THE REGULARITY THEOREM IN ALGEBRAIC GEOMETRY

by Nicholas M. KATZ

I. Introduction.

A basic finiteness theorem for families of algebraic varieties is that the Picard-Fuchs differential equations have only regular (in the sense of Fuchs) singular points. The theorem was proved analytically by P. A. Griffiths [3], then by P. Deligne, both of whom used Hironaka's resolution of singularities [5] to be able to estimate the growths of solutions.

Just recently, Deligne and the speaker independently found a purely algebro-geometric proof, which makes the theorem a simple corollary of resolution. The method also leads to a direct proof of the monodromy theorem.

II. The notion of regular singular points [1].

Let U be a smooth C-scheme. An algebraic differential equation on U is by definition a pair (M, ∇) consisting of a coherent sheaf M on U with an integrable connection (the existence of ∇ implies that M is, in fact, locally free). We will view ∇ as a homomorphism of abelian sheaves

$$(2.1) \qquad \nabla \colon M \to \Omega^1_U \otimes_{\sigma_U} M$$

(writing Ω_U^1 for $\Omega_{U/C}^1$) which satisfies the usual product rule and which extends to define a structure of *complex* on $\Omega_U^{\vee} \otimes_{\theta_U} M$, the "absolute de Rham complex " of (M, ∇) .

Now let S be a proper and smooth \mathbb{C} -scheme, $D = \bigcup D_i$ a union of connected smooth divisors in S with normal crossings, such that $U \cong S - D$, which we will refer to as a *compactification* of U. Let $Der_D(S/\mathbb{C})$ denote the (locally free) sheaf on S of derivations which preserve the ideal sheaf of each branch D_i of D. The sheaf of differentials on S with logarithmic singularities along D is defined by

(2.2)
$$\Omega_{S}^{1} (\log D) \stackrel{\text{def } n}{=} Hom_{\sigma_{S}} (Der_{D} (S/\mathbb{C}), \sigma_{S})$$
$$\Omega_{S}^{p} (\log D) = \Lambda_{\sigma_{S}}^{p} \Omega_{S}^{1} (\log D)$$

. .

It is immediate that $\Omega'_S(\log D)$ is a subcomplex of $i_*\Omega'_U(i: U \hookrightarrow S$ denoting the inclusion).

Following Fuchs and Deligne, we say that an algebraic differential equation (M, ∇) on U has regular singular points if, for *every* compactification U = S - D as above (by Hironaka [5], such compactifications exist!), there exists a pair $(\overline{M}, \overline{\nabla})$ consisting

B5

of a locally free sheaf \overline{M} on S which prolongs M and a homomorphism $\overline{\nabla}$ of abelian sheaves

(2.3) $\overline{\nabla}: \overline{M} \to \Omega^1_{\mathbb{S}}(\log D) \otimes_{\mathscr{O}_{\mathbb{S}}} \overline{M}$

which prolongs ∇ .

III. Remarks on the definition.

(3.1) It is rather forbidding in appearance, but is certainly satisfied by $(\mathcal{O}_U, d = \text{exterior differentiation})$.

(3.2) A consideration of the local monodromy around D shows that the underlying analytic differential equation (M^{an}, ∇^{an}) always admits an analytic extension $(\overline{M^{an}}, \overline{\nabla^{an}})$ as above, which, by GAGA, is uniquely algebrifiable. Restricting this algebraic data to U, we get a second algebraic differential equation (M', ∇') on U, which depends only and functorially on (M, ∇) , and an isomorphism of (M^{an}, ∇^{an}) with (M'^{an}, ∇'^{an}) . The condition that (M, ∇) have regular singular points is that the above isomorphism come from an isomorphism of (M, ∇) .

(3.3) It follows easily from (3.2) that (M, ∇) has regular singular points if and only if for every morphism $f: V \to U$ with V a smooth *curve*, the inverse image $f^*(M, \nabla)$ on V has regular singular points.

(3.4) If U is a connected smooth curve, and U = S - D its canonical compactification, (M, ∇) has regular singular points if there exists an extension $(\overline{M}, \overline{\nabla})$ as above with \overline{M} coherent $(\overline{M}/\text{torsion})$ is a locally free extension to which $\overline{\nabla}$ passes over).

