Exposé Vbis

SERRE~TATE LOCAL MODULI

par N. KATZ

INTRODUCTION. It is now some sixteen years since Serre-Tate [13] disco-
vered that over a ring in which a prime number p is nilpotent, the
infinitesimal deformation theory of abelian varieties is completely
controlled by, and is indeed equivalent to, the infinitesimal deformation
theory of their p-divisible groups.

In the special case of a g-dimensional ordinary abelian variety
over an algebraically closed field k of characteristic p >0 , they
deduced from this general theorem a remarkable and unexpected structure
of group on the corresponding formal moduli space &;; this structure
identifies ﬁ with a gz—fold product of the formal multiplicative
group @m with itself. The most striking consequence of the existence
of a group structure on & is that it singles out a particular lifting
{to some fixed artin local ring) as being "better" than any other, namely
the lifting corresponding to the orxigin in ﬁ . The theory of this
“"canonical lifting” is by now fairly well understood (though by no means

completely understood : for example, when is the canonical lifting of

a jacobian again a jacobian 7).
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A second consequence is the existence of g2 canonical coordinates
on ﬁ , corresponding to viewing ﬁ as (@m)g2 . It is natural to ask
whether the traditional structures associated with deformation theory,
e.g. the Kodaira-Spencer mapping, the Gauss-Manin connection on the de
Rham cohomology of the universal deformation,... have a particularly
simple description when expressed in terms of these coordinates. We will
show that this is so. In the late 1960's, Dwork (cf. (3], [4], [6])
showed how a direct study of the F-crystal structure on the de Rham
cohomology of the universal formal deformation of an ordinary elliptic

~

curve allowed one to define a "divided-power" function "T" on M such

that exp(T) existed as a "true" function on ® , and such that this
function exp(7) defined an isomorphism of functors ﬁ 23'@m . Messing
in 1975 announced a proof that Dwork's function exp(7) coincided with
the Serre-Tate canonical coordinate on i . Unfortunately he never
published his proof.

In the case of a g-dimensional ordinary abelian variety, Illusie
[5] has used similar F-crystal techniques to define 92 divided-power

~

functions Tij on M, and to show that their exponentials exp(Tij)
2

~

define an isomorphism of functors M :;_(@m)g .
in [8], we used a "uniqueness of group structure" argument to show
that the Serre-Tate approach and the Dwork-Illusie approach both impose

~

the same group structure on M . Here, we will be concerned with showing

that the actual parameters provided by the two approaches coincide. This

amounts to explicitly computing the Gauss-Manin connection on HéR of
the universal deformation in terms of the Serre-Tate parameters. This
problem in turn reduces to that of computing the Serre-Tate parameters
of sguare-zero deformationg of a canonical lifting in terms of the
customary deformation-theoretic description of square-zero deformations,
via their Kodaira-Spencer class. The main results are 3.7.1-2-3,

4.3.1~2, 4.5.3, 6.0.1-2
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For the sake of completeness, we have included a remarkably simple

proof, due to Drinfeld [2], of the "general" Serre-Tate theorem.
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1. DRINFELD'S PROOF OF THE SERRE-TATE THEOREM

1.1. Consider a ring R , an integer NY1 such that N kills R,

1

and an ideal I< R which is nilpotent, say ¥+ =0 . Let us denote by

RO the ring R/I . For any functor G on the category of R-algebras,
we denote by GI the subfunctor

GI(A) =Ker{G(A) * G(A/IA}) .,

and by G the subfunctor

&(a) =Ker(a(a) * c(a™®))

.

LEMMA 1.1.1. If G is a commutative formal Lie group over R .,

then the sub-group functor GI is killed by N .

PROOF. In terms of coordinates Xl,...,Xn for G , we have

([N](X))i=NXi+(deg>/2 in Xp,...X)

as a point of GI(A) has coordinates in IA , and N kills R , hence

A , we see that

[N](GI)Cc;Iz

and more generally that
(vl(c )ce , <6

I p2a  patl

. + . .
for every integer a Y1 . as IV o 0 , the assertion is clear. Q.E.D.

LEMMA 1.1.2. If G jis an f.p.p.f. abelian sheaf over R (i.e. on

the category of R-algebras) such that & is locally representable by

a formal Lie group, then N kills GI .

PROOF. Because I 1is nilpotent, we have GIC G ., and hence

G, = (é) The result now follows from 1.1.1. Q.E.D.

I I’
LEMMA 1.1.3. Let G and H be f.p.p.f. abelian sheaves over R .

Suppose that
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1) ¢ is N~divisible

m»r

2) is locally representable by a formal Lie group

3) H is formally smooth.

tt
]
o+
@
a3}

denote the inverse images of G , H on RO==R/I .

? |
O
O

1) the roups HomR (G H) and HomR (G +H ) have no
N-torsion

2} the natural map "reduction mod I"

Hom(G,H) - Hom(G ,H )
o o

is inijective

3) for any homomorphism fo :Go d HO , there exists a unigue
homomorphism "Nvf" : G2 H which 1lifts Nvfé

4) In order that a homomorphism fO :GO nd HO 1ift to a

(necesgsarily unigue) homomorphism £ :G = H , it is necessary and suffi-

cient that the homomorphism "N £" : G 2 H annihilate the sub-group

v N
G[N']=Ker(G = G) of G .

PROOF. The first assertion 1} results from the fact that G , and
S0 Go , are N-divisible. For the second assertion, notice that the
kernel of the map involved is Hom(G,HI) , which vanishes because G is

N-divisible while, by 1.1.2, H, is killed by N . For the third asser-

I
tion, we will simply write down a canonical lifting of NvfO (it's

unicity!results from part 2) above). The construction is, for any

R-algebra A , the following :

\\\\:fd I ////Q;’x (any lifting)
£

G(a/IA) —=» H(A/IA)

the final oblique homomorphism

A)

M . .
H(A/IA) N X {any lifting), H(
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is defined (because by assumption H(A) —-» H(A/IA)) and well-defined
(because the indeterminacy in a lifting lies in HI(A) , a group which
by 1.1.2 is killed by N’). For 4), notice that if £ 1lifts to f ,
“then by unicity of liftings we must have NVf="N"£" (because both lift
Nvfo). Therefore "N £" will certainly annihilate G[Nv]. Conversely,
suppose that NV gn annihilates G[NV] . Because G is N-divisible,

we have an exact sequence
Y N
0 s GN ] —> G 2 G — 0,

frou which we deduce that "Nvf“ is of the form NvF for some homomor-

phism F:G = H ,
To see that F 1lifts fo , notice that the reduction mod I , Fo .
of F satisfies NVF0==NVfO ; because ﬁcm(Go,Ho) has no N-torsion,

we conclude that FO==fO , as required. Q.E.D.

1.2. We now "specialize" to the case in which N 1is a power of a
prime number p , say N==pn .
Let us denote by G(R) the category of abelian schemes over R ,

and by Def{R,Ro) the category of triples
(AO’GI E)

consisting of an abelian scheme AO over RO , a p-divisible
(= Barsotti-Tate) group G over R , and an isomorphism of p=-divisible

groups over RO

~ (o
e:GO——a-Ao[p] .

THEOREM 1.2.1 (Serre-Tate). Let R be a ring in which a prime p

is nilpotent, ISR as nilpotent ideal, RO==R/I . Then the functor

G(R) Def(R,Ro)
&0
A P (AO,A[p 1. natural €)

is an egquivalence of categories.
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PROOF. We begin with full-~faithfulness. Let A , B Dbe abelian

schemes over R . We suppose given a homomorphism
oo fe o] o0
glp J:alp 1~ 8lp]

of p-divisible groups over R , and a homomorphism

oC,
of abelian schemes over R, such that fo[pm] coincides with (£flp ])o.

We must show there exists a unique homomorphism
f:A B

o0
which induces both flp ] and fo .
Because both abelian schemes and p-divisible groups satisfy all
the hypotheses of 1.1.3, we may make use of its various conclusions. The

unicity of £ , if it exists, follows from the injectivity of
-
Hom(A,B) Hom(AO,BO) .
For existence, consider the canonical lifting "NYE"  of Nvfo :
“NE" A B .
We must show that "N f" kills A[N"] . But because "N f" 1lifts
Nvfo , its associated map "NVf”[pw] on p-divisible groups lifts
v r.= s s
N (fOLp J). By unicity, we must have
o0 o0
"NElp ) =N"(£lp 1) .
" \) H : AY 3 " v H \J .
Therefore N f kills A[N } , and we find N f'=NF , with F a

lifting of fo . Therefore F[pw] lifts fo[pw] , 80 again by unicity

we find Ftpw]= f[pw] .

It remains to prove essential surjectivity. We suppose given a
triple (AO,G,S). We must produce an abelian scheme A over R which
gives rise to this triple. Because R 1is a nilpotent thickening of

R0 ,» we can find an abelian scheme B over R which lifts Ao . The
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isomorphism of abelian schemes over R

induces an isomorphism of p-divisible groups over Ro ’
o0
oy O lp ] o
B (p"] —2——a (7] .
0,
and Nvmoip 7 has a unique lifting to a morphism of p-divisible groups

over R
7] bl o

This morphism is an isogeny, for an "inverse up to isogeny" is pro-
Q. -
vided by the canonical lifting of Nv><(do[p h 1 ; the composition in
either direction
i v N i)
N alp ]
oo
R

"NV (alp ] T

2V {(again by unicity). Therefore we have a short

is the endomorphism N

exact sequence
[ee]
o K=8Blp | *G~*0,

with KC:B[sz]. Applying the criterion of flatness “fibre by fibre" -
(permissible because the formal completion of a p-divisible group over
R along any section is a finite-dimensional formal Lie variety over R,
so in particular flat over R} - we conclude that the morphism “Nva[§”}
is flat, because its reduction mod I , which is (multiplication by

NN) X {(an isomorphism), is flat.

val

Therefore K is a finite flat subgroup of B[p ; and so we may

form the quotient abelian scheme of B by K :
A=B/K .

Because K 1lifts Bo[NvI , this guotient A 1lifts BO/BO[Nv] 3$-BO i A

and the exact sequence
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&0
o k*Blpl~>c~o0
induces a compatible isomorphism

Alp™] ~ Blp 1/K =+ G . Q.E.D.

1.3. REMARK. Let us return to the general situation of a ring R
killed by an integer N» 1 , and a nilpotent ideal ISR , say with

Iv+1=

O . Let G be an f.p.p.f. abelian sheaf over R , which is for=-
mally smooth and for which G is locally representable by a formal Lie
group. The fundamental construction underlying Drinfeld's proof is the

canonical homomorphism

vi(any 1ifting) a(

"NV : G(A/IA) a)

for any R-~algebra A . This homomorphism is functorial in A . It is
also functorial in G in the sense that if G' 1is another such, and

£:G6 2 G' 1is any homomorphism, we have a commutative diagram

HNVII
G(A/IA) ————> G(A)

LI

1 "

G'(A/IA) ————> G'(A)

for any R=algebra A .

