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Introduction

Consider an abelian variety A over a number field K. While it is a deep and
non-effective theorem that the group A(K) of all K-rational points on A4 is
finitely generated, it is an elementary and effective fact that the torsion subgroup
Tors A(K) is finite, and that its order remains uniformly bounded as we replace
A by any A" which is K-isogenous to A. One shows that for any prime p of K at
which 4 has good reduction and whose absolute ramification e, satisfies
e, <p—1, the group Tors A(K) maps isomorphically, by “reduction mod p”, to a
subgroup of the finite group of all IF,-rational points on Amodp (cf the
appendix). Thus if we denote by N(p) the number of IF -rational points on
A mod p, we have the divisibility estimate

# Tors A(K) divides N (p)

for any p as above. Because 4 and any K-isogenous 4" have the same primes of
good reduction, and the same N(p)’s, this last divisibility remains valid if we
replace A by any K-isogenous A4'.

Serge Lang asked if all divisibilities of almost all the N(p) arise in this way:
Problem 1. Let A be an abelian variety over a number field K, and let m =2 be an
integer. Suppose that the congruence

N(p)=0mod m

0020-9910/81/0062/0481/$04.40
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holds for a set of primes p of K of (Dirichlet) density one. Does there exist a K-
isogenous A" for which
# Tors A'(K)=0mod m?

By factoring an isogeny into isogenies of relatively prime prime-power-
degree, one sees easily that this problem is equivalent to

Problem I (bis). Let A be an abelian variety over a number field K, and let I",
n1, be a power of a prime number l. Suppose that

N(p)=0mod["

for a set of p of density one. Does there exist an A" over K which is K-isogenous
to A by an l-power-degree isogeny, for which

# Tors A'(K)=0mod["?

In terms of the Tate module T;(4)=Hom (Q,/Z,, A(K)), and the correspond-
ing [-adic representation

p: Gal (K/K) — Auty,(Ty(4),

we can reformulate this problem. Recall that p, is unramified at every prime p of
K of residue characteristic different from [ at which 4 has good reduction, and
that for each such p, the arithmetic Frobenius F, conjugacy class acting via p,
satisfies

det(1—p,(F,))=N(p).

If we combine the Chebataroff density theorem with the dictionary between
A"’s which are l-power-isogenous to A over K and Gal(K/K)-stable lattices in
T(A)® Q, we see that Problem I (bis) is equivalent to

Problem I (ter). Let A be an abelian variety over a number field K, | a prime
number, and p,: Gal (K/K)— Aut(T,(A4)) its l-adic representation. Suppose that for
an integer n=1, we have

det(1—p,(y))=0mod " for all yeGal(K/K).

Do there exist Gal(K/K)-stable lattices ¥ = %' in T)(4) ® Q, such that the quotient
L/ L' has order I, and such that Gal(K/K) acts trivially on /%' ? (For then &'
will be T,(A’) for some A" which is K-isogenous to A, and ¥ [’ will be a group of
I" K-rational torsion points on A'.)

In the special case n=1, this amounts to asking for a Gal(K/K)-stable &’
whose reduction modulo I, ¥’ ®IF,, contains the trivial representation. By the
Brauer-Nesbitt theorem ([1], p. 215), the semisimplification of ¥’ ®IF, as an IF-
representation of Gal(K/K) is independent of the particular choice of %', so in
particular the semisimplification of T,(4) ®IF, contains the trivial representation.
Conversely, if the trivial representation occurs in the semisimplification of
T,®IF,, then there exists a Gal(K/K)-stable lattice £’ such that %' ®IF,
contains the trivial representation. (Take a Jordan-Holder series for T;(4) ®IF,,
sa

’ T(A)=2%y>%,>...0Z,=IT/(A);
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if, for some i, the quotient £,/.%,, , is the trivial representation of Gal(K/K),

1
then (—[

n=1 case of Problem I (ter), i.e., the m =1 case of Problem I, is equivalent to

- ‘)®IF, contains the trivial representation %,/.%;, ,.) Therefore the

Problem I1. Let A be an abelian variety over a number field K, | a prime number,
and p;: Gal(K/K)— Aut(T,®IF)) the mod | representation on the K-valued points
of order [ on A. If for every yeGal(K/K) we have

det(1—p,(y)=0 in IF,,

is it true that the semisimplification of T,QIF, contains the trivial representation?

We will show that Problem I has an affirmative answer when 4 is an elliptic
curve, that Problem Il has an affirmative answer when A is two dimensional,
and that in every dimension =3 there are a plethora of situations for which
Problem II (and a fortiori Problem I) has a negative answer. We do not know
whether or not ProblemI has an affirmative solution for two-dimensional
abelian varieties.

Note Added in Proof

In an letter (August, 1980) to the author, Serre has shown that Problem I (bis) can have a negative
solution for two-dimensional abelian varieties and the prime /=2. The situation for odd / remains
unclear.