(3.5) Combining (3.3) and (3.4), it follows that (M, ∇) has regular singular points if for *one* compactification U = S - D there exists an extension $(\overline{M}, \overline{\nabla})$ as above with \overline{M} coherent

IV. Relative de Rham cohomology [7].

Let $f: U \to V$ be a proper and smooth morphism of smooth C-schemes, and (M, ∇) an algebraic differential equation on U. Composing ∇ with the projection $\Omega^1_U \otimes_{\sigma_U} M \to \Omega^1_{U/V} \otimes_{\sigma_U} M$, we obtain an integrable V-connection, still noted,

$$(4.1) \qquad \nabla \colon M \to \Omega^1_{U/V} \otimes_{\sigma_U} M$$

which extends to provide a structure of complex to $\Omega_{U/V} \otimes_{\sigma_U} M$, the "relative de Rham complex of (M, ∇) ". The relative de Rham cohomology sheaves on V of (M, ∇) are defined by

These sheaves are coherent, as f is proper, and are endowed with an integrable connection, whose construction we now recall.

Filter the absolute de Rham complex of (M, ∇) by the subcomplexes

$$(4.3) \quad F^{i} = F^{i}(\Omega^{i}_{U} \otimes_{\mathscr{O}_{U}} M) = \text{image:} f^{*}(\Omega^{i}_{V}) \otimes_{\mathscr{O}_{U}} \Omega^{i-i}_{U} \otimes_{\mathscr{O}_{U}} M \rightarrow \Omega^{i}_{U} \otimes_{\mathscr{O}_{U}} M.$$

The associated graded objects are given by

The integrable connection sought on $H_{DR}^{q}(U/V, (M, \nabla))$ is the differential $d_{1}^{0,q}$ in the spectral sequence of the filtered complex $\Omega_{U}^{\cdot} \otimes_{\sigma_{U}} M$ and the functor $\mathbb{R}^{0}f_{*}$, or, in more down to earth terms, it is the coboundary map δ_{q} , in the long cohomology sequence of the $\mathbb{R}^{q}f_{*}$ arising from the short exact sequence $0 \to gr^{1} \to F^{0}/F^{2} \to gr^{0} \to 0$. Remember that, by (4.4), we have

(4.5)
$$\begin{cases} \mathbb{R}^{q} f_{*}(gr^{0}) = H^{q}_{DR}(U/V, (M, \nabla)) \\ \mathbb{R}^{q+1} f_{*}(gr^{1}) = \Omega^{1}_{V} \otimes_{\mathscr{O}_{V}} H^{q}_{DR}(U/V, (M, \nabla)). \end{cases}$$

(4.6) Thus $(H_{DR}^{e}(U/V, (M, \nabla)), \delta_{q})$ is an algebraic differential equation on V. In particular, $H_{DR}^{e}(U/V, (M, \nabla))$ is locally free; this being so for all q, it follows that the formation of the $H_{DR}^{e}(U/V, (M, \nabla))$ is compatible with arbitrary change of base.

We remark that in the case $(M, \nabla) = (\mathcal{O}_U, d)$, the connection just constructed on $H_{DR}(U/V) \stackrel{\text{defn}}{\longrightarrow} \mathbb{R} f_*(\Omega_{U/V})$ is the Gauss-Manin connection, and the resulting algebraic differential equation is classically called the *Picard-Fuchs equation*.

V. The regularity theorem.

THEOREM. — Assumptions as in IV, if (M, ∇) has regular singular points, then the algebraic differential equations $(H^q_{DR}(U/V, (M, \nabla)), \delta_q)$ on V have regular singular points.

Proof. — Combining (3.4) and (4.6), it suffices to treat the case in which V is a smooth connected curve. Let T be the complete non singular model of the function field of V, so that V = T - Y, Y a finite set of points of T, is the canonical compactification of V. By Hironaka [5], we can "compactify" the morphism $f: U \to V$ into a morphism $\pi: S \to T$, so as to have a cartesian diagram

$$(5.1) \qquad \begin{array}{c} U & \longleftrightarrow & S.\\ r \downarrow & & \downarrow^{\pi} \\ V & \longleftrightarrow & T \end{array}$$

in which $D \stackrel{\text{defn}}{=} \{\pi^{-1}(Y)\}^{\text{red.}}$ is a union of connected smooth divisors in S which cross normally, and U = S - D is a *compactification* of U in the sense of II.

