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THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION

By NicHorLas M. KAtz

Introduction. This paper grew out of an attempt to understand the
arithmetic properties of the Hurwitz numbers [2, 3], particularly the
possibility of their ‘‘p-adic interpolation’ in the style of Kubota-Leopoldt
[8]. We are successful precisely ‘‘half the time’’, for those primes p = 1 (4).
The very nature of our approach, which is an amalgamation of the
approaches of Serre and Mazur-Swinnerton-Dyer, seems to make it
inapplicable to primes p = 3 (4).

The basic idea is this. The archtypical case of successful p-adic
interpolation is that of the Bernoulli numbers, which in Serre’s approach
[18] appear as the constant terms of the g-expansions of certain Eisenstein
series. On the other hand, the Hurwitz numbers are essentially the values
of the same Eisenstein series, but at the lemniscatic elliptic curve (multipli-
cation by Z[i]) rather than at g = 0, the degenerate ‘‘elliptic curve at «’’.
The common feature of the lemniscate curve for p = 1 (4) and of the
‘“‘curve at »’’ is that they both have ordirary reduction, i.e. their formal
groups become isomorphic to the formal multiplicative group at least after
a highly non-trivial extension of scalars.

So more generally one might consider ‘‘trivialized elliptic curves’’,
namely pairs (E, ¢) consisting of an elliptic curve E over a p-adically
complete ground-ring together with an isomorphism ¢ of the formal group
of E with the formal multiplicative group. Then any usual modular form
(say with p-integral g-expansion) may be viewed as a ‘‘function’ of
trivialized elliptic curves. In this context, it is natural to ask if it is possible
to p-adically interpolate the values of the Eisenstein series at any trivial-
ized elliptic curve.

We show that this is in fact the case. The main technical tool upon
which we rely is the theory of the p-adic Mellin transform ([13], [15]),
which assures us that p-adic interpolation of a given sequence of p-adic
numbers is equivalent to the existence of a p-adic measure on Z, such that
these numbers are the integrals of the power functions x + x*. In fact, we
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simultaneously construct the needed p-adic measures for all trivialized
elliptic curves by constructed a single measure on Z, with values in the p-
adic Banach space of all generalized modular functions (i.e. functions of
trivialized elliptic curves), such that the integral of x — x* is the k’th
Eisenstein series. This measure we propose to call the ‘‘Eisenstein
measure’’. (A note to analysts: if one thinks of trivialized elliptic curves as
the test objects, then generalized modular functions become the distribu-
tions, and the Eisenstein measure becomes a distribution-valued measure.)

Thus we attach a p-adic zeta function to any trivialized elliptic curve.
In the case of the degenerate elliptic curve at « (g = 0), it is the Kubota-
Leopoldt p-adic zeta function (and so this paper provides yet another
construction of that function). In the case of a complex multiplication
curve, (although to fix ideas we treat only the lemniscate curve in detail),
we relate the values of our zeta function to the values of the classical ‘‘L-
series with grossencharacter’” at s = 0 for the powers of the canonical
grossencharacter to which the curve gives rise. In the case of a curve over
Q without complex multiplication which admits a Weil parameterization,
we do not know the classical meaning of our zeta function, and in
particular we do not know its relation to the p-adic L-series which Mazur
and Swinnerton-Dyer [15] and Manin [11] attach to such a curve by their
theory of the ‘‘modular symbol’’.

For the sake of completeness, we have worked systematically ‘‘with
level’’, especially with I'yo(N). This allows us to give an a priori construc-
tion of the Kubota-Leopoldt L-series L(s, x) with x any Dirichlet charac-
ter; sticking to level one would have meant restricting x to have conductor
a power of p. In any earlier version, the construction of the Eisenstein
measure made use of the existence of the Kubota-Leopoldt zeta function. I
owe to Deligne the idea of eliminating this dependence by systematic use
of the “Key Lemma’’ (1.2.1-3). It is a pleasure to record my gratitude to
him.

In fact, in a recent (Dec., 1973) unpublished letter of Deligne to Serre,
Deligne has explained how to prove the ‘‘good’’ congruences for the
Dirichlet L-series of a totally real number field, once one knows the
irreducibility mod p of certain moduli problems for abelian varieties with
‘‘real multiplication’’ by that field. In the case of the rational field Q, the
moduli problem in question is precisely that of trivialized elliptic curves
with T'g(N) structure, and so this paper may be read as an overlong
introduction to Deligne’s letter.

