : 

X(R)[p n] ~A(k)[p n] . 

In fact, this map is surjective for every n , for we have a commutative 

diagram 

X(R)[p n+m] -~; A(k)[pn+m~J 

IP n IP n 

X(R)[p m] . A(k)[p m] 

Thus we obtain a short exact sequence of projective systems 

k n 0 • {X(R)[pn]}n ~ {X(R)[pn]}n ~ {A( )[p ]}n ~ 0 , 
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the first of which is "essentially zero" (because X(R) is killed by 

n p for n )) 0), so in particular satisfies the Mittag-Leffler condition. 

Passing to inverse limits, we obtain the required isomorphism 

For 

we have 

TpX(R) ~) TpA(k) . 

Xt/R , we simply note that by the symmetry formula (1.2.1.4) 

q(Xt/R;~t,~) = q(X/R;~,~ t) = 1 ; then repeat the argument. Q.E.D. 

LEMMA 6.2. The deformation homomorphism 

~ t 
(X) /RIll 

takes yalues, in the subqroup 

Ker(Pic(X) ,, ) Pic(X)). 

: T At(k) ..... ~ (9)t(R[~]) 
P 

Ker(Xt(R[~]) ~ Xt(R)) = 

PROOF. Because Xt/R is canonical, i.e. q(Xt/R;~t,~) = 1 , by the 
^ 

symmetry formula, the homomorphism e : T At(k) , Xt(R) vanishes. 
Xt/R P 

The result follows from the commutativity of the diagram 

~(~)t/R 
T At(k) ~ (~)t(R[~]) 
P 

~ ~  Ireduce^ mod E 

Xt(R) . Q.E.D. 

6.3. The short exact sequence of sheaves on 

0 ~ l+Z~ x ~ (~)× ~x )x ---~( 70 

leads to an isomorphism 

HI(x,I+~ x) 

If we replace 

an isomorphism 

HI(x,I+~@ x) 

~ Ker(Pic(~) --> Pic(X)) = Ker(Xt(R[~]) > Xt(R)) 

by the trivial deformation X[~] of X/R , we obtain 

, Ker(Pic~X[a]) ~ Pic(X)) dfn Lie(Xt/R) 

LF~ 6.3.1. Let LE HI(x,I+~SX ), and ~ E TpA(k). Under the cano- 

nical pairinqs 
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^ 

E(~) t : (~)t × TpA(k) ~ Sm 

^ 

Ext : (X t) X TpA(k) ' ~m 

we have 

E(~)t(LI,~) = Ext(L2,~) = I+~(~).L 3 , 

where 

L 1 = "L viewed as lying in Ker(~t(R[%]) 

L 2 = "L viewed as lying in Ker(Xt(R~¢]) 

L 3 = "L viewed as lying in Lie(Xt/R) " . 

Xt(R)) - 

Xt(R)) '' 

PROOF. The second of the asserted equalities is the definition of 

~(~), cf. 3.3 ; we have restated it "pour memoire". We now turn to the 

first assertion. Fix an integer n such that ~n= 0 in R . Then the 

maximal ideal (~,¢) of R[¢] satisfies (~,¢)n+l= 0 . Also pn kills 

R , hence we have pnL=O . 

Choose a finite flat artin local R[g]-algebra S , and a point 

y E X(S)[p n] lifting ~(n) in A(k)[pn~ 

Denote by S O the finite flat artin local R-algebra defined as 

S = S/~S , 
o 

and denote by YoE X(So)[pn ] the image of Y under the "reduction 

mod¢" map 

~(S)[p n] ~ X(So)[pn] 

Y ~Y 
O 

By lemma (2.2), we have 

E(~)t(LI,~) = E(~t);pn(Ll,~(n)) = e(x)t;p n ~  (LI,Y) , 

and similarly 

Ext(L2,~) = e t n(L2'Yo ) 
X ;p 
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By the skew-symettry of the e n-pairing, 
P 

n~Y,LI;'' = e e~ 
X;p X;p 

In order to show this, we represent L 

some affine open covering h. of X : 
1 

it suffices to show that 

n(Yo,L2) • 

by a normalized cocycle on 

1 + %fi'] ; fi "(0)3 = O if O E hiM h. ] 

Because pnL = O , the "autoduality" of multiplication by integers on 

abelian schemes shows that 

n * n * 
[p ]~(L I) = 0 , [p Ix(L2) = 0 . 