Notice that $\pi^*(\Omega_T^1 (\log Y))$ is a subsheaf of $\Omega_S^1 (\log D)$. We define the (locally free) sheaf of relative differentials with logarithmic singularities along D by

(5.2)
$$\begin{cases} \Omega_{S/T}^1 (\log D) \stackrel{\text{def n}}{=} \Omega_S^1 (\log D) / \pi^*(\Omega_T^1 (\log Y)) \\ \Omega_{S/T}^p (\log D) = \Lambda_{\theta_S}^p \Omega_{S/T}^1 (\log D) \end{cases}$$

The complex $\Omega_{S/T}$ (log D) on S is a prolongation of $\Omega_{U/V}^{\cdot}$, and fits into a short exact sequence of complexes

$$(5.3) \quad 0 \to \pi^*(\Omega^1_T(\log Y) \otimes_{\theta_S} \Omega^{:-1}_{S/T}(\log D) \to \Omega^:_S(\log D) \to \Omega^:_{S/T}(\log D) \to 0$$

Now let $(\overline{M}, \overline{\nabla})$ be an extension of (M, ∇) to S, with \overline{M} locally free and $\overline{\nabla} : \overline{M} \to \Omega_S^1$ (log D) $\bigotimes_{\sigma_S} \overline{M}$ a prolongation of ∇ , and consider the complex deduced from $\overline{\nabla}$,

(5.4)
$$\Omega_{S}^{\cdot}(\log D) \otimes_{\sigma_{S}} \overline{M}$$

which is a prolongation of $\Omega_U \otimes_{o_U} M$.

Filter $\Omega_s^{\cdot}(\log D) \otimes_{\sigma_s} \overline{M}$ by the subcomplexes

(5.5)
$$F^i = \text{image } \pi^*(\Omega^i_T(\log Y) \otimes_{\theta_S} \Omega^{i-i}_S(\log D) \otimes_{\theta_S} \overline{M} \to \Omega^i_S(\log D) \otimes_{\theta_S} \overline{M}$$

The associated graded objects are given by

(5.6)
$$gr^{i} = F^{i}/F^{i+1} = \pi^{*}(\Omega^{i}_{T}(\log Y)) \otimes_{\mathscr{O}_{S}} (\Omega^{\cdot-i}_{S/T}(\log D) \otimes_{\mathscr{O}_{S}} \overline{M}).$$

In particular, gr^0 is a prolongation of the relative de Rham complex $\Omega_{U/V} \otimes M$ of (M, ∇) .

We define the coherent sheaves on T.

(5.7)
$$H^{q}_{DR}(S/T, (\overline{M}, \overline{\nabla})) \stackrel{\text{dern}}{=} \mathbb{R}^{q} \pi_{*}(\Omega^{\cdot}_{S/T}(\log D) \otimes_{\mathscr{O}_{S}} M)$$

which are prolongations of the locally free sheaves $H_{DR}^{q}(U/V, (M, \nabla))$ on V. The extensions of δ_{q} to homomorphisms of abelian sheaves

$$(5.8) \qquad \overline{\delta}_q: \quad H^q(S/T, (\overline{M}, \overline{\nabla})) \to \Omega^1_T(\log Y) \otimes_{\mathscr{O}_T} H^q_{DR}(S/T, (\overline{M}, \overline{\nabla}))$$

are provided by the coboundary maps of the long cohomology sequence of the $\mathbb{R}^q \pi_*$ arising from the short exact sequence $0 \to gr^1 \to F^0/F^2 \to gr^0 \to 0$