This paper owes its existence to Serge Lang, who formulated the problems we deal with, and to
Barry Mazur, who had the basic insight that they “just™ amounted to “problems in group theory™. 1
also owe to Mazur countless hours of discussion in which we jointly worked out a prototype of
Theorem 1. The proof of Theorem 1 presented here was profoundly influenced by Swinnerton-Dyer’s
paper [5]. It also benefitted from clarifying discussions with Ribet. The “counter-examples” section
owes it present from to Deligne. After this paper was written, Serre kindly ponted out to me that
Problem I1 for elliptic curves is an exercise in his book [4], cf. p.1-2, exc. 1 and 2 and p. IV-6, exc.

My thanks to all of them.

The Case of Elliptic Curves; Reduction to ‘Group Theory”

In this section, we will prove that Problem I always has an affirmative answer
for elliptic curves. We will reat the problem in the form I(ter). Taking for V the
2-dimensional Q;-vector space T(A)®Q,, and for G<Aute (V) the image
p(Gal(K/K)) of the l-adic representation, it suffices to prove the following

Theorem 1. Let | be a prime number, V a two-dimensional Q-vector space,
G < Autg, (V) a compact subgroup, and nz1 an integer.
Suppose that we have the congruence
det(1 —g)=0mod /"
Sor every geG.

Then there exist G-stable lattices ¥ > ¥’ such that the quotient /¥’ has
order 1", and such that G operates trivially on L/ &', or equivalently (elementary
divisors!) there exists a Qbasis v, v, of V and integers, a,b=0, a+b=n, such
that the matrices of the elements of G, expressed in this basis, all lie in the
subgroup of GL(2,Z,) consisting of all matrices of the form

(1+I“Z, 1z, )
Iz, 1+0Z,)
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with the convention that when a or b is zero, we interpret “1+1°Z,” to mean the
group Z[ of all l-adic units. [ Given such a basis v, v,, we take ¥ =7, v, +Z,v,,
=L 1", +Z, 1'v,.]

We will prove the theorem by induction on the integer n.
Lemma 1. The theorem is true for n=1.

Proof. Because G is compact, it stabilizes some lattice & < V. The universal
identity for 2 x 2 matrices

det(1—g)=1—tr(g)+det(g)
together with the hypothesis
det(l1—g)=0mod! for gegG,
shows that the IF-representations of G
L ®IF, and 1+det(¥ ®IF)

have the same trace; as they visibly have the same determinant, their character-
istic polynomials coincide. By the Brauer-Nesbitt theorem, their semisimplifi-
cations are isomorphic. Therefore if we take a Jordan-Holder series for ¥ ®IF,

LY 2%,

then either £/¥, or &,/I¥ has trivial G-action. The required ¥ >%" are
provided either by >, or by ¥, ol%.

(Key) Lemma 2. Let V be a two dimensional Q-space, G < Auty, (V) a subgroup,
G, <G a normal subgroup of G, and n=2 an integer. Suppose that

(1) There exist G-stable lattices ¥ L’ such that £/’ has order 1, and such
that G, operates trivially on £ /&'

(2) For every g, €G,, we have det(g,)=1mod [

(3) Every element g,€G, satisfies the congruences

det(1—g,)=0mod I".

Then there exist G-stable lattices "' > ¥ such that
(1) ‘g//:)ly/ng/ll.
(2) L7/ & has order either I" or I"* !
(3) G, acts trivially on L'/ £"".

Proof. We will first treat the case n=2, and then use an induction argument to
reach any n=3.

For n=2, we will see that the required ¥">%" is either provided by
Fol¥ oris provided by ¥’ o1&

In terms of a Z-basis {e,e,} of &£ such that {le,,e,} is a Z,-basis of &,
hypotheses (1) and (2) guarantee that every element of G, has a matrix of the
form

(1 +1X 1z

ith .
y 1+lT) with X,Y,Z, TeZ,
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The two maps

—
(;1 — R

defined by “Y mod[” and “Z mod [” are easily verified to be group homomor-
phisms. But the hypothesis (3), namely

det(1—g,)=0mod I*
means precisely that
YZ=0mod|,

whence G, is the union of the kernels of the two homomorphisms “Y mod[”,
“Z mod!”. Since a group is never the union of two proper subgroups, one of
these homomorphisms must vanish. If it be “Ymod [”, then ¥ >1.% “works” as
an "o, if it be “Z mod [”, then ¥ o1.¥" “works”. Recall that ¥ and ¢,
hence also |.#, | ¥ are already G-stable.

Let us now prove the theorem, by induction, for an integer n+1>=3.
Inductively, we may suppose that there exist G-stable lattices ¥, > .%, such that

(1) o1& 2%,

(2) &Z,/%. has order [" or I"*!,

(3) G, acts trivially on &,/%.
If #,/%, has order ["*!, there is nothing to prove: &, >.%, “works” for n+1!
Therefore we will henceforth assume that #,/%, has order I".

By (3), for each element g, €G,, the element X =g, — 1 in Endg, (V) carries &,
to &,, and so induces an IF-linear map %, ®IF,— ¥, ®IF,. This construction
defines a map

G,—~ Homg (¥,Q®IF,, &, ®IF).
g, =1+X—"“Xmod!”

