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Free Actions of Finite Groups on Varieties. 11

William Browder and Nicholas M. Katz
Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Introduction

Serre [6] showed that any finite group can be made to act freely on a suitable non-
singular complete intersection. Here we consider the conveise problem. Given a
projective variety X of dimension n together with a projective embedding X —P"*",
we show that if G is a finite group which acts freely on X and which suitably
respects the given projective embedding, then (1) its order must divide the square
of the degree of X, (2) any element of G has order dividing the degree of X, and
(3) only primes p=(n+r+1)/r can divide the order of G (cf. Sect. 3 for precise
statements). In Paper I with this title [1], we proved (1) and (2) over the field C
using topological methods, and allowing G to act on X by continuous orientation-
preserving automorphisms. In this paper we prove (1), (2), and (3) over an arbitrary
algebraically closed ground field, by using elementary algebraic geometry and
linear algebra, and we show by example that (3) need not hold in the topological
setting.

1. Generalities

Let k be an algebraically closed field, X a proper k-scheme, and G a finite group
which acts freely on X by k-automorphisms (i.e. for ge G, g+id, g has no fixed
points in X).

We assume that the quotient scheme Y =X/G exists ; this is automatically the
case if X is projective. Let & be a coherent G-sheaf on X, ie., G operates on the
pair (X, #) compatibly with its action on X. Then # descends to yield a coherent
sheaf 4 on X/G=Y. In terms of the projection n:X — Y, we have the formulas

F=1%9), =@ F)°.

Proposition 1.1. The Euler characteristic y(X, #)=2(—1)'dim H'(X, %) is divis-
ible by #(G). More precisely, one has the formula

12X, F)=#(G) 1Y, 9).
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Proof (cf. Mumford [4, pp. 70 and 120-121]).
A group-theoretic version of Proposition 1.1 is

Proposition 1.2. The virtual k-representation of G provided by X(— 1) H(X, %) is an
integer multiple of the regular representation. More precisely, one has the formula in
the representation ring R,(G)

Z(— 1) H'X, #) = (Y, 9)-Reg(G).

Proof. By Brauer theory, it is equivalent to prove both of the following statements
A) and B) about Brauer traces:
A) For geG, g#id of order prime to char(k), we have

X(—1)' Brauer trace (g|H'X, %))=0.
B) For g=id, we have
XX, F)=#(G)- 1Y, 9).

Statement B) is true by Proposition 1. Statement A) follows from the truth of
Proposition 1.2 with G replaced by its cyclic subgroups of order prime to char(k),
and in this case the result is proven in Ellingsrud-Lensted [3] (cf. also [0, 2, 5]).

Corollary 1.3. The arithmetic genus y(X, Oy) is divisible by 4 (G), as are the various
Euler characteristics y(X, Q}/,,), i1

Proof. This is Proposition 1.1, with # =0y, Q},,.... QED

Corollary 1.4. Let X be a projective k-scheme with y(X,04)=1, e.g. a complete
intersection in P" of multi-degree (d 15 -+ d,), with 2d; < N. Then no non-trivial finite
group can operate freely on X.

II. Linear Actions on Projective Varieties

Let k be an algebraically closed field, V a finite-dimensional k-vector space, P(V)
the projective space of all hyperplane in ¥, and 0p(1) the tautological quotient line
bundle on IP(V). For any closed subscheme X >P(V) we denote by (,(1) the inverse
image line bundle i*(Op(1)) on X, and by Ox(j) the j-th tensor power of Oy(1). The
dimension of X, dim(X), is defined to be the maximum of the dimensions of the
irreducible components of X. The codimension of X in P(V), cdm(X, IP(V)), is the
minimum of the codimensions of the irreducible components. The degree of X in
IP(V) is the number of points, counted with multiplicity, of the intersection of X
with a general linear subspace of codimension=dim(X) in IP(V).

Theorem 2.1. Suppose that a finite group G operates k-linearly on V, in such a way
that under the induced action of G on IP(V), the closed subscheme X CP(V) is G-
stable, and the induced action of G on X is free. Then

2.1.1. #(G) divides degree(X).

2.1.2. If a prime p divides #(G), then p=dim(V)/cdm(X, P(V)).

Proof. An action of G on V is equivalent to an action on the pair (IP(V), Op(1)). If
X CIP(V) is a G-stable sub-scheme, then by restriction G acts on the pair (X, 04(1)),
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ie., 0y(1) is a G-sheaf on X. Because G acts freely on X, 0,(1) descends to a line-
bundle £ on the quotient Y=X/G.