Remember that, by (5.6), we have

(5.9)
$$\begin{cases} \mathbb{R}^{q} \pi_{*}(gr^{0}) = H^{q}_{DR}(S/T, (\overline{M}, \overline{\nabla})) \\ \mathbb{R}^{q+1} \pi_{*}(gr^{1}) = \Omega^{1}_{T} (\log Y) \otimes_{\mathscr{O}_{T}} H^{q}_{DR}(S/T, (\overline{M}, \overline{\nabla})). \end{cases}$$

Thus the $(H^{q}_{DR}(S/T, (\overline{M}, \overline{\nabla})), \overline{\delta}_{a})$ provide the desired extensions of the

$$(H_{DR}^{q}(U/V, (M, \nabla)), \delta_{q}).$$
 QED

VI. The exponents.

Notations as in II, let $(\overline{M}, \overline{\nabla})$ be an algebraic differential equation on S with logarithmic singularities along D. For each branch D_i of D, we denote by $\overline{M}(D_i)$ the locally free sheaf $\mathcal{O}_{D_i} \otimes_{\sigma_S} \overline{M}$ on D_i . Composing $\overline{\nabla}$ with the map "residue along D_i "

(6.1)
$$\Omega^{1}_{S}(\log D) \otimes_{\mathscr{O}_{S}} \overline{M} \xrightarrow{\text{``residue along } D_{i}^{"} \otimes 1} \mathscr{O}_{D_{i}} \otimes_{\mathscr{O}_{S}} \overline{M} = \overline{M}(D_{i})$$

we obtain an $(\mathcal{O}_{D_i}$ -linear) endomorphism L_i of $\overline{M}(D_i)$. As D_i is proper, the characte-

ristic polynomial of L_i , $P_i(X) = \det (XI - L_i; \overline{M}(D_i))$ lies in $\mathbb{C}[X]$. Classically, P_i is called the *indicial polynomial* of $(\overline{M}, \overline{\nabla})$ around D_i , and its roots are called *exponents* of $(\overline{M}, \overline{\nabla})$ around D_i . The numbers exp $(2\pi i \epsilon)$, ϵ an exponent, are the proper values of the local monodromy transformation " turning once around D_i " of the space of local holomorphic horizontal sections of $(\overline{M}, \overline{\nabla}) | S - D$; thus the exponents, which *depend* on $(\overline{M}, \overline{\nabla})$, are determined modulo \mathbb{Z} by $(\overline{M}, \overline{\nabla}) | S - D$.

VII. The Monodromy theorem.

THEOREM. — Let V be a smooth connected curve, T its canonical compactification, $f: U \to V$ a proper and smooth morphism, and $\pi: S \to T$ a compactification of f as in (5.1). Let $(\overline{M}, \overline{\nabla})$ be an algebraic differential equation on U, and $(\overline{M}, \overline{\nabla})$ an extension to S as in (2.1). Denote by $P_i(X)$ the indicial polynomial of $(\overline{M}, \overline{\nabla})$ around D_i .

Let $y \in T - V$, and $\pi^{-1}(y) = \sum_{i=1}^{r} a_i D_i$ its scheme-theoretic fibre. Then the indicial polynomial at y of $(H_{DR}^{e}(S/T, (\overline{M}, \overline{\nabla})), \delta_a)$ divides a power of

$$\prod_{i=1}^{r} \prod_{j_i=0}^{a_i-1} P_i(a_i X - j_i)$$

Proof. — The question being local around y, let us base-change the entire situation by the inclusion Spec $(\mathcal{O}_{T,y}) \to T$, but for simplicity keep the same notations (so T henceforth means Spec $(\mathcal{O}_{T,y})$, etc.). We must now adopt the dual view of the "connection with logarithmic singularities " $\overline{\nabla}$ as an *action* of $Der_D(S/C)$ on \overline{M} satisfying the usual rules [8], and similarly of $\overline{\delta}_q$ as an action of $Der_y(T/C)$ on $H^q_{DR}(S/T, (\overline{M}, \overline{\nabla}))$. Let t be a uniformizing parameter at y. Then the indicial polynomial at y of $(H^q_{DR}(S/T, (\overline{M}, \overline{\nabla})), \overline{\delta}_q)$ is just the characteristic polynomial of the endomorphism $\overline{\delta}_q\left(t\frac{d}{dt}\right)$ of $H^q_{DR}(S/T, (\overline{M}, \overline{\nabla}))(y)$. We will show that $(7.1) \qquad \left[\prod_{i=1}^r \prod_{j_i=0}^{a_i-1} P_i\left(a_i\overline{\delta}_q\left(t\frac{d}{dt}\right) - j_i\right)\right]^{q+1} [H^q_{DR}(S/T, (\overline{M}, \overline{\nabla}))] \subset tH^q_{DR}(S/T, (\overline{M}, \overline{\nabla}))$

