
Actes, Congrès intern, math., 1970. Tome 1, p. 437 à 443. 

THE REGULARITY THEOREM 

IN ALGEBRAIC GEOMETRY 

by NICHOLAS M. KATZ 

I. Introduction. 

A basic finiteness theorem for families of algebraic varieties is that the Picard-
Fuchs differential equations have only regular (in the sense of Fuchs) singular points. 
The theorem was proved analytically by P. A. Griffiths [3], then by P. Deligne, both 
of whom used Hironaka's resolution of singularities [5] to be able to estimate the 
growths of solutions. 

Just recently, Deligne and the speaker independently found a purely algebro-geo-
metric proof, which makes the theorem a simple corollary of resolution. The method 
also leads to a direct proof of the monodromy theorem. 

II. The notion of regular singular points [1]. 

Let U be a smooth C-scheme. An algebraic differential equation on U is by defi­
nition a pair (M, V) consisting of a coherent sheaf M on U with an integrable connec­
tion (the existence of V implies that M is, in fact, locally free). We will view V as a 
homomorphism of abelian sheaves 

(2.1) V:M -> ni(g>% M 

(writing fìj; for Qj,/c) which satisfies the usual product rule and which extends to define 
a structure of complex on toy ®GV M, the " absolute de Rham complex " of (M, V). 

Now let S be a proper and smooth C-scheme, D = u Dt a union of connected smooth 
divisors in S with normal crossings, such that U ^ S — D, which we will refer to as 
a compactification of 17. Let DerD(S/C) denote the (locally free) sheaf on S of deriva­
tions which preserve the ideal sheaf of each branch Dt of D. The sheaf of differentials 
on S with logarithmic singularities along D is defined by 

Qh (log D) ^ HomGs (DerD (S/C), Os) 
{ ' } Og (log D) = Aj^Qì (log D) 

It is immediate that Çl's (log D) is a subcomplex of i^Q'u (i:U <+ S denoting the inclu­
sion). 

Following Fuchs and Deligne, we say that an algebraic differential equation (M, V) 
on U has regular singular points if, for every compactification U = S — D as above 
(by Hironaka [5], such compactifications exist!), there exists a pair (M, V) consisting 
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of a locally free sheaf M on S which prolongs M and a homomorphism V of abelian 
sheaves 

(2.3) V: M -> Q$(\ogD)®0sM 

which prolongs V. 

III. Remarks on the definition. 

(3.1) It is rather forbidding in appearance, but is certainly satisfied by (%, d = exte­
rior differentiation). 

(3.2) A consideration of the local monodromy around D shows that the underlying 
analytic differential equation (Man, Wan) always admits an analytic extension (Man

9 V5") 
as above, which, by GAGA, is uniquely algebrifiable. Restricting this algebraic data 
to U9 we get a second algebraic differential equation (Mf, V) on U, which depends 
only and functorially on (M, V), and an isomorphism of (Man, Vfln) with (M'an, Yaw). 
The condition that (M, V) have regular singular points is that the above isomorphism 
come from an isomorphism of (M, V) and (M', V). 

(3.3) It follows easily from (3.2) that (M, V) has regular singular points if and only 
if for every morphism / : V -> U with V a smooth curve, the inverse image /*(M, V) 
on V has regular singular points. 

(3.4) If U is a connected smooth curve, and 17 = S — D its canonical compacti­
fication, (M, V) has regular singular points if there exists an extension (M, V) as above 
with M coherent (M/torsion is a locally free extension to which V passes over). 

(3.5) Combining (3.3) and (3.4), it follows that (M, V) has regular singular points 
if for one compactification U = S — D there exists an extension (M, W) as above 
with M coherent 

IV. Relative de Rham cohomology [7]. 

Let / : U -> V be a proper and smooth morphism of smooth C-schemes, and 
(M, V) an algebraic differential equation on U. Composing V with the projection 
Qu ®0u M -> QU(V ®0U M, we obtain an integrable ^connection, still noted, 

(4.1) V: M ^ Qhiv®0üM 

which extends to provide a structure of complex to £lUfV ®0u M, the " relative de 
Rham complex of (M, V) ". The relative de Rham cohomology sheaves on V of 
(M, V) are defined by 

(4.2) H%R(U/V, (M, V)) = U%(iiviv ®„u M) 

These sheaves are coherent, as / is proper, and are endowed with an integrable con­
nection, whose construction we now recall. 
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Filter the absolute de Rham complex of (M, V) by the subcomplexes 

(4.3) F' = F'(ffD ®0u M) = image: f*[Ofy) ®C)v Q.^ ®0V M - Q„ » , „ M. 

The associated graded objects are given by 

(4.4) gr* = F'/F"1 =/*(n;,) ® , B ( O ^ ®ßv M) 

The integrable connection sought on H%R(U/V, (M, V)) is the differential d\,q in 
the spectral sequence of the filtered complex Qv ®Gu M and the functor U°f^, or, 
in more down to earth terms, it is the coboundary map 6q, in the long cohomology 
sequence of the Uqf^ arising from the short exact sequence 0 ->• gr1 -» F°/F2 -• gr° -> 0. 
Remember that, by (4.4), we have 

u 5) f ®%(gr°) = Hq
DR(U/V9 (M, V)) 

1 ' ' I W+1fM) = &v » ^ H^([//F, (M, V)). 