This map is a group homomorphism [for if X and X' are two elements of
End (V) which both carry &£, to &, then their composition X'o X maps &, to
Z,
X X’
Y —— L cl¥,—— 1P,

and so X'X induces zero in Hom (¥, ®IF,, &, QIF))].
The hypothesis

det(1 —g,;)=0mod ["*!
means precisely that, writing g, =1+ X, we have
det X =0mod ["*!

This in turn means that the index of X(%,) in &, is either infinite, or is finite
and divisible by ["*'. In either case, the inclusions

Lo Lo X (L)
N ———

index ("
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show that
Z,2X(Z,).

Therefore the induced element “X mod [” in Homy, (£, ®IF,, Z, ®IF)) is not an
isomorphism.

Therefore the image S of G, in Homy (¥,®IF, %, ®IF), is an additive
subgroup which consists entirely of non-isomorphisms. We apply to it the
following lemma, whose proof is left to the reader.

Auxiliary Lemma. Let k be a field, W and W' two-dimensional k-vector spaces,
and ScHom (W, W') an additive subgroup consisting entirely of non-isomor-
phisms. Then one of the following three possibilities holds:

(a) §=0.

(b) The intersection, over all seS, of Ker(s) is a line LcW.

(c) The sum, over all seS, of Image(s) is a line LcW'.

We can now conclude the proof of the Key Lemma. In case (a), i.e. S=0, we
have G, acting trivially on %,/l.%,, so in this case ¥, >[%, “works” as the
required £ > ¥"". In case (b), we obtain a unique line L <., ®IF, which is
annihilated by every seS. By its unicity, this line must be stable by the entire

group G. Therefore
L+1¥% ol

“works” as the required ¥ >.%"". In case (c), the unique line L < &, ®IF, which
contains the image of all seS must be G-stable. Therefore

L oL+,
“works” in this case. Q.E.D.

It remains to deduce Theorem 1 for general n from Lemmas 1 and 2. The
case n=1 of the theorem is precisely Lemma 1. It remains to prove Theorem 1
for n=2. Let G, denote the subgroup of G consisting of all geG with
det(g)=1modl. Applying the case n=1 of the theorem to G, we produce an
&£ %" which together with G, =G serves as initial data for applying Lemma 2;
this in turn produces G-stable lattices

Z” ) lgr/ Dgwr

with £/ %" of order I" or I"*!, such that G, acts trivially on &¥"/%"".
If G, =G, there is nothing more to prove. If not, let I' <IF* denote the image
of G under the composite homomorphism

Gt 7 — T
Thus we have a tautological short exact sequence
0-G,—-G—->T—-0,

which we can non-canonically split, as follows.
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The subgroup I <IF* is necessarily cyclic (because IF* is cyclic), and non-
trivial (lest G, =G). Let yeI' cIF,* be a generator of I', and denote by (eu,_,(Z,)
the Teichmuller representative of yelF,*. Let geG be any element such that

det(g)=ymod L.
The hypothesis
det(l1 —g)=0mod ["
Le.
trace(g)=1+det(g)mod ",

shows that the characteristic polynomial det(T-1—g) is congruent mod! to
(T—1)(T—det(g))=(T—1)(T—1y). Because y£ 1 mod I/, Hensel’s lemma shows that
g has eigenvalues in Z;* which are congruent mod!/ to 1 and { respectively.
Because G is compact, the limit

dfn

—=h

lim g"™
N- o
(which obviously exists in Aut(}), because g has eigenvalues in Z*) actually lies
in G, and has eigenvalues 1 and & The map y+ h then defines a splitting of the
exact sequence he s
0-G,>G¥—>T—->0

By the Cayley-Hamilton theorem, h is diagonizable on any h-stable lattice in
V, for the orthogonal projections onto its two eigenspaces lie in Z,[h]:

. h=¢ . h—1
Proj,=——, Proj.= :
0j ¢ 10j; T

Applying these to ¥, ¥, we obtain
&" = Proj, (£ @ Projg (&)
v v )
L Proj (£")®Proj, (£").

Let {v;,v,} be a Z-basis of £ adapted to this decomposition. If we denote
by I, I’ the respective orders of the quotients

Proj, (£")/Proj, (L"),  Proj (£")/Proj. (£").

then {l"vl,l”ug} is a Z-basis of £, and both a and b are =1, with a+b=n.
Because G acts trivially on £"/&"", every element g,€G, has a matrix of the
form
(XY
& ( 1z 1+l"T>

o ¢

while h has the matrix
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If we apply the hypothesis
det(l—g)=0mod " for all geG
to an element of the form g=g, h, we find
FXA-{A+PT)=0mod I"
Because b>1 and (%1 mod [, this shows that
X =0mod["

for every element g, €G,. Therefore every g, €G, has matrix, with respect to the
base {v,, v,}, of the form

(1+IW 1y ) WY.ZTeZ
Pz 1+0T

In the base {v,, l”vg} of V, every g,€G, has matrix of the form
(1 +I"w 1Pty )
z 1+0°T)”

while h remains diagonal:

o

Because G is generated by G, and h, and a+b=n, we find that every element of
G has a matrix, w.r.t. the base {v,, l”vc}‘, of the required form

1+I"w 1I"Y
( +Z T) with W, Y, ZeZ,, TeZ;.

