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A RESULT ON MODULAR FORMS IN CHARACTERISTIC p 

Nicholas M. Katz 

ABSTRACT 

d The action of the derivation e = q ~ on the q-expansions of 

modular forms in characteristic p is one of the fundamental tools 

in the Serre/Swinnerton-Dyer theory of mod p modular forms. In 

this note, we extend the basic results about this action, already 

known for P > 5 and level one, to arbitrary p and arbitrary 

prime-to-p level. 

!. Review of modular forms in characteristic p 

We fix an algebraically closed field K of characteristic 

p > 0, an integer N > 3 prime to p, and a primitive N'th root 

of unity ~ ~ K. The moduli problem "elliptic curves E over 

N structure ~ of determinant {" is K-algebras with level 

represented by 

(Euniv i ~univ) 

M N 

with M N a smooth affine irreducible curve over K. 

the invertible sheaf on M N 

I 

= ~, flEuniv/M N ' 

In terms of 

O HO(MN,@f k) 
k~ 

Given a K-algebra B, a test object (E,~) over B, and a 

nowhere-vanishing invariant differential ~ on E, any element 

the graded ring R~ of (not necessarily holomorphic at the cusps) 

level N modular forms over K is 
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f e R N (not necessarily homogeneous) has a value f(E,~,~) e B, 

and f is determined by all of its values (cf. [2]). 

Over B = K((ql/N)), we have the Tate curve Tare(q) with its 

"canonical" differential C0ca n (viewing Tare(q) as ~m/q ~, ~can 

"is" dt/t from ~m ). By evaluating at the level N structures 

as o of determinant ~ on Tare(q), all of which are defined over 

K((ql/n)), we obtain the q-expansions of elements f e R N at the 

corresponding cusps: 

dfn 
fm0(q) f(Tate(q),~can,~ 0) e K((ql/N)) 

k is uniquely determined by its weight A homogeneous element f e R N 

k is said k and by any one of its q-expansions. A form f c R N 

to be holomorphic if all of its q-expansions lie in K[[ql/N]], 

and to be a cusp form if all of its q-expansions lie in 

I/NK[[ql/N]] The holomorphic forms constitute a subring q 

R~,holo of RN, and the cusp forms are a graded ideal in RN,holo. 

The Hasse invariant A c R is defined modularly as 
olo 

follows. Given (E,~,(~) over B, let r i c HI(E,OE ) be the basis 
] 

dual to ~ c H0(E,CE/B). The p'th power endomorphism x -~ x p of 

O E induces an endormorphism of HI(E,OE ), which must carry r; to 

a multiple of itself. So we can write 

~P = A (E ,~ ,~ ) - , ~  in  HI (E,OE ) ,  

for some A(E,~,~) c B, which is the value of A on (E,~,~). 

All the q-expansions of the Hasse invariant are identically ]: 

A o(q ) = l in K((q~/N)) for each s o. 

For each level N structure s o on Tare(q), the corresponding 

q-expansion defines ring homomorphisms 

whose kernels are precisely the principal ideals (A-I)R~ and 
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(A-l)R~,holo respectively ([4], [5]). 

k is said to be of exact filtration k if it is A form f ~ R N 

not divisible by A in R~, or equivalently, if there is no form 

f' k~ k' R N with ( k which, at some cusp, has the same 

q-expansion that f does. 

I!. Statment of the theorem, and its corollaries 

The following theorem is due to Serre and Swinnerton-Dyer 

([4], [5]) in characteristic P > 5, and level N = I. 

Theorem. 

(I) There exists a derivation A0:R~ ~ RN+P+~ which 

increases degrees by p + I, and whose effect upon each q-expansion 

d 
is q~ : 

(A0f) (q) = q d_ (fso(q)) for each S O 
So dq 

k has exact filtration k, and p does not (2) If f c R N 

divide k, then A0f has exact filtration k + p + ~, and in 

particular A0f ~ O. 

(3) If f c R~ k and A0f = 0, then f = gP for a unique 

k 
g c R N . 

Some Corollaries 

(]) The operator A0 maps the subring of holomorphic forms 

to the ideal of cusp forms. (Look at q-expansions.) 

(2) If f is non-zero and holomorphic, of weight 

I ~ k ~ p - 2, then f has exact filtration k. (For if f = Ag, 

then g is holomorphic of weight k - (p-l) ~ O, hence g = 0.) 

(3) If ] ~ k ~ p 2, the map 0 k ~ Rk+P+1 - A :RN,holo N,holo is 

injective. (This follows from (2) above and the theorem.) 

(4) If f is non-zero and holomorphic of weight p - l, 

and vanishes at some cusp, then f has exact filtration p - ~. 