Therefore the normalized cocycles for the covering [pn]-l(h i) 

- n * n * [pn]x(l+~fij) LP ]~(l÷Zfij) = l+$[p ]x(fij) = 

may be written as the coboundary of a common normalized zero-cochain 

l+~f. 
x(fi j _ l fi(O) = O if O E [pn]-l(hi) 1 +,[pn]* ) l+~f. ' 

] 

By definition of the e n-pairing, we have, for any index i such that 
P 

yE [pn]-l(hi) , the formulas 

e~ n(Y,Ll ) = 1 
X;p (l+'fi) (Y) 

41e (Y ,L.) 1 
[ x;pn o z (l+~fi)(Y O) 

The fact that 

= i- (zfi)(Y) 

= i- ~fi(Yo) 

Y is Y mod ~ makes it evident that 
o 

(¢fi)(Y) = ~fi(Yo) in ~S . Q.E.D. 

COROLLARY 6.3.2. If we interpret the deformation homomorphism as a 

map 

we have the formula 

: TpAt(k) , HI(x,I+E~ x) ~ Lie(Xt/R) , 

q((~)t/R[~] ;~t,~) = I + ~(~).~(~)t/R [ %](~t ) . 
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PROOF. This follows immediately from the definition of q in terms 

of ~ and E , and lemmas 5.2 and 5.3.1. 

6.4. In this section, we analyze the deformation homomorphism 

~(~)t/R[g] : TpAt(k) ~ HI(x,I+~@ x) . 

Recall that this homomorphism is defined as the composite, for any 

sufficiently large that ~r = 0 , 

n 
TpAt(k) ;~ At(k)[pn] p × (an[ lift~ (~t) (R[¢]) 

Because X/R is canonical, we have an isomorphism (4.6.1) 

T Xt(R) -~--~T At(k) , 
P P 

and this sits in a commutative diagram 

T At(k) )) At(k)[pn ] pn× (any lifting)7 (~)t(R[~]) 
P 

~reduce I 
rood 

T Xt(R) > Xt(R)[pn] n Ker((X)t(R[~]) " Xt(R)) 
P p × (any lifting) 

HI(x,I+~X ) ~ Lie(Xt/R) 

In order to complete the proof of 6.0.2, it suffices in view of 

6.3.2, to prove 

THEOREM 6.4.1. For R a rtin loc~l with alqebraically closed residue 

field k of characteristic p ) O , X/R the canonical liftinq of an 

ordinary abelian variety A/k , and X/R[~] ~ deformation of X/R , we 

have the formula 

for every 

~(~(~t )) = ~(~)t/R[~](~ t) 

~t E Tp~t(k). 

in Lie(Xt/R) 
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According to 5.5, the construction ~ I ) ~(~t ) o 

tative diagram, for any n such that pn kills R : 

sits in a commu- 

At(k) 0J Tp ' -~X/R 

II /-"dl°g (P n)" 

T Xt(R) ~ Xt(R)[p n] 
P 

Therefore 6.4.1 would follow from the more precise 

n 
THEOREM 6.4.2. Hypotheses as in 6.4.1, for any n such that p 

kills R , and any element k E Xt(R)[p n] , we have the identity, i__nn 

Lie(Xt/R) 

5(.dlog(pn),,(l)) = _pn × (any lifting of l 

to an invertible sheaf on ~) 

