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ZEROES OF ZETA FUNCTIONS AND SYMMETRY

NICHOLAS M. KATZ AND PETER SARNAK

Abstract. Hilbert and Polya suggested that there might be a natural spec-
tral interpretation of the zeroes of the Riemann Zeta function. While at the
time there was little evidence for this, today the evidence is quite convinc-
ing. Firstly, there are the “function field” analogues, that is zeta functions
of curves over finite fields and their generalizations. For these a spectral in-
terpretation for their zeroes exists in terms of eigenvalues of Frobenius on
cohomology. Secondly, the developments, both theoretical and numerical, on
the local spacing distributions between the high zeroes of the zeta function
and its generalizations give striking evidence for such a spectral connection.
Moreover, the low-lying zeroes of various families of zeta functions follow laws
for the eigenvalue distributions of members of the classical groups. In this
paper we review these developments. In order to present the material fluently,
we do not proceed in chronological order of discovery. Also, in concentrating
entirely on the subject matter of the title, we are ignoring the standard body
of important work that has been done on the zeta function and L-functions.

1. The Montgomery-Odlyzko Law

We begin with the Riemann Zeta function and some phenomenology associated
with it.

ζ(s) =
∞∑

n=1

n−s =
∏
p

(
1− p−s

)−1
,(1)

the product being over the primes, and it converges for Re(s) > 1. As was shown by
Riemann [RI] ζ(s) has a continuation to the complex plane and satisfies a functional
equation

ξ(s) := π−s/2 Γ(s/2) ζ(s) = ξ(1 − s);(2)

ξ(s) is entire except for simple poles at s = 0 and 1. We write the zeroes of ξ(s) as

1
2

+ iγ.(3)

From (1) it is clear that |Im(γ)| ≤ 1/2. Hadamard and de la Vallee Poisson in their
(independent) proofs of the Prime Number Theorem established that |Im(γ)| < 1/2.
The well known Riemann Hypothesis “RH” asserts that γ ∈ R. In what follows we
are interested in finer questions about the distribution of the zeroes. Let’s assume
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Figure 1. Nearest neighbor spacings among 70 million zeroes be-
yond the 1020-th zero of zeta, verses µ1(GUE).

RH (needless to say, in the numerical experiments reported on below all zeroes
found were on the line Re(s) = 1

2 ) and order the ordinates γ:

. . . . . . γ−1 ≤ 0 ≤ γ1 ≤ γ2 . . . .(4)

Then γj = −γ−j, j = 1, 2, . . . , and in fact γ1 is rather large, being equal to
14.1347 . . . . It is known (apparently already to Riemann) that

#{j : 0 ≤ γj ≤ T } ∼ T log T

2π
, as T →∞.(5)

In particular, the mean spacing between the γ′js tends to zero as j →∞. In order
to examine the (statistical) law of the local spacings between these numbers we
re-normalize (or “unfold” as it is sometimes called) as follows:
Set

γ̂j =
γj log γj

2π
for j ≥ 1.(6)

The consecutive spacings δj are defined to be

δj = γ̂j+1 − γ̂j , j = 1, 2, . . . .(7)

More generally, the k − th consecutive spacings are

δ
(k)
j = γ̂j+k − γ̂j , j = 1, 2, . . . .(8)

What laws (i.e. distributions), if any, do these numbers obey?
During the years 1980-present, Odlyzko [OD] has made an extensive and pro-

found numerical study of the zeroes and in particular their local spacings. He
finds that they obey the laws for the (scaled) spacings between the eigenvalues of
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a typical large unitary matrix. That is they obey the laws of the Gaussian (or
equivalently, Circular) Unitary Ensemble GUE (see Section 2 for definitions). In
Figure 1, the histogram of the spacings δj for 1020 ≤ j ≤ 1020 + 7.106 is plotted
against the GUE prediction (µ1 (GUE) - the Gaudin distribution of Section 2). At
the phenomenological level this is perhaps the most striking discovery about zeta
since Riemann. The big questions, which we attempt to answer here, are, why is
this so and what does it tell us about the nature (e.g. spectral) of the zeroes? Also,
what is the symmetry behind this “GUE” law?

Odlyzko’s computations were inspired by the 1974 discovery of Montgomery
[MO2] that the “pair correlation” of the zeroes is, at least for a restricted class of test
functions, equal to the GUE pair correlation R2 (GUE) (see Section 2). Precisely,
he proves that for any φ ∈ S(R) for which the support of φ̂(ξ) =

∫∞
−∞ φ(x)e−2πixξdx

is contained in (−1, 1)

lim
N→∞

1
N

∑
1≤j 6=k≤N

φ (γ̂j − γ̂k) =
∫ ∞

−∞
φ(x) r2(GUE)(x)dx(9)

where

r2(GUE)(x) = 1 −
(

sin πx

πx

)2

.(10)

The significance of the interval (−1, 1) is that ̂r2(GUE)(ξ) changes its analytic
character at ξ = ±1, and this signals that for φ̂′s whose support is outside [−1, 1]
there will be new “non-diagonal” (the main contribution to the limit in (9) for
restricted φ comes from the diagonal) terms contributing to the main term. Mont-
gomery conjectured that (9) holds without any restrictions on the support of φ̂,
and in [GO-MO] he and Goldston give an equivalence of this conjecture in terms
of prime numbers. In Figure 2 a comparison of (9) for φ′s which are characteristic
functions of small intervals (i.e. the histogram) with R2(GUE) is displayed.

One can look at triple and higher generalizations of the left hand side of (9); see
[R-S]. Indeed, the knowledge of the n-level correlations for all n determines all the
local spacing laws (see [K-S1]) and in particular the k-th consecutive spacings. In
[HE], Hejhal, using Montgomery’s method, established that the triple correlation is
the GUE triple correlation as determined by Dyson [DY]. Rudnick and Sarnak [R-S]
by a somewhat different method (which in fact does not appeal to RH) establish
that all the n ≥ 2 correlations are as predicted by GUE. All of these results are
restricted as in (9); that is they are proven only for test functions whose Fourier
Transforms are restricted so that only the “diagonal” terms are responsible for the
main term. A heuristic derivation of the n-level correlations without any restrictions
on the Fourier Transform has been given by Bogomolny and Keating [B-K]. The
calculations of the correlations above are based on the “explicit formula” (see [R-S])
which allows one to express the correlations in terms of multiple sums over primes.
The combinatorics which take one from these sums over primes to the GUE n-level
correlations are fascinating but hardly illuminating in connection with gaining any
deeper insight relating the zeroes and GUE.