(For if f = Ag, then g is holomorphic of weight O, hence 

constant; as g vanishes at one cusp, it must be zero.) 
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k has Aef = 0, (5) (determination of Ker(Ae)). If f ~ R N 

then we can uniquely write f = Ar.g p with 0 ~ r < p - I, 

r + k ~ O(mod p), and g ~ R~ with pf + r(p-]) = k. (This is proven 

by induction on r, the case r = 0 being part (3) of the theorem. 

If r ~ O, then k @ O(p), but Aef = 0. Hence by part (2) of 

k + ] - p  t h e  t h e o r e m  f = Ah f o r  some h ~ R N B e c a u s e  f and  h 

h a v e  t h e  same q - e x p a n s i o n s ,  we h a v e  Aeh = O, and  h has  l o w e r  r . )  

(6 )  I n  (5)  a b o v e ,  i f  f i s  h o l o m o r p h i c  ( r e s p .  a cusp  f o r m ,  

r e s p .  i n v a r i a n t  by  a s u b g r o u p  o f  S L 2 ( Z / N Z ) ) ,  so i s  g ( b y  

u n i c i t y  o f  g ) .  

! I ! .  B e g i n n i n g  o f  t h e  p r o o f :  d e f i n i n g  e and  A~, and  p r o v i n g  p a r t  (1)  

The a b s o l u t e  F r o b e n i u s  e n d o m o r p h i s m  F o f  M N i n d u c e s  an  

F - l i n e a r  e n d o m o r p h i s m  o f  H 1 (E /M ~ as  f o l l o w s .  The p u l l -  DR u n i v "  N / '  

(F)  o f  i s  o b t a i n e d  by  d i v i d i n g  E u n i v  by  back Euniv Euniv 

its finite flat rank p subgroup scheme Ker Fr where 

~(F)  
Fr:Euniv > ~univ 

is the relative Frobenius morphism. The desired map is Fr 

* 1 ( F )  
F r :  HDR(Euniv /MN) 

~R(Euniv/MN) (F) 

>4R(Euniv/MN) 

Lemma ]. The image U of Fr is a locally free submodule 

of H~(Eunl~n "v/M-)N of rank one, with the quotient H~R(Euniv/MN)/U 

, H a s s e  
locally free of rank one. The open set M N C M N where A is 

invertible is the largest open set over which U splits the Hodge 

filtration, i.e., where ~@U > R(Euniv/MN). 

Proof. Because F~ k i l l s  HO(Euniv  , ~ E u n i v / M N  ) (F )  i t  f a c t o r s  

through the quotient H](Euniv,O) (F), where it induces the 

inclusion map in the "conjugate filtration" short exact sequence 
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(cf [~], 2.3) 

0 - - >  H I (F) Fr nl 
(Euniv,@) -->4R(Euniv/MN) --> HO(Euniv , Euniv/MN) --> O. 

This proves the first part of the lemma. To see where U splits 

the Hodge filtration, we can work locally on M N. Choose a basis 

~, rl of H~R adapted to the Hodge filtration, and satisfying 

<~,TI>DR = ] Then ~ projects to a basis of HI(E,OE ) dual to 

* 4 * ~) ~, and so the matrix of Fr on R is (remembering Fr(~ ( ) = 0) 

(0 A 
where A is the value of the Hasse invariant. Thus U is spanned 

by Be + A~, and the condition that e and Be + A~ together 

span H~R is precisely that A be invertible. Q.E.D. 

Remark. According to the first part of the lemma, the func- 

tions A and B which occur in the above matrix have no common 

zero. This will be crucial later. 

We can now define a derivation e of RN[I/A] as follows. 

(Compare [2 ] ,  A1.4 . )  Over M~ asse ,  we have the decompos i t ion  

which for each integer k > I induces a decomposition 

Symmk~R ~ _m®k(~) (e®k-1 (~U) ( ~ ) _  . . .  ~ U ®k 

The Gauss-Manin connection 

] I 

induces, for each k > I a connection 

Using the Kodaira-Spencer isomorphism ([2], A.].3.]7) 

£ ~ HN/K 
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we can define a mapping of sheaves 

®k ®k+ 2 

as the composite 

> Sym:L = ( ~  
-- DR -- "'" 

Iil f~M R 

KS 

- 

P r  1 

__} ~®k+ 2 

MHasse Passing to global sections over -N ' 

a map 

0,~Hasse Hasse ,,@k+ 2 ) 
e " > H0(mN ,m 
:H ~ N  "-- " 

Lemma 2. The effect of @ upon q-expansions is 

co®2 
c a n  

we obtain, for k > I, 

d 
qT@" 

