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A RESULT ON MODULAR FORMS IN CHARACTERISTIC p

Nicholas M. Katz

ABSTRACT

The action of the derivation 6 = g %E‘ on the g-expansions of
modular forms in characteristic p is one of the fundamental tools
in the Serre/Swinnerton-Dyer theory of mod p modular forms. In
this note, we extend the basic results about this action, already

known for p > 5 and level one, to arbitrary p and arbitrary

prime-to-p level.

I. Review of modular forms in characteristic p

We fix an algebraically closed field K of characteristic
p > 0, an integer N > 3 prime to p, and a primitive N'th root
of unity ¢ e K. The moduli problem "elliptic curves E over
K-algebras with level N structure o of determinant ¢¢" is
represented by

(E )

univ? %univ

My

with MN a smooth affine irreducible curve over K. In terms of

the invertible sheaf on MN

1
E)-:ﬁ*ﬂ s
Euniv/MN

the graded ring RN of (not necessarily holomorphic at the cusps)
level N modular forms over K is

¢} &
keZ

Given a K-algebra B, a test object (E,a) over B, and a

nowhere-vanishing invariant differential o on E, any element
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f e RN

and f 1is determined by all of its values (cf. [21).

(not necessarily homogeneous) has a value Tf(E,w,a) € B,

Over B = K((q1/N)), we have the Tate curve Tate(q) with its

"canonical" differential (viewing Tate(q) as Gm/qz, ®

can can

"ig" dt/t from G,). By evaluating at the level N structures

a, Of determinant £ on Tate(q), all of which are defined over

K((q1/n)), we obtain the g-expansions of elements T ¢ RN at the

corresponding cusps:

dfn 1/N
£, (@) = £lTate(a),opnmag) ¢ K((a /)
A homogeneous element f ¢ RE is uniquely determined by its weight
k and by any one of its g-expansions. A form f ¢ R§ is said
1
to be holomorphic if all of its g-expansions lie in K[[g /N]],

and to be a cusp form if all of its g-expansions lie in

q1/NK[[q]/N]]. The holomorphic forms constitute a subring

RN,holo of Rﬁ, and the cusp forms are a graded ideal in Rﬁ,holo'
The Hasse invariant A «¢ R%:golo is defined modularly as

follows. Given (E,w,a) over B, 1let 1 ¢ H](E,OE) be the basis

dual to o € HO(E,Qé/B). The p!'th power endomorphism x — P of

@E induces an endormorphism of H](E,OE), which must carry 71 to

a multiple of itself. So we can write

p _ . 1

7° = A(E,w,q)-n in H (E’OE)’
for some A(E,w,a) € B, which is the value of A on (E,s,a).
All the g-expansions of the Hasse invariant are identically 1:

AGO(Q) =1 in K((q]/N)) for each a.

For each level N structure a, on Tate(q), the corresponding

g-expansion defines ring homomorphisms

1
Ry —> k(6N Ry oo —> Klla' /M)

whose kernels are precisely the principal ideals (A-1)Ry and
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(A'1)Rﬁ,holo respectively ([L4], [5]).

A form £ € R§

not divisible by A in R

’

is said to be of exact filtration k if it is

Ns Or equivalently, if there is no form
e R§ with k' <k which, at some cusp, has the same
g-expansion that f does.

II. Statment of the theorem, and its corollaries

The following theorem is due to Serre and Swinnerton-Dyer

([¥], [51) in characteristic p > 5, and level N = 1.

Theorem.
(1) There exists a derivation AB:RN - Rﬁ+p+] which
increases degrees by p + 1, and whose effect upon each g-expansion
is q %E :

[c2

(Aef)  (q) = g & (r (q)) for each o
%o dq o

k
N

divide k, then A8f has exact filtration kK + p+ 1, and in

(2) If f ¢ R has exact filtration k, and p does not

particular A6f # 0.

(3) If f e Rﬁk and A6f = 0, then f = gp for a unique

Some Corollaries

(1) The operator A6 maps the subring of holomorphic forms
to the ideal of cusp forms. (Look at g-expansions.)

(2) If f is non-zero and holomorphic, of weight
1 <k <p -2, then f has exact filtration k. (For if f = Ag,

then g 1s holomorphic of weight %k - (p-1) < 0, hence g = 0.)

oK Ktprl

(3) If 1 <k <p -2, themap AS:Ry 10 2 Ry o1, 1S
injective. (This follows from (2) above and the theorem.)