Suppose first that X is irreducible and non-singular, say of dimension n. Then
the degree of X in P(V) is simply the n-fold self-intersection number of the first
chern class of 0,(1) with itself in the ring A-(X) of algebraic cycles modulo
numerical equivalence on X :

degree (X)=(C,(04(1))"e A"X)~Z.
Because n:X—Y=X/G is finite etale of degree 3#(G), the induced map
n*: A"(Y)— A"(X) is multiplication by #(G). Therefore we have:
degree (X)=(C(Ox(1)))"

=(C,(n*(L))"

=(n*(C (L))"

=n*(C,(ZL)))

= #(G)-(C,(2)),

which proves 2.1.1 in this case.
In the general case, we must resort to an artifice. Let P(T)e Q[T] denote the
Hilbert polynomial of (X, 0,(1)), ie.,

P(j)=xX,04()) forall jeZ.

One knows that P(T) has degree n=dim(X), and that it is a Z-linear combination

of the binomial functions
_ N(T— 1)..(T—(r—1))
r] r!

say

P(T)= 20 A,(f),

with leading coefficient A,=degree(X). Therefore the degree of X is the “n-th
difference” of the function P(T):

= n
degree ()= 3, (17 (") x(X. O3tn=1)
r=0
Applying Proposition 1, we may rewrite this as

degree (X)= #(G)- i (= 1y (':) 2(Y, $On=m),
r=0

We now prove 2.1.2. Let ge G be an element of order p. Then g operates on V by an
automorphism Ae GL(V) with A?=1. A fixed point of g acting on IP(V) is
represented by a non-zero eigenvector of 4' operating on the dual space V* of V.
For any eigenvalue { of A", the linear subspace Ker(4'—{) of V*, whose dimension



406 W. Browder and N. M. Katz

we denote m((), projects to an m({)— 1 dimensional set of fixed points of g in P(V).
Because g has no fixed points in X, X must be disjoint from this set of fixed points,
whence

cdm(X, P(V))>m(()—1,

ie.
cdm(X, P(V)) 2 m({).
To prove 2.1.2, we must show that for at least one eigenvalue {, we have
m({) = dim(V*)/p.

As Steinberg pointed out to me, this follows just from the fact that V' is
annihilated by a polynomial of degree p in A’ [in our case (4')? — 1], say

(A" =)A= C5). (A=) (V) =0.
For consider the sequence of subspaces W, of V* given by
e (=0 A =L ) i i<p
N if i=p+1.
We have
O=W,CW,C...CW,CV'=W,,,,
so that

dim(VY)= i (dim (W, ,)— dim(W)).

i=1
By definition of the W, we have short exact sequences
0- W, n(Ker(4' =) > W, 2= W0
whence

dim(V*)= f dim(W,, , nKer(4'— ()
i=1

P

dim(Ker(4'~{))= ¥ m(()

1 i=1

M~

é,

13

<p-max(m()). QED

Example 2.2. Take for X a hypersurface of degree =2 in IP"*!, If a finite group G
acts freely on X via a linear action on the ambient n+2— dimensional vector
space, then #(G) divides d, and only primes p=n+2 divide #(G). Let d, be the
corresponding factor of 4, i.e.,

dl = 1_[ pordp(d) ;
p=n+2

so that #(G) must divide d,. We will give an example to show that, at least in
characteristic prime to d,, this bound is attained. Take for G the group p,;, of d,-th
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roots of unity, acting on the Fermat hypersurface

n+1

z (X.')d=0

i=0

by the Godeaux action
CiGon Xy )26 X 00).

We must verify that this action is free, i.e. that if (e p,, and {# 1, then the diagonal
matrix

1

) Cn+1

has all its eigenvalues dictinct [for then it’s fixed points in IP"* ! are the n+ 2 points
(, ...,0,1,0...0), none of which lies on the Fermat]. But if we have

{'=¢ with 0Zi<j<n+1,
then we would have
"=1 with 1Zh=j—iZn+1.

But such an h is relatively prime to d,, since d, is divisible by no primes =<n+1,
and therefore ("=1 forces { =1, contradiction.

Question 2.3. In the general case, what added information is contained in the fact
that # (G) must divide all of the coefficients 4, of the Hilbert polynomial, i.e. #(G)
must divide y(X, O4(j)) for allj?What is the best bound for #(G) in the case of a
complete intersection of codimension =27

III. Projective Actions on Projective Varieties

Theorem 3.1. Let k be an algebraically closed field, V a finite-dimensional k-vector
space, and G a finite group which acts projectively on V (i.e., we are given a
homomorphism from G to PGL(V)=GL(V)/k™ ). Suppose that under the induced
action of G on P(V), the closed sub-scheme X CIP(V) is G-stable, and the induced
action of G on X is free. Then

3.1.1. #(G) divides (degree (X))>.