There is in fact a much wider class of abelian-group valued functors
on the category of R-algebras to which we can extend the construction
of this canonical homomorphism. Rougkly speaking, any abelian-group-
valued functor formed out of "cohomology with coefficients in G", where
G 1is as above, will do. Rather than develop a general theory, we will

give the most striking examples.

EXAMPLE 1.3.1. Let F Dbe any abelian-group-valued functor on
R-algebras, and G as above, for instance G a smooth commutative
group-scheme over R . Let DG(F) denote the "G-dual"” of F , i.e.
the functor on R-algebras defined, for an arbitrary R-algebra 2a ,

by
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DG(F)(A)

lin Homgp(F(B),G(B)) .

B an A-alg
We define

pgV -
NYo: DG(F)(AfIA) - DG(F)(A}

as follows : given o€ DG(F)(A/IA) , "N € DG(F)(A) is the inverse

limit, over A-algebras B , of the homomorphisms

F(B) G(B)

N f

F(B/IB) —=» G(B/IB) .

If we take F to be a finite flat commutative group scheme over
\'
R, and G=§6_ , then DG(F} is just the Cartier dual F of F . Since
) . . . V.V .
F is itself of this form (being (F ) ), we conclude the existence of

a canonical homomorphism
"NV" : F(A/IA) * F(A)

functorial in variable R-algebras A and in variable finite flat commu-

tative group-schemes over R . This example is due to Drinfeld [2].

EXAMPLE 1.3.2. Let X be any R-scheme, and G any smooth commu-
tative group scheme over R , or any finite flat commutative group-scheme
over R . Let i %0 be an integer, and consider the functor on R-algebras
@i(G) defined as

i

i -
(G () =Hg , o ¢,

(X® A,G) .
R

Using the "Nv"—homomorphism already constructed for G , we deduce by

functoriality the required homomorphism

gV - i - i

N @ (G) (A/1) 2 €(G)(A)
functorial in variable aA , G , and X in an obvious sense.

1f we take G=6_ ., we have <I’)l{(G)(A) =Pic(X%A) ’

%(6) (A) =Br(X8 ), ... .
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2. SERRE~TATE MODULI FOR ORDINARY ABELIAN VARIETIES

2.0. Fix an algebraically closed field %k of characteristic p> O .
We will be concerned with the infinitesimal deformation theory of an
ordinary abelian variety A over k . Let AF be the dual abelian
variety ; it too is ordinary, because it is isogenous to A .

We denote by TpA(k) , TpAt(k) the "physical® Tate modules of A
and At respectively. Because A and At are ordinary, these Tate
modules are free Wb-modules of rank g=dim A=dim at .

Consider now an artin local ring R with residue field k , and
an abelian scheme A over R which lifts A/k (i.e. we are given an
isomorphism A%k <» A). Following a construction due do Serre-Tate, we

attach to such a lifting a Zb—bilinear form q(a/R:-,-)
£ -
A/Ry=,-) + T A(K)XT A" (k) 2> €& (R)=1+n .,
ala/ ) P (x) o (k) '

This bilinear form, which if expressed in terms of Zb—bases of TpA(k)
and of TpAt(k) would amount to specifying g2 principal units in R ,
is the complete invariant of A/R , up to isomorphism, as a lifting of

A/k . The precise theorem of Serre-Tate is the following, in the case of

ordinary abelian varieties.

THEOREM 2.1. Let A be an ordinary abelian variety over an alge-

braically closed field k of characteristic p»> 0 , and R an artin

local ring with residue field k .

1) The construction

A/RP g(A/R;~,~) € Hom,,
P

establishes a bijection between the set of isomorphism classes of liftings

t ~
®
(TpA(k) TpA (k),Gm(R))

Z
P

the formal moduli space of A/k .,

of A/kK to R and the group Hom (TpA(k)@>TpAt(k),am(R))-

2) 1f we denote by mA/k

the above construction for variable artin local rings R with residue

field k defines an isomorphism of functors
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R N £ .
??IA/k => Hom,, (TpA{k}®TpA (k),Gm) .

3
3) Given a lifting A/R of A/k , denote by AT/R the dual

abelian scheme, which is a lifting of At/k . With the canonical identi-

fication of A with Att , we have the symmetry formula

q(A/R;a,at)==q(At/R;at,a)
for any @€TA(K) , « € TpAt(k) 3

4) Suppose we are given two ordinary abelian varieties A , B

over k , and liftings A/R , B/R . Let f:A =2 B be a homomorphism, and
ft :Bt - AF the dual homomorphism. The necessary and sufficient condition

that £ 1ift to a homomorphism £ : A * B is that

qlB/R:e, £5(8 )) = q(B/R: £(x),B )
1 t

for every «€ TpA(k) and every BtE Tth(k) (N.B. If the lifting ff

exists, it is unique).

CONSTRUCTION~-PROOF. By the "general” Serre-Tate theorem, the functor

over R with 1iftings of their p-divisible
groups to R

{abelian schemes} + rabelian schemes over k together }

A/R » (A%k,A[poo])

is an equivalence of categories.

Thus if we are given A/k , it is equivalent to "know" A/R as a
lifting of A/k or to know its p-~divisible group Aﬂpm] as a lifting
of A[pm]. Because A/k 1is ordinary, its p-divisible group is canoni-

cally a product

fo o] - > ®
alp ] = A x T AlK) k (e/Z,)

P
of its toroidal formal group and its constant etale guotient. Similarly
for A% . The e n—pairings (c¢f. chapter 5 for a detailed discussion)

P
e n' A[pn] XAt[pn] ™
P P

n
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restrict to give pairings

e .t g[pn} XAt(k)EPnj o
P p
which define isomorphisms of k-group-schemes

n

alp™) = Hom (A% () [p" 1 )
p
and, by passage to the limit, an isomorphism of formal groups over k

v

~

~ t -~
A —»»Homzp(TpA (k},Gm} .

We denote by

~ -t -~
: AX nd
Ep : AXTA (k) = &
the corresponding pairing.

Because R is artinian, the p-divisible group of A has a canonical

structure of extension
0 —>A —>A[p°°] ———ar’I‘pA(k)® (CDP/ZP) — 0

of the constant p-divisible group TpA(k)®>(Qp/2§) by A , which is
the unique toroidal formal group over R 1lifting A . Because A and

the A[pn]‘s are toroidal, the isomorphisms of Xk-groups

Alp™] = Hom (At(k)[pn],w )
7 n
p
-~ ~ t ~
A = Hom, (TpA (k),Gm)
p
extend uniquely to isomorphisms of R-groups

Alp™] = Hom (At (k) [p" 1 )

n
z P
-~ t -~
A = Homz (T A (k),Gm) .
P
We denote by
! ~r n t ny o
E, :alp"Ixatx)lp"] *w
p A P
~ t ~
tAXT k) =2 G
By i A pA() n

the corresponding pairings.
A straightforward Ext calculation (cf. [9], Appendix)} shows that

our extension
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N oo
o>a~alp ]l TAKS® (0/7) >0
is obtained from the "basic" extension
0 = TpA(k) - TpA(k)@Qp - TpA(k)® (ozp/zp) -0
by "pushing out" along a unigue homomorphism
TpA(k)
l?A/R
A(R)
This homomorphism may be recovered from the extension
o> A=alp ] TAK®(Q/Z) >0
P P P
as follows. Pick an integer n sufficiently large that the maximal ideal

m of R satisfies

Because pé&m , and A is a formal Lie group over R , every element of
A(R) 1is killed by pn . Therefore we can define a group homomorphism

i "

P : a(k) * A(R)

by decreeing
x€A(k) @ p™ for any ¥ €A(R) 1lifting x .

If we restrict this homomorphism to A(k)[pn] , we fall into A(R) :

] 1

pn :A(k){pn] - A(R)

Por variable n , we have an obvious commutative diagram

ato)[pPtt] _ ettt
p A(R) ,
A(k)[pn] Ilpnll

so in fact we obtain a single homomorphism

TpA(k) » A(R)
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as the composite
" nll
TAGK) > atk[p"] —E—r AR)

for any n ?? 0 . This homomorphism is the required wA/R .

We are now ready to define g{a/R;-,-). We simply view ?ﬂ/R as a

homomorphism

TpA(k) - A(R)

~
.
\

. Sl the pairing EA

~ N

~u + A
Hom(TpA (k),Gm(R)) ’

or, what is the same, as the bilinear form

dfn

q(A/R:ot,at) = E, {0 (a);cft)

A/R

We summarize the preceding constructions in a diagram :

{isomorphism classes of Serre-Tate somorphism classes of }
A/R 1lifting A/k } {A[p 1/R  1ifting A[p 1/x

£ A
tpe gp(TpA( )® (Qp/Zf'p),Homzp(TpA (k),€))

"pushout" Sf gl "wA/R"

£ "
Zp(TpA (k),csm))

§ -

€ “
om,, (TpA(k) ® TpA (k),Gm(R)) .

z
P p

H T Alk),
omR_gp( pA( ) Hom,

Thus the truth of part 1), and, by passage to the limit, of part 2),
results from the "general" Serre-Tate theorem. To prove part 4), we
argue as follows. Given the homomorphism f:A = B , we know by the
general Serre-Tate theorem that it 1lifts to £ : A * B if and only if
x . oo Sl el x . 3
it lifts to an ﬁf[p ] :A[p ] - B[p ] . Such an ﬁf[p ] will necessarily

respect the structure of extension of A[pw] and of B[pw] , so it will
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necessarily sit in a commutative diagram of p-divisible groups over R:

- t o N
0 Homzp(TpA (k),&) > alp] » TAK)® (/F) > 0
oft l ig(p ] if
t 2 ¥
ol HomZb(TpB (k).€ ) - Blp ] = TpB(k)8>(Qp/Z%) - 0.

Conversely, the Serre~Tate theorem assures us that we can 1lift f
to an ff if we can fill in this diagram with an ff [pw].
But the necessarily and sufficient condition for the existence of an
ff[pm] rendering the diagram commutative is that the "push out" of the
top extension by the arrow ngtn pe isomorphic to the "pull~back” of
the lower extension by the arrow "f".