To do this we will use the explicit formulas of [8] for $\overline{\delta}_q\left(t\frac{d}{dt}\right)$. Let \underline{U} be a covering of S by affine open sets U_1, U_2, \ldots which is sufficiently fine, in the sense that each U_v admits coordinates x_1, \ldots, x_n , in terms of which D_i is defined by the equation $x_i = 0$ (or by the equation 1 = 0, if D_i does not meet U_v), and in terms of which $t = \Pi_{i=1}^r x_i^{b_i}$, with $b_i = 0$ or a_i . Let C denote the Cech bicomplex of quasi-coherent T-modules $C'(\underline{U}, \Omega_{S/T}^r (\log D) \otimes_{\theta_S} \overline{M})$, whose (total) cohomology objects are just the

$$H^{q}_{DR}(S/T, (\overline{M}, \overline{\nabla})).$$

According to [8], we may construct an action σ of $t \frac{d}{dt}$ on the underlying sheaf of $C^{"}$ (i. e., for $h \in \mathcal{O}_{T,y}$ and $c \in C^{"}$, $\sigma(hc) = t \frac{dh}{dt} c + h\sigma(c)$) which commutes with the total coboundary of $C^{"}$ and induces $\overline{\delta}_q \left(t \frac{d}{dt} \right)$ upon passage to cohomology. Indeed, if we choose for each open set U_y of the covering an element $d_y \in \Gamma(U_y, \operatorname{Der}_D(S/C))$ which prolongs $t\frac{d}{dt}$, there is a σ as above which preserves the filtration F^q of C^{-} by the first degree, and which on $gr_F^q C^{-} = C^{q,-}$ is just the Lie derivative $\text{Lie}(\overline{\nabla}(d_{\nu_o}))$ on

$$\Gamma(U_{\nu_0} \cap \ldots \cap U_{\nu_a}, \Omega^{\boldsymbol{\cdot}}_{S/T} (\log D) \otimes_{\mathscr{O}_S} \overline{M})$$

for $v_0 < \ldots < v_q$.

For each branch D_i of D, we denote by σ_i the action of $t \frac{d}{dt}$ on $C^{"}$ corresponding the choices of liftings of $t \frac{d}{dt}$ to an element $d_v^{(i)} \in \Gamma(U_v, Der_D(S/C))$ given by

(7.2)
$$d_{v}^{(l)} = \begin{cases} \frac{1}{a_{i}} x_{i} \frac{\partial}{\partial x_{i}} & \text{if } D_{i} \text{ meets } U_{v} \\ \frac{1}{a_{j}} x_{j} \frac{\partial}{\partial x_{j}} & \text{if } D_{i} \text{ does not meet } U_{v}, \text{ and } j \text{ is the least integer such that} \\ D_{j} \text{ meets } U_{v} \end{cases}$$

We define

(7.3)
$$\begin{cases} \mathscr{L}_{i} = \prod_{j_{i}=0}^{a_{i}-1} P_{i}(a_{i}\sigma_{i}-j_{i}) & \text{for } i=1,\ldots,r\\ \mathscr{L} = \mathscr{L}_{1} \ldots \mathscr{L}_{r} \end{cases}$$

The product rule assures that $\mathscr{L}(tF^q) \subset tF^q$, so that to conclude the proof we need only show that $\mathscr{L}(F^q) \subset tF^q + F^{q+1}$, or equivalently, that $\mathscr{L}(gr_F^qC^{\circ}) \subset tgr_F^qC^{\circ}$. But this last is a "local" statement, namely that over $U_{\nu_0} \cap \ldots \cap U_{\nu_q}$, $\nu_0 < \ldots < \nu_q$, we have