The Riemann Zeta Function is but the first of a zoo of zeta and L-functions for
which we can ask similar questions. There are the Dirichlet L-functions L(s, χ)
defined as follows: q ≥ 1 is an integer, χ : (Z/qZ)∗ → C∗ a (primitive) character
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Figure 2. Pair correlation for zeros of zeta based on 8×106 zeros
near the 1020-th zero, versus the GUE conjectured density 1 −(

sin πx
πx

)2
.

and we extend χ to Z by making it periodic, and χ(m) = 0 if (m, q) 6= 1. Then

L(s, χ) =
∞∑

n=1

χ(n)n−s =
∏
p

(
1− χ(p)p−s

)−1
.(11)

The analogue of (2) is known:

ξ(s, χ) := π−s/2 Γ
(

s + aχ

2

)
L(s, χ) = qs− 1

2 εχ ξ(1 − s, χ̄)(11′)

where aχ = 0 if χ(−1) = 1 and is 1 if χ(−1) = −1, while |εχ| = 1 and εχ is in
fact a unitarized Gauss sum. q is called the conductor of χ. The proof of (11′)
is the same as for zeta and is based on Poisson summation [DA]. More generally
by the work of Godement and Jacquet [JA] if f is an automorphic cusp form on
GLm/Q, m ≥ 1, its (standard) L-function L(s, f) is entire (if f is not the trivial
representation on GL1) and satisfies a functional equation similar to (2) (with an
appropriate conductor and ε-factor). Such an L-function, L(s, f), is given by an
Euler product of degree m:

L(s, f) =
∏
p

L(s, fp)(12)
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where

L(s, fp) =
m∏

j=1

(
1− αj,f (p) p−s

)−1
.(13)

The αj,f (p)′s are eigenvalues of local (at p) Hecke algebra’s acting on f . In all these
cases L(s, f) is expected to satisfy RH; that is its non-trivial zeroes are on the line
Re(s) = 1/2. General Conjectures of Langlands [LA] assert that all L-functions are
finite products of these standard (cuspidal) L-functions, L(s, f).

A classical and concrete example of a form on GL2/Q is f = ∆:

∆(q) := q
∞∏

n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn.(14)

With q = e2πiz, ∆(z) is a holomorphic cusp form of weight 12 for Γ = SL2(Z).
That is for z ∈ H, the upper half plane, we have

∆
(

az + b

cz + d

)
= (cz + d)12 ∆(z),(15)

for all a, b, c, d ∈ Z, ad− bc = 1.
Its L-function is

L(s, ∆) =
∞∑

n=1

τ(n)
n11/2

n−s =
∏
p

(
1− τ(p)

p11/2
p−s + p−2s

)−1

,(16)

and it is entire and satisfies

ξ(s, ∆) = (2π)−s Γ
(

s +
11
2

)
L(s, ∆) = ξ(1− s, ∆).(17)

Other basic examples in GL2/Q are L(s, E) where E/Q is an elliptic curve [SI1].
The prescription of the local (degree 2) factor at each prime p is given in terms
of an analysis of E over Fp (see [SI1]). A well known conjecture of Shimura and
Taniyama, first formulated precisely in Weil [WE1], asserts that L(s, E) = L(s, f)

Figure 3. Nearest neighbor
spacings distribution for the
Ramanujan L-function, N =
138693.

Figure 4. Nearest neighbor
spacings distribution for the L-
function associated to E : y2 +
y = x3 − x, N = 5374.
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where f is a holomorphic cusp form of weight 2 for Γ0(N) where N is the conductor

of E (see [SI1]). Here Γ0(N) =
{[

a b
c d

]
∈ SL2(Z) : N |c

}
and f(z) satisfies:

f(γz) = (cz + d)2f(z), γ ∈ Γ0 (N).(18)

The results of Rudnick and Sarnak [R-S] were carried out in the general context
of f being an automorphic cusp form for GLm/Q. They show that the n ≥ 2
correlations of the zeroes of L(s, f) (again in restricted ranges) are universally the
GUE ones! Numerical experimentation by Rumely [RUM] for Dirichlet L-functions
and by Rubinstein [RUB] for a variety of GL2/Q forms f strongly confirm this
universality (so in particular confirm that no restrictions on the test functions are
needed). For example, the consecutive spacings for the zeroes of L(s, ∆) versus
µ1(GUE) are given in Figure 3 and similarly for an L(s, E) in Figure 4.

We call this phenomenon - that the high zeroes of any fixed L(s, f), f a cusp
form on GLm/Q obey GUE spacing laws - the “Montgomery-Odlyzko Law”.

2. Random matrix models

In the 50’s (see [WI] ) Wigner suggested that the resonance lines of a heavy
nucleus (their determination by analytic means being intractable) might be modeled
by the spectrum of a large random matrix. To this end he considered various
ensembles (i.e. probability distributions) on spaces of matrices: in particular, the
Gaussian Orthogonal Ensemble, ‘GOE’, and Gaussian Unitary Ensemble, ‘GUE’.
These live on the linear space of real symmetric (resp. hermitian) N ×N matrices
and are orthogonal (resp. unitary) invariant ensembles. He raised the question of
the local (scaled) spacing distributions between the eigenvalues of typical members
of these ensembles as N → ∞. The answer was provided by Gaudin [GA] and
Gaudin-Mehta [G-M], who make ingenious use of orthogonal polynomials. This
technique is a key tool in the derivation of the results below. Later Dyson [DY]
introduced his three closely related circular ensembles: COE, CUE, as well as
CSE with it’s associated Gaussian Symplectic Ensemble, ‘GSE’. These circular
ensembles may be realized as the compact Riemannian symmetric spaces (with their
volume form as probability measure) U(N)/O(N), U(N) and U(2N)/USp(2N),
respectively. He investigated the local spacing statistics for the eigenvalues of the
matrices in these ensembles (in their standard realization, see Table 1 below) as
N →∞. He shows that these statistics agree with the corresponding matrices from
the GOE, GUE and GSE ensembles.

Now the above are but 3 of the 11 classical compact irreducible symmetric spaces
(we ignore the center U(1) of U(N) which in the limit N → ∞ plays no role) of
Cartan (see [HEL] ). That some of these other matrix models are of importance
in the theory of L-functions will become clear below. Apparently there are also
some physical problems which require some of the other symmetric spaces [A-Z].
We list 6 of the 11 symmetry types: For our purposes of symmetry associated with
L-functions, only the first 4 ensembles in Table 1 will play a role. These 4 are the
classical compact groups which with a bi-invariant metric yield the so-called type
II symmetric spaces (see [HEL] ). The invariant volume form on G(N) is just Haar
measure.

The ensemble U(N) is Dyson’s CUE. The non-compact dual symmetric space
of U(N) is GLN (C)/U(N), which is the space on which GUE lives. Similarly,
the non-compact dual of U(N)/O(N) is GLN (R)/O(N), that is GOE, and of
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Table 1

Symmetry Type G Realization of G(N) as Matrices

U U(N), the compact group of N ×N unitary matrices.

SO (even) SO(2N), the compact group of 2N × 2N unitary(!) matrices preserving
the orthogonal form I, i.e. unitary matrices A satisfying AtA = I.

SO (odd) SO(2N + 1) and as above.

Sp USp(2N), the compact group of 2N × 2N unitary matrices A satisfying

AtJA = J , J =

[
0 IN

−IN 0

]
.

COE U(N)/O(N), symmetric unitary N ×N matrices identified with the
above cosets via B → BtB.