The "push-~out" along £t of the upper extension is the element of

®0 /7, BH(x), &
ExtR~gp(TpA(k) Qp/Zb Hom., (T B~ (k),G ))

lo

£ “
Homz,p(TpA(k) 2 TPB (k) ,Gm(R) )

defined by the bilinear pairing
(Q’Bt) q(NItlc‘lf (B ))
t

The pull-back along f of the lower extension is the element of the

same Ext group defined by the bilinear pairing
(a,8.) = q(B/R;E(e),B. ) .
Therefore ff[pm] , and with it ff, exists if and only if we have
t

gla/Rio, £ (BL)) = q(B/R; £(w) ’Bt )

for every af TpA(k) and every 8. € Tth (k).

It remains to establish the symettry formula 3), i.e. that

q(A/R:Cz’,ﬁ’t ) = qlat /R:a’t P )

Choose an integer n such that the maximal ideal m of R satisfies
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Then the groups A(R) and AT(R) are both killed by p" . Let &(n) ,
at(n) denote the images of o , ozt under the canonical projections

T A(K) - a()[p"] , TpAt(k) - a x)[p™] .
Then by construction we have

op/r(®) = p @ln) in A(R)

n ott(n) in At(R) ,

RS
2
3
1
jie]

and therefore we have
q(A/R,'CY,O’t) = EA(C'DA/R(&') :ﬁ’t)

=E n(%/R(”)'”t(“))

A,p

- "o

=g _(p a(n),@ (n)) .
Alp

Similarly, we have
q(At/R;at,a}=E t(w £ (dt),&)

A~ A /R

=K (o (o) ,o(n))

t
atp" at/r

-E (o™ e, (n),a(n)) .
At n t

’

But for any n the pairings E o are "computable" in terms of
A:p
the e n-pairings on A , as follows.
p

LEMMA 2.2. Let n¥1 , x€A(R)[p"] and vyE€ At(k)[pn]. There exists

an artin local ring R' which is finite and flat over R , and a point

YEAt(R')[pn] which lifts yEAt(k)[pn]. For any such R' and Y’ , we
have the equality, ingide @m(R') ,

E n(x,y} =e n(x.Y) .
AIP p

PROOF OF LEMMA. Given y€ AT(k)[p™] , we can certainly lift it to

a point Yleﬂt(R) , simply because At(R) is smooth over R . The

-~

point pnYl=Y2 lies in At(R) . Because At is p-divisible, and R
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is artin local, we can find an artin local R' which is finite flat

over R and a point Y, in At(R') such that Y2==pnY3 . Then

v=v -y, lies in a%(R")[p"] , and it lifts y .
Fix such a situation R' , Y . The restriction of the e n—pairing
p
for A®R'
R
] t b
e, M8RH[P I x @ @r)[P"] v
R R

P p

to a map

(AR [P xY *
R p“

is a homomorphism of toroidal groups over R'

Alp"1®R' @
R n
P
whose reduction modulo the maximal ideal of R' is the homomorphism of

toroidal groups over Kk

alp™ »w
P
defined by

e (‘:y)
1%

But the homomorphism of toroidal groups over R

A{pn] g ] n
p
defined by
E ("1}7)
a,p"

is another such lifting. By uniqueness of infinitesimal liftings of maps

between toroidal groups, we have the asserted equality. Q.E.D.
Now choose liftings

{ G(n) € A(R) 1ifting o(n) € a(x)(p"]

G (n) €A%(R) 1lifting e (n) €A°(0)[p"] .

Because n was chosen large enough that pn kill A(R) and at(r) ,

we have a priori inclusions
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( G(n) € a(r)[p?"]

¢, (n) € &"(R)[p?™] .

KEY FORMULA 2.3. Hypotheses as above, we have the formula
a(a/R;e,a, )
———— = e (G(n),q, (n)) .
t
gla /R;Oft,af) pzn t
PROOF OF KEY FORMULA. By the previous lemma, we can find an artin

local ring R' which is finite and flat over R , together with points

{B(n)EA(R')[p“] lifting o(n) € a(x)[p")

B, (n) GEF(RJ)[pn] lifting o (n)€ at () p"] .

We define the "error terms"

{ 6(n)=G(n)-B(n)  in A(R")[p?"]
8,(n) =G (n) -8 (n) in &% (R1[p*"] .
In terms of these G , B, and & , we have
"pn"oz(n) dn p G (n) =p"é(n)
"pn"dtt(n) dfn P, (n) =p"8 (n) .

We now calculate

E _(p™ a(n),a (n)
Q'pn t

epn("p”"a<n>,st<n>>

= e (p"é(n),B (n) |

P
= ep2n(t3(n) ,Bt(n))

q(A/R:oz,&t)

It

{(by the previous lemma)

and similarly

t H i
UR/Ryog ) =B p” @ (n),¥(n))

e ("P""a;(n),B(n))

P
epn<p”at<n),a(n)>

® 20(8,(m)/B(m)

= i/e () 8, ()
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this last equality by the skew-symettry of the e 2
p
Therefore the "key formula" is equivalent to the following formula :

-pairing.
n P g

e 2r1(ff(n).Bt(n))-e 2n(B(n),‘gt(n)) =e , (G(n),0 (n)) .
p p P

To obtain this last formula, we readily calculate
e 5 (G(n),G (n)) =ep2n(B(n) +&(n),B (n) +& (n))

P
2n(B(n),Bt__(n)).e 2n(<9(n),¢‘>' (n)).e 2n(I-'ﬁ(n),t?t(n))-e 2n(6(n),Bt(n)).

= e .
14 4 P P

The first two terms in the product are identically one ; the first

because B(n) and Bt(n) are killed by prl , so that

e ,,(B(n),B (n))=e (p"B(n),B (n))=e (O,B (n))=1:
p b b

the second because both ¢é(n) and 6t(n) lie in their respective formal

Zn]

- “r ;
groups a(R'){p and A (R')Epzn] , and these groups are toroidal

(the e 2n—pairing restricted to
P

Alp?™] xatp?™]

must be trivial, since it is equivalent to a homomorphism from a connected

2n] Zn] ,

~ At
group, A[p , to an etale group, the Cartier dual of A [p and

any such homomorphism is necessarily trivial). Thus we have

epzn(d(n),étm)) =1,

and we are left with the required formula. .E.D.

In order to complete our proof of the symettry formula, then, we

must explain why

ep2n(0(n),ﬁt(n)) =1,

for some choice of liftings G{n} , Gt{n) of &(n) and &t(n) to R .
Let us choose liftings

{ G(2n) €EA(R) , lifting o(2n) GA(k)[pzn}

Gt(2n)€At(R) , lifting at(2n)€At(k)Ep2“] .
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Then the points
p'G(2n) , p"G, (2n)

are liftings to R of &(n) and at(n} respectively. Thus it suffices

to show that

e 2r1(pnﬂ(2n),pnat(2n))= 1

P
But in any case we have
n n, pn

e 5, (P G(2n),p G (2n)) = (e 3n(@(2n),Gt(2n))) .

P P
The quantity e 3n(3(2n),ﬁt(2n)) lies in

P
1) 3n(R)C 1+m::Gm(R}
P

and our choice of n , large enough that %ﬂ+l= O , guarantees that

ém(R) is killed by p° . Q.E.D.
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3. FORMULATION OF THE MAIN THEOREM

3.0. Fix an algebraically closed field k of characteristic p)o0 ,
and an ordinary abelian variety A over k . The Serre-Tate

g~construction defines an isomorphism

“ N € R
®
mA/k —evHomzb(TpA(k) TPA (k),Gm)

of functors on the category of artin local rings with residue field k .
In particular, it endows % with a canonical structure of toroidal
formal Lie group over the Witt vectors W=W(k) of k .

Let %/i denote the universal formal deformation of A/k . In this
section we will state a fundamental compatibility between the group
structure on % and the crystal structure on the de Rham cohomology of
#/% ., as refected in the Kodaira-Spencer mapping of "traditional”
deformation theory.

In order to formulate the compatibility in a succinct manor, we

must first make certain definitions.

3.1. Let ® denote the coordinate ring of 7 . Given elements
t
o € TpA(k) . ate TpA (k) , we denote by

x
q(u,at) ER

~

the inversible function on M defined by

qale,e ) =q@/M: o0 ) .

t
Here are two characterizations of these functions q(a,at) . The
isomorphism
- ~ t o
®
m = Hom,, (TpA(k) TPA k), 6 )

p
gives rise to an isomorphism

t ~ -
TpA(k)@TpA {k) —»Homw_gp(m,sm) .

Under this isomorphism, we have



160

Q'®0§t’) q(ﬁr&t;} ’

i.e. the functions g(o,v ) are precisely the characters of the formal

~

torus M .

t

In particular, if we pick a Zp-basis al,...,ag of TpA(k) and a

Zb—basis o of TpAt(k) , then the g2 quantities

t,l""'at,g

Tij q(ai,at’j) 1 ®

define a ring isomorphism
wllr, 11 =&

We will not make use of this isomorphism.
Given an artin local ring R with residue field X , and a lifting

A/R of BA/k , there is a unique continuous "classifying” homomorphism

£ : ¥ = R

A/R

for which we have an R-isomorphism of liftings
A/R =sd® R .
22
The image of q(a.dt) under this classifying map is given by the formula

ﬁA/R(q(a,&t))==q(A/R:w,wt) .

3.2. For each linear form

2 € T ®T at 1 ’
HomZb( pA(k) . (x) p)

we denote by D{(f} the translation-invariant (for the group structure

on M) continuous derivation of R into itself given
D(e)(q(&,&t))= E(QS’Gt)-q(U,dt) .

Formation of D{(£) defines a %é-linear map

t

Hom_, (T A(k)®TpA (k),Zp) = Lie(/wW) ,

b P

whose associated W-linear map is the isomorphism

t ~ s
Homzp(TpA(k)®TpA (k),W) = Lie(W/MW)
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deduced from the inverse of the g-isomorphism of W-groups

Do + ~
— 2
7 Hom,, (TpA(k) TPA (k),Gm)
P
by applying the functor "Lie".