(7.4)
$$\prod_{i=1}^{r} \prod_{j_i=0}^{a_i-1} P_i \text{ (Lie } (a_i \overline{\nabla}(d_{\nu_0}^{(i)})) - j_i) [\Omega_{S/T} (\log D) \otimes_{\theta_S} \overline{M}] \subset t \Omega_{S/T} (\log D) \otimes_{\theta_S} \overline{M}$$

or, what is equivalent, that over U_{v_0} we have

(7.5)
$$\prod_{i=1}^{r} \prod_{j_i=0}^{a_i-1} P_i(a_i \overline{\nabla}(d_{v_0}^{(i)}) - j_i) \overline{M} \subset t \overline{M};$$

Since the various lifting $d_{v_0}^{(i)}$ of $t \frac{d}{dt}$ to U_{v_0} were so chosen as to mutually commute, the $\overline{V}(d_{v_0}^{(i)})$ mutually commute (integrability), so we may rearrange the product and "absorb" those P_i corresponding to D_i which do not meet U_{v_0} . Thus we may assume that all the D_i meet U_{v_0} , $t = x_1^{a_1} \dots x_r^{a_r}$, and $a_i d_{v_0}^{(i)} = x_i \frac{\partial}{\partial x_i}$. Since P_i is a polynomial with constant coefficients and $\overline{V}\left(x_i \frac{\partial}{\partial x_i}\right)$ is x_j -linear for $j \neq i$, it suffices to show that, for $i = 1, \dots, r$, we have

(7.6)
$$\prod_{j_i=0}^{a_i-1} P_i\left(\overline{\nabla}\left(x_i\frac{\partial}{\partial x_i}\right) - j_i\right)(\overline{M}) \subset x_i^{a_i}\overline{M} \quad \text{over} \quad U_{v_0}.$$

Recalling that the endomorphism L_i of $\overline{M}(D_i)$ is deduced from $\overline{\nabla}\left(x_i\frac{\partial}{\partial x_i}\right)$ over U_{v_0} by reduction modulo (x_i) , we have, by definition of P_i ,

(7.7)
$$P_i\left(\overline{\nabla}\left(x_i\frac{\partial}{\partial x_i}\right)\right)(\overline{M}) \subset x_i\overline{M} \quad \text{over} \quad U_{\nu_0}$$

Combining this with the commutation formula

(7.8)
$$P_i\left(\overline{\nabla}\left(x_i\frac{\partial}{\partial x_i}\right) - j\right) \circ x_i^j = x_i^j P_i\left(\overline{\nabla}\left(x_i\frac{\partial}{\partial x^i}\right)\right)$$

the desired formula (7.6) (and hence the theorem) follows by induction on a_i . QED.

REFERENCES

- P. DELIGNE. Équations différentielles à points singuliers réguliers, Springer-Verlag, Lecture Notes in Mathematics (1970).
- [2] L. FUCHS. Zur Theorie der linearen Differentialgleichungen mit veränderlichen Koeffizienten, J. für reine und angewandte Mathematik, 66 (1866), pp. 121-160; 68 (1868), pp. 354-385.
- [3] P. GRIFFITHS. Monodromy of Homology and Periods of Integrals on Algebraic Manifolds, Notes available from Princeton University (1968).
- [4] —. Periods of Integrals on Algebraic Manifolds; summary of Main Results and Discussion of Open Problems, B. A. M. S., 75, 2 (1970), pp. 228-296.
- [5] H. HIRONAKA. Resolution of Singularities of an Algebraic Variety over a field of characteristic zero, I, II, Ann. of Math., 79 (1964), pp. 109-326.
- [6] A. LANDMAN. On the Picard-Lefschetz transformation, Ph. D. Berkeley thesis (1966).
- [7] J. MANIN. Moduli Fuchsiani, Annali Scuola Norm. Sup. Pisa, Ser. III, 19 (1965), pp. 113-126.
- [8] T. ODA and N. KATZ. On the differentiation of De Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ., 8, 2 (1968), pp. 199-213.

Princeton University Department of Mathematics, Fine Hall Princeton, New Jersey 08540 (U. S. A.)