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an application of Lang—Weil to a problem in graph theory

Nicholas M. Katz
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Introduction

Recently Chung [Ch] has constructed some interesting directed graphs using finite
fields, and proven non-trivial upper bounds for their diameters. Her proof combines
a general graph theoretic upper bound for the diameter in terms of the eigenvalues
of the “adjacency matrix”, the observation that for her graphs the eigenvalues are
certain character sums over finite fields, and an estimate [Ka] for these character
sums that comes from the Riemann Hypothesis for varieties over finite fields.

In this paper, we study Chung’s graphs by a direct algebraic geometric method,
interpreting a given bound for diameter as the statement that each of a certain
collection of algebraic varieties has a rational point, and then using Lang-Weil
to prove the existence of the required rational points. In order to apply Lang—Weil
in the situation at hand, we are naturally led to showing that certain explicit
two-parameter families of polynomials in one indeterminate have Galois group
the full symmetric group; so far as we are aware, these constitute new examples
of such polynomials.

The basic set-up

Chung’s construction is this: fix an integer n=>2, a finite field k, K/k the field
extension of degree n, and €K an element such that K = k(). Out of this data
Chung builds the directed graph whose nodes are the elements « of K*, and in
which there is a directed edge o — f§ if and only if f/a = & + a for some aek.

From the point of view of graph theory it is natural to ask the following
questions:

1) Is this directed graph connected?
2) If so, what is its diameter?
3) What is its girth (shortest length of a cycle)?

For Chung’s graph, these questions amount to:

1) Do the elements {¢ + a},; generate K *?
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2) If so, what is the least integer d such that every element of K * is the product
of at most d factors each in {£ + a},?

3) What is the least integer g = 1 such that 1 is the product of precisely g factors
each in {£ +a},?

For the question 1) of connectedness, the estimate of [Ka] shows that Chung’s
graph is connected if Card (k) > (n — 1)2, but connectedness does not seem to be
known in general. Along this line, one might ask whether at least one among the
elements {& + a},, is a generator of K*?

For question 2) of diameter, Chung shows that for each fixed n there is an
explicit constant A(n) such that d <2n + 1 provided that Card (k) = A(n). She also
points out that, by an elementary counting argument, we must have d > n+ 1
provided Card (k) = 6 — n. In this paper we will show the existence of an inexplicit
constant B(n) such that d < n + 2 provided Card (k) = B(n). In fact, we will show
that every element o of K * can be written as the product of precisely n + 2 distinct
factors each in {¢ + a},q4, and we will give an estimate for the number of such
representations. We will also show that for n =2 our result d = 4 is best possible,
but we cannot rule out the possibility that for n> 0 the actual truth is d =n + 1.

For question 3) of girth, it is easy to see that g = n (otherwise the element ¢
would satisfy an equation over k of degree <n), and that g < n+ 2 (by our result
above for a = 1); one has g = n if and only if there exist n not necessarily distinct
elements a,,...,a, in k such that IT(X —a;) — 1 is the irreducible polynomial for
& over k.

First variation

Let us return to the basic data (n,k, K, ¢) which go into Chung’s construction.
Let us denote by f(X)ek[X] the monic irreducible polynomial of degree n satisfied
by & over k; then we can recover K and ¢ from the data (n,k, f) by

K =k[X]1/(f), &=the image of X in K.

This observation suggests the followng variant of Chung’s construction: given
an integer n > 2, a finite field k, and a polynomial fek[X] of degree n, consider
the n-dimensional commutative k-algebra K:= k[ X]/(f), the element &:= the image
of X in K; denoting by K™ the multiplicative group of invertible elements of K,
form the directed graph %(n, k, f) whose nodes are the elements « of K*, and in
which there is a directed edge a— f if and only if f/a = £ + a for some aek.

It is plausible that in this generality there exists for each n =2 a constant c(n)
such that as soon as Card (k) = c(n) this directed graph ¥(n, k, f) is connected and
has diameter < n + 2, but we are unable to prove this. Jusqu'a nouvel ordre we
need to make the additional assumption that the k-algebra K is etale, or, what is
the same, that the polynomial f has n distinct roots in “the” algebraic closure of
k. For brevity, we will say that such an f is ‘etale of degree n”. Of course over a
finite (indeed perfect) field, any irreducible polynomial is etale in this sense, so we
still have the original Chung construction as a particular case of ours.
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Theorem 1. For every integer n =2 there exists a constant B(n) such that for any
finite field k with Card (k) = B(n), and any polynomial f ek[ X] which is etale of degree
n, the directed graph %(n, k, f) is connected and has diameter < n + 2.