3.3. We next introduce certain invariant one~forms on &

wle ) Cwgn

For each artin local ring R with residue field k , and each lifting
BA/R of A/k , we have given a canonical isomorphism of formal groups

over R

~ ~ t ~
A -——»HomZ (TPA (k),Gm) .
P
This isomorphism yields an isomorphism

t ~ -~ ~
T A (k Hom A, G ’
o (k) = R_gp( )
say

>
&t A(at) .
If we denote by dT/T the standard invariant one~form on Gm , we can

define an invariant one-form

by the formula
*
w(at) =A(at) (ar/7T) = d)\(at}/k(at) .
Equivalently, the construction of w(ﬂt) sits in the diagram

t ~ ~ -~
T k H o}
oA (k) =~ omR__gp(zA o)

Lie
oW i
o, {at) HomR_gp(Lle(A/R),Ga)
w
~#/R
More functorially, we can introduce the ring R[€]==R+RE , 62 =0 ,

of dual numbers over R . Then the Lie algebra Lie(&A/R) 1is the subgroup
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of A(R[e]) defined by

0

Lie(a/R) =Ker of a(R[e]) —2 A(R)

-~

~ [l d
=ker of A(R[e]) =2 A(R)
(the second equality because R 1is an artin local ring). Let us denote by

. :QA/RX Lie{a/R) ® R

(w,L) * w.L
the natural duality pairing of @ and Lie. Then we have the formula,
for any L& Lie(a/R) ,

L+ew(e, ). L=X(a,) (L) € Lie(ém/R)

t
or equivalently
+ew L= . .
1+¢ (at) L QA(L at)
If we choose an integer n large enough that an==O , we will have
Lie(a/r)ca(r(e])[p"] ,
sOo we may rewrite this last formula as

1+Ew(at).L=E (Lo (n)) .

Arp
Finally, if we choose an artin local ring R' which is finite and flat

t

over R , and a point
t, 4 n . . t n
ve€a (R ) p"] 1ifting wt(n) eat(x){p"] .
we may, by lemma 2.2, rewrite this last formula in

1+sw(ut).L==e n(L,Y) .
p
The construction of w(at) defines a Zb—linear homomorphism
T abx) 4w .,
p a/R
at Lsd w(&t)

which, in view of the isomorphism

~ ~ t ~
a —»~Hom2b(TpA (k),Gm) ,
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induces an R-linear isomorphism

T A%(k) ® R =
p 4
P
The evident functoriality of this construction for variable situations

(3]
/R

A/R , shows that it extends uniquely to the universal formal deformation

AR , i.e. to a Zb-linear homomorphism
T A%(k) > wy,
p /%
at Lsd w(at)
which is compatible with the canonical identifications

whenever A/R is a lifting of A/k +to an artin local ring R with

residue field k , and R 1is viewed as an -algebra in the ®

univ

via the classifying homomorphism ﬁA/R tf 2 R of A/R .

The associated ®R-linear map is an isomorphism

TR (K) B8 S wyp
P

3.4. The R-linear dual of the isomorphism

t A
TPA (k) ®R —-a»wA/,R

is obtained by applying the functor "Lie" to the isomorphism

~

~ t hot
A —> Homzp(TpA (k),Gm) .

Its inverse provides an R-isomorphism

Hom_ (T A%(k),Z ) ® R = Lie(A/R) .
7, 'p o 5
p

which yields, upon passing to the limit, an R-isomorphism

HomZ (T

at(x),Z2 ) ® R > Lie(#/R) .
P P

Z
P

The "underlying” Zb—linear homomorphisms

P

t 5 ors
(T A™(k) . Z) Lie(a/R)
" = Lie(#/R)

zZ

Hom
[ %
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will be denoted
v - v
@ L(at) .

. . e v . .
It is immediate from the definition of L(at) that for any situation
t v t
€
A/R , any o TPA {k} and any GtE Homz (TPA (k),Z%) , we have the

P
formula

\, v .
w(ﬁtt).L(&t)—-ozt.at in Zb .

3.5. Let us make explicit the functoriality of the constructions
v . X .
w(dt) ’ L(at) under morphisms. Thus suppose we have two ordinary abelian
varieties A , B over k , liftings of them A/R , B/R to an artin local
ring R with residue field k , and an R-homomorphism
Ff:A"B
lifting a k~homomorphism

£f: A" B .

LEMMA 3.5.1. Under the induced map

*

£ 245~ SR

we_have the formula

*

et
i (w(St))—»w(f (5t))
for any BtE Tth(k).

PROOF. This is immediate from the definition of the w-construction

and the commutativity (by rigidity of toroidal groups !) of the diagram

A

A 22 Hom(T At (k),E )
p m

b

PN

B %Hom('rpst(k),ém) . Q.E.D.

LEMMA 3.5.2. Under the induced map

ff.: Lie(a/R) - Lie(B/R) ,

*
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we have the formula

Y vV ot
£, (L(at)) = L(utof )
v t
for any o, &€ Hom(T A (k),Z_ ).
t P P
PROOF. The same. Q.E.D.

LEMMA 3.5.3. Under the induced map

* 1 1
. 8 &
£ .H{IB,IB)——>H(E&,F)

] |

Lie{t/R) ——Lj‘ Lie(At/R)
ﬁ*

we _have the formula

£°we’)) = 25 weE")) = 1Yo

v
for anv B GHom(TpB(k),zp).

PROOF. This is the concatenation of the previous lemma and the

functoriality of the identification of Hl(A,GA) with Lie(At/R). Q.E.D.

3.6. We next recall the definition of the Kodaira-Spencer mapping.
First consider a lifting A/R of A/k +to an artin local ring R with
residue field k . Such an R has a unique structure of W=W(k)-algebra.
This W-algebra structure on R allows us to view A as a W-scheme.
Because A is smooth over R , we have a locally splittable short exact

sequence on A
O — 8 @ Qé —_— —a —s 0 .
&R RM A/ A/R

The coboundary map in the long exact sequence of cohomology
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o) 1 3 1 1
g = H (A,QA/R) — H (A, 2 R/w)
N & (base-change for &a/R)
R 1 1
®
Kod ™ H (A,GA) 2 W
\\ a
» 1
\ t
Lie(a /R) fzg QR/ ,

defines the Kodaira-Spencer mapping
Kod : w , » Lie(a®/r) ® 0% .
“A/R R RM

By passage to the limit, we obtain the Kodaira-Spencer mapping in the

universal case :
. t 1
Kod:gld,/ﬂ = Lie(# /ﬂ)®QR/W
(with the convention that Q%/W denotes the continuous one-forms).
3.7. In this section we state three visibly equivalent forms
(3.7.1-2-3) of the fundamental compatibility.
MAIN THEOREM 3.7.1. Under the canonical pairing
L w x Lie(#*/R) 00 . —> G .o
_#t/R /W /W

we have the formula

w(a).Kod(w(ut)) = dlog(q(d,dt)) '

for any o€ TpA(k) (viewed as TpAtt(k) , so that (&) is defined),

t
and any dte TpA (k).

MAIN THEOREM (bis) 3.7.2. Choose a Zp—basis al,...,agéTpA(k).

and denote by &1,...,&2 the dual base of Hom(TpA(k),Zb) , we have the

formula

Kod(w(w,)) = % L(a}) ®dlog qla;,a,)

t

for any atE TPAt(k).
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For each continuous derivation D of R into itself consider the
map Kod{D) defined by
Kod S 4 1
L—dil’/ﬁ s Lie{# /R)®QR/W
Kod (D) ll@D
Lie(#%/R)
For each element
2 € Hom{T A(X)® T AS(x),Z_) ,
( o (k) o (k) p)
and each element
t
€
¥ TpA (k) ,
we denote by
Lxx, € Hom(T A(k).,Z.)
t ( P ) P
the element defined by

(Q*Qt)(&) = €(u®ozt) .

MAIN THEOREM (ter) 3.7.3. We have the formula
Kod(D(e))(w(G’t)) = L(Z*Oft)

for any a!tETpAt(k) and any ¢ €Hom(TpA(k)®TpAt(k),Zp).

Eguivalently, for any «¢€ TpA(k) , we_have the formula

w(e) .Kod(D(2)) (w(e )) = t(a®a ) .
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4. THE MAIN THEOREM : EQUIVALENT FORMS AND REDUCTION STEPS

4.0. Our proof falls naturally into two parts. In the first part,
we make use of the canonical Frobenius endomorphism & of ﬁ to trans-
form the Main Theorem into a theorem (4.3.1.2) giving the precise struc-
ture of the Gauss-Manin connection on the De Rham cohomology of the
universal formal deformation #/R . We then make use of the "rigidity"
of these various actors in the universal situation to show that the
Main Theorem in its Gauss-Manin reformulation follows from an exact
formula (4.5.3) for the Serre-Tate g-parameters of square-zero defor-
mations of the canonical lifting.

The second part of the proof, which amounts to verifying 4.5.3, is
given in chapters 5 and 6.

4.1. Let O denote the absolute Frobenius automorphism of W=W(k).
(o)

For any W-scheme X , we denote by X the W-scheme obtained from

X/W by the extension of scalars W 2, W . Thus we have a tautological

cartesian diagram of schemes

()

l l

Spec (W) —§E%?Lgl+ Spec(W) .

LEMMA 4.1.1. We have a natural isomorphism

(O ~ph

A(0')/k

(Ma/k
under which

*
z (qlo,e ) «— qlo(e),0(a)) .

t
PROOF. Let R be an artin local ring with residue field k , and
A/R an abelian scheme lifting A/k . Then A‘c)/R(c) is a lifting of

c . . . . .
A( )/k . Because O is an automorphism, this construction defines a

bijection

~ ~ (o)
'm.A/k(R) =ty mA(c)/k(R )

which is functorial for variable R . If we apply it to ® , we find a
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bijection ~

m o, ®) s M @77
A/k A(U)/k
{l il
Hom (% % ) Hom ((ﬁ )(G) n )
fetr' A/k’ T A/k fetr' “TA/k ! A(cr) /k
]
id
The element of Hom((i )(U),i ) corresponding to the identity

A/k A(cr)/k
map is the required isomorphism. Alternatively, this isomorphism is the
classifying map for the formal deformation of A(c)/k provided by
#9) ()

By “"transport of structure”, we have for every A&A/R , the formula

2 (qa/rioe)) = a@l® R 0 (a0

t

and hence we have

2™ (qle,,)) = q(o(@),0(s,)) . Q.E.D.

t

v
LEMMA 4.1.1.1. The behaviour of the constructions w(at) ' L(dt)

under the construction

A/RMA(G)/R(G)
is expressed by formulas
2N (w(@,)) = wolay))
Z*(L(a:)) - L(a:oo—l) )

PROOF. This is obvious by "transport of structure”. Q.E.D.

Given A/R , we denote by A'/R the guotient of A by the "cano-

nical subgroup” A[p} of A . The morphism “projection onto the guotient"

F tA ™A'
can

1ifts the absolute Frobenius morphism

F:A" A(0>
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LEMMA 4.1.2. For €T A(k) and atETpAt(k) , we have the formulas

Fla) =0(s) , V(0(a)) =pa,

a(a'/R;0(@),0(x)) = (qla/Rie,e )P .