3.1.2. Every element of G has order dividing degree (X).

3.1.3. If a prime ¢ divides #(G), then £ Zdim(V)/cdm (X, IP(V)).

3.1.4. If char(k)=p>0, the order of any p-Sylow subgroup of G divides
degree (X).

Theorem 3.1 bis. Let k be an algebraically closed field, X a projective k-scheme with
H°X,0,)=k, O4(1) a very ample invertible sheaf on X, and G a finite group
operating freely on X. Suppose that the isomorphism class of Ox(1) in Pic(X) is fixed
by G. Then 3.1.1-4 hold with V=H°X, Ox(1)).
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Corollary 1 (of 3.1 bis). Over an algebraically closed field k, let X be a not-necessarily
smooth complete intersection of dimension n23 in P"*". If n>r, then X admits no
fixed-point-free involution. More generally, if p is a prime such that n=(p— 1)r, then
X admits no fixed-point-free automorphism of order p.

Proof. By SGA2, XII, Corollary3.7, Pic(X)~Z with generator @,(1). This
generator is distinguished from its inverse Oyx(— 1) by the property of having
sections. Therefore its isomorphism class is preserved by any automorphism of X.
The result now follows, via 3.1 bis, from 3.1.3.

Over C, there is a similar result valid for arbitrary smooth varieties (i.e. not
necessarily complete intersections). We are indebted to Arthus Ogus for pointing
this out to us.

Corollary 2 (of 3.1 bis). Over C, let X CIP"*" be a smooth connected variety of
dimension n and codimension r. If n=r+2, then X admits no fixed point-free
holomorphic involutions.

Proof. By results of Barth, Larsen, and Ogus (cf. [8, Corollary 4.10]), such an X has
Pic(X)=Z with generator 04(1), and the argument proceeds as above.

Remark. This last corollary becomes false if we drop the hypothesis “holomor-
phic.” Indeed, if X is any smooth (even-dimensional) algebraic variety defined over
the reals, then complex conjugation provides an (orientation-preserving) real-
analytic involution of the complex manifold X(C), whose fixed point set is precisely
the set X(IR) of real points on X. Thus if X has no real points, we have a fixed-point-
free involution of X(C). For example, take X to be a smooth complete intersection
of hypersurfaces, each of which is defined over IR, and one of which is a Fermat
hypersurface F of some even degree 2k

X )*=0.
Then X has no real points, because visibly F has no real points.

Theorem 3.1 ter. Let X be an irreducible non-singular projective variety over €, for
which H'(X™,€)=0 (e.g., if n,(X*") is finite). Let he H¥X*",Z) denote the
cohomological first chern class of a very ample invertible sheaf ©4(1). Suppose that a
finite group G acts freely on X by holomorphic automorphisms which fix the
element he HX(X*", Z) (a condition which is automatically fulfilled if H*(X*", Z)~Z,
e.g. if X is a complete intersection of dimension at least three). Then 3.1.1-3 hold
with V=H%X, 0,(1)).

Proof. We first deduce 3.1 ter from 3.1 bis. The hypothesis H'(X*",€)=0
guarantees, by Hodge theory, that H!(X*", Oyan)=0. The exponential sequence
together with GAGA then show that the cohomological first chern class is
injective

Pic(X) = Pic(X*") < H2(X", Z),

whence, by GAGA, 3.1 ter becomes a special case of 3.1 bis.
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We next deduce 3.1 bis from 3.1. For each ge G, choose an isomorphism.
w(g) : g*(Ox(1)) = Ox(1).

Such a wy(g) is unique up to an element of H°(X, Aut(04(1))~H°X,(O)*)
=(H°(X, 0y))* =k*. Therefore the action of ge G on V=H°(X, 0,(1)) defined as

HOX, 04(1)) > HOX, g*(0(1)) “& HOX, Ox(1))

provides a projective representation of G on ¥, which induces the given action of G
on X CIP(V). Thus 3.1 bis follows 3.1.

It remains to prove 3.1. To prove 3.1.2 and 3.1.3, it suffices to remark that they
follow from 2.1.1 and 2.1.2, together with fact that a projective representation of a
cyclic group on a vector space over an algebraically closed field can always be
linearized. Similarly, 3.1.4 follows from 2.1.1 and the corresponding fact for
projective representations of p-groups over perfect fields of characteristic p
[because k* is then uniquely p-divisible, so that the obstruction to linearization
lies in an abelian group H? (p-group, k™) which is simultaneous killed by a power
of p and on which “p” is an automorphism].

It remains to prove 3.1.1. Because this is a divisibility assertion, we may prove
it prime by prime, i.e., replace G by its various Sylow subgroups. This reduces us to
the case when G is a nilpotent group. In this case, 3.1.1 follows from 2.1.1 and the
following theorem in group cohomology, applied to the obstruction, in H*(G, k™),
to linearizing the given projective representation.