(4.6) Thus (H%R{U/V9(MfV))9ôq) is an algebraic differential equation on V. 
In particular, H%R(U/V9 (M9 V)) is locally free; this being so for all q9 it follows that 
the formation of the Hq

DR(U/V9 (M, V)) is compatible with arbitrary change of base. 

We remark that in the case (M, V) = (Gv, d), the connection just constructed on 
HDR(U/V)==:Ufiit(QViV) is the Gauss-Manin connection, and the resulting algebraic 
differential equation is classically called the Picard-Fuchs equation. 

V. The regularity theorem. 

THEOREM. — Assumptions as in IV, if (M9 V) has regular singular points, then the 
algebraic differential equations (H%R(U/V, (M, V)), öq) on V have regular singular 
points. 

Proof. — Combining (3.4) and (4.6), it suffices to treat the case in which F is a smooth 
connected curve. Let T be the complete non singular model of the function field 
of V, so that V= T— Y, Y a finite set of points of T, is the canonical compactification 
of V. By Hironaka [5], we can " compactify " the morphism f : U -+ V into a mor­
phism n: S -> T, so as to have a cartesian diagram 

U c—> S, 

V c—> T 

in which D = {n~1(Y) }red- is a union of connected smooth divisors in S which cross 
normally, and U = S — D is a compactification of U in the sense of II. 

Notice that TC*(Q£ (log Y)) is a subsheaf of Q£ (log D)). We define the (locally 
free) sheaf of relative differentials with logarithmic singularities along D by 

f QljT (log D) ^ flj (log D) /TT*(^ (log 7)) 
1 • j j Q£/r (log D) = Ap,Ql/T (log D) 
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The complex £l'S(T (log D) on S is a prolongation of ÇÏV(V, and fits into a short exact 
sequence of complexes 

(5.3) 0 -> 7c*(fì̂  (log Y) ®0sQ'sJT
1 (log D) -» Qs (log D) -> Q^T (log D) -> 0 

Now let (M, V) be an extension of (M, V) to 5, with M locally free and 
V: M -> fìg (log D) ®0S M a prolongation of V, and consider the complex deduced 
from V, 

(5.4) fìj (log 0) ®0S M 

which is a prolongation of Q'v ®ßu M. 

Filter 0,'s (log D) ®0S M by the subcomplexes 

(5.5) F1 = image n*(al
T (log 7) ®, s Clf* (log D) ® ^ M -• n ; (log D) ® §3 M 

The associated graded objects are given by 

(5.6) gf = F f/F f + 1 = 7C*(Qf
r(log Y)) ® % ( n ^ ( l o g D) ® % M). 

In particular, gr° is a prolongation of the relative de Rham complex QVfV® M of 
(M,V). 

We define the coherent sheaves on T. 

(5.7) HMS/T, (M, V)) ^ R%(Qi/T (log D) ®*s M) 

which are prolongations of the locally free sheaves Hq
DR(U/V9 (M, V)) on V. The 

extensions of Sq to homomorphisms of abelian sheaves 

(5.8) Jq : Ä%S/T, (M, V)) -> Q* (log Y) ®0T Hq
DR(S/T, (M, V)) 

are provided by the coboundary maps of the long cohomology sequence of the IR%# 

arising from the short exact sequence 0 -> gr1 -> F°/F2 -> gr° -+ 0 

Remember that, by (5.6), we have 

(5 Q) f Wiz*(gr0) = HÎ,R(S/T, (M, V)) 
1 ' j 1 B ^ ^ f e r 1 ) = fì^log Y) ®0T H%R(S/T, (M, V)). 

Thus the (Hq
DR(S/T, (M, V)), 5q) provide the desired extensions of the 

(Hq
DR(U/V, (M, V)), öq). QED. 

VI. The exponents. 

Notations as in II, let (M, V) be an algebraic differential equation on S with loga­
rithmic singularities along D. For each b r a n c h ^ of D, we denote by M(D) the 
locally free sheaf (9Di ®0s M on Dt. Composing V with the map " residue along Dt " 

(6.1) Q.I (log D) ®0s M " * " ° » g A " ® i &Di ^ M = M ( D j ) 

we obtain an (0Di-linear) endomorphism Lt of M(D). As Dt is proper, the characte-
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ristic polynomial of Lt, Pt(X) = det (XI — Li ; M(Dt)) lies in C[X]. Classically, 
Pt is called the indicial polynomial of (M, V) around Dt, and its roots are called expo­
nents pf (M, V) around Dt. The numbers exp (2nie)9 e an exponent, are the proper 
values of the local monodromy transformation " turning once around Dt " of the 
space of local holomorphic horizontal sections of (M, V) | S — D ; thus the exponents, 
which depend on (M, V), are determined modulo Z by (M, V) | S — D. 