To prove this, we will prove the stronger result that as soon as Card (k) = B(n),
any element o of K™ can be written as the product of n + 2 terms £ + a;, with all
the n+ 2 a;’s distinct in k. The strategy for doing this is simple: suppose, given a,
that we seek n+ 2 elements g; in k such that

a=1I(¢+a;)in K*. (*)

Now a, being in K *, may be viewed as the class modulo f of a polynomial gek[X]
with (f,g) =1, and we may choose g to be monic of degree n + 2 (first choose the
“standard” polynomial representative of a of degree <n, and then add to it
b~ ' X2f(X), where b is the leading coefficient of f). Then we can rewrite the above
equation (*) as the congruence

g(X)=II(X + a;) modulo f(X). (*%)

Subtracting the two sides and dividing by f, we see that (**) holds if and only if
there exist two elements u, vek such that we have an equality of monic polynomials
of degree n+ 2 in k[X]

g X))+ X +v)f(X)=1(X + a). o)

(Notice that if u and v exist they are uniquely determined by the a;.) What about
the condition that the g; be all distinct? This is none other than the condition that
the polynomial g(X) + (uX + v) f(X) be etale of degree n + 2.

To summarize, then, in order to show that any element « of K™ can be written
as the product of n+ 2 terms £ + g; (resp., and with all the n+ 2 as distinct in
k), it is equivalent to show that for any monic gek[ X] of degree n + 2 with (f,g) =1,
there exist n + 4 elements (u,v,a,,...,d,,,) in k such that (*x**) holds (resp., and
such that g(X) + (uX + v) f(X) is etale of degree n + 2).

The key observation is that if we view (u,v,4a,,...,a,,,) as “unknowns”, then
equating like powers of X in (x**) leads to n + 2 equations in these n + 4 variables,
thus defining inside A"** a certain algebraic variety V(n, k, f,g) over k; moreover,
the condition that g(X) + (uX + v) f(X) be etale of degree n+ 2 is precisely that
its discriminant, a k-polynomial in # and v, be invertible, and thus this condition
defines an open subvariety U(n,k, f,g) of V(n,k, £, g).

Thus a representation of a:=¢g mod f as an n+ 2 fold product IT(¢ + a;) in
K™, where the order of the a,’s counts, is none other than a k-rational point of
the variety V(n,k, f, g), and such a representation with all the a; distinct is none
other than a point of the open subvariety U(n,k, f, g).

Theorem 2. For each integer n > 2 these exists a constant C(n) with the following
property: Given (n, k, f, g) withf ek[X] etale of degree n and gek[ X] monic of degree
n+ 2 with (f,g) =1, the variety U(n,k, f,g) is a smooth, finite type, geometrically
connected affine k-scheme of dimension 2, and we have the estimate

|Card (U(n, k, f, g)(k)) — Card (k)*| < C(n) Card (k)*2.
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This trivially gives the desired sharpening of Theorem 1, with B(n):= C(n)?:

Corollary. Given (n,k, f) with fek[X] etale of degree n, and with Card (k) > C(n)?,
any a in K™ has (counting order) at least

Card (k)> — C(n)Card (k)** >0

representations as an n+ 2 fold product of distinct & + a;’s.

Interlude: the Lang—Weil method

In this section, we recall the general Lang—Weil method (compare [Ka-2, Proof
of 12.4.3]) of obtaining uniform estimates for the number of rational points on a
variety over a finite field as that variety varies in a suitable family.

Theorem (Lang—Weil). Let S be a scheme of finite type over Z, f:X — S a morphism
of finite type, and d = 1 an integer. Suppose that for every finite field k, and every
k-valued point s, S(k), the k-scheme fibre X (s,):= f ~'(sy) is geometrically irreducible
of dimension d. Then there exists a constant A(X/S), with the property that for every
finite field k, and every k-valued point s,eS(k), we have the estimate

|Card (X (s,)(k)) — Card (k)*| < A(X/S) Card (k)*~ /2.