(4) If £ 1is non-zero and holomorphic of weight p - 1,

and vanishes at some cusp, then f has exact filtration p - 1.
(For if f = Ag, then g is holomorphic of weight 0, hence

constant; as g vanishes at one cusp, it must be zero.)
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=

(5) (determination of Ker(A6)). If f € R, has A8F = 0,

then we can uniquely write r = AT.gP with o <r<p-1,

y4
N

by induction on r, the case r = 0 being part (3) of the theoremn.

r+ k = 0(mod p), and g € Ry with pf + r(p-1) = k. (This is proven

If r# 0, then k # 0(p), but A6f = 0. Hence by part (2) of

the theorem f = Ah for some h ¢ R§+1'p. Because f and h

have the same g-expansions, we have A6h = 0, and h has lower r.)
(6) In (5) above, if f 4is holomorphic (resp. a cusp form,

resp. invariant by a subgroup of SLQ(Z/NZ)), so is g (by

unicity of g).

IIT. Beginning of the proof: defining ¢ and A6, and proving part (1)

The absolute Frobenius endomorphism F of MN induces an

N R 1
F-linear endomorphism of HDR(Euniv/MN)’ as follows. The pull-
(F)

univ is obtained by dividing E

back E of E by

v univ

its finite flat rank p subgroup scheme Ker Fr where

> B(F)

B ———— A
Friboniv univ

*
is the relative Frobenius morphism. The desired map is Fr

F?: HER(Eﬁigv /MN) _— HgR(Euniv/MN)

3

(F)

1
HDR(Euniv/MN>
*
Lemma. 1. The image U of Fr i1is a locally free submodule
1 . . 1
of HDR(EuniV/MN) of rank one, with the quotient Hpp(E .. /My)/U
locally free of rank one. The open set Mﬁasse C MN where A is

invertible is the largest open set over which U splits the Hodge
filtration, i.e., where o® U > HéR(Euniv/MN)‘

*
Proof. Because Fr kills HO(E . QTE . )(F) it factors
Yool univ N

through the quotient H1(E ,O)(F), where it induces the

univ
inclusion map in the '"conjugate filtration" short exact sequence
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{ef [11, 2.3)
Pr
0 — H1(Euniv’o)(F) — HéR(Euniv/MN) —> HO(Euniv’ Q1Euniv/MN) — o
This proves the first part of the lemma. To see where U splits
the Hodge filtration, we can work locally on MN' Choose a basis
w, ® of HéR adapted to the Hodge filtration, and satisfying
<w,n>DR = 1., Then 1n projects to a basis of H1(E,OE) dual to

. * 1 R . * (F)
», and so the matrix of Fr on HDR is (remembering Fr{w ) = 0)

< 0 B
o i)
where A 1is the value of the Hasse invariant, Thus U is spanned
by Bw + Any, and the condition that « and Bw + An together
span HgR is precisely that A be invertible. Q.E.D.
Remark., According to the first part of the lemma, the func-
tions A and B which occur in the above matrix have no common
zero. This will be crucial later.
We can now define a derivation o of RN[T/A] as follows.
Hasse

(Compare [2], Al.4.) Over My , wWe have the decomposition

H] ’l/‘lE@U >

which for each integer k > 1 1induces a decomposition

sym i, Y o™ @ (T @U@ ... @™

The Gauss-Manin connection
Vil —> B ® QIJ/JN/K
induces, for each k > 1 a connection
s Symn B, —> (SymH] ) ® Q;/[N/K

Using the Kodaira-Spencer isomorphism ([2], A.1.3.17)

®p r~— 1
o — QMN/K
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we can define a mapping of sheaves

as the composite

e
ggk s SymmngR =

Passing to global sections over

a map

9:HO

(M

8:0

Hasse a?k
N

®k+2
®

MHasse

. , WwWe obtain,
k+2
S HO(Mﬁasse,2 )

for

K > 1,

Lemma 2. The effect of & wupon g-expansions is ¢ g@ .