CSE U(2N)/USp(2N), 2N × 2N unitary matrices satisfying JtHtJ = H
identified by B → BJBtJt.

U(2N)/USp(2N) is U∗(2N)/USp(2N) (see [HEL], whose notation we adopt),
which is the space for GSE.

Let G(N) be any one of the ensembles in Table 1 realized as unitary matrices
A ∈ G(N). Let dA denote the invariant measure and eiθ1(A), eiθ2(A), . . . , eiθN (A)

the eigenvalues of A. We order these

0 ≤ θ1(A) ≤ θ2(A) . . . ≤ θN (A) < 2π.(19)

The local (scaled) spacing distributions between the eigenvalues of A are defined
as follows:

• the k-th consecutive spacings µk(A) are a measure on [0,∞)

µk(A) [a, b] =
#{1 ≤ j ≤ N | N

2π (θj+k − θj) ∈ [a, b]}
N

.(19′)

The scaling factor N/2π normalizes µk(A) to have mean equal to k.
• The pair-correlation R2(A) measures the distribution between all pairs of

eigenvalues of A. For [a, b] ⊂ R a compact interval

R2(A)[a, b] =
#{j 6= k | N

2π (θj − θk) ∈ [a, b]}
N

.(20)

Higher correlations may be defined similarly.

The main question to be answered here is the behavior of these measures as N →∞.
For G(N) any one of the type II symmetric spaces above, Katz and Sarnak [K-S1]
establish the following:

• Fix k ≥ 1. There are measures µk(GUE) such that for any G(N) of type II

lim
N→∞

∫
G(N)

µk(A)dA = µk(GUE).(21)

• A Law of Large Numbers which ensures that for a typical (in measure)
A ∈ G(N), µk(A) and R2(A) approach µk(GUE) and R2(GUE) as N → ∞.
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Precisely

lim
N→∞

∫
G(N)

D(µk(A), µk(GUE)) dA = 0(22)

where D(ν1, ν2) is the Kolomogorof-Smirnov distance between ν1 and ν2; that
is

D(ν1, ν2) = sup{|ν1(I) − ν2(I) | : I ⊂ R an interval }.
For [a, b] ⊂ R (compact)

lim
N→∞

∫
G(N)

|R2(A) [a, b] −R2(GUE)[a, b] | dA = 0(23)

where

R2(GUE)[a, b] =
∫ b

a

r2(GUE)(x)dx

and r2(GUE) is given in (10).
Given that the answer is universal for type II symmetric spaces, and since CUE

is of this type and as pointed out above CUE and GUE have the same local spacing
statistics, it follows that type II local spacings are GUE (as indicated by the nota-
tion in (21) and (22)). Gaudin in the original paper [GA] expressed the measures
µk(GUE) in terms of a Fredholm determinant:

dµk(GUE) =
d2

ds2

 k∑
j=0

k − j

j!

(
∂

∂T

)j

det (I + TK(s))
∣∣∣∣
T=1

 ds(24)

where K(s) is the trace class operator on L2[−s/2, s/2] whose kernel is

K(x, y) =
sinπ(x − y)

π(x − y)
.(25)

He also noted that (23) allows one to compute µk numerically. Indeed, the eigen-
functions of the integral equation∫ s/2

−s/2

K(x, y) f(y) dy = λf(x)(26)

are prolate-spheroidal functions [MEH]. One may use this to compute the eigen-
values λj(s) and eigenfunctions fj(x, s) of (26) and from it the densities of the
measures µk(GUE). The density of µ1(GUE) is the solid curve in Figure 1. Notice
that the density vanishes to second order at s = 0, which says that the eigenvalues
of a typical A in a large G(N) tend to “repel” each other. For the ensembles COE
and CSE the analogous measures µk(COE) and µk(CSE) have been determined
(see Mehta [MEH]); they are quite different from µk(GUE) as well as from each
other.

While the above results show that the local spacings between all the eigenvalues
of a typical A in any G(N) of type II are universally GUE as N → ∞, the distri-
bution of the eigenvalue nearest to 1 is sensitive to the particular symmetry G. For
k ≥ 1, let νk(G(N)) be the measure on [0,∞) which gives the distribution of the
k-th eigenvalue of A, as A varies over G(N). That is

νk(G(N))[a, b] = Haar {A ∈ G(N)
∣∣∣∣ θk(A)N

2π
∈ [a, b]}.(27)
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Figure 5

Similarly one forms the 1-level scaling density (or more generally n-level densities)
of eigenvalues of A near 1. For such an A ∈ G(N) and [a, b] ⊂ R, let

∆(A)[a, b] = #
{
θ(A)|eiθ(A) is an eigenvalue of A and (θ(A)N)/2π ∈ [a, b]

}
.

(28)

The average of ∆(A) is denoted by W ; that is

W (G(N)) =
∫

G(N)

∆(A) dA.(29)

In [K-S1] it is shown that there are measures νk(G) on [0,∞) which depend on the
symmetry G such that

lim
N→∞

νk(G(N)) = νk(G).(30)

For the densities we have

lim
N→∞

W (G(N)) [a, b] =
∫ b

a

w(G)(x) dx(31)

where

w(G)(x) =



1 if G = U or SU

1− sin 2πx
2πx if G = Sp

1 + sin 2πx
2πx if G = SO (even)

δ0 + 1− sin 2πx
2πx if G = SO (odd).

(31′)

As with the measures µk(GUE), the measures νk(G) may be expressed in terms
of Fredholm determinants ([K-S1]), and this allows for their numerical calculation.
The densities of ν1(U), ν1(Sp) and ν1(SO(even)) are displayed in Figure 5. Clearly,
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ν1(SO(odd)) = δ0, and it turns out that ν2(SO(odd)) = ν1(Sp). Note that Sp is
unique in having the density of ν1 vanish (in fact to second order) at s = 0. This
shows that the eigenvalues of a typical A in a large USp(2N) are repelled by 1.

We end this section by remarking that the same questions for the most reducible
of the compact symmetric spaces, T N = U(1)×U(1) . . .×U(1), have very different
answers. Note that T N with the measure dx1

2π
dx2
2π . . . dxN

2π corresponds to choosing
x1, x2, . . . xN independently at random (or if we think of these as matrices, then
we are choosing a random diagonal matrix). The local spacing statistics for these
have been much studied in the probability literature. It is well known [FE] that the
local spacings for this model approximate a Poisson process as N → ∞. The k-th
consecutive spacing measures converge to µk(T ) = sk−1e−s ds/(k−1)! (note that µ1

has no repulsion at zero), while the limiting pair correlation R2(T ) is simply the
density dx on R.