We have added several appendices. In the first, we recall Hurwitz’s
form of the functional equation of Dirichlet L-series, which we need (cf.
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2.4) to compute the constant terms of the Eisenstein series as values of L
functions. The second appendix is a brief recapitulation of the entire paper
in a context more suitable to the p-adic interpolation of the L-series
associated to complex multiplication curves—the point is that I'(V) is to a
quadratic imaginary field as I'y(V) is to Q. The final (!) appendix answers
the question raised in 2.8 about the modular meaning of Eisenstein series of
weight one.
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1. Generalized Modular Functions on I'(N) and on I'.(N).

1.1 Basic Definitions. Fix a prime number p, and an integer N = 1
prime to p. In case p = 2 orp = 3, we require N = 3. Let k be a perfect
field of characteristic p containing a primitive N’th root of unity {,. Denote
by W the Witt vectors of k, and by { € W the unique N’th root of unity
lifting &, .

A trivialized elliptic curve of level N is a triple (E/B, ¢, ay) consisting
of

an elliptic curve E over a p-adically complete and separated
W-algebra B

a ‘‘trivialization’” of the formal group of E by an isomorphism
0 E5 (Gl

a level N structure ay: yE > (Z/NZ)z? of determinant .

A generalized modular function on I'(N) is a rule f which assigns to
any trivialized elliptic curve of level N (E/B, ¢, ay) a ‘‘value”
f(E/B, ¢, ay) € B, subject to the following two conditions:

1. f(E/B, ¢, ay) depends only on the B-isomorphism class of
(E/B, ¢, ay), and its formation commutes with arbitrary extension
of scalars B— B' of p-adically complete and separated W-algebras.

2. Denote by W((g)) the p-adic completion of W((g)); then
f(Tate(g¥)/W((g)), ¢, ay) lies in the subring W[[q]] of W((g)) for
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every choice of ¢ and of ay. These series are called the g-
expansions of f.

(We should remark that the construction of the Tate curve makes
evident a canonical choice ¢.,, of ¢, such that any other ¢ may be uniquely
written ae with a € Z,*; thus all ¢’s are in fact defined over W((g)).)

For any p-adically complete W-algebra B,, we may define the notion
of a generalized level N modular function defined over B, by restricting
attention to trivialized level N curves (E/B, ¢, ay) over p-adically complete
B,-algebras B, and requiring that f(Tate(g")/B,((q)), ¢, ay) lie in B,[[q]] for
all choices of ¢ and ay.

Let V(B,, I'(N)) denote the p-adically complete ring of all generalized
level N modular functions defined over B,, and let R ‘(B,, I'(N)) denote the
(graded) ring of all ‘‘true’’ modular forms on I'(N) defined over B,. In a
natural way, R (B,, I'(N)) maps to V(B,, ['(N)): a true modular form f gives
rise to the generalized modular function f defined by

f(E/B, ¢, ay) = f(E/B, ¢*(dT/1 + T), a)

where T is the standard parameter on Gm, dT/1 + T is the standard
invariant differential on G,,, and where ¢*(dT/1 + T) denotes the unique
invariant differential on E/B whose restriction to E is ¢*(dT/1 + T). On the
Tate curve, we have ¢¥,(dT/1 + T) = wea,, hence

f(Tate(qN)/BO((q)), Pecan > aN) = f(Tate(qN)/BO((q)), Wean 5 Oy )

As ay runs over all level N-structures, the right hand side runs over all the
g-expansions of f as true modular form. Thus if we fix the weight of f, it is
uniquely determined by f (thanks to the g-expansion principle), in other
words f +> fis injective on the space of modular forms of each given
weight, but unless B, is flat over W, the ring homomorphism R ‘(B,, I'(N))
— V(B,, I'(N)) will not be injective. (The determination of the kernel for B,
= W/p”W, any v, is the subject of [7].)