PROOF. Because the morphism Fcan exists, and lifts F , the

lifting criterion yields the formula
ala/Rie,vio(a))) = a(a'/R;F(e),0(a.))
It is visible that

F(a) =0(x) for o€ TpA(k)
Applying this to At , we have
F(o,)=0(s,) for & €T a%(k) .
t t t P
Because VF=P , we find, upon applying V , the formula

pr, =V(3(2)) . Q.E.D.

t

LEMMA 4.1.3. Let o, € T A (k) a o« €n (T A(k),Z)
.1.3. e B n o om ’ .
== Tt p ans p P

Congider the elements
w(at
£
w(G(&t)) f-_ﬂA./R
v .t o~ ol
L{z ) € Lie(A"/R) H (zA,@lA)

) 1
)EQA/R—H (A,QNR) ,

L(eVoo™d) €Lie(at) /R) ~ H A',6 )

A
Under the morphism F* induced by
can
Fcan tA A
we _have the formulas
- o(a,))) = pwle )
F_  (w(O(2))) = pwla,
* V1., _ v
Foon(L(a'e0™h)) = La’) .
PROOF. By lemma 3.5.1, we have
*
L (w(0(@))) = w(vo(e)) = wlpa,)
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while by lemma 3.5.3 we have

v
F* (L(a o0 1

_ AS | _ v
can }) = L(& o0 “oF) = L(& ) . Q.E.D.

I1f we apply the construction
a/R—A' /R

to the universal formal deformation %%WA/k of A/k , we obtain a formal
. - o e . .
deformation #I/mA/k of A( )/k . It's classifying map is the unique

morphism

~ ~ -~

$.7

~ (o)
A/k——’mA(cr)/k = My p)

such that
" 2%y ~ #
The expression of % on the coordinate rings is given, by lemma 4.1.1, as

22" (qle o)) = ale, 2 )P .

In terms of the structure of toroidal formal Lie group over W imposed

upon M by Serre~Tate, the morphism @ may be characterized as the

A/k

unique group homomgrphism which reduces mod p to the absolute Frobenius.

The isomorphism

o (£ ~ &
allows us to view Fcan as a morphism of formal abelian schemes over
mA;’k
* o
P a—d @7y |
can
\' :
LEMMA 4.1.4. Let dte TpAt(k) , o € Hom(TpA(k),Zb) . Consider the
elements

{ w(at)esgﬁﬁﬁ

Lia”) € Lie@" /) ~ ul(#,8) .

*
. .
Under the morphism Fcan induced by

r it 2 @)

ca
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we have the formulas

PROOF. This follows immediately from 4.1.3 and 4.1.1.1.

COROLLARY 4.1.5. The w and L g¢onstructions define isomorphismg

T A (k) 2> {wE€ gﬂyﬁl F:aHQ*Z*(w)=:pw}

Hom(T A(k).Z,) > (L€ Lie"/R)~ K (#,8)

k3 *_*
such that F___ @ L (L)=1Lj .
can

PROOF. Let o be a 7 -basis of TpAt(k) . Then

&
1, "g,t

Yeooo (o ) is an R-basis of QQVR . Given w€w , it has a

w( g.t

o
1,t

unique expression

whence

* *_ K E
Fcan° Z(w) =2 ¢= (£;).pwlag ) .

Therefore, as & is torsion-free, we see that

¥ et N w) = pw
Fcan (W) =p

=5 ®L(£,) = £, for i=1,...,9 .
i i

*.., *
But it is obvious that a function f€R satisfies ®#Z (f)=f if and
only if £ is a constant in Zb .

The proof of the second assertion is entirely analogous.

4.2. Consider the de Rham cohomology of &R , sitting in its Hodge

exact sequence
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0 — Wap _>H3R(ez/se) — B (@#,8) —>o0

acu® 1 n

Lie(#%/R)
t ® R
TpA (k) Wp Z‘Lg’ 1

Hom(T A(k),Z ) @ & .
om( . (k). p)

V4
P

Let us denote by
. 1 . 1
le(HDR) , p—le(HDR)
the Zé-submodules of HéR{ﬁVR) defined as
. _ 1 »* * _ * "
Fix = {§€m | F  &727(8)=¢)

1 * *o * _
{§EHDR\ Fon? Z (g) =p&} .

p-Fix

LEMMA 4.2.1. The maps a , b in the Hodge exact seguence

0 —> TpAt(k) 5 R -2, HéR($/@) L, Hom(frpam,zp);@ R —> 0
P p
induce isomorphisms
t a 1
(1) 'I‘pA {k) ’—"»p-Fix(HDR)

~ . 1
(2} Hom(TpA(k),%b) < le(HDR) .

PROOF. (1) Let &€ p-Fix . By 4.1.5, it suffices to show that §
lies in g%ﬂ% . For this, it suffices to show that the projection of £
in H'(#,8 ) vanishes. But this projection lies in p-Fix(H'(#,8)) ;
in terms of a Zb-basis Nz of Hom(TpA(k),Zb) , we have

. v
proj(§) = & fiL(&i) ,
* *_ * * ., # \
3 F z 1 =z z . r
p proj(§) Fcan¢ (proj(8)) ¢ (fi) L(Ul)
whence the coefficients fi.E& satisfy
¢'s” =
(fi) pfi
Because R is flat over Zb and p-adically separated, ®/pR is
*_, *
reduced? as oz reduces mod p to the absolute Frobenius endomor-

phism of R/pR , we infer that £,=0.



174

(2) By 4.1.4, the endomorphism ann@*z* of Lam is p-adically

nilpotent, and therefore we have

. 1 _
This means that the projection Db induces an injective map
. 1 j .
Fix(Hp) Lrol, le(Hl(ﬁ,Qt))

N zT (4.1.5)
Hom(T A(K) 7)) .

_ . . . v
To see that it is surjective, fix an element o« € Hom(T A(k),Zb)) , and
1 . . v v
choose any element EOE Hyp which projects to L(o ). Because L(o )

of elements of

* *o *
is fixed by F___®Z , each of the sequence § ,% ,...
can o "1

HéR defined inductively by

. v
also projects to L{a ). Therefore for every n »0O we have

= € ;
E g =@ T Egm
n o
applying the endomorphism F;an@*z* m times, we see by 4.1.4 that
* **m m
- = = s ) € .
gn+m gm (Fcan¢ ) (ah) p EJVR

Therefore the sequence §n converges, in the p-adic topology on HéR ’
v
to an element §_ which projects to L(& ) and which by construction
. . . 1
lies in le(HDR).
v
For each element & € Hom(TpA(k),Zp) , we denote by
. v . 1
Fix(a ) € Fix(Hyp)

. . . , . v . . v
the unique fixed point which projects to L(e ). Formation of Fix(e )
defines the isomorphism inverse to b :

Fix

, 1
Hom(TpA(k) ,zp) T le(HDR) .

COROLLARY 4.2.2. The congtruction "Fix" provides the unique

R-splitting of the Hodge exact sequence which respects the action of

F* @*E* .
can



175

0 —>wpp -—>HéR(at/&a) > (#,04) —> 0
w1 +
" Lie(#°/R)
T A (k)®R
P Fix® 1 Juo1

T A(k),Z )®R
Hom ( - (k) p)

4.3. In this section we will give further equivalent forms of the
Main Theorem, this time formulated in terms of the Gauss-Manin connection

on H%R(#/R).

MAIN THEOREM (qguat) 4.3.1. Let « .,ag be a Z&-basis of

R
v
TpA(k), ul,...,d; the dual basis of Hom(TpA(k),Zé). Under the Gauss-

Manin connection

1 ol 1
Vi H L (B/R) Y H @R G

we have the formulas

V(w(dt)) =z Fix(a!)@ﬁdlog q(ai,at)

v(rix(e’)) = 0

[

v
for any at€ TpAt(k) , and any o € Hom(TpA(k),Zé).

For each continuous derivation D of R into itself we denote by

v{D)} the map defined by

1 v 1 1
Hyg B/R) ——> Hy (/R) 8 G 0
5 100
HY L (@#/R)

MAIN THEOREM (cing) 4.3.2. We have the formulasg

V(D(e))(w(at)) = Fix(e*txt)
7(D(2)) (Fix(«")) = 0 ,

t v t
for every até TPA (k) , a EHom(TpA(k),zp) , EEHom(TPA(k)®TpA (k),zp).
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Let us explain why 4.3.1-2 are in fact eqguivalent to 3.7.1-2-3.
That 4.3.1 and 4.3.2 are equivalent to each other is obvious. The impli-
cation (4.3.1) == (3.7.2) comes from the fact that the Kodaira-Spencer
mapping Kod is the "associated graded”, for the Hodge filtration, of

the Gauss-Manin connection, i.e. from the commutativity of the diagram

Hi @#/R) ——> uL (#/R)® e

J lproj® 1

B &, 9 ) © G

Lie*/R)®q .

Qﬁ?ﬂ Kod

It remains to deduce (4.3.1) from (3.7.2). In terms of a Zb base
v
{di} of TPA(k) and of the dual base a, of Hom(TpA(k),Zb) , we must
show that

)

Y
v(w(e,)) =T Fix(e,)®dlog qlo,,

v(Fix(a')) = 0 .

To show this, we must exploit the functoriality of the Gauss-Manin

connection. Because we have a morphism

i *glo)y _
Fcan.c}t-’@ # )—"tg}@*z* '

the induced map on cohomology is a horizontal map

* *_¥* 1 - 1
Fon BN @R),9) 2 (il #/R),0)

Concretely, this means that we have a commutative diagram

1 v _for #/R . 1 1
Hyp @/R) L > Hop /) ® %

l@*z* l@*z*@u e*c*

* o l0)
1 g% #l0) v for @@ 9 )R 1 4% (o) 1
HL (@@ 7)) my L Eer Ly gl @@ mea

lF* lF* ® id
can can

1 1
HL @/R) Y for AR, Hpp@/MOG, .
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LEMMA 4.3.3. For any ¢£€ Hom(TpA(k)8>TpAt(k),Z§) , the action of

D(€) under the Gausg-Manin connection on HéR(ﬁ/R) satisfies the for-

mula

v(p(e))(F._ &"T"(8)) = pF._ &7 (7(D(2))(5)) |

for any elements &€ HéRGﬁ/R)

PROOF. Let {&,}., and {e&,_ .}. Dbe Z -bases of T a(k) and of
i trj J P p
TpAt(k) respectively. Then the one-forms

nij = dlog q(ai,&t'j)

form an ®~base of Q%/W . The formula

¢z (qla,0,)) = qlo,a)P
shows that the nij satisfy
@'c” =
('ﬂij) p nij
Given §¢€ HéR($/R) , we can write
V() = Z Xi . ® Mis i
i3 ) J

the coefficients Xije HéR(%/R) are given by the formula
kij = V(D(eij))(g) '
where we denote by {ei j}€ Hom(TpA(k)@>TpAt(k),Z§) the dual basis to
. t
the basis {”i®°’t,j}i,j of TpA(k)®TpA (k).