3. Function fields

One can get much insight into the source of the Montgomery Odlyzko Law by
considering its function field analogue. Replace the field of rational numbers Q
by a field k which is a finite extension of the field Fq(t) of rational functions in t
with coefficients in Fq, the finite field of q elements. In analogy with the Riemann
Zeta Function, Artin [AR] introduced a zeta function ζ(T, k). It is defined by the
product over all places v of k (see [WE2] )

ζ(T, k) =
∏
v

(1− T deg(v))−1.(32)

One can also think of ζ(T, k) as the zeta function of a nonsingular curve C over
Fq whose field of functions is k. For example, let C/Fq be a plane curve given by
an equation

f(X1, X2, X3) = 0(33)

where f is nonsingular and homogeneous of some degree and has coefficients in Fq.
For each n ≥ 1 let Nn be the number of projective solutions to (33) in Fqn . The
zeta function of the field of functions k of C is the same as the zeta function of the
curve C over Fq which is defined as

ζ(T, C/Fq) = exp

( ∞∑
n=1

NnT n

n

)
.(34)

This geometric point of view is very powerful. For example, the Riemann-Roch
Theorem on the curve C plays the role of the Poisson summation formula [SCH]
and shows that

ζ(T, C/Fq) =
P (T, C/Fq)

(1 − T ) (1− qT )
(35)

where P ∈ Z[T ] is of degree 2g, g being the genus of the curve C. It also gives
the functional equation P (T ) = qgT 2gP (1/qT ). The Riemann-Hypothesis for these
zeta functions, which was put forth and tested in many examples by Artin, asserts
that all the zeroes lie on |T | = 1/

√
q. This was proven by Weil. By now there

are several different proofs: Weil [WE3], [WE4], elementary proofs by Stepanov
[ST] and Bombieri [BO], and proofs by Deligne [DE] which have the advantage of
applying much more generally. One reason for being able to proceed in the function
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field setting is that one has a spectral interpretation of the zeroes of ζ(T, C/Fq).
The number Nn is the number of fixed points of the n-th iterate of Frobenius (which
is the operation of raising the co-ordinates of F̄q-points on C to the power q). Via a
suitable Lefschetz trace formula this allows one to interpret the zeroes of ζ(T, C/Fq)
as the reciprocals of the eigenvalues of Frobenius acting on the first cohomology
group (with `-adic coefficients) of the curve C.

Turning to the distribution of the zeroes of these zeta functions, we write them
as

ρj = eiθj /
√

q, j = 1, 2, . . . , 2g.(36)

Now order the θ’s as in (19) and form the local spacing measures as in (19′). We
denote by µk(C/Fq) the k-th consecutive spacing measure between its zeroes. For
a fixed ζ(T, C/Fq) there are 2g(C) zeroes and so there cannot be any spacing law.
We therefore let the genus go to infinity. However, this alone does not lead to a
unique (or even the existence of a) limiting law. For example, consider the curves
Cf , f ≥ 1 given in affine form by Y 2 = Xq − X over the field Fq, q = pf , p 6= 2.
Its genus is (q − 1)/2, and as explained in [K-S1] the consecutive spacing measure
µ1(Cf/Fq) converges to a point mass δ0 at zero, as f →∞. In [K-S1] we therefore
consider the “typical” curve of large genus over a large field Fq. We show that as q
and g go to infinity the local spacings between the zeroes follow the GUE model -
that is the Montgomery-Odlyzko Law is valid for these zetas. Precisely, if Mg(Fq)
denotes the (finite) set of isomorphism classes of curves of genus g over Fq and
k ≥ 1, then

lim
g→∞ lim

q→∞
1

#Mg(Fq)

∑
C∈Mg(Fq)

D(µk(C/Fq), µk(GUE)) = 0.(37)

In particular, since D ≥ 0 we have that for any ε > 0 and q and g large enough (g
depending on q)

#
{
C ∈Mg(Fq) |D(µk(C/Fq), µk(GUE)) > ε

} ≤ ε.#
{
C ∈Mg(Fq)

}
;

(38)

that is to say the zeta functions of almost all curves C satisfy the Montgomery-
Odlyzko Law as q and g go to infinity.

There are three key ingredients that go into the proof of (37). The first is
the monodromy of the family Mg. For technical reasons instead of the family of
curves of genus g one considers the family Mg,3K of curves of genus g together
with a basis of sections of 3K, K being the canonical class of the curve. The
monodromy representation of π1 of Mg,3K on H1 of a given curve has image whose
Zariski closure (this being the monodromy of this family) is the full symplectic
group Sp(2g) [K-S1]. That this monodromy is symplectic in the first place is a
consequence of it preserving the intersection pairing of cycles in the first homology
group of a curve. Via this representation one can associate to each C ∈ Mg(Fq) a
unitarized Frobenius conjugacy class θ(C/Fq) in USp(2g) such that

P (T, C/Fq) = det(1 −√q T θ(C/Fq)).(39)
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The second ingredient is Deligne’s main result [DE] which can be used to show
(see [K-S1]) that for any continuous class function f on USp(2g)

lim
q→∞

∑
C∈Mg(Fq)

f(θ(C/Fq))
# Aut(C/Fq)∑

C∈Mg(Fq)

1
# Aut(C/Fq)

=
∫

USp(2g)

f(A) dA.(40)

The number of C ∈ Mg(Fq) for which # Aut(C/Fq) ≥ 2 can be shown to be
of lower order as q → ∞. Applying (40) with the continuous function f(A) =
D(µk(A), µk(GUE)), together with the third ingredient - the Law of Large Numbers
(22) of Section 2 (applied with G(N) = USp(2N)) - leads to (37).

One can prove similar results for other families of zeta or L-functions of curves or
varieties V over finite fields; see [K-S1]. The universal Montgomery-Odlyzko Law
is valid at least if the monodromy of the family is big, that is, if it is (or is close
to) any of the G(N)’s of type II in Table 1.

Thus in the function field, the source of the GUE phenomenon is clearly identi-
fied. It is the monodromy (or symmetry group) of the family and its scaling limit,
combined with the universality of the spacing statistics for the type II symmetric
spaces. The latter washes out the fine structure to the extent of not even betray-
ing the specific symmetry type of the family. As was mentioned in Section 2 the
measures νk are more sensitive, and we exploit this next.

4. Families and low lying zeroes

The following table summarizes some known analogies between zeta functions
over Q and function fields.

Table 2

A B

1 Type of Number Field Function Field
Zeta Function ζ(s), L(s, χ), L(s, f) ζ(T, C/Fq), ζ(T, V/Fq), V a variety.

2 Analytic Continuation Established via Poisson Established using Riemann-Roch

and Functional Equation Summation or Automorphic and in general Étale Cohomology.
Properties of f .

3 Spectral Interpretation ? Known via the Action of Frobenius
of Zeroes on Cohomology.

4 RH Expected Proven, Weil, Deligne.

5 Montgomery-Odlyzko Law Expected Valid for almost all curves.
for Local Spacings
between Zeroes

6 Monodromy (or Symmetry) ? Known via the representation
for Families and of π1 of the Family
Equi-distribution on Cohomology Groups.
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We view the entry 5-A and the evidence towards it described in Sections 1 and
3 as strongly suggesting an entry of “expected” in 3-A.1 Also worth noting is that
Deligne’s first proof of 4-B is based on monodromy for a family. For example, to
establish RH for ζ(T, V ), V a smooth hyper-surface in PN , he proceeds by putting
V in a family Vt (for an exposition see [KA1]). RH is established for all Vt’s at once
by exploiting the monodromy of the family which glues the Vt’s together. Thus, a
positive entry in 6-A is most desirable. This is the topic of this section.