Proof. Writing S as the union of the two open sets S[1/2] and S[1/3], working
separately on each and then taking for A the maximum of the constants obtained
on each of these open sets, we are reduced to the case when there exists a prime
number # which is invertible on S. In this case, consider the constructible
sheaves R'f,Q, on S: these vanish for i >2d and R*f,Q,~ Q,(—d). In view of
Grothendieck’s Lefschetz Trace Formula and Deligne’s Weil I result that R'f,Q,
is mixed of weight < i, our assertion is immediate if we take the constant A(X/S)
to be the sup, over all geometric points s of S, of the Q,-dimension of the stalk at
s of the constructible sheaf

@ R/Q, QED

05ig2d—

Applying Lang—Weil: reduction to a problem in Galois theory

In this section we will explain how, for each fixed n= 2, to apply Lang-Weil in
the above form to the varieties U(n,k, f, g).

Lemma. There exists an affine scheme S, of finite type over Z and a smooth affine
morphism h:U,— S, of relative dimension 2 such that for any finite field k, the k-valued
points of S, are precisely the pairs (f,g) consisting of an fek[X] which is etale of
degree n and of a gek[X] of degree n + 2 which satisfies (f,g) =1, and such that
the fibre of h:U,— S, over such a k-valued point is the k-scheme U(n,k, f,g).

Proof. Over any ring B, a polynomial f(X)=Xb, X' in R[X] will be said to be
everywhere of degree n if b;=0 for i>n and if b,eR*. Fix such an f: the
B-algebra B[ X1/(f)is free of rank n. Given any element g in B[ X], we have (f,g) =1
in B[X] if and only if g is invertible in the B-algebra B[X]/(f), or equivalently
if and only if the element Norm(g), the norm taken from B[X]/(f) to B, is
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invertible in B. The universal f which is everywhere of degree n lives over the ring
Z[rg,...,r,1[1/r,], where the r; are independent indeterminates. Similarly, the
universal monic polynomial g(X) = X's; X’ of degree n + 2 lives over the polynomial
ring Z[Sg,-.-5Sy,+1]- Over the ring

Ap=2Z[rgs--. s S05-+-5Sp+11[1/74]

we have the universal pair (f, g) consisting of an f which is everywhere of degree
n and of a g which is monic of degree n + 2.

Let us say that an f in B[ X], B an arbitrary ring, which is everywhere of degree
n is everywhere etale of degree n if (f,df/dX)=1 in B[X]; then the universal pair
(f,g) consisting of a polynomial f which is everywhere of degree n and everywhere
etale of degree n and of a monic polynomial g of degree n+ 2 which satisfies
(f.g) = 1 lives over the ring B,:= 4,[1/Norm(g-df/dX)], the norm from 4,[ X]1/(f)
to A,. The desired scheme S, is none other than Spec(B,).

Now consider two independent indeterminates U, V, and the monic poly-
nomial h(X):= g(X) +(UX + V) f(X) of degree n+ 2 over the ring B,[U, V]; the
open set where h(X) is everywhere etale of degree n+ 2 is the spec of the ring
C,.= B,[U, V][1/Norm (dh/dX)], the norm from B,[U, V][X1/(h) to B,[U, V].

Over any ring C, if we are given any monic polynomial & of degree n + 2 which
is everywhere etale of degree n + 2, then the scheme of complete factorizations of
h is represented by the spec of the C-algebra D = C[A4,,...,A,+,]/1, where the 4;
are independent indeterminates over C and [ is the ideal of relations obtained by
equating like powers of X in

h(X)=IT(X — A,).

Because h is everywhere etale of degree n + 2, D is finite etale Galois over C with
structural group the symmetric group 6, ,.

Applying this to the ring C, and h, we obtain as above a finite etale Galois
C,-algebra D,:= C,[A,,...,A,+, /], where the 4; are independent indeterminates
over C, and I is the ideal of relations obtained by equating like powers of X in

h(X) = I1(X — A,).