The commutativity of our diagram gives

[

* *_ ¥ * *_ ¥ K ¥
v(Fcan<I>2 (£)) z FcanCI?Z (xij)®¢z (nij)

i

* *_ ¥
z .
px Fcan¢ (kij)®nij

Thus we find

* *_ ¥ *

*_ ¥
can@ (&) =p FcanilZ (Xi,j)

* E I
can? £ (T ) (8)

V(D(eij))(F

pF

The assertion for any £ follows by Zb-linearity. Q.E.D.
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COROLLARY 4.3.4. LIf $€H) (#/R) satisfies

F*an@*z*(g) =X E with A€W,

c
then for any ¢¢€ Hom(TpA(k)8>TpAt(k),Zb) , the element
(D(2))(8) EHJ (#/R) satisfies
* *_*
p Fcan(b Z (V(D(e))(E)) = x ¥(D(&))(8) .

In particular, we have the implications
. 1 _
§€F1X(HDR) == V(D(€}}(5§) = O

§ € p-Fix(Hy ) == 7(D(£))(§) € Fix(H. )

PROOF'. The first and last assertions are immediate from 4.3.3. If

g€ Fix(HéR) , then the element &' =9(D(2))(E) satisfies

* *., ¥

g =prF__ ®L (58)

n * *. % n s
p(F._ ) MEn)

1]

0O . Q.E.D.

Armed with 4.3.4, we can deduce (4.3.1) from (3.7.2).

According to 3.7.2, we have

Kod(w(a,)) = I L(o})®adlog qla,a,)

t

Therefore we have

v
Kod(D(£)) (w(a )) =T E(a, Da )L(a,)

t
But the element Kod(D(e)){w(at))E Lie(ﬁt/R) is the proijection of

V(D(e))(w(at))é HéR(ﬂ/R). Therefore we have a congruence

V(D(2)) (w(a,)) = T 2(o; @ IFix(ay) mod wap

But w(dt) lies in p—Fix(HéR) {by 4.2.1) ; therefore {4.3.4) shows us
that V(D(e))(w(at)) lies in Fix(HéR). Therefore the above congruence

is in fact an equality (because Fix(HéR)ﬂ w= 0} =
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7(D(2)) (w(er,))

i

\
= .
z 2(&i8>at)F1x(ai)

ft

v
FJ_x(?_ e(ai® cyt) .C!i)

H

Fix(e*ﬁlt) . Q.E.D.

4.4. In this section we will conclude the first part of the proof

of 3.7.1 as outlined in 4.0. The key is provided by 4.3.4.

THEOREM 4.4.1. Let €T A(k) , a, € TpAt(k). There exists a

{necessarily unique) character Q(&,ut) of M such that

w(e) .Kod(w(e, )) = dlog Q(a,at)

t

PROOF. Let {wi} be a Zb—basis of TpA(k), { } a Zb—basis

- .
t,3

of TpAt(k), and &, . the basis of Hom(TpA(k)QQTpAt(k},Zb) dual to

'3
1
{aig)di,j} . Then for any element §¢€ HDRﬂﬁ/ﬂ) , we have

V(E) = L 9(D(Z

) 1) (€)@ dlog q(di,a L)
i,3

ij t,J

In particular, for §==w(at) we find

v(w(“t)) - izj v(D(eij))(w(at))2>dlog q(ai'at'j} )

By 4.3.4 and 4.2.1, we have
% 1 1 -
V(D(eij))<w(at)>€ Fix(Hpp) i

so for fixed o, there exist unique elements

v ¢ )
aij Hom(TpA(k),%§

such that
v(D(2,,)) (wla,)) = Fix(a),)
{D( i3 1 (at) = Fix i
Thus we obtain a formula of the form

Y
V(w(ﬂt)) = I Fix(dij)@>dlog q(ai )

-7
i3 €3

with certain elements azjé Hom(TpA(k),%b) depending upon @ -

Passing to the associated graded, we obtain a formula



KOd(w(dt)) = _2. L(&Ij)®(ilog q(ai,u .)

Therefore for o€ TpA(k) , we have

]
™M

w(w) .Kod(w(e,)) = I («.a; )dlog q(a;,@

1,7 \

dlog(ﬂ (q(ai'd
i3

1l

ij
t,j)) ) . Q.E.D.

COROLLARY 4.4.2. For «€TA(k) | utETpAt(k) . and

2 € Hom(T_A(k)®T At(k),Z } , we_have
P P P

w(a).Kod(D(Q))(w(at)) = a constant in Zb .

COROLLARY 4.4.3. Suppose for every integer n }1 we can find a

homomorphism

n n n
such that we have
fn(w(d).Kod(D(e))(w(at))) = E(ag’ut) in W

t t
for ev €T A(k), o €T A (k), and ¢ €Hom(T A(k)®T A (k),Z).
ery p() £ S Tp (k) D (p( b (k) o

Then the Main Theorem 3.7.4 holds, i.e. we have

w(d).Kod(D(E))(w(at)) = E(dg)dt) in R .

PROOF. This is obvious from 4.4.2, because the natural map

- 1 1 1 1 1 1
Zb lim Wn is injective |

4.5. In this section we will exploit 4.4.3 to give an infinitesimal
formulation of the Main Theorem.

Let R Dbe any artin local ring with residue field k (e.g.
R==Wn(k)). By the Serre~Tate theorem, there is a unique abelian scheme

Acan/R lifting A/k for which
. = ep at .
q(Acan/R,oz,at) 1 for all ozéTpA(k) N ’I‘pA (k)

This is the "canonical 1lifting", to R , of A/k . It's classifying

homomorphism
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£ :® 2> R
can

is the unique W-linear homomorphism for which

_ t
fantale.e ) =1, for all aeTpA(k) . atETpA (k) .

Let D be any continuous derivation of R® into itself. Then we

can define a homomorphism

- 2
fcan,D* % > rle] (e =0)

by defining, for, ré€R ,

fcan,D(r) = fcan(r) +fcan(D(r))' .

The corresponding abelian scheme over REE}

éfn
Acan,D RLe]

is a first order deformation of Acan/R .

Consider its associated locally splittable short exact seguence on

Acan.D
0- 8 nR[] - ot N v R[e] * O
Acan D R[ ] /R ACan,D/ Acan,D/
It's reduction modulo € is a short exact sequence on Aian ’
0—>06, ®a —>0 /R\A n—-rﬂl R =0
can R can,D ca Acan

! | |

Xde 1 1
——— —_— —
A QA /R Bian QA /R 0

can can,D

which sits in a commutative diagram

1 1 1
0% % %Ly Y — g —>0

‘1@13

@ * f*
+ fean,D can
*
lf
can
Xde 1 1
—_— €} ——— — & — .
© A Q /R can A /R 0

can can D can’
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Let us denote by 3 the coboundary map in the associated long

exact cohomology sequence

o 1 1
H(a _,Q )y —»H (A___,G )
can Acan/R can’ A..n
w —2 s pie(at. /)
—A /R can/
can

From the commutative diagram (4.5.1) above, we see that

LEMMA 4.5.2. For ozETpA(k) and atETpAt(k) , we have the formulas

£ an(Kod(D) (w(@ ) = 3(£__ (w(w)))
£ (@(e) Kod(D) (w(e))) = £ (w(®)).3(£]_ (wla)) .

MAIN THEOREM 4.5.3. Hypotheses and notations as above, the

g-parameters of A /Rle] are given by the formula

can,D

ald,,, p/Rlelio,a) = Laef (@(@) 3£, (w(e))) .

Let us explain why 4.5.3 is equivalent to 3.7.1-2-3-4 . Suppose

first that 3.7.1 holds. Then

))

w(d).Kod(w(dt)) = dlog(q(dlai

Therefore we have
D(q(aldt))
w(a) .Kod(D) (w(et)) = qla,dt;

Applying the homomorphism

£ : R 2> R,
can

we obtain
£, (Dlala,@))
(q(&,dt))

fcan(D(q(&,at)) .

£ p(@(e) .Kod(D) (w(e,)) =
can

Because A /R[¢] has classifying map £ ., we have

can,D can,D
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q(15*c:<~'.an,D/R{£]"ﬁ[’mt) fcan,D(q(a'ut))

£oplate @) +ef__ (Dlqle,o))

1-+6fcan(w(a).Kod(D)(w(dt)))

il

1+ efcan(w(a) ) .B(fcan(w(at) ).

Conversely, suppose that 4.5.3 holds.

Equating coefficients of ¢ , we obtain

Eoan(Dlale ) = £ (w(e)).3(£,  (w(e))
| I

fcan(w(a).Kod(D)(w(ut)) .

It

fcan(Dlog q(d,dt))
Taking for D one of the derivations D(2) , 2€ Hom(TpA(k)@>TpAt(k),Zb),
we obtain an equality

fcan(e(a8>at)) = fcan(w(a).Kod(D(e)(w(dt)))

Taking for R the rings Wn , we thus fulfill the criteria of 4.4.3.
Q.E.D.



5. INTERLUDE : NORMALIZED COCYCLES AND THE eN—PAIRING

5.0. Let S Dbe a scheme, and 7 : X ® S a proper and smooth
S-scheme with geometrically connected fibres (i.e., W*GX=:®S)' given

together with a marked section x:8 = X :

X
X lﬂ
s .
As explained in ([11]), under these conditions we may view the relative
Picard group Pic(X/S) dfn Pic(X)/Pic(8) as the subgroup of Pic(X)
consisting of Ker(Pic(X) —Eie-Pic(S)). Intrinsically, this means that

we view Pic(X/S) as the group of isomorphism classes of pairs (£,¢€)

consisting of an invertible @X—module £ together with an @S—basis

*
¢ of the invertible ®S—module x (£). In terms of Cech cocycles, it is

convenient to introduce the subsheaf Kx of (6 )X consisting of

X
"functions which take the value 1 along x" ; it which sits in the

tautological exact sequence

0 — KX — (6,)% — %,(0%) —>0 .

X S

Then we have a natural isomorphism
; X
Pic(x/s) > ® (X, K) ,

while the assumption ﬂ*®X=:@ (and consequently 7T (8 )x==®§) guaren-—

S X

tees that
B (x, k%) = {1} .

This means that if a normalized cocycle (i.e. one with values in

K,

£.. € T(u,Nu_ ;K
ij i 73

represents the zero-element of Pic(X/S), then there exist unigue func-

tions
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X

£. € T(ui.K )

1

such that {fij} is the boundary of the normalized cochain {fi} :

£i5° fi/fj

The functor Pic on the category of S-schemes 1is defined by

X/S

T —> Pic(X >S< T/T) .
It's Lie algebra
Lie(Picy /) 40 yor(pic(x(e]/s[e]) —> Pic(X/S))

is easily described in terms of normalized additive cocycles as follows.