We begin with the function field where the notion of a family has a precise
meaning. Consider the set of all quadratic extensions of k = Fq(t). We may realize
these as follows: Let Hn(Fq) be the set of all monic square-free polynomials of
degree n with coefficients in Fq. The quadratic extensions are k∆ = k(

√
∆) with

∆ ∈ Hn(Fq). For each n, these function fields correspond to hyper-elliptic curves,
Y 2 = ∆(X), ∆ ∈ Hn and form a family of curves. The genus g = g(n) of k∆ satisfies
n = 2g + 2 if n is even and n = 2g + 1 if n is odd. Thus ζ(T, k∆), which may be
written as L(T, χ∆)/(1−T )(1−qT ) with χ∆ the corresponding quadratic character,
has 2g(n) zeroes with angles θ1(∆), θ2(∆), . . . , θ2g(∆) which we normalize and order
as in (36) and (19). For j ≥ 1 fixed we examine the distribution of θj(∆) as ∆
varies over Hn(Fq), n → ∞. This amounts to studying the distribution of the
zeroes near the central point. Using the equi-distribution techniques described in
Section 3 together with the ν scaling limits (30) for USp(2g) (the monodromy of
this hyper-elliptic family again being the full Sp(2g)), one shows (see [K-S1]) that
for f ∈ C0(R≥0) a test function

lim
n→∞ lim

q→∞
1

#Hn(Fq)

∑
∆∈Hn(Fq)

f

(
θj(∆)2g

2π

)
=

∞∫
0

f(x) dνj(Sp)(x).

(41)

We conjecture (though the techniques leading to (41) offer nothing in the way
of a proof) that (41) holds without taking the inner q limit, that is

lim
n→∞

1
#Hn(Fq)

∑
∆∈Hn(Fq)

f

(
θj(∆)g

π

)
=

∞∫
0

f(x)dνj(Sp)(x).(42)

Equations (41) and (42) assert that the distributions of the zeroes near T = 1/
√

q
(the central or symmetry point) of the quadratic extensions k∆ of k = Fq(t) follow
the symplectic scaling limit laws.

We give a second example in the function field of a family for which the distri-
bution of the zeroes near the central point is dictated by, and in turn reveals, the
symmetry group of the family. Let E/k be an elliptic curve with non-constant
j-invariant ([SI1]). For each place v of k (that is each irreducible polynomial
p(t) ∈ Fq[t] or the place at infinity - “degree”) the residue field kv is a finite
extension of Fq of degree dv. Let Ev be the curve E ⊗ kv. At a place at which E
has good reduction, write

|Ev| = |kv| + 1 − αv − βv with αvβv = |kv|.(43)

1An interesting possibility for a spectral interpretation of the zeroes has been suggested by
Connes [CO].
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The L-function of E/k is defined to be

L(T, E) =
∏
v

(
1− αv T dv

)−1 (
1− βv T dv

)−1
(44)

(for the places v of k at which E does not have good reduction, the local factor is
described in [SI1]). L(T, E) satisfies a functional equation and Riemann Hypothesis
[TA], [DE].

For example, consider the Legendre curve

E : Y 2 = X(X − t)(X − 1).(45)

For ∆ ∈ H̃n(Fq), the set of ∆ ∈ Hn(Fq) with no zeroes in {0, 1}, the twist of E by
χ∆ has L-function

L(T, E ⊗ χ∆) =
∏
v

(
1− αv χ∆(v)T dv

)−1 (
1− βv χ∆(v)T dv

)−1
,(46)

and its degree is N where N is 2n if n is even and 2n− 1 if n is odd. The zeroes of
L(T, E⊗χ∆) are of modulus 1/q, and we write them as q−1eiθ1 , q−1eiθ2 , . . . , q−1eiθN

with

0 ≤ θ1(E ⊗ χ∆) ≤ θ2(E ⊗ χD) . . . ≤ θN (E ⊗ χ∆) < 2π.(47)

Denote by ε(E ⊗ χD)(= ±1) the sign of the functional equation. Each of the two
values is shared roughly equally by the ∆’s in H̃n(Fq) as n → ∞. Let H̃±

n (Fq)
denote those ∆ ∈ H̃n(Fq) with ε equal to +1 and −1 respectively. As with the last
example one can (see [KA2]) compute the monodromy of this family L(T, E⊗χ∆),
∆ ∈ H̃n(Fq). It is equal to O(N).2 As above, the equi-distribution techniques
together with (30) with G = O lead to: Fix j ≥ 1 and f ∈ C0(R≥0); then (see
[K-S1])

lim
n→∞ lim

q→∞
1

#H̃+
n (Fq)

∑
∆∈H̃+

n (Fq)

f

(
Nθj(E ⊗ χ∆)

2π

)
=

∞∫
0

f(x)dνj (SO (even))(x)

(48)

and

lim
n→∞ lim

q→∞
1

#H̃−
n (Fq)

∑
∆∈H̃−n (Fq)

f

(
Nθj(E ⊗ χ∆)

2π

)
=

∞∫
0

f(x)dνj(SO (odd))(x).

(49)

So this is a family with an orthogonal symmetry and a corresponding distribution
of zeroes near the central point. As in the first example we conjecture that (48)
and (49) hold without the inner q limit - that is they hold for a fixed q.

In principle in this function field setting, as long as one can compute the mon-
odromy of the family and its scaling limits, as is done in the above examples, one
obtains the scaled spacing distribution of zeroes near the central point.

We turn to the rational number setting. The analogues of the two families
considered above are clear enough. The first consists of the Dirichlet L-functions

2The reason for this difference between the families L(s, χ∆) and L(s, E ⊗ χ∆) is that the
Frobenius acts on H1 of a curve with coefficients which are orthogonally self dual in the first case
and symplectically self dual in the second. By standard properties of cup-product, the autoduality
on such H1 is reversed.
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L(s, χ) with χ2 = 1. The second of L(s, E ⊗ χ) where E/Q is an elliptic curve and
χ a quadratic character as in the first family. The corresponding question concerns
the distribution of the zeroes near s = 1/2 (we always normalize the L-functions
to have functional equation s → 1− s so that 1/2 is the central point) of these L-
functions. We will examine a number of different families F . To each automorphic
form f ∈ F let cf be its conductor (see the line above (12)). Assume further that
the sets FX = {f ∈ F|cf ≤ X} are finite and that the asymptotics #FX, as X goes
to infinity, can be determined. Write the nontrivial zeroes of L(s, f) as

1
2

+ iγf ,(50)

and assuming RH order these

. . . ≤ γ
(−2)
f ≤ γ

(−1)
f ≤ 0 ≤ γ

(1)
f ≤ γ

(2)
f ≤ . . . .(51)