VII. The Monodromy theorem. 

THEOREM. — Let V be a smooth connected curve, T its canonical compactification, 
f\U-*Va proper and smooth morphism, and n: S -> Ta compactification of 
f as in (5.1). Let (M, V) be an algebraic differential equation on U, and (M, V) an 
extension to S as in (2.1). Denote by P{(X) the indicial polynomial of (M, V) around D{. 

Let yeT— V9 and %~\y) = 'Lr
i=iaìDì its scheme-theoretic fibre. Then the indicial 

polynomial at y of (H%R(S/T9 (M, V)), öq) divides a power of 

fl 'flPfaX-Jd 
i=l ji = 0 

Proof — The question being local around y, let us base-change the entire situation 
by the inclusion Spec ((VTy) -*• T, but for simplicity keep the same notations (so T 
henceforth means Spec (0T>y), etc.). We must now adopt the dual view of the " con­
nection with logarithmic singularities " V as an action of DerD(S/C) on M satisfying 
the usual rules [8], and similarly of Jq as an action of Dery(T/C) on H%R(S/T, (M, V). 
Let t be a uniformizing parameter at y. Then the indicial polynomial at y of 
(H%R(S/T, (M, V)), <5 ) is just the characteristic polynomial of the endomorphism 

<«â of H%R(S/T, (M, V))0>). We will show that 

(7.1) O °ff P(?<ôhÇ) 'J') ^ W K W 7 ; (M, V))] = tHUßlT, (M, V)) 

H)-To do this we will use the explicit formulas of [8] for 5 J t — j . Let U be a covering 

of S by affine open sets Ult U2,... which is sufficiently fine, in the sense that each 
Uv admits coordinates xl9..., xn9 in terms of which Dt is defined by the equation 
xt = 0 (or by the equation 1 = 0, if Dadoes not meet l/v), and in terms of which t=IVi=1x

b
i
i
9 

with òj = 0 or ûj. Let C" denote the Cech bicomplex of quasi-coherent T-modules 
C'(U9 Q's/T (log D) ®0S M)9 whose (total) cohomology objects are just the 

HUS/T, (M, V)). 

d 
According to [8], we may construct an action a of t — on the underlying sheaf of C 

dt 
dh 

(i. e., for he(9Tty and ceC", a(hc) = t— c + ha(c)) which commutes with the total 

coboundary of C" and induces <5J t — I upon passage to cohomology. Indeed, if we 

choose for each open set Uv of the covering an element dv ET(UV, DerD(S/C)) which 
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d 
prolongs t —, there is a cr as above which preserves the filtration Fq of C" by the first 

dt 
degree, and which on gr%C" = Cq,m is just the Lie derivative Lie(V(dvJ) on 

r(ryVo n...nuVq, as/T (log D) ®0S M\ 

for v0 < . . . <vq. 

For each branch Dt of D, we denote by crf the action of t —- on C" corresponding 

d 
the choices of liftings of t— to an element d^eT(Uv, DerD(S/C)) given by 

dt 

(7.2) £#>=< 

1 S .„ 
— xt -r— if Dt meets Uv a{ dxt 

1 ô 
- Xj — if Dt does not meet Uv, and j is the least integer such that 

L aJ dxJ D, meets Uv 

We define 

n ~ J &t =\[PlWi - Ju for i = 1,. .., r 

IJS? = J2?i . . . J2?r 

The product rule assures that ££(tFq) a tFq
9 so that to conclude the proof we need 

only show that S?(Fq) c tFq + F«+ 1 , or equivalently, that S£(gr%C") c tgrJC". But 
this last is a " local " statement, namely that over UVo n ... r\UVq, v0 < ... < vq, 
we have 

(7-4) f i a n P£ (Lie (fl,V(dS2)) - MQi/r (log D) ®* M] cz *QS/T (log D) ®0S M 
i=l j , = 0 

or, what is equivalent, that over UVo we have 

(7.5) fi E ^ i W £ ) - Jt)M c ;M; 
i = l ji = 0 

Since the various lifting d® of £ — to U"Vo were so chosen as to mutually commute, 

the V(dij5) mutually commute (integrability), so we may rearrange the product and 
" absorb " those Pt corresponding to Dt which do not meet UVQ. Thus we may assume 

that all the Dt meet UVo,t = xa
1
l . . . xa

r
r
9 and atd® = xt ——. Since Pt is a polynomial 

ÖXi 

with constant coefficients and V( xt — ) is ^-linear for ; ^ i9 it suffices to show that, 

for i = 1 , . . . , r, we have 

(7.6) " n ^ i ( ^ ( * f ^ : ) —-̂ )CJB0 «= x?<Ar over C7V( 
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Recalling that the endomorphism Lt of M(Dt) is deduced from V ( x f — I over UVl 

by reduction modulo (x), we have, by definition of Pt, 

(7.7) p{v{x,'t)yM) *= x<M °ver ^ 

Combining this with the commutation formula 

the desired formula (7.6) (and hence the theorem) follows by induction on at. QED, 
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