Proof.
(D®2
can
Bann corresponds to
da_
aq dq
spanned by V(g %E)(m
Foe HO(Mﬁasse, 2®k:)’

on (Tate(q),

k.
75, (0) gey) = 7(a
= V(g
g
= q dq

daq/q,

can

Thus given an element

By the explicit calculations of ([2], A.2.2.7),

U

Consider Tate(q) with 1ts canonical differential
over k((q]/N)) Under the Kodaira-Spencer isomorphism,

the dual derivation to which is

is

®k

its local expression as a section of o

some «n) 1s fOL {(q) o
o]

Rk

can” Thus

@ , . dg

Bk ®d2
wC an

®k+1

+ k- f (q)~cuCan

%o

Because V (g %aj (wcan) lies in U, it follows from

v{q

d

daq

M@ gn),
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the definition of 6 that we have (s8f) (q) = q a_ (f_ (a)).
%y da %
Q.E.D.
. . k k+
Lemma 3. For k > 1, there is a unique map As:RN _ RN

such that the diagram below commutes

& ® ® 1
HO(Mﬁasse,g.k) o_s HO(Mgasse,g k+2) XA N HO(IVIII\{Iasse’g k+p+ )

U U

® 1
Rg _ HO(MN,Q®k) Ao > R§+p+1 - 1o(m 0 KtptT

Proof. Again we work locally on MN' Let o be a local

basis of o, t the local basis of 0
- MN/K
by the Kodaira-Spencer isomorphism, D the local basis of

corresponding to

1
DerMN/K dual to £, and o = Y(D)e ¢ Hyg. Then <w,wl>DR =1,
(this characterizes D), so that « and o form a basis of

HgR’ adapted to the Hodge filtration, in terms of which the

( 0 B )
0 A
Hasse

with A = A(E,w0). Let u ¢ U be the basis of U over MN

*
matrix of Fr is

which is dual to w. Then u is proportional to Bw + As’, and

satisfies <m,w'>DR = 1, 8o that

W=Dt o

A

k

N’ and

In terms of all this, we will compute ©6f for f € R

Ka—-T

pt1

show that 1t has at worst a single power of A in its denominator.

& ® .
Locally, f 1is the section f1~w K of k, with f1 holomorphic.
&
7(£,07%) = V(D) (£i0 ) ¢
® ®
- D) (£,05) 02
& 1 ‘
- D(f1)'w®k+2 + ke et e
& Sk-+1 B
D(r )02 4 ke, T (0 - 2 )



60
Ka~-8

®k-+1
® .

= (D(f,) - kf - % L2 e u

1

Thus from the definition of ¢ it follows that the local expression

of 6(f) 1is

Bkt 2

o(£) = (D(£y) - kf, %) " Q.E.D.

We can now conclude the proof of Part (1) of the theorem. Up
to now, we have only defined A on elements of RN of positive

degree. But as RN has units which are homogeneous of positive

degree (e.g., A), the derivation A6 extends uniquely to all of

RN by the explicit formula

_ Ao(£.aPT)

AOT
APT

for r >> 0

The local expression for Ae(f)

A8(f) = (AD(£,)-kf,B)a”™ P for r e RY
remains valid.
IV. Conclusion of the proof: Parts (2) and (3)
Suppose f € RE has exact filbtration k. This means that f
is not divisible by A in Rﬁ, i.e., that at some zero of A,
f has a lower order zero (as section of 9®K) than A does
(as section of 9?p—1). (In fact, we know by Igusa [3] that A

has simple zeros, so in fact f must be invertible at some zero
of A. Rather surprisingly, we will not make use of this fact.)
Locally on MN’ we pick a basis o of . Then f becomes

29
i k, and Ae(f) is given by

AB(F, 0 %) = (AD(f,)-KBf,)

Suppose now that k is not divisible by p. Recall that B
is invertible at all zeros of A (cf the remark following Lemma

1). Thus if x ¢ MN is a zero of A where ordx(f]) < ordx(A),
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we easily compute
ordX(AD(f1)—ka1) = ordx(fW) < ordX(A).

This proves Part (2) of the theorem.
To prove Part (3), let f e Rﬁk have Ae(f) = 0. The local
expression for Ae(f) gives

&
AD(f])w K+pt1

and hence D(f]) = 0. Because M. is a smooth curve over a perfect

N
field of characteristic p, this implies that f1 is a pth power,
say f, = (g1)p. Thus f1w®kp = (g1m®k)p, so that f, as
section of ngp, is, locally on MN’ the pth power of a
(necessarily unique) section g of 9?k~ By unicity, these local
g's patch together. Q.E.D.
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