+ L . .
Let K be the subsheaf of GX consisting of "functions which take the

"

value zero along x", which sits in the exact sequences

+
o
0 K 2% x,(8g) —=0

X

x/s —> 0 -

O = l+€K+ —-—)K;[e]/sts] el 18
Just as above we have a natural isomorphism

+ o
2 (x, 1+¢kT) = Lie(Picy )

X/S

while
5O(x, 1+exk ™) = {1} .

Although normalized cocycles are extremely convenient for certain
calculations, as we shall see, they bring about no essential novelty

over a local base.

LEMMA 5.0.1. If Pic(8)=0 (e.g. if 8§ 4is the spectrum of a local

. . . X X . . .
ring) the inclusion K CZ(®X) induces an isomorphism

Pic(X/S) = HY(X,KY) ~’3—>H1(X,©;) = Pic(X) .

If S 1is affine, the inclusion = GX induces an isomorphism

Lie(Pic = ul(x, 1+ek") &"-»Hl(x,l'fs@X)

i

Ker(Pic({x[e]) = Pic(x)) .
Q.E.D.

x/s)
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PROOF. Obvious from the long cohomology sequences.

5.1. Suppose that X/5 1is an abelian scheme, with marked point
xXx=0 . The dual abelian scheme Xt/S is the subfunctor Pici/s of

Picx/s which classifies those (&,2) whose underlying <& becomes

algebraically equivalent to zero on each geometric fibre of X/S .
Because abelian varieties "have no torsion", the torsion subgroup-functor

of Pic lies in Xt , i.e. for any integer N and any S-scheme T ,

X/s

we have

xF()[n] = pic, . (T)[N] .

X/S
According to a fundamental theorem, for any integer N the two endomor-
phisms

. N .
—
Pch/S PlCX/S

*
Pic (s’ Pic
X/S X/S

coineide on the subgroup xt (cf. [12]).
5.2. The eN—pairing as defined in Oda [13}

: x[N] x xtn] — by

°N
may be described simply in terms of normalized cocycles. Thus suppose

we are given points
Y € x(s)[N] , X € Pic(x/s)[N] .
Choose a normalized cocycle representing A , say

£, € T(u,Nu, K9
ij i j

*
with respect to some open covering ui of X . Then as [NX/S] (&) is

the zero element in Pic{X/S), the normalized cocycle

* * * X
[Ny ygd (855 € Telmd "qup) 0 Inl 7w ™

X/8
with respect to the covering {ﬂN]-l(ui)} must be the boundary of a

unigue normalized cochain
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-1 X
€T .
£ (N7 U)K
thus we have
*
[n] (£,5) = fi/fj .
Now view Y€ X(S)[N] as a morphism
Y:s"* X .

The open sets Y~l([N]_l(ui)) form an open covering of 8§ ; and the

sections
* -1 -1 %
= I\ A @
fl(Y) Y (fl) € (Y ((N] (u].))’ S)
patch together to give a global section over 8 cof @: . (because on
overlaps we have
£.(Y) .
i
J

as the cocycle fij is normalized).
Oda's definition of the eN—pairing {as the effect of translation
*
by Y on a nowhere vanishing section of the inverse of [N] (£) , & a

line bundle representing X} means that we have the formula

eN(Y,X} = the global section of Gg given

locally by 1/fi(Y) .

{Of course one can verify directly that this global section of Sg is

independent of the original choice of normalized cocycle representing
X, but this "independence of choice" is already a consequence of its

interpretation via the eN-pairing).

5.3. Suppose now that the scheme S 1is killed by an integer N .

Here are two natural homomorphisms
Pic(X/s)[N] — g -
The first, which we will denote
€
A —> w () Lesg 0

is defined via the eN—pairing and the observation that, because N
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kills S , we have Lie(X/S) < x(s[e])[N]. We define «(A) as a linear

form on Lie(X/S) ., by requiring

A) = 14 ew (X)L .
e (L) 1 AL
Given our "explicit formula" for the eN—pairing, we can translate

this in terms of normalized cocycles, as follows.

Begin with a normalized cocycle fij for X , and write

*
Nl g o) = £, /8
for a unique normalized ®-cochain {fi} ; then we have
_ -1
we) = -af, /£, on [NITT(u,) .

{One can verify directly that this formula defines a global one-form on
X , independently of the choice of normalized cocycle representing A ,
but this independence follows from the eN—interpretation).

The second, which we will denocte
X —= "dlog(N)"(X)

has nothing to do with the fact that X/S is an abelian scheme. Given
X € Pic(x/8)(N] , choose a normalized cocycle

X

£.. € T(u,Nnu_ ;K"
1 J

1]
representing it. Then (fij) is a normalized cocycle, for the same
covering, which represents NA =0 in Pic{X/S). Therefore there exist
unique functions

€T X
9; (v-i.K )
such that
N
)

(£, .

ij = gi/gj .

We define
"dlog(N)"(X) = dgi/gi on 4, .
Choice of a cohomologous normalized cocycle f! .= f

13 i3
(by uniqueness) to functions gi==gi(hi)N ; as N kills S , and hence

(hi/hj) would lead
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X , we have
dlog(gi) = dlog gi-fN dlog hi = dlog 9;
so our construction is well-defined.

For any integer M¥1 , S will also be killed by NM , and so we

have homomorphisms

"dlog(NM)" : Pic(x/S)[MmM] — -

“am
From their explicit descriptions via normalized cocycles, it is clear

that they sit in a commutative diagram

"dlog (V

s = O

“leg(N) "

LEMMA 5.4. If N kills S , then for any A€ Pic(x/S)[N°] we have

Pic(x/s)[nmM]

“m
]N

Pic(x/s)N] “N

/s

"dlog(8%)"(\) = -w ,(\) in

w,
N =xX/s

PROOF. Let us begin with a normalized cocycle fij representing

X , with respect to some open covering {hi} . Then

[N]*(fij) represents [N]*(A) = NA\ , on the covering [N]-l(ui)

f?j represents N = {N]*(X) , on the covering ui .
We compute "dlog(NZ)“(k) = "dlog(N)"(M\) = "alog(M) " (IN]"(})) by

using the normalised cocycle for [N]*(K) given by
* . -1
[N] (fij) on the covering Tn) (ui) .
There exist unique functions
-] b
Iy
£33 € T([n] (U;),K7)
such that

* N _
(IN17eE; 7 = ny/my
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and by definition we have
"alog(®)"((N] ") = an;/m; on (¥)7hu)) .
Similarly, we compute & 2(1) = u&([N]*(A)) = uh(Nk) by using the
N
normalized cocycle for Ni  given by

N 1 i)
(fij) on the covering U,

There exist unigue functions
-1 X
T
H, € T([n] (u,),K7)
such that

¥ N _
(n] ((£,07) = H/H,

and by definition we have
= -1
We(M\) = -aH,/H, on () (u) .

By unigueness, we must have Hi==hi , and hence we find

g (W) = "dlog(N)"([N]" (X)) = "dlog(Nz)"(A) . Q.E.D.

COROLLARY 5.5. Let k be an algebraically closed field of charac-

teristic p) 0, A/k an ordinary abelian variety, R an artin local

ring with residue field k ., and X/R an abelian scheme lifting A/k

For any n gufficiently large that pn kills R , we have a commutative

diagram
T Xt(R) reduce mod.m T At(k)
P P
‘ft
oy Lo"] w(e, )
X (R}Lp @, .
""“dlog(pn)" X/R

PROOF.From the description (3.3) of the at'+ w(at) construction in terms

of the e n-pairing, it is obvious that the diagram
P



is commutative.

19

t
{(x(n)} T X (R) —>TpA(k)
L -

A{n) Xt(R)LPn] =T %R

n

p

By the previous lemma, we have

a;zn(X(Zn)) = —"dlog(pZn)”(X(Zn)) =

-"dlog(p™) " (A (n))
Q.E.D.
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6. THE END OF THE PROOF

6.0. Let k Dbe an algebraically closed field of characteristic
p?> 0, and A/k an ordinary abelian variety over k . We £ix an artin
local ring R with residue field k . Having fixed R , we denote by
X/R the canonical lifting of a/k to R .

We denote by

o ——»-w(at) € w

t =X/R
& b W) € @ .
X /R

the homomorphisms
T a%(k) — @
P =X/R

T A(k) — w .
B xt/R
Let R[E] denote the dual numbers over R (52= 0). We fix an

abelian scheme §/R[£] which lifts X/R . We denote by

3 :Q&

1 . t
ey ) =
/R H(X,0,) = Lie(X"/R)
the coboundary in the long exact cohomology sequence attached to the

short exact sequence of sheaves on X
de 1 1
0 — 8 > O X — G g — 0

As explained at the end of chapter 4, our Main Theorem in all it

equivalent forms results from the following "intrinsic" form of 4.5.3.

THEOREM 6.0.1. The Serre~Tate g-parameters of %/R[E] are given
by the formula

q(i/R[e];d.at) = l+ew(e).d(wle, )) .

t

By the symmetry formula (2.1.4}), it is equivalent to prove

THEOREM 6.0.2. The Serre~Tate g-parameters of (%)t/R[Ej are

given by the formula
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a( ) /Rle) 0 o) = 14ew(a) a(wla)) .

We will deduce 5.0.2 from a sequence of lemmas.

LEMMA 6.1. The natural maps "reduction modulc the maximal ideal m

r"

=

TpX(R) — ‘I‘pX(k} TpA(k)

t t t
TpX (R) —-—»TPX (k) ‘I‘pA (k)

are bijective.

PROOF. First of all, the maps are injective, for their kernels are
the groups TPX(R), Tpéf(R) ; as the groups X(R) and Xt(R) are killed
by pn as soon as the maximal ideal m of R satisfies mAtl_ ¢ ’
their Tp's are reduced to zero.

For surjectivity, we must use the fact that X/R is canonical,

i.e., has q(X/R:d,dt)= 1 . This means that for all n sufficiently
large, the map
n ~
g/ ¢ TpA(K) —> a(x)[p") — X(R)
& —s>  a(n) -—+;¥1X(any lifting of a(n) in X{(R))
vanishes, i.e. the “reduction mod m" map is surjective for n’’? 0 :

x(R)[p"] —» a()[p"] .

In fact, this map is surjective for every n , for we have a commutative
diagram

x(R)[p"™™] — at) [p™™]

n n
ip lp
x(R)[p"] —— ax)[p"] .
Thus we obtain a short exact sequence of projective systems

o] ——»»{i(R)Epn]}n ——a—{X(R)Epn]}n ~—¢-{A(k)[pn]}n — 0O
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~

the first of which is "essentially zero" (because X(R) is killed by
pn for n?¥ 0), so in particular satisfies the Mittag-Leffler condition.