6.5. In this section we will prove 6.4.2. Given any ring R killed 

by any integer N , and any proper smooth R-scheme X/R with geometri- 

cally connected fibres and a marked point x6 X(R) , there is a natural 

homomorphism 

Pic(X/R)[N] -- H°(X, (@X)× ® (~/N~)) 

defined as follows. Given k 6 Pic(X/R)[N] , represent it by a normalized 

cocycle {fij} . Then there exists a unique normalized O-chain {fi } 

such that 

(f..)N 
13 = fi/fj 

A cohomologous normalized cocycle, say gij : fij × (hi/hj)' leads to 

(gij) N = fi(hi)N/fj(hj) N 

Therefore the {f.} "are" a well-defined global section of 
1 

(@X)× ® (~/N~). This construction 

Pic(X/R)[N] 9 k , , {fi } 6 H°(X, (@X)× ® (Z/NZ)) 

defines our homomorphism. 
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Suppose we are in addition given a deformation X/R[8] of X/R , 

together with a marked point ~6~(R[¢]) which lifts x . We have an 

exact sequence of sheaves of units 

x 
...... ~ (~x) • (~x)x 0 ~ I+~ x ~0 o 

Because N kills R , it also kills @X ' so kills i+~@ x 

lemma, applied to this exact sequence and the endomorphism 

leads to a short exact sequence of "units mod N" : 

o ~ l + ~ x  ~ (~)x.~ ® (~/N~) , (~x)x~  ( ~ / ~ )  - - - ~ o  o 

We will denote by 

A(N) : H°(X,(@x)X ® (~/N~)) HI(x, 1 + ~@X ) 

the coboundary map in the associated long exact sequence of cohomology. 

The "units mod N" exact sequence maps to the Kodaira-Spencer short 

exact sequence by "dlog", and gives a commutative diagram 

0 , 1 +~@X ~ (~)x ® (~/N~) .~ (@X)X ~ (~/N~) ~ 0 

0 x , 

; the serpent 

"N" , therefore 

This diagram in turn gives a commutative diagram of coboundary maps in 

the long exact sequences of cohomology : 

"dlog(N)" 

~ X  Pic(X/R) IN] 

I 
, (~x)x ® (~/N~) 

d l o g  

~(N) ~HI(X,I+ ~X) 

log 

,, HI(X,~x) 



200 

LEMMA 6.5.1. Hypotheses as in 6.5 above, suppose that every element 

o_~f Pic(X/R)[N] lifts to an element of Pie(X/R[ ~]) (a condition auto- 

r 
matically fulfulled if PiO~/R[E~ is smooth, in particular when X/R 

is an abelian scheme). Then the diaqram 

Pic (X/R) [ N~ 

NX (any lifting of 1 to an 

ertible sheaf on X) 

H°(X,(@X )× ® (~/N~)) -£(N) >HI(x,1 +~X ) 

is commutative. 

PROOF. Given I E Pic(X/R)[N] , represent it by a normalized cocycle 

f.. on some affine open covering h of X ; we may assume f.. to be 
13 l 13 

the reduction modulo ~ of a normalized cocycle ~.. on ~ represen- 
13 

ting a lifting of 1 to ~ . Because I 6 Pic(X/R)[N] , we have 

(fij) N = fi/fj 

for a normalized O-cochain {f.}. Choose liftings 
1 

~i c r(ui,(~)×) 

of the functions fi6 F(hi,(~X)X). 

Then 

A (the section 
N 

the element of HI(x,14~ X) 

{fi }) =~represented by the l-cocycle 

(~i/~j) (~ij)-N , 

while 

N × (any lifting of l) = I 
the element of H l(x,l+~x ) 

represented by th t l-cocycle 

(fij)N. (fj/fi) . Q.E.D. 

If we combine 6.5.1 with the commutative diagram immediately pre- 

ceding it, we find a commutative diagram 
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Pic(X/R)[N~ 

"dlog(N)" 

H°(X,~x/R ) 

~ NX (any lifting)) 

Hl(x,l+g@ x) 

~ H°(X, ~X ) 

In particular, this proves 6.4.2, (take N=pn) and with it our "main 

theorem" in all its forms (3.7.1-2-3, 4.3.1-2, 4.5.3, 6.0.1-2). 
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