For j ≥ 1 consider the distribution of the numbers

γ
(j)
f log cf

2π
(52)

as f varies over FX, X → ∞. That is, we study the distribution of the j-th lowest
zero (that the normalization (52) is appropriate will become clear from the results
below). Form the analogues of the measures νk (see (27)) and the density ∆ and
W ((28), (29))

νj(X,F)[a, b] =
#
{

f ∈ FX| γ
(j)
f log cf

2π ∈ [a, b]
}

#FX
.(53)

For φ ∈ S(R) a test function, set

∆(f, φ) =
∑
γf

φ

(
γf log cf

2π

)
(54)

and

W (X,F , φ) =
1

#FX

∑
cf≤X

∆(f, φ).(55)

One can also form several variable joint densities (see [K-S1]), and these determine
the νj ’s as well as all the local scaled distributions of zeroes near s = 1/2. By
analogy with the function field we might expect that νj(X,F) and W (X,F , φ)
converge to νj(F) and

∫∞
−∞ φ(x)w(F)(x)dx, where νj(F) and w(F) correspond to

the symmetry type “G(F)”. If the family F has a function field analogue, then
G(F) and the corresponding νj(F), w(F) can be predicted by the analysis described
in the two examples above. This idea has been carried out and tested analytically
and numerically for various families, some of which are as follows (for the rest of
this section we assume RH for all L(s, f)’s):

I. The family F of Dirichlet L-functions L(s, χ), χ (primitive) of conductor
cχ = q and χ quadratic (i.e. χ2 = 1). L(s, χ) is self-dual (that is its func-
tional equation is back into itself) and the sign εχ is equal to 1 for all χ.
(a) The discussion of the function field analogue suggests that G(F) = Sp.
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Figure 6. 1 level density for L(s, χd), 1012 < |d| < 1012 +
200000, 7243 d’s, mean of 1st zero above 0 equals 0.8268, renor-
malized to have mean 0.78.

(b) [K-S2] (see also Ozluk-Snyder [O-S])

W (X,F , φ) →
∞∫

−∞
φ(x)w(Sp)(x)dx as X →∞

for any φ ∈ S(R) whose Fourier transform is supported in (-2,2). The
density w(Sp)(x) is given in (31′).

(c) In his recent thesis [RUB] Rubinstein establishes that the n ≥ 2 joint
densities converge to the Sp densities (see [K-S1]) for test functions
φ(x1, . . . , xn) whose Fourier transforms are supported in a small neigh-
borhood of 0.

(d) Numerical experiments, Rubinstein [RUB] for q of size 1012 give an
excellent fit of the νj ’s and W with the Sp predictions. For example,
the density of zeroes (scaled) versus w(Sp) is given in Figure 6. The
distribution of the lowest zero ν1(X,F) for q ∼ 1012 is displayed in
Figure 7. It is compared with ν1(Sp). Note that in the analysis I(b)
above, the convergence to the limit is at a speed of 1/ log q and moreover
there is a term of one sign which shifts the answer by this amount.
While this term disappears in the limit q →∞, it does affect the mean
numerically, and the data displayed incorporates a re-normalization
taking this into account. According to the Sp predictions, the mean
value of γχ log qχ

2π should be the mean of ν1(Sp) which is 0.7827.... The
numerics confirm this though the convergence is slow (like 1/logq) and
the approach is from above.

(e) The first person to compute numerically the zeroes of L(s, χ) in this
family appears to be Hazelgrave. He found that the zeroes “repel” the
point s = 1/2, and this is referred to as the Hazelgrave phenomenon.3

3One can carry out all of the above for L(s, χ), χ3 ≡ 1 (or any other order bigger than 2). One
finds a unitary symmetry and the zeroes do not repel s = 1/2.



ZEROES OF ZETA FUNCTIONS AND SYMMETRY 17

Figure 7. 1st zero above 0 for L(s, χd), 1012 < |d| < 1012 +
200000, 7243 d’s, mean of 1st zero above 0 equals 0.8268, renor-
malized to have mean 0.7827.

As remarked in Section 2 the density ν1(Sp) vanishes to second order
at s = 0. Thus, the Hazelgrave phenomenon is a manifestation of the
symplectic symmetry!

II. The family ∆ ⊗ χ where ∆ is the weight 12-cusp form in (15) and χ runs
over the quadratic characters. The conductor c∆⊗χ is q2 and ε∆⊗χ can be
both +1 and −1. L(s, ∆⊗ χ) is self-dual.
(a) From function field considerations we expect G(F) = O with the refine-

ment that the sub-family F+ with ε = 1 has an SO(even) symmetry
and F− with ε = −1 an SO(odd) symmetry.

(b) [K-S2] For this family or more generally with any GL2 cusp form f
(with trivial central character) replacing ∆, we have

W (X,F+, φ) →
∞∫

−∞
φ(x)w(SO(even))(x)dx

and

W (X,F−, φ) →
∞∫

−∞
φ(x)w(SO(odd))(x)dx

for any φ ∈ S(R) whose Fourier transform is supported in (−1, 1). The
densities w(SO)(x) are given in (31′). The last applies in particular to
L(s, E⊗χ) with E/Q an elliptic curve, which of course is consistent with
the function field example mentioned at the beginning of this section.

(c) Rubinstein [RUB] has shown that the n ≥ 2 level densities converge
to the orthogonal densities for a φ(x1, . . . , xn) with φ̂(ξ1, . . . , ξn) sup-
ported in a small neighborhood of 0.

(d) Numerical experiments (Rubinstein [RUB] ) for q of size about 500,000
give an excellent fit with the orthogonal predictions. In Figure 8, the
density of F+ is plotted against w(SO(even)), and in Figure 9 the
density of F− against w(SO(odd)) (for the latter there is always a zero
at s = 1/2 and a δ0 in the density; these are suppressed). In Figure
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Figure 8. 1-level density for Lτ (s, χd even), 350000 < |d| <
650000, 11464 d’s, mean of 1st zero above 0 equals 0.2926, renor-
malized to have mean 0.3214.

10, ν1(F+) is displayed against ν1(SO(even)), and in Figure 11 ν2(F−)
against ν2(SO(odd)).

III. The family H(N) of holomorphic Hecke-eigen forms of weight 2 for Γ0(N) (as
in (18)). For simplicity we assume that N is prime. L(s, f) has conductor
cf = N and is self-dual. As in the last family approximately half of the
f ’s have εf = 1, with the remaining half having εf = −1. Let H+(N)
and H−(N) denote the corresponding sets. We have that #(H+(N)) ∼
#(H−(N)) ∼ N/24 as N →∞.
(a) The expected symmetry G(F) is O, though as yet we have not under-

stood the function field analogue.
(b) (See Iwaniec-Luo-Sarnak [I-L-S]):

Figure 9. 1-level density for Lτ (s, χd odd) 350000 < |d| <
650000, 11390 d’s, mean of 1st zero above 0 equals 0.7186, renor-
malized to have mean 0.7827.
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Figure 10. 1st zero above 0 for Lτ (s, χd even) 350000 < |d| <
650000, 11464 d’s, mean of 1st zero above 0 equals 0.2926, renor-
malized to have mean 0.3214.