Passing to inverse limits, we obtain the required isomorphism
T X{R) - T A(k) .
b P

For Xt/R , we simply note that by the symmetry formula (1.2.1.4)

we have q(Xt/R;a ,2) = g{X/R;a,a,) = 1 ; then repeat the argument. Q.E.D.

t t

LEMMA 6.2. The deformation homomorphism

t St
° : T AT (k) — (X)T(R[e])
(%) t/r(e] P

takes values in the subgroup Ker(it(R[E]) ——9~Xt(R)) =

Ker(Pic(X) ——> Pic(X)).

PROOF. Because Xt/R is canonical, i.e. q(Xt/R;a ,@) =1, by the

t

symmetry formula, the homomorphism o " : T At(k) ——+»Xt(R) vanishes.
X /R

The result follows from the commutativity of the diagram

© ~. t A
TpAﬁ(k) —X) /R, %) E(Rie])

[ £ reduce mod ¢
X"/R -
x%(R) . Q.E.D.

~

6.3. The short exact sequence of sheaves on X
0 —> 146 — ()% —5 (6.)% — 0o
X X X
leads to an isomorphism
(X, 1480, ) > Ker(Pic(X) —> Pic(X)) = Ker(X*(R(£]) —> X"(R)) .

I1f we replace % by the trivial deformation X[E] of X/R , we obtain

an isomorphism

Hl(X,l+€®x) 5 Ker(Pic{x[e]) —s Pic(x)) 2£2 Lie(XY/R) .

LEMMA 6.3.1. Let L€ Hl(X,l+59x), and «¢€ TpA(k). Under the cano-

nical pairings
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NAt ~
E : (X)X T A(k) — €
** P "
E, : (X9 x T A(k) — &
t P m
X
we have
E (L,,@) = E (L,,®) = 1+ew(a).L, ,
(%}t 1 Xt 2 3
where
- . . . vl ol t "
L, = "L viewed as lying in Ker(X (R[€]) — X" (R))
L1} Ly k3 . t t "
L, = "L viewed as lying in Ker(X (rR[e]) — X" (R))
L, = "L viewed as lying in Lie(Xt/R)".

PROOF. The second of the asserted equalities is the definition of
w(e), cf. 3.3 ; we have restated it "pour memoire". We now turn to the
first assertion. Fix an integer n such that m™=0 in R . Then the

n+l

maximal ideal f(m,e) of R{e] satisfies (m,€) =0 . Also pn kills

R , hence we have an=0 .

Choose a finite flat artin local R[el-algebra S , and a point
Y € X(s)[p™ 1lifting o(n) in AK)[p"] .
Denote by S_ = the finite flat artin local R-algebra defined as
So = 8/¢S ,

and denote by YOE X(So)[pn] the image of Y under the "reduction

mod € "  map
i(s)[pn] ~—e—X(SO)[pn]

Y —————a>Y .

e
By lemma (2.2), we have
E (L,,%) = E (L,,a(n)) = e (L.,Y) .
Ll 1 ~ i
)t x5y ;p" 1 % !
and similarly
E t(LZ,U) =e . n(LZ'YO) .
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By the skew-symettry of the e n—pairing, it suffices to show that
p

e, (Y,L.)=e (¥ ,L,)
X?Pn 1 X;pn o’'72

In order to show this, we represent L Dby a normalized cocycle on

some affine open covering ui of X :
1+ef, . ; £..(0)=0 1f O € u,Nu,
ij ij i J
Because an==O ., the "autoduality" of multiplication by integers on

abelian schemes shows that
nq* . nq* =
(p"lx(L) =0 , [p"l (L)) = 0.
Therefore the normalized cocycles for the covering [pn]—l(ui)
- n 5* n * nq*
4 = = €
Lp 33{(1** fij) 1+¢lp ]X(fij) lp Jy(1+ fij)

may be written as the coboundary of a common normalized zero-cochain

nq* l'H':fi n1-1
- — - : 1
1+elp ]X<fij) " wE, £.(0)=0 if o€ [p"17T ) .
By definition of the e n—pairing, we have, for any index i such that
p
Y€ [pn]_l(ui) , the formulas
o (VL) = Ty < - (5 )
Xp i
e nlorly) = TrmEyEy < oY)
X:p i o

The fact that Y0 is Y mod & makes it evident that

(Gfi)(Y) = Efi(YO) in €8 . Q.E.D.

COROLLARY 6.3.2. If we interpret the deformation homomorphism as a

o .. : T A% (k) —> Hl(X,1+t~:®X) >~ Lie(X'/R) ,
(x)*/R[e] P
we have the formula

q((%)t/Rﬁaj;d s = 1+ ew(e).o (e, ) .
£ ) t/rle) *
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PROOF. This follows immediately from the definition of g in terms

of ¢ and E , and lemmas 5.2 and 5.3.1.

6.4. In this section, we analyze the deformation homomorphism

t 1
? . : T A (k) — H (X,1+e6_) .
X)E/r[e] P X

Recall that this homomorphism is defined as the composite, for any n

sufficiently large that mf=o,

n . N o
TpAt(k) —>» at(x)[p"] R X (any lifting) (Yt) gre]) .

~__

®
Because X/R is canonical, we have an isomorphism {4.6.1)
T X°(R) 2> T at(x) ,
P P
and this sits in a commutative diagram

®

n .
TpAt(k) %At(k)tpn} p X {any llftlng); (%)t(REE])

I [ reauce J

mod M

T XN (R) — xN(R)[p"] — Ker ((X)*(r[e]) —> x"(R))
p p X (any lifting) ZT

Hl(X,1+€GX) = Lie(Xt/R) .

In order to complete the proof of 6.0.2, it suffices in view of

6.3.2, to prove

THEOREM 6.4.1. For R artin local with algebraically closed residue

field k of characteristic p”? O, X/R the canonical lifting of an

ordinary abelian variety A/k , and SJ(/R[C] a deformation of X/R , we

have the formula

d(w(e )) = @ (o) in Lie(X%/R)
t (X /(] ©

t
for every ate TPA‘_ (k).
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According to 5.5, the construction ao F—a-w(at) sits in a commu-

tative diagram, for any n such that pn kills R :

t w
TPA (k) —— QX/R

{ /-ratog e
TpXt(R) — xS (rR)[p"] .

Therefore 6.4.1 would follow from the more precise

THEOREM 6.4.2. Hypotheses as in 6.4.1, for any n such that pn

kills R , and any element XE& Xt(R)[pn] , we _have the identityv, in

Lie(XT/R)

3("dlog(p™)"(\)) = -p” X (any lifting of X

~
to an invertible sheaf on X) .

6.5. In this section we will prove 6.4.2. Given any ring R killed

by any integer N , and any proper smooth R-scheme X/R with geometri-

cally connected fibres and a marked point =x€ X(R) , there is a natural
homomorphism
Pic(X/R)[N] — Ho(x,(GX)X ® (z/NZ))
z

defined as follows. Given A € Pic(X/R)[N] , represent it by a normalized

cocycle {fij} . Then there exists a unique normalized O=-chain {fi}

such that
N _
(fij) = fi/fj .
A cohomologous normalized cocycle, say 955 = fij><(hi/hj), leads to
N _ N N
(gij) = fi{hi) /fj(hj) .

Therefore the {fi} "are" a well-defined global section of

(®x)x ® (%/NZ). This construction
Z

X

Pic(x/R)[N] 2 X r—>{fi} € HO(X,(SX) ® (Z/NZ))
Z

defines our homomorphism.
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Suppose we are in addition given a deformation %/R{ej of X/R ,
together with a marked point §<5%(R[£]) which lifts x . We have an
exact sequence of sheaves of units

X %
—_— [CY— —— — .
0 1+e6y (6%) (Gx) 0

Because N kills R , it also kills ®X , so kills l+5®X : the serpent
lemma, applied to this exact sequence and the endomorphism "N" , therefore
leads to a short exact sequence of "units mod N" :

b d

0O —>1+e6 —s (6)* ® (Z/NZ) —> (8,)° ® (2/NZ) —> O .
Z

X X

We will denote by
o X 1
A(N) : H (X,(GX) ® (¥/NZ)) — H (x,l+e@x)

the coboundary map in the associated long exact sequence of cohomology.
The "units mod N" exact sequence maps to the Kodaira-Spencer short

exact sequence by "dlog", and gives a commutative diagram

0 —> 148 —> (0)" ® (2/N7) —> (6,)” & (Z/NZ) —> O

é log’% ldlog dlog

de

0 % 0}\1{/11 |x

1
OX/R—>O .

This diagram in turn gives a commutative diagram of coboundary maps in

the long exact sequences of cohomology :

Pic(X/R)[N]

“dlog{N)" 1% (x, (@X)>< ® (Z/NZ)) A al(x,1+ e@x)

ldlog Z% log

N H (X, Qo)

1
H (X,®X) .
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LEMMA 6.5.1. Hypotheses as in 6.5 above, suppose that every element

of Pic(X/R)[N] lifts to an element of Pic(i/R[EJ) (a_condition auto-

matically fulfulled if Pio%/g[e] is smooth, in particular when X/R

is an abelian scheme). Then the diagram

Pic(X/R)[N]

A
NX (any lifting of A to an

invertible sheaf on %)

HO(X, (6,0 ® (7/N2)) BELEC P 1(x,1-+esx)
V4

is commutative.

PROOF. Given X € Pic(X/R)IN] , represent it by a normalized cocycle

fij on some affine open covering ui of X ; we may assume fij to be
the reduction modulo €& of a normalized cocycle F.. on X represen-

1]
ting a lifting of X to X . Because X\ € Pic(X/R)[N] , we have
N

(£..)

i) = £/E;

for a normalized O-cochain {fiL Choose liftings

T €T o) X
fi (Ui,( X) )
i €T (u., (6.)%
of the functions £; (Ul,( X) ).
Then
the element of Hl(X,14£®X)
AN (the section {fi}) =/represented by the 1l-cocycle
FEOGE DTN
while
the element of Hl(X,1+£®X)
N X (any lifting of X) ={represented by the 1l-cocycle
~ N ~ "~y
(fij) .(fj/fi) . Q.E.D.

If we combine 6.5.1 with the commutative diagram immediately pre-

ceding it, we find a commutative diagram
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Pic(X/R)[N]
~{NX (any lifting))
"dlog(N)* (X, 148,
I
B (X, ) —— (X, 6,)

In particular, this proves 6.4.2, {(take N=pn) and with it our "main

theorem”" in all its forms (3.7.1-2-3, 4.3.1-2, 4.5.3, 6.0.1-2).
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