[Intrinsically, the lattices
Proj, (&) + Proj (&)= 1" Proj,(£") + Proj,(£"")
“work” as the ¥ %’ required by theorem 1]. Q.E.D.
As explained above, theorem 1 implies

Theorem 2. Let E be an elliptic curve over number field K, and m=2 an integer.
For each prime p of K at which E has good reduction let N (p) denote the number
of IF -rational points on E mod p. If we have

N(p)=0modm

for a set of primes p of density one in K, then there exists a K-isogenous elliptic
curve E' over K for which

# (Tors E'(K))=0 mod m.
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Remark. If the field K contains no non-trivial m’th root of unity e.g. if K =@ and
m is odd), an elementary consideration of the e, pairing shows that any subgroup
of E'(K) of order m is necessarily cyclic, i.e. E' has a rational point of exact order
m. {For m a prime power [I", the condition “K contains no non-trivial /-power
root of unity” corresponds to the case “G, +G” in the final part of the proof of
theorem 1.}

To end this section, we record a “numerical” reformulation of Theorem 2.

Theorem 2(bis). Let E be an elliptic curve over a number field K. Let X be any set
of primes of K of density one which consists entirely of primes p at which E has
good reduction and whose absolute ramification indices e, satisfy e,<p—1 (e.g.
=all odd unramified primes of good reduction for E). Then we have

Sup {# Tors E'(K)} =g.c.d. {N(p)}.
Ey > E pe’X

K-isog

A Mild Generalization

I am indebted to Serge Lang for remarking that the proof of Theorem 1 applies,
mutatis mutandis, to prove the following analogous result for GL (2) of any local
field with finite residue field.

Theorem 1 (bis). Let K be a field which is complete under a discrete valuation, and
whose residue field is finite. Let Oy denote the ring of integers in K, and let n
denote a uniformizing parameter. Let V be a two-dimensional K-vector space,
G < Autg (V) a compact subgroup, and n=1 an integer. Suppose that we have the
congruence

det(1 —g)=0mod ="
Sor every geG.
Then there exist a K-basis v,,v, of V, and integers a,b=0, a+b=n, with the
property that the matrices of the elements of G, expressed in this basis, all lie in the
subgroup of GL (2, ;) consisting of all matrices of the form

(1+n“@K 70, )
0 1+7n°0)

with the convention that when a or b is zero, we interpret 1+n°0y to mean the
group (Ox)* of all units in Ox.

The Case of Two Dimensional Abelian Varieties
In this section, we will show that Problem II has an affirmative answer for two-

dimensional abelian varieties. Let us fix a prime number I, and consider a two-
dimensional abelian variety A over a number field K.
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We begin by analysing the [-adic homology ring of 4. Recall that the Tate
module T;(A) is a free Z,-module of rank four on which Gal(K/K) acts
continuously. We denote by V' the corresponding four-dimensional @,-vector-

space
V= TI(A)C? Q..

We denote by Z,(1) the free Z,-module of rank one
Zl(l)=1(in2ﬂ,n(1_(—),
and by Z,(i), for i€Z, its ’'th tensor power. For any Z,-module W on which

Gal (K/K) acts, we write W(i) for W@Z ().

Choose a K-rational po]arlzatlon of A, attached to a very ample symmetric
K-rational divisor D < A4 (since such D’s are known to exist over the algebraic
closure of K, hence over some finite galois extension of K, we have only to take
the union of the distinct Gal(K/K)-conjugates of such a D defined over K to
produce one over K). As is well-known (cf. [2]), such a polarization gives rise to
an alternating, Q,-linear Gal (K/K)-equivariant pairing

< ’ >:VXV—_)QI(1)9
which is non-degenerate in the sense that it defines an isomorphism
V—=Homg, (V, Q,(1))=V"(1).

Because V is four-dimensional, we may interpret the alternating form ¢ , )
as being a Gal(K/K)-invariant element ¢ in

A2(V)® Q1) ® det (V)™
which gives rise to ( , ) by the formula
0y,0,0=0; AUy AL

The non-degeneracy of the pairing ¢ , > means that {A¢ is a non-zero
Gal (K/K)-invariant element in the one-dimensional space

AAV)R Q2 @det (V)" 2=Q,2) @det(V)™', ie, Eaé “is” a Gal(K/K)-
isomorphism
det (V)—> @Q,(2).
By this identification, ¢ becomes a Gal(K/K)-invariant element ¢ in
A2 (V) ® Q,(—1).
Because V is four-dimensional, exterior multiplication
Vx A3(V)— A*(V)=det(V)~Q,(2)

defines a Q,-Gal-isomorphism

A3(V)—=> Hom (¥, det (V)= V¥(2)~ V(1),
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whose inverse is “multiplication by ¢”,
A V()= A3(V).
Again because V is four-dimensional, exterior multiplication
A2 (V) x A2 (V)= A*(V)=det (V)= Q,(2)

provides a Q,-Gal-isomorphism of A4%(V)® @Q,(—1) with its own dual:

(A (= 1) > (A2 (V) (= 1))"
Let us denote by Prim < A?(V) the subspace (“primitive homology”) defined by

Prim={ie A*(V)|in =0}

Because ¢ A¢ is non-zero, we have an orthogonal direct-sum @Q,-Gal-decom-
position

A2(V)(=1) < @Q, @ Prim(—1)

via the map (&, inclusion).
In summary, then, we have the following @,-Gal-isomorphisms
V—= V(1)
A V)— V().
AV)(=1)—>Q,@ Prim(—1).
Prim (— 1)-—>(Pr1m -
det(V)—— Q,(2
In order to “reduce mod ", we may use the Gal-stable lattices T,(A)< V and

(Prim) (A% T;(4)) = Prim. Let us denote by W and P respectively their re-
ductions mod [:

W=T,(A) ®TIF,
=((Prim) " (1% T;(A))) ® IF,.
Let us denote by =" the equivalence relation “having isomorphic semi-simplifi-

cations as IF,[Gal]-modules”. By the Brauer-Nesbitt theorem, we obtain the
following =" equivalences:

W= wy(1)
AXW) X W(l)
AW)N-DFEFESP(-1)
P(—=1) X P(—1)
det (W) X'TF,(2)
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Therefore an affirmative solution to Problem I1 for two-dimensional abelian
varieties results from the following theorem, applied to G=Gal(K/K), k=IF,,
the mod [ cyclotomic character, and W= T(4) QIF,.

Theorem 3. Let G be a group, k a perfect field, y: G— k* a character of G, and W
a four-dimensional k-representation of G. Suppose that
WEWY@
BWEWEy
A*(W) ® y~* contains the trivial representation 1 in its semisimplification
det(W)=y?
If k has characteristic two, suppose further that y is trivial. In order that the
semisimplification of W contain the trivial representation, it is (necessary and)

sufficient that we have
det(1—g|W)=0 for all geG.

Proof. The necessity is obvious. For sufficiency, we use the universal identity
det(1 —g|W)=X(— 1) trace(g| A" (W))
to interpret the vanishing of det (1 —g| W) as saying the representations
1+A2(W)+det (W), W+A3(W)

have the same trace. As these are both eight-dimensional representations it
follows that they have the same characteristic polynomials, provided the field k
has characteristic +2,3,5,7 (because the clementary symmetric functions in
eight variables are universal polynomials, with coefficients in Z[1/8!], in the
Newton symmetric functions).

Suppose first that k is of characteristic =+2,3,5,7. Then by the Brauer-
Nesbitt theorem we will have

1+ A2 (W)+det (W) < W+ A3 (W).

Tensoring this equivalence with y~', we obtain

T AW) @ Hdet (W)@ R WR T+ A W)@

in view of the hypotheses made on W, we may rewrite this

I AWy T rdet (W)@ R WY W

By hypothesis, the trivial representation 1 occurs in the semisimplification of
A*(W)® x~'. Therefore 1 must occur in the semisimplification of either W or
W, and therefore (autoduality of 1!) it occurs in both.

To deal with the “exceptional” cases, when k has characteristic 2,3,5 or 7,
we must resort to more drastic remedies. Let us begin by remarking that we may
assume the field k to be algebraically closed (for if we denote by W** the k[G]-



Galois Propertics of Torsion Points on Abelian Varietics 493

semisimplification of W, then (W**)X)k is still semisimple (because k is perfect),
k

and therefore it is equal to (W ®k)>, the k[G]-semisimplification of W ®k.
Because the action of G on W™ is k-linear, the subspace (W**)" of G-invariants
in W** is defined by k-linear equations. Therefore by linear algebra we have

(W\\)G@ I: _~ (Ws.x. @ E)(:’ — (( W@K)\"')G;

in particular I occurs in W** exactly as often as 1 occurs in (W) k)*™).

k
The point of working over an algebraically closed field k is that the traces of
the various inequivalent irreducible finite dimensional k-representations of any
group G are known ([1], p. 213) to be linearly independent over k. How do we
exploit this? Of course, any finite dimensional k-representation M of G can
written uniquely, up to semisimplification, in the form

M= M +...+nM,
with irreducible k-representations M, and integers n,> 1. If k has characteristic
[>0, write each n; as

m=a;+lr;, 0=aq,21-1;
the we have

M= a4, M+1(ZrM).
The k-linear independence of the traces of the M, means that the representation
Za;M,
is the unique semisimple representation with the following two properties:
1) its irreducible components M; have multiplicities 0<a; <[ — 1.

2) its trace is equal to the trace of M.

Therefore if M and M’ are two representations with the same trace, the above
unicity shows that there exist unique semisimple representations 4, B, C such
that

M= A+IB

M =X A4+IC

the irreducible components of 4 all occur with multiplicity </ —1.