It is now tautological that if we define U ,,:= Spec(D,,), then the natural morphism
U,—S, “view D, as an B,-algebra” is the required morphism. If we factor this
morphism as

U,:= Spec(D,) 2 Spec(C,) 2 Spec(B,[U, V1) 2 Spec(B,):= S,.,

we see that it is smooth and affine of relative dimension 2, being the composition

of the finite etale morphism Spec(D,)— Spec(C,), the affine open immersion

Spec(C,)— Spec(B,[U, V1), and of the projection Spec(B,[U, V])— Spec(B,).
QED

In view of this lemma, Theorem 2 would be an immediate consequence of
Lang-Weil if only we knew, for each n 2 2, the

Proposition. All of the geometric fibres of U,— S, are irreducible.
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We now explain how to reduce this Proposition to a statement in Galois theory.
Consider a geometric fibre, say over an algebraically closed field F. This
means that we begin with a polynomial f(X)eF[X] of degree n which has n
distinct roots in F (remember that F is algebraically closed), and with a monic
g9(X)eF[X] of degree n + 2 which satisfies (f,g) = 1. We then pass to the open set
# of A?%=Spec(F[U,V]) where h(X):=g(X)+ (UX + V)f(X) has invertible
discriminant, and then to the finite etale ®, , covering U(n, F, f, g) of % defined
as the scheme of complete factorizations of h.

Let us admit temporarily the following Galois theoretic statement, and show
how it implies the required irreducibility of U(n, F, f, g).

Theorem 3. Let F be an algebraically closed field, n > 1 an integer, f(X)eF[X] a
polynomial of degree n which has n distinct roots in F, g(X)e F[X] a polynomial of
degree n + 2 which satisfies (f,g) = 1, and U, V independent indeterminates. Consider
the polynomial

h(X):=g(X)+(UX + V) f(X)

of degree n+ 2 over the field F(U,V). The splitting field of h(X) over F(U,V) is
galois with group the full symmetric group G, ,.

If we admit Theorem 3, then in particular h(X) has n + 2 distinct roots in “the”
algebraic closure of F(U, V), and consequently its discriminant is not identically
zero in F(U, V). This nonvanishing means precisely that % is a nonvoid open set
in A2 Now consider the finite etale ,, ,-covering U(n, F, f, g) - %; because % is
normal, the total space U(n, F, f, g) is normal, so equal to the disjoint union of its
connected (= irreducible, by normality) components ¥";, each of which is finite
etale over %. Passing to the generic point n of %, we see that the generic fibre
U, F, £, g), over n is the disjoint union of the generic fibres (¥7;),, each of which
is the spec of a field. Thus U(n, F, f, g) is irreducible if and only if its generic fibre
U, F, f,g), is the spec of a field. This last condition means precisely that the
F(U,V)-algebra F(U,V)[A,,...,A,+,]/I, where I is the ideal of relations obtained
by equating coefficients in

h(X) = (leading coef. of g(X))IT(X — A;),
is a field, and this is in turn equivalent to saying that h(X) is a separable irreducible

polynomial over F(U, V) with Galois group 6, ,.
Thus Theorem 3 does indeed imply the Proposition. QED

Galois theory variations
We begin by reducing Theorem 3 to

Theorem 3bis. Let F be an algebraically closed field, n 2 0 an integer, f(X)eF[X]
a polynomial of degree n+ 1 which has n+ 1 distinct roots in F,g(X)eF[X]
a polynomial of degree n+2 which satisfies (f,g)=1, and U,V independent
indeterminates. Consider the polynomial

h(X):=g(X)+(UX + V) f(X)
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of degree n+ 2 over the field F(U,V). The splitting field of h(X) over F(U,V) is
galois with group the full symmetric group ®,, ,.

To see that Theorem 3bis implies Theorem 3, we argue as follows. By means
of a preliminary change of variable X+ X + o with aeF, we may assume in
Theorem 3 that the polynomials f and g satisfy the additional hypothesis
f(0)g(0) % 0. The splitting field of h(X) is then the same as that of X"*2h(1/X); the
identity

X""2p(1/X) = X"*29(1/X) + (U + VX)- (X" f(1/X)))
now puts us in the situation of Theorem 3bis for the same n, with U and V

interchanged, and for the polynomials f:= X"*1£(1/X) and §:= X"*24(1/X).
We now introduce new indeterminates