As N →∞
1

#(H+(N))

∑
f∈H+(N)

∆(φ, f) →
∞∫

−∞
φ(x)w(SO(even))(x)dx

1
#(H−(N))

∑
f∈H−(N)

∆(φ, f) →
∞∫

−∞
φ(x)w(SO(odd))(x)dx

for any φ ∈ S(R) with support φ̂ ⊂ (−2, 2).
IV. The family of symmetric-square L-functions (see [SH1] ) L(s, sym2f) where

f is a Hecke eigenform of even integral weight k on H for Γ = SL2(Z)
(as in (15) above). The dimension of this space of cusp forms is ∼ k

12 as
k → ∞. The appropriate (analytic) analogue of the conductor of csym2f

of L(s, sym2f) is k2. For this family the averaging is over all such sym2f

Figure 11. 1st zero above 0 for Lτ (s, χd odd) 350000 < |d| <
650000, 11390 d’s, mean of 1st zero above 0 equals 0.7186, renor-
malized to have mean 0.7827.
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with csym2f ≤ X. L(s, sym2f) is an Euler-product of degree three, and by a
theorem of Gelbart and Jacquet [G-J] these are L-functions of self-dual cusp
forms on GL3. The sign of the functional equation εsym2f is equal to 1.
(a) Being self-dual forms on GL3 we expect G(F) = Sp.
(b) In [I-L-S] it is proven that

W (X,F , φ) →
∞∫

−∞
φ(x)w(Sp)(x)dx

as X →∞, for any φ ∈ S(R) with support φ̂ ⊂ (− 4
3 , 4

3 ).

Remarks. 1. All of these results confirm, to the extent that they apply, the
predictions of the G(F) symmetry. We call the conjecture that the sums
W (X,F , φ) converge to the claimed density without any restrictions on φ̂,
the Density Conjecture for F .

2. The proofs of the results about densities all proceed by expressing ∆(f, φ) via
the explicit formula, in terms of sums involving the Hecke eigenvalues of f .
The method used for averaging such quantities over f ∈ F for the families III
and IV draws heavily on the tools developed in Iwaniec-Sarnak [I-S] (see also
Section 5).

3. With the exception of the family II, all of the results allow for the sup-
port of φ̂ to be larger than [−1, 1]. This is rather significant since ŵ(Sp)(ξ),

̂w(SO)(even)(ξ) and ̂w(SO)(odd)(ξ) are all discontinuous at ξ = ±1. This sig-
nals that new non-diagonal terms enter as main terms as soon as the support
of φ̂ is larger than [−1, 1]. Thus, what is shown here goes beyond anything
that has been established for the correlations of the high zeroes of ζ(s), as
discussed in Section 1. For the families III and IV these new terms arise
out of a far reaching analysis with Kloosterman sums (see also [D-F-I] for
related analyses). That these fundamentally new non-diagonal contributions
yield precisely the conjectured G(F) answers is very pleasing evidence for this
symmetry picture, at least for these families.

4. Other families for which similar results have been derived are: The family
L(s, f), f varying over holomorphic cusp forms of weight k for SL2(Z) as
k → ∞, with symmetry G(F) = O [I-L-S]. The family L(s, f ⊗ χD) as in II
above but where f is now any fixed self-dual cusp form on GLm/Q, whose
symmetry is Sp or O according to whether L(s, sym2f) does or does not have
a pole at s = 1 [K-S2]. The family L(s, χ) χn = 1, n ≥ 3. These L-functions
are not self-dual and the symmetry is Un - the subgroup of the unitary group
whose elements have their determinant an n-th root of 1 [KA3].

5. Applications

The interest in the zeroes of L-functions lies in their fundamental influence on
arithmetical problems. In particular, the question of vanishing of an L-function at
a special point on the critical line arises in the Birch and Swinnerton-Dyer Conjec-
ture [B-S] (which for certain f relates the vanishing of L(s, f) and its derivatives to
ranks of elliptic curves and abelian varieties (see below)), in the Shimura correspon-
dence [SH2] and in spectral deformation theory (see Phillips-Sarnak [P-S]). The
distribution of zeroes for a family L(s, f) near s = 1/2 as discussed in Section 4 has
immediate applications to vanishing at that point. By varying the test function φ
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in the Density Conjecture for any of the above families F , one is led to (assuming
the Density Conjecture):

lim
X→∞

#{f ∈ FX|εf = 1, L(1
2 , f) 6= 0}

#{f ∈ FX|εf = 1} = 1(56)

and

lim
X→∞

#{f ∈ FX|εf = −1, L′(1
2 , f) 6= 0}

#{f ∈ FX|εf = −1} = 1.(57)

The results of Section 4 are approximations to the Density Conjecture and give
corresponding approximations to (56) and (57). We illustrate this in the cases of
families II(b) and III.

Let E/Q be an elliptic curve which is given in the form

E : Y 2 = X3 + AX + B.(58)

The twist of E by a square free integer D is the curve

ED : DY 2 = X3 + AX + B.(59)

We assume that E is modular so that the L-function L(s, ED), which equals
L(s, E ⊗ χD), is also modular. The Birch and Swinnerton-Dyer Conjecture as-
sert that the order of vanishing of L(s, ED) at s = 1/2 is equal to the rank of the
group of Q-rational points on ED. Kolyvagin [K-L] has shown that if L(1

2 , ED) 6= 0,
then rank (ED) = 0. This together with the Density-Conjecture via (56) implies
the following conjectures of Goldfeld [GO]:

• The rank of ED is zero for 100% of the D’s with |D| ≤ X, εE⊗χD = 1, as
X →∞.

• Assuming further the Birch and Swinnerton-Dyer Conjecture and applying
(57) show that the rank of ED is equal to one for 100% of the D’s with
|D| ≤ X, εE⊗χD = −1, as X →∞.

The approximation II(b) of Section 4 implies (assuming RH for the L(s, ED)’s)
that rank (ED) = 0 for at least 25% of the D’s with εED = 1. This result is due to
Brumer and Heath-Brown [B-HB]. A challenging problem, which is as yet at the
border of known techniques (see [P-P]), is to give an unconditional proof that rank
ED = 0 for a positive proportion of |D| ≤ X, as X →∞. (For certain curves E such
a result is known by algebraic methods [HB], [WO]). We note that for this family
L(s, E ⊗ χD) (as well as for some others below), unlike the case of L(s, ∆ ⊗ χD)
discussed in II, there are many D, with εE⊗χD = 1 and L(1

2 , E ⊗ χD) = 0. By
choosing X and Y first and then D in (59), Gouvea and Mazur [GO-MA] show that
there are at least X1/2, D’s with |D| ≤ X εD = 1 and L(1

2 , E⊗χD) = 0, as X →∞.
This certainly affects the numerics for the distribution of low-lying zeroes for this
family when X is of moderate size.