We now apply this theory to the situation at hand. As explained above, our
hypotheses on W imply that the two representations

WH+WY, 7'+ 77 '@A*W 4y
have the same trace. Therefore there exist unique semisimple 4, B, C, such that
W+W'< A+I[B

T @AWy X A+IC

the irreducible components of 4 all occur with multiplicity </ — 1.
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The representation W+ WV is visibly self-dual, hence by unicity we have
A>~AY, Bx~B"

The representation ¥~ '+y%~ ' ® A?W +y is also self-dual - this is clear for y
+x%~', and exterior product pairs ¥y !® AW perfectly with itself into
¥~ 2 ®det(W)~1. So again by unicity we find

A~A", Cx=CY
Finally we note that, equating dimensions, we have
8=dim(A)+!dim (B)=dim (A)+!/dim(C).
dim (B)=dim(C)

We may suppose that neither 4 nor B contains the trivial representation 1
(for W+W" <" A+1B). As 1 lies in the semisimplification of y~'® A?W by
hypothesis, this forces C to contain 1. For /=5 or [=7, dimension con-
siderations force C to be at most one-dimensional, while for /=3 C is at most
two-dimensional. Therefore for [=3,5,7 we must examine the cases

C=1 for I=3,5"7
C=1+D, D1-dim'l for [=3.

(The case [=2 will require a completely separate discussion.)
We begin with the case C=1, [=3,5 or 7. Then B is a character (dim(B)
=dim(C)) of square 1 (B=B"). From the equation

W+WY=A+IB, 123

we infer that either W or WY must contain at least 2B’s, and as B=B", both W
and W contain at least 2 B’s. Thereofre we may write

W< 2B+E
for some two-dimensional E. Computing determinants, we find
y?=det(W)=B?-det E=det E.

Computing A>W, we find

A*WX B +detE+2B®E

X 1+4*+2BQ®E,
whence we find

y Tl QAP W2 42y +2BQE.
But

Yy @ AP WA A+
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Therefore A+11 is twice some representation, and in particular A +I1 must
contain 1 an even number of times. As [ is odd (3,5, or 7), we we deduce that 4
contains 1. Contradiction.

To conclude the discussion of [=3, 5 or 7, we must treat the case [=3, C=1+D
with D a character. Then B is two-dimensional (dim B)=dim(C)), and B=B".
Consider our equation

W+W¥=A+3B, A=A", B=B".

Suppose first that B is irreducible. Then either W or WY contains at least two
Bs, and as B=B" both W and W" do. Therefore WX 2B <" W", hence also
A=B. From the hypothesis W< W¥ ® y we infer B=By, so all in all

W<2B, B=B'=Bj.

Taking determinants of B=BY=By, we find
(detB??=1, »2=1.
Computing A% W, we find
A* WX 2detB+B® B
<2 det B+det B+Sym?(B).

<3 det B+Sym?(B).
From the equation

P QAP Wy K A+3C=A+31+3D,

and the equality A=B, B supposed irreducible, we infer that 4(=B) must be
contained in y ' ® A2 W, i.e. A>W contains By. As B= By, we find B contained
in A2W % 3det B+Sym?(B). Again the irreducibility of B forces B to be
contained in Sym?(B), up to semisimplification. Therefore

Sym? (B) < B +?
for some character ? Comparing determinants, we find ?=(det B)’>=1 i..
Sym?(B) = B +1.

As the following sub-lemma shows, this last equation, in characteristic three, is
incompatible with the supposed irreducibility of B (though in any other charac-
teristic, the standard two-dimensional irreducible representation of the sym-
metric group on three letters S satisfies precisely this equation!).

Sub-lemma. Over a perfect field of characteristic three, any two-dimensional
representation B of any group G which satisfies

Sym?(B) = B+1
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is the form
B*¥1+detB.

Proof. Let {a,b} be the two eigenvalues of the action on B of an element geG.
By hypothesis, we have
{a’,b% ab}={a,b,1}.

Therefore (ab)®*=ab, i.e. ab= +1. If ab=1, then
{a®, b} ={a,b},

and then either a?=a, b>=b (whence a=1, b=1) or a®>=b, b>=a (whence a*=a,
b*=b, whence a*=b3>=1, whence a=b=1 because we're in characteristic three).

Ifab=—1, th
. o {a%,b% —1}={a,b,1}.
Seeking which of {a,b,1} could be — 1, we find either a= —1 or b= —1, and ab

=—1,s0 {a,b}={1, — 1} ={1, ab}. Therefore the characteristic polynomials of B
and of 1+det B agree. Q.E.D.

We now return to the remaining case in characteristic three, B two-dimen-
sional reducible. Because B = BY, we must have

B+ E+EY, E one-dimensional.
From the equation
W+WY=A+3B=A+3E+3EY

we see that the two-dimensional A must be reducible (for which of W or WY
would possess it?); as A= A" we have

A=F+F¥ F one-dimensional.
Thus
W+ WY=3E+3EY+F+F".

By symmetry, either W or WY contains at least two E’s; interchanging E and E¥
if necessary, we may suppose W contains at least two E’s.

If W contains exactly two E’s, then WY contains exactly two E'’s, leaving an
EY for W. Then WX 2E+EY+7, WYX 2EY+E+?". Interchanging F and F" if
necessary, we find

W= 2E+E+F
WY 2EY4+ E+FY.

Computing determinants, we find
x> =det W=EF.

From the hypothesis W= W"* ® y, we infer that either we have
E=Ey, ie E’=y,
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or that we have
F=EY and E=Ejy.