S=1/U and T=-V/U

in Theorem 3bis, and divide through f,g, and h by the leading coefficient of f;
Theorem 3bis becomes trivially equivalent to

Theorem 3ter. Let F be an algebraically closed field, n 2 0 an integer, f(X)eF[X]
a monic polynomial of degree n+ 1 which has n+ 1 distinct roots a,,...,a,,, in
F,g9(X)eF[X] a polynomial of degree n+ 2 which satisfies (f,g)=1, and S,T
independent indeterminates. Consider the polynomial

h(X):= $g(X) + (X — T) f(X)

of degree n + 2 over the field F(S, T). The splitting field of h(X) over F(S, T) is galois
with group the full symmetric group ®,, ,.

Notice that in Theorem 3ter it is obvious that the polynomial h(X) has nonvanishing
discriminant, since this is true at S = 0. Thus we can speak of the Galois group of
its splitting field over F(S, T).

Theorem 3ter results from the stronger

Theorem 4. Let F be an algebraically closed field, n 20 an integer, f(X)eF[X] a
monic polynomial of degree n+1 which has n+ 1 distinct roots a,,...,a,,, in
F,g(X)eF[X] a polynomial of degree n+ 2 which satisfies (f,g)=1, and S, T
independent indeterminates. Consider the polynomial

h(X):= 8g(X) + (X — T) f(X)

of degree n + 2 over the integral domain F[T][[S]]. The splitting field of h(X) over
the fraction field of F[T1[[S]] is galois with group the full symmetric group ®,, ,.
More generally, for any polynomial p(X)e F[ X] which satisfies (f, p) = 1, the splitting
field of h(X) over the fraction field of F[ T, 1/p(T)][[S1] is galois with group the full
symmetric group ®, . ,.

That Theorem 4 implies 3ter is obvious, since after the extension of ground field
from F(S, T) to the fraction field of F{ T][[S]] the Galois group can only decrease.

Before begininning the proof of Theorem 4, we explain a general criterion that
a given polynomial h(X) of degree n + 2 with nonzero discriminant over a given
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field K have Galois group ®,,, over K. Suppose that in some overfield L of K,
our polynomial h factors completely, with roots a4, a,,...,a,,,. Because G, ,,
viewed as the group of permutations on {0,...,n+ 1}, is generated by the n+ 1
transpositions (0, 1),(0,2),...,(0,n + 1), it suffices to show that for any integer i in
{1,...,n+ 1}, the field K(a,,...,4;,...,a,,,) obtained by adjoining to K all the
roots except for a, and a; does not contain a.

We will prove Theorem 4 by using a standard form of Newton’s Lemma to
“write down” all the roots, and then verifying “by inspection” the above criterion.

Newton’s Lemma. Let R be a ring, and # an ideal of R. Suppose that R is complete
and separated for the #-adic topology. Suppose we are given a polynomial
h(X)eR[X]. Denote by h(X)e(R/ #)[X] the reduction mod ¢ of h(X), and by I'(X)
its derivative. Suppose we are given an element & in R/ ¢ which satisfies

h(@)=0in R/ #, W(&)isaunitin R/¢.
Then there exists a unique element o in R which satisfies
h(@)=0in R, a=dmod 7.

Proof. The construction-proof proceeds modulo successive powers of ¢ by
induction. If «,eR reduces mod # to & and satisfies h(x,)=0 mod #", for
some n=1, then a,,,:=0a,— h(x,)/h(®,) is congruent to «, mod #", satisfies
h(a,+,)=0mod #"*!, and is unique mod #"*! with these properties. QED

We now turn to the proof of Theorem 4. We will first apply Newton’s Lemma
to our h(X) over the ring R:=F[T, 1/p(T) f(T)][[S]] the ideal #:=(S). The
factorization of h(X) into n + 2 linear factors

h(X)=(X — THX —a,)-(X — ay,,)

gives us n+2 roots T,ay,...,4,,; of h, at each of which the value of ' is
invertible in F[T, 1/p(T)f (T)] Newton’s Lemma then refines T,a,,...,a,,, into
zeroes T,ay,...,0,+, of K(X) in F[T,1/p(T)f(T)][[S]] which reduce modS
to T,a,,...,a,I+ , respectively. Thus we may take for L the fraction field of
F[T,1/p(T) f(T)]L[S]].