Theorem 3.2. Let G be a finite nilpotent group, and k an algebraically closed field.
View k™ as a trivial G-module. Then given any element £€ H*(G, k™), there exists a
subgroup K(E)CG such that ¢ dies in H*(K(&),k™), and such that

#(G) divides (#(K(&)?.

Proof. We proceed by induction on #(G). Let us choose a central extension E of G
by k* which represents ¢:

| —k*—E-5G—1.

Let H be a non-trivial subgroup of the center Z(G) over which this extension splits
(e.g. H cyclic). Choose a group-theoretic splitting 4: H—E, and then extend o
arbitrarily to a set-theoretic splitting S : G—E.

Now denote by E, CE the normalizer of o(H). Then E, contains 4(H) (because
s:H—E is a group homomorphism) and E, contains k™ (because k™ lies in the
center of E). Therefore E, is the complete inverse image of a subgroup G, in G,
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and G, CH. Because 4(H) is normal in E,, we have a commutative diagram of
extensions

|— s k*—E 5 G, 1
1 > k> >E,/s(H)— G,/H—1.

By induction, the extension E,/s(H) of G,/H splits when restricted to a
subgroup K, CG,/H, with

#(G,/H) divides (#(K,))*.
The commutative diagram above shows that the extension E; of G, is the pull-
back by G, — G,/H of the extension E,/s(H).
Therefore E, splits over the subgroup K(£)CG, defined by
K& 2L the inverse image by G, —> G,/Hof K,.

Because E, is simply the restriction to G, CG of E, our original extension E of G
splits over K(¢&).
It remains to verify that

#(G) divides (#(K(&))>.
By definition of K(£), we have
(3 (K()* = (#(H)* (#(K,)*.
and the inductive hypothesis may be rewritten
#(G,)- #(H) divides (% (H)*(#(K,)?,
so that it suffices to verify that
#(G) divides #(G,)#(H).

Let us denote by H™ the group Hom(H, k). Then we have, simply because H is
abelian and k is a field,

#(HY) divides 4 (H).

Therefore, the required divisibility follows from the existence of an exact sequence
of groups

1 g Gl — G -_— Hv.
which we will now construct. Recall that G, is defined as
G,={geG|S(g) normalizes s(H)}.

Because H C Z(G), the element S(g)4(h)S(g)~! in E projects to h; therefore if this
element lies in o(H), it must be equal to s(h). Thus we may define a pairing

{,>:GxH—-k™
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by the formula

S(g)a()S(g)™ ! =<g,hy a(h).
For fixed ge G, the map

{g,—> H-k”™
is visibly a homomorphism, which is trivial if and only if ge G,. The map
G-H =Hom(H, k>)
g—<9,—>

is easily seen to be itself a homomorphism, whence the required exact
sequence. QED

Examples 3.3. (1) Take for X an abelian variety of dimension g=1, % a line
bundle on X, and N =1 an integer. The abelian group X (k) of points of order N in
X (k) operates freely on X, by translations, and this action fixes the isomoiphism
class of #®N. Suppose that # defines a principal polarization of X, and that
N23. Then £®" is very ample, and the degree of X in the corresponding
projective embedding is N?. For N prime to char(k), our group X (k) has order
N2 so that our result #(G) divides (deg(X))? is best possible. Notice that if char (k)
=p>0and we take N =p, then by 3.1.4 we have # (X (k)) divides p?, a familiar fact
from the characteristic p theory of abelian varieties.

(2) Fix a prime p= 3. Consider, in characteristic = p, the one-parameter family
of hypersurfaces of degree p and dimension p—2, defined by the equation

p—1 p—1

Z X)P=u l_[ X;.
i=0 i=0
It will be convenient to view the ambient p-dimensional vector space V as being
k[TINTP—1)
via the identification
X;oT.

We obtain a projective representation of the group Z/pZ x p, on this vector space
by the rule

@ : f(N)=TfCT).

This action respects each of our hypersurfaces [the Z/pZ acts by cyclic per-
mutation of the p coordinates X;, and the p, acts by the Godeaux action
0o Xy )G 0X G )]

One checks by explicit calculation that at u=0, and therefore at all but finitely
many values of g, this defines a free action of Z/pZ x p,, a group of order p%,ona
hypersurface of degree p. For p=3, we recover the g=1, N =3 case of example (1),
for our family of hypersurfaces becomes the universal family of elliptic curves with
level three structure, the action of the group Z/3Z x p, is the action by translation



412 W. Browder and N. M. Katz

of the points of order 3, and the very ample 0(1) is £®3 where & is the standard
principal polarization on an elliptic curve.
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