We turn to the family in III. By choosing φ ∈ S(R), φ(0) = 1, φ ≥ 0, support φ̂ ⊂
(−2, 2) and for which

∫∞
−∞ φ(x) w(F , x)dx is minimized (see [I-L-S]), we conclude

from the results in III (which we recall assume RH for L(s, f)) that for N prime
and large enough

#{f ∈ H+(N)|L(1
2 , f) 6= 0}

#H+(N)
>

9
16

(60)
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#{f ∈ H−(N)|L′(1
2 , f) 6= 0}

#H−(N)
>

15
16

(61)

and

#H2(N)
2

+ ◦ (#H2(N)) ≤
∑

f∈H2(N)

ord
(

1
2
, L(s, f)

)
<

99
100

(#H(N))

(62)

where ord(s0, L(s, f)) is the order of vanishing of L(s, f) at s = s0. Note that
#H(N) ∼ N

12 and as Murty [MU] points out (and this does not assume RH)
#H±(N) ∼ #H(N)

2 . Thus, the lower bound in (62) is clear. Concerning the upper
bound in (62), Brumer [BR] established such a result with 99/100 replaced by 3/2.
One can reduce this 3/2 to 1 without appealing to the “off-diagonal” analysis which
leads to III. However, to get anything below 1 in (62) already relies on the extended
ranges in III. A similar remark applies to (60), the off-diagonal analysis allowing
for the lower bound which exceeds 50%. This is significant as will become clear
from what follows.

One can apply (60), (61) and (62) to estimate the rank of the Jacobian J0(N)/Q
of the curves X0(N) (which analytically is Γ0(N)\H) by combining those results
with known partial results towards the Birch and Swinnerton-Dyer Conjectures
(Kolyvagin [K-L] and Gross-Zagier [G-Z]). Let M0(N)/Q be the quotient of J0(N)
considered by Merel [MER]. It corresponds to those f ∈ H+(N) for which L(1

2 , f) 6=
0, and it is no doubt the largest quotient of J0(N) of rank zero. It is of great interest
to know its size ([MA],[MER]). Brumer [BR] has computed these for N ≤ 104, and
based on his findings, he conjectures that

lim
N→∞

dim M0(N)
#H+(N)

= 1(63)

lim
N→∞

rankJ0(N)
dim J0(N)

=
1
2
.(64)

Note that Density Conjectures for this family via (56) and (57) and [K-L] and [G-Z]
imply these conjectures of Brumer. In the same way (60),(61) imply (still assuming
RH for L(s, f)) that for N large

dim M0(N) >
9
16

#H+(N)(65)

and

rankJ0(N) >
15
32

dim J0(N).(66)

Moreover, if one further assumes the Birch and Swinnerton-Dyer Conjecture then
(62) shows that for N large

dim J0(N)
2

+ ◦(N) ≤ rankJ0(N) <
99
100

dim J0(N).(67)

It is remarkable that the results (65) and (66) can be established unconditionally
with almost as good quality. The techniques that achieve this are quite different
from and more sophisticated than those used to establish the density results for
the family III though both make use of the methods for averaging over such a
family, developed in [I-S]. In [DU], Duke examines the averages of L(1

2 , f) and
L2(1

2 , f) over the set H(N). This allows him to show that at least N/(log N)2 of
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the L(1
2 , f)’s are non-zero. Introducing “mollifiers” and other tools into analysis

of weighted averaging of L(1
2 , f) and L2(1

2 , f), Iwaniec and Sarnak [I-S] show that
given ε0 > 0 there is an effective N0 = N0(ε0) such that for N > N0

#{f ∈ H+(N)|L(1
2 , f) ≥ (log N)−2}

#{f ∈ H+(N)} ≥ 1
2
− ε0.(68)

This unconditional result is rather close to the conditional (65) and the 50% in
(68) is of fundamental significance. For it is shown in [I-S] that if (68) holds with
any c > 1

2 replacing 1
2 , then there are no Siegel zeroes! (A Siegel zero is a zero

of a Dirichlet L-function L(s, χq), χ2
q = 1 which is very close, in terms of q the

conductor of χ, to 1.) The precise result that c > 1
2 would yield is that there is an

effective c′ > 0 such that L(1, χq) ≥ c′(log q)−2.
Using variations of the techniques above among many other ideas, Kowalski and

Michel [K-M1] and independently VanderKam [V] have shown that for N large

rankJ0(N) ≥ B dim J0(N)(69)

([K-M1] show that B = 19/54 works while [V] establishes the result with B =
1/100). In another work, Kowalski and Michel [K-M2] establish the upper bound
in (62) unconditionally with 99/100 replaced by 10.

We conclude this section with a comment about more general families F and
the distribution of low-lying zeroes. While symmetry alone appears to dictate the
laws of this distribution for the families discussed in Section 4, some caution must
be exercised in general. For example, consider the family F of isogeny classes of
all elliptic curves E/Q ordered by their conductors. Function field analogues (as
in example 2 of Section 4) suggest that the symmetry G(F) of this family is O. In
particular (and this can be proven for the function field with the usual caveat of
letting q → ∞ first), zero percent of the E’s in F of conductor at most N have
rank at least two, as N →∞. However, numerical experimentation with moderate
size N for this family and some other families of elliptic curves [K-Z], [SI2], [B-M]
indicate that this percentage is positive and even that it is not very small. It is
premature to say whether this is an artifact of a too restricted range of computation
and is due to effects like there being points of small height on these curves (like
the Gouvea-Mazur result [GO-MA]), or whether the distribution of low-lying zeroes
for such a family does not follow the O-predictions. Understanding the source of
this “excess rank” for moderate N will no doubt reveal some very interesting new
features.

6. Conclusion

Phenomenologically, it is found that the distribution of the high zeroes of any
L-function follow the universal GUE Laws, while the distribution of the low-lying
zeroes of certain families follow the laws dictated by symmetries associated with
the family. The function field analogues of these phenomena can be established,
and the source of the symmetry is the monodromy of the family and its scaling
limits. Analytic results concerning the distribution of high zeroes for an individual
L-function and low zeroes of a family of L-functions, to the extent to which these
can be established, confirm these findings above.

Whether in the case of L-functions (over Q) there is indeed some kind of under-
lying monodromy group which glues the family and is the source of the symmetry
is a fascinating question. Our belief is that there is. One can imagine that to each
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L(s, f), f ∈ F , there is a natural interpretation of the zeroes of L(s, f) as the
eigenvalues of an operator U(f) on some space H . As f varies over F these U(f)’s
become equi-distributed in the space of such operators with a given symmetry type.
For the families discussed in Section 4 these symmetries are identified. In particu-
lar, the Riemann Zeta function sits in Family I of Section 4 which has a symplectic
symmetry. We infer that in the proposed spectral interpretation of the zeroes of
the Riemann Zeta function, the operator should preserve a symplectic form!4 We
believe that the further understanding of the source of such symmetries holds the
key to finding a natural spectral interpretation of the zeroes.
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