In order to verify the criterion, we must show, denoting by K the fraction field
of F[T,1/p(T)][[S]], that for any 1 <i<n+1, the field K(ay,...,8;5...50,41)
obtained by adjoining to K all the roots except for T and «; does not contain
T. Renumbering the roots of f, we see that it suffices to treat the case i = 1.

To see this, we argue as follows. Let us denote by f,(X)e F[X] the polynomial

JiX)=f(XNX —a)=(X —a3)-(X —ay4y)

Then over the ring F[T, 1/p(T) f,(T)]1[[S]] with the S-adic topology we can apply
Newton’s Lemma to h(X), but only to the roots a,,...,a,. of k; at each of these
roots the value of /' is invertible in F[T,1/p(T)f,(T)]. Newton’s Lemma then
refines a,,...,a, ., intozeroes&,,...,&,+, of A(X)in F[T, 1/p(T) f,(T)][[S]] which
reduce mod S to a,,...,a,, respectively.

By the uniqueness in Newton’s Lemma, and the fact that F[ T, 1/p(T) f,(T)][[S]]
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is a subring of F[ T, 1/p(T) f(T)1[[S1], we have
Oti=0?i fOl‘ i=2,...,n+1.

It remains to see that T does not lie in K(a5,...,®,,); as this field is contained
in the fraction field of F[ T, 1/p(T) f,(T)]1[[S]] by the analysis above, it suffices to
show that T does not lie in the fraction field of F [T, 1/p(T) f1(T)1L[S]]. Because
the ring F[T, 1/p(T) f{(T)1[[S]] is normal, and h(X) has leading coefficient a unit
(namely 1+ S), we see that if T were to lie in this fraction field, then T would
necessarily lie in F[T, 1/p(T) f,(T)]L[S]] itself.

To show that this is not the case, we will use the first step of Newton’s method
to write T in the larger ring F[T,1/p(T)f(T)]L[S]], and show that, when
we develop T as a series in S, already the coefficient of S does not lie in
F[T,1/p(T)f,(T)]. Indeed, Newton’s method tells us that the root T near the
approximate root T of h(X)= Sg(X)+ (X — T)f(X) is given modulo S2F[T,1/
p(T)f(T)ILLS]] by

T=T—hnT)yH(T)
=T - S89(T)(Sg'(T) + f(T))
=T - (g(T)/f(T)S.

That the coefficient of S, g(T)/f(T),does not liein F[ T, 1/p(T) f,(T)] is now obvious:
the function g(T)/f(T) has a simple pole at T = a,, because (f, g) = 1, while every
element of F[T, 1/p(T) f,(T)] is holomorphic at T = a,, because both f; and p are
invertible at T =aq,, f, because f has all distinct roots and p because it is prime
to f. This concludes the proof of Theorem 4. QED

Here is an “arithmetic” variant on Theorem 4.

Theorem 4bis. Let R be a complete discrete valuation ring with uniformizing
parameter © and algebraically closed residue field F, n =0 an integer, f(X)eR[X]
a monic polynomial of degree n+ 1 whose reduction modn f(X)eF[X] has n+ 1
distinct roots a,,...,a,,, in F,g(X)eR[X] a polynomial everywhere of degree n + 2
which satisfies (f,§) =1, and T an indeterminate. Consider the polynomial

h(X)=ng(X) + (X — T) f(X)
of degree n + 2 over
R T3):=the n-adic completion of R[T].

The splitting field of h(X) over the fraction field of R T )) is galois with group the
Sull symmetric group ®, . ,. More generally, for any polynomial p(X)e R[X] which
satisfies (f,p) =1, the splitting field of h(X) over the fraction field of the m-adic
completion of R[T,1/p(T)] is galois with group the full symmetric group ®, . ,.
Proof. The proof via Newton’s Lemma is essentially identical to that given above
of Theorem 4 (itself the special case R = F[[S]], = =S, of Theorem 4bis). QED

Corollary. Let n =0 be an integer, f(X)eZ[X] a monic polynomial of degree n + 1
whose discriminant 3€Z is nonzero, and whose constant term f(0) is nonzero. Let T
be an indeterminate. Then for any prime number p which does not devide 5- f(0), the
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polynomial
h(X)=pX"*?+ (X - T)f(X)
over Q(T) has Galois group the full symmetric group ®,,, ,.