Proof. Consider Tate(q) with its canonical differential 

over k((ql/N)) Under the Kodaira-Spencer isomorphism, 

®can corresponds to dq/q, the dual derivation to which is 

d q ~ . By the explicit calculations of ([2], A.2.2.7), U is 

by v(q ~)(~can). Thus given an element spanned 
®k 

~O,~Hasse~ _.~ , _®k), its local expression as a section of _ f C 

on (Tate(q), some ~0) is f 0(q).~ @kcan. Thus 

v(f 
c~ 0 

®k d q 
®k ) V(q ~--~)((q)'~can) q (q)'ecan = f~0 

®k ®2 
d (q)'~can) ~can : v(q T4)(f% 

d ®k+ 2 
: q d-q (f~0 (q))" ~can 

d 
®k+ I . V( q -d-~) (~can) ' + k~f~0(q)" can 

Because ~ (q ~q) (~can) lies in U, it follows from 
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d (q)) . 
the definition of e that we have (ef)~o(q) = q d-q (f~0 

Q.E.D. 

k ~k+p+1 
Lemma 3. For k ~ ], there is a unique map Ae:R N > m N 

such that the diagram below commutes 

HO ( 4 a s s e ,  ~ k ) _  9_~_> re'O". Hassek~N ,£®k+2~ ×A > n"O'kmN~asse ,~®k+ p+ ] ) 

U 
~k+p+l = HO(MN,fk+P+?) RNk = H0(MN, @k) A0 > ~N 

Proof. Again we work locally on M N. Let @ be a local 

I 
basis of £, ~ the local basis of ~MN/K corresponding to 

by the Kodaira-Spencer isomorphism, D the local basis of 

DerNN/K dual to ~, and ~' = V(D)@ ~ ~R" Then <@'~'>DR = I, 

(this characterizes D), so that @ and m' form a basis of 

] 
HDR , adapted to the Hodge filtration, in terms of which the 

matrix of Fr is 

0B) 
(0 A 

~asse 
with A = A(E,e). Let u e U be the basis of U over M N 

which is dual to e. Then u is proportional to Be + Ae', and 

satisfies <e'~'>DR = I, so that 

B l 
u = K ~ + e 

k and In terms of all this, we will compute 9f for f e RN, 

show that it has at worst a single power of A in its denominator. 

®k ®k 
Locally, f is the section f]-@ of ~ , with fl holomorphic. 

v(f~ ~k) = v(D)(f1~®k).~ 

= V(D)(flco ®k) .@®2 

®k+ 2 ®k+ 1 , 
= D(f] ).co + kf1@ .co 

B 
=D(f I) ®k+2 + kflco®k+1(u _ K d~) 
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B ®k+2 ®!<+I 
: (D(fl) - k f  1 • K) + k f l ¢  "u 

Thus from the definition of e it follows that the local expression 

of ~(f) is 

0(f) = (D(f~) - kf I ~--) ®k+2 Q.E.D. 

We can now conclude the proof of Part (1) of the theorem. Up 

to now, we have only defined A on elements of R~ of positive 

degree. But as R~ has units which are homogeneous of positive 

degree (e.g., A), the derivation Ae extends uniquely to all of 

RN by the explicit formula 

Aef A~(f'aPr) for r >> 0 
AP r 

The local expression for Ae(f) 

k Ae(f) = (AD(fl)-kfiB)~ ®k+p+1 for f e R N 

remains valid. 

IV. Conclusion of the proof: Parts (2) and (3) 

k has exact filtration k. This means that f Suppose f e R N 

is not divisible by A in R~, i.e., that at some zero of A, 

f has a lower order zero (as section of ®k) than A does 

(as section of ®p-l). (In fact, we know by Igusa [3] that A 

has simple zeros, so in fact f must be invertible at some zero 

of A. Rather surprisingly, we will not make use of this fact.) 

Locally on MN, we pick a basis ~ of ~. Then f becomes 

Ok 
f].~ , and A~(f) is given by 

A~(f~- ~k) = (kD(fl)_kBfl) 

Suppose now that k is not divisible by p. Recall that B 

is invertible at all zeros of A (of the remark following Lemma 

]). Thus if x s M N is a zero of A where ordx(f]) < Ordx(A), 
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we easily compute 

ordx(AD(f l)-kBf I) = ordx(f I) < ordx(A). 

This proves Part (2) of the theorem. 

pk have A@(f) = 0= To prove Part (3), let f c R N 

expression for Ae(f) gives 

An(f I ) ®k+p+1 = 0 

The local 

and hence D(fi) = 0. Because M N is a smooth curve over a perfect 

field of characteristic p, this implies that fl is a pth power• 

say fl = (gl)p" Thus fl ~®kp = (g1~®k) p, so that f, as 

section of _~kP, is, locally on M N, the pth power of a 

®k 
(necessarily unique) section g of ci~ By unicity, these local 

g's patch together. Q.E.D. 

171] 
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