In the first case, we have
F=y*E~-'=E>

Computing A% W, we find

A? W21+ 2EF+E*+E'F

2042242y,
whence

P T T @AW A 3 421 4 3y

Therefore by unicity in the A +(C representation, we find 4 =21, contradiction.
In the second case, we have

W< 2E+2E"
z=1
Therefore we readily compute
P AT QAP W A X601+ E? +(E?),
and hence we have
A+3C<E*+(E*) +61.

By unicity of the A+1C representation, we have

AR E? +(E?).
But A=F+F*, and by hypothesis F=EY, so that

A=E+EY=E?+(E?)".

Therefore we have either E=E? where E=1, or we have E=(E?)", whence E3
=1 and hence (/=3) also E=1. So once again 4 =21, contradiction.

The final possibility is that W contains at least 3E’s. Then W" contains at
least 3E"’s, wo we must have W=3E+? WY=3E"; again interchanging F
and FY if necessary, we get

WX3E+F
WYX 3EV+ FY.
From the hypothesis WEW'R ¥, we deduce
E=E'y, F=F'y, ir. E*=F?=y.
Computing determinants, we find

y2=det W=E3F =E>(EF)=yEF,
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whence
EF=F*=E?’=y, and E=F.
Therefore
W=4E,
whence
APW=6E*=6y.
Then

T @AW= 461+
By unicity of the A+1C representation, we have

A=y"'+y=F+F,
ie F=yor F=y~!. But F>=y, so either y>=y or y~?=y. In the first case y=1,
and in the second case y*=1, whence y =1 because we're in characteristic three.
Therefore y=1, whence A=y +y~'=21, again a contradiction. This finishes the
case |=3.
We now turns to the case /=2, in which case we have, by hypothesis, that y
is trivial, i.e.
WX wr R AW,
A?W contains 1 in its semisimplification
det(W)=1.
That the two representations in characteristic two
QW=W+WY, 3 4y '@ AW+y=21+A*W

have the same trace tells us precisely that 4% W has trace zero; therefore AW is,
up to semisimplification, twice some other representation. Because A?W con-
tains 1 in its semisimplification, we must have

A2 WX 2(B+1)
for some two-dimensional representation B. Computing determinants, we find
1=det (W)3=det(A> W)=(det B)>, hence det B=1

because we are in characteristic two.
Now we make use of the following universal identity on four-dimensional

representations W,
A2 (A2 W)+ det (W) < W A3(W),

whose proof, left to the reader, consists in verifying that both sides have the
same characteristic polynomial. With our hypothesis, this identity becomes

A2RB+2D)+ 1 WRW.
For any representation W, we have the universal identity

W ® W Sym?(W)+ A2(W).
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In characteristic two, if we denote by W the representations obtained from W
by applying the absolute Frobenius, squaring, to matrix coefficients, we have the
identity

Sym? (W) W3+ A*W,

valid for any representation W in characteristic two. Combining all this, we find

, A*QRB+2)+ 1 W2 242 W

ie.
A*QB+21)+1 = WP+ 4(B+1)

But we readily compute, for a two-dimensional representation B in characteris-
tic two,

A*2B+21) < A2(2B)+2B ® (21)+ A%(21)
<2det(B)+B®B+4B+1
<21+ B®+2det(B)+4B+1
X51+B?+4B.

Comparing this with the previous formula, we find
w2 1‘5'3(2)_1_2]1,
whence
W<B+21.

In particular, the semisimplification of W contains 1 (twice!), as
required. Q.E.D.

As explained above, Theorem 3 implies

Theorem 4. Let A be a two-dimensional abelian variety over a number field K. Let
Z be any set of primes of K of density one which consists entirely of primes p at
which A has good reduction, and whose absolute ramefication indices e, satisfy
e,<p—1. For each pe X, let N(p) denote the numbers of IF -rational points on A
mod p. Then the two integers

Sup {#Tors 4'(K)}, gcd. {N(p)}
Kivog peZ

are divisible by exactly the same primes.

Counter-Examples in Dimension =3

Fix an integer d=3, and an odd integer N=3. We will construct a d-dimen-
sional abelian variety 4 over a number field K with the following properties:
For almost all primes p of K, the number N(p) of IF,-rational points on
A mod p satisfies

N(p)=0 mod N?;
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For any abelian variety A’ which is K-isogenous to A, the order of
Tors A'(K) is prime to N.

The construction is based on the observation that the subgroup H of GL (3)

g 0 0
H=:10 ¢ O0|]leg,;=x1e,=%1,e5==41,¢¢6,65=1
0 0 &4

has the following two properties

For every element he H, we have det(1 —h)=0, i.e. at least one of ¢, ¢,, ¢
is equal to 1.

Over any field of odd characteristic, the given 3-dimensional representation
of H is semisimple, and it does not contain the trivial representation; i.e. the
¢;, viewed as characters of H, are all nontrivial, even when reduced modulo
an odd prime.

Now pick three abelian varieties 4,,4,, A, the sum of whose dimensions is
d, all defined over some number field K,, and take this number field K, large
enough that all the N-division points of 4,,4,, and 4, are K,-rational.