Proof. Indeed if we denote by W the Witt vectors of an algebraically closed field
of characteristic p, then by Theorem 4bis the polynomial h(X) still has Galois
group G, ., over the fraction field of W T)». QED

Second variation

In this section we will study a second variant of Chung’s graph: given an integer
n 2 2, a finite field k, and a polynomial fek[X] of degree n, consider as before
the n-dimensional commutative k-algebra K:=k[X]/(f), and the element &:= the
image of X in K; denoting by K the multiplicative group of invertible elements
of K, form the directed graph 2%(n, k, f) whose nodes are the elements a of K™,
and in which there is a directed edge a — f if and only if /o = b(¢ + a) for some
pair aek, bek™.

Lemma. The directed graph 2%(n,k, f) has girth g = n; it has diameter d Z n unless
n=2and k is Z/2Z.

Proof. If the girth g < n, then ¢ satisfies an equation over k of too low degree. If
k™ contains an element b & 1, then the diameter d = n because b cannot be written
as a product of fewer than n terms for the same reason. If n > 3, then d = n because
otherwise every nonconstant polynomial g(X) in k[ X] of degree < n with (f,g) =1
would factor completely over k; but taking for g(X) a k-irreducible polynomial of
degree n — 1 = 2 shows that this is not the case. QED

Theorem 6. For every integer n = 2 there exists a constant D(n) such that for any
finite field k with Card (k) = D(n), and any polynomial f ek[ X] which is etale of degree
n, the directed graph 2%(n,k, ) is connected and has diameter d <n+ 1.

To prove this, we will prove the stronger result that as soon as Card (k) = D(n),
any element a of K* can be written as the product of an element b in k™ and of
n+ 1 terms & + a;, with all the n+ 1 a;'s distinct in k. The strategy for doing this
is simple: suppose given a, that we seek n + 1 elements a; in k and an element b
in k* such that

a=bI(¢+a;)in K*. (*)

Now a, being in K™, may be viewed as the class modulo f of a polynomial gek[ X]
with (f,g) =1, and we may choose g to be monic of degree n + 1 (first choose the
“standard” polynomial representative of a of degree <n, and then add to it
¢ 1 Xf(X), where c is the leading coefficient of f). Then we can rewrite the above
equation (*) as the congruence

g(X) = bII(X + a;) modulo f(X). (**)
Subtracting the two sides and dividing by f, we see that (x*) holds if and only if
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there exist two elments u,vek such that we have an equality of polynomials of
degree n+ 1 in k[X]

9(X)+ uX + ) f(X)=bII(X + a,). (%)

(Notice that if u and v exist they are uniquely determined by b and the a;.) What
about the condition that the g; be all distinct? This is none other than the condition
that the polynomial g(X) + (uX + v) f(X) be etale of degree n + 1.

The key observation is that if we view (u,v,b,a,,...,a,,,) as “unknowns”, then
equating like powers of X in (**x) leads to n + 2 equations in these n + 4 variables,
thus defining inside A"* 4 a certain algebraic variety 2V (n,k, f, g) over k; moreover,
the condition that g(X) + (uX + v) f(X) be etale of degree n+ 1 is precisely that
its discriminant, a k-polynomial in u and v, be invertible, and thus this condition
defines an open subvariety 2U(n,k, f,g) of 2V(n,k, f,g).

Thus a representation of a:=gmod f of type (x), where the order of the a;’s
counts, is none other than a k-rational point of the variety 2V (n,k, f, g), and such
a representation with all the g; distinct is none other than a point of the open
subvariety 2U(n,k, f,g). Thus Theorem 6 (with D(n):= e(n)?) results from

Theorem 7. For each integer n =2 there exists a constant e(n) with the following
property: Given (n, k, f, g) with fek[ X] etale of degree n and gek[ X] monic of degree
n+ 1 with (f,g) =1, the variety 2U(n,k, f, g) is a smooth, finite type, geometrically
connected affine k-scheme of dimension 2, and we have the estimate

|Card (2U(n, k, f, g)(k)) — Card (k)?| £ e(n) Card (k)2
and its

Corollary. Given (n,k, f) with fek[X] etale of degree n, and with Card (k) > e(n)?,
any o in K™ has (counting order of the £ + a;) at least

Card (k)? — e(n) Card (k)*'2 > 0

representations as the product of an element of k™ and of an n+ 1 fold product of
distinct & + a;’s.

To prove Theorem 7 we have only to recopy the steps in the proof of Theorem 2
by means of Lang—Weil, applying Theorem 3bis (with n:=n — 1) to our (f,g) to
know that the variety 2U(n,k, f,g) is smooth and geometrically irreducible of
dimension two. QED

Examples

We first give a family of examples showing that for n = 2, the Theorem 1 cannot
be improved. Let k be a finite field, and take for f(X) the quadratic polynomial
X? + 1. The image of X in K:= k[ X]/(f) will be denoted i rather than ¢&.

Lemma. Notations as above, suppose that none of the numbers
—1,15,27
is a square in k (a condition which by quadratic reciprocity is fulfilled if k is Z/pZ
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Jor any p=19 or 31 mod 60). Then the element 8i of K™ cannot be represented as
the product of fewer than 4 elements of the form i + a with ack.

Proof. To see this, we first observe that 8i is not itself of the form i + a with aek.
We next consider the possibility that for some a,b in k we have

8i=(i+a)(i+b)in K.
This amounts to the pair of equations
8=a+b, ab=1,
which is to say
8=a+(1/a) with ain k™,

and this equation has a solution in k if and only if 15 is a square in k. Finally we
consider the possibility that for some a,b,c in k we have

8i=({—a)i—b)(i—c)in K.
Writing 8i = i + 9i, this becomes
X3 +9X =(X —a)(X —b)(X —c)mod (X2 + 1),
i.e., there exist a,b, c,d in k such
X3+9X +d( X2+ 1)=(X —a)(X —b)(X — o).
Consider the discriminant J of the left hand polynomial: the alleged factorization
would give
d=(a—b)*(a—c)*(b—0)? .
but a tedious direct calculation shows that
§=—(2(d*-27))>

Since — 1 is not a square in k, these two equations for é show that 6 must vanish;
but if § vanishes then d must be a square root of 27 in k, and k contains no such
element. QED

We next give a family of examples showing that for n = 3 the Theorem 6 cannot
be improved. (Unfortunately K is not a field in these examples.)

Let k be a finite field, and take for f the cubic polynomial X3 + 9X. The image
of X in K:=k[X]/(f) is denoted &.

Lemma. Notations as above, suppose that none of the numbers
—1,15,27

isa squﬁre in k (a condition which by quadratic reciprocity is fulfilled if k is Z/pZ
Jor any p =19 or 31 mod 60). Then no k> -multiple of the element £ + 1 of K™ can
be represented as the product of fewer than 4 elements of the form &+ a with
aek.

Proof. If (¢ + 1) =(¢ +ay) or E+a,)(¢ +a,) or C+a,)(¢ +a,)(¢ +a,) in K,
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with bek™ and the a;ek, then modulo (X* + 9X)k[X] we have a congruence
b(X?+ 1)=(X +a,) or (X +a,)(X +a,) or (X +a,)(X +a,)(X +a3).
In the first two cases this forces, for degree reasons, an equality
b(X*+1)=(X +a,)or (X +a,)(X +a,) in k[X],

which is visibly impossible, since X? + 1 is of degree 2 and k-irreducible. In the
third case it means that

X349X +b(X2+ 1)=(X —a)(X —a,)(X —a3),
and this is impossible by the first Lemma above. QED

Questions

(1). What happens if we drop the hypothesis that f be etale, and insist only that
(f,9) = 17 The “worst case” f(X):= X", when K™ = (k[X]/(X"))" is the product of
k> with a group of truncated Witt vectors, already seems quite interesting.

(2). How far is Theorem 6 from the truth? We have already pointed out that over
a large field k, we must have d = n. In the case n =2, however, it is trivially true
that the diameter is 2 rather than 3. On the other hand, the example above shows
that for n = 3 Theorem 6 is best possible, at least in the context of etale fs. It still
leaves open the possibility that for n>0 and Card (k) = D(n), one has d =n.

(3). What are the smallest values of the constants B(n) and D(n) for which
Theorems 1 and 6 respectively are true?
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