The group H acts as a group of automorphisms of the product 4, x 4, x 4,
via

£
€, ag,a,,a3)—(6,a,,€6,a,,65a3).
€5

Pick three distinct odd primes p,,p,,p; which are unramified in K,. The
Galois group of the extension

L = KO(I/Ev l/ga VE)

dfn
K Ko(VpiP2p3)

is isomorphic to H, via
€
Gal(L/K)30<h(0)= €,

o(V/ p) =2/ p.

Because H acts as automorphisms of 4, x 4, x A5, it makes sense first to extend
scalars and view A, x 4, x A; as an abelian variety over K, and then to twist it
by the above homomorphism

&3

Gal(L/K)— H Autg (4, x A, x A3).

The resulting abelian variety will be the required 4/K.



Galois Properties of Torsion Points on Abelian Varieties 501

To see that this 4/K “works”, recall that the underlying abelian group A(K)
of K-valued points of 4 “is” the group A4,(K)x A4,(K)x 4,(K), but that the
action of Gal(K/K) on A(K) becomes, via this identification, the action on
A, (K)x A,(K) x A,(K) defined by

o:(a,,a,,as)— h(c)(a(a,),c(a,),o(as)

I
(ey0(ay),e,0(a,), e50(as3)).

Because all the N-division points on A4, x 4, x A, were assumed K,-rational
and therefore K-rational, the representation of Gal(K/K) on A(K)y is simply

D A(K)y ®¢:.

By construction, for any o€ Gal(K/K), at least one of the ¢;(c) has the value 1,
and therefore one of the subgroups 4;(K)y < A(K)y is fixed by ¢. Taking o to be
a Frobenius element F, for a prime p of K which is prime to 2p, p,p; N at which
A has good reduction, and remembering that the order of 4,(K)y is N24m“) g0
certainly divisible by N2 we find N(p)=0mod N? for such a p.

But for any prime [ dividing N, the above description shows that the mod [
representation of Gal(K/K) on A(K),~T,(A)®IF is the direct sum of the
characters ¢; mod [ with multiplicities 2 dim (4,). Because the ¢; mod [ are each
non-trivial, the semisimplification of T;(A) ®IF (i.e. T)(4)®IF, itself!) does not
contain the trivial representation. As we have already pointed out in the
introduction, this means that for any K-isogenous abelian variety A4', the order
of Tors A’(K) is prime to I. Therefore the order of Tors A'(K) is prime to N for
any K-isogenous A4'.

Appendix : Injectivity of Reduction mod p on Torsion Points

This appendix consists entirely of well-known material; it is included only for
the sake of completeness.

Let K be a number field with integer ring ¢/, and let 4/K be an abelian
variety, with Neron model A/¢. By a fundamental property of Neron models,
we have an isomorphism of groups

A(O)—— A(K).

This isomorphism allows us to define, for every prime p of K, a “reduction
mod p” homomorphism

A(K)— A(F)
simply by requiring the commutativity of the diagram

A(K)—— A(IF,)

i

A(0)
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Lemma. If e, <p—1, then “reduction mod p” defines an injective map
Tors A(K)— A(IF,).

We will deduce this from a stronger local statement. Denote by K, and 0,

the p-adic completions of K and ¢. Because A®CO is the Neron model of
A®Kp, we have an isomorphism

A(0,)— A(K,),
and just as above this isomorphism allows us to define a “reduction modp”
homomorphism
A(K,)—A(F,)

We have a commutative diagram

N N
A )—~»A(Kp)/

P
Thus our lemma follows from

Lemma’. If e, <p—1, then “reduction mod p*“ defines an injective map

Tors A(K,) = A (IF).
Proof. We must show that the kernel of the map

A(0,)— A(IF,)

is torsion-free. This kernel is the group A((Op) of ¢,-valued points of the formal
group A of A over 0. Because A is a smooth commutatlve O-group. A is a
commutative formal Lie group over O. Because ¢, <p— 1, the maximal ideal p0,
of 0, has topologically mlpotent divided powers, and therefore the logarlthm
and exponentlal of A/O define inverse isomorphism of groups

A(0,) == Lie(A/0) CICINS

exp

In particular, the group A(0,) is torsion-free. Q.E.D.

References

1. Curtis, C., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. New
York: Interscience 1962

2. Mumford, D.: Abelian Varieties. Bombay: Oxford University Press 1970

3. Serre, J-P., Tate, J.T.: Good Reduction of Abelian Varieties. Annals Math 88, 492-517 (1968)

4. Serre, J-P.: Abelian [-adic Representations And Elliptic Curves. New York and Amsterdam: W.A.
Benjamin, Inc. 1968

5. Swinnerton-Dyer, H.P.F.: On l-adic representtions and congruences for coefficients of modular
forms (II). In: Modular Functions of One Variable V - Bonn 1976. Lecture Notes 601, pp. 63-91,
Berlin Heidelberg New York: Springer 1977

Received June 9, 1980



	Katz, Nicholas M.: Galois Properties of Torsion Points on Abelian Varieties.