The groups G = SL,(Z/Nz) and Z,* act on the rings R (B,, I'(N)) and
V(B,, I'(N)) in the following way:

[g]f(E/B’ w, aN)=f(E/B’ w, g“loaN) gEG, fe R(B’ F(N))

[alf(E/B, w, oy) = f(E/B, a ', ay) a€ Z,”, fER (B, T(N)
[glf(E/B, ¢, ay) = f(E/B,p, 87 cay) gEG, [f€V(By, (N)
[a]f(E/B’ () aN) =f(E/B’ a_l‘P, aN) ae pra fe V(BO’ F(N))

These actions commute with each other, and under them the homomorph-
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ism R'(B,, I'(N)) = V(B,, I'(N)) is equivariant. An element f € V(B,, I'(N))
is said to have weight x € Homg,;,(Z, %, By*) if it satisfies

[alf = x(a)-f forall a€Z,”.

Observe that the image in V(B,, I'(V)) of a true modular forms of usual
weight k has weight x;., where x,(a) = ‘‘a* viewed as an element of B,”".
When B, is flat over W, a generalized modular function admits at most one
weight (though of course most have no weight).

A generalized modular function of level N defined over B, is said to be
“on Iy(N)” if it is invariant under the subgroup

o-{(0 )

In concrete terms, f is on [yy(N) if

f(E/B’ b, aN) =f(E/B’ @, aN’)

xEZ/NZ} of SL(2,Z/NZ).

whenever
ay~(1, 0) = (ay')7'(1, 0).

Equivalently, a generalized modular function on Iyy(&V) is a “‘function’’ of
triples (E/B, ¢, P) consisting of a trivialized elliptic curve together with a
section P of order exactly N (i.e. order exactly N at every point of
Spec(B)), whose g-expansions f(Tate(q")/By((g)), ¢, P) all lie in Byl[q]].
The ‘‘standard’’ g-expansion of a generalized modular function will be its
value on (Tate(q)/B,((q)), Pcan, {), Where { denotes the point of order
exactly N on Tate(g) obtained from the given N’th root of unity { € W by
viewing Tate(q) as a suitable quotient of G,, .

We denote by V(B,, I';o(N)) the p-adically complete ring V(B,, I'(N))Y
of generalized modular functions on I'y(N). The action of Z,* respects
V(B,, T'o(N)). The action of the diagonal subgroup of G = SL,(Z/NZ)
respects V(B,, [y(IN)), where it is more conveniently written as an action
of (Z/NZ)*; defined by

[bIf(E, ¢, P) = f(E, ¢, bP) for beE (Z/NZ)*.

An element f of V(B,, (V) is said to be of ‘‘nebentypus” € €
Hom((Z/NZ)*, B,>) if [b]f = e(b)ffor all b € (Z/NZ)>.

Analogously, we denote by R'(B,, I'(o(N)) the ring of true modular
forms defined over B, on I'y(N), defined as the invariants of U in R (B,,
I'(N)). Thus the homomorphism R (B,, B(N)) — V(B,, I'(N)) restricts to a
Z,* X (Z/INZ)*-equivariant homomorphism R (B, , [yo(N)) = V(B,, Tgo(N)).
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1.2 Review of the Main Congruence Properties. For any p-adically
complete ground-ring B,, we have V(B,, ['(N)) = V(W, T(N)) ®, B, and
V(B,y, Too(N)) = V(W, Tpo(N)) @ B,. The important case is B, = W/p"W.

Over any p-adically complete ground-ring B,, any choice of ¢, ay on
the Tate curve gives an injective g-expansion homomorphism

V(B,, T(N)) — Byl[q]]
U

V(By , Too(N))

Applying the results to the rings B, = W/p"W, we immediately see
that over W, the cokernels W[[q]l/V(W, T'(N)) and W[[q]l/V(W, To,(]N)) are
flat over W. In concrete terms, this means that a generalized modular
function on T'(NV) (resp. on I'y(V)) is divisible by p in the ring V(W, I'(N))
(resp. in V(W, Too(N)) if and only if at least one of its g-expansions is
divisible by p in W[[q]]. [In particular, if one g-expansion is divisible by p,
then all are!]

Let D(W, T'(N)) (resp. D(W, T,(N))) denote the subring of R (W[1/p],
T'(N)) (resp. of R (W[1/p], T'4s(V))) consisting of elements X f; such that for
one (and hence for every) choice of g-expansion, Z f(g) lies in W[[g]]; the
elements of D are the ‘‘divided congruences’’ of [7]. The inclusions R (W,
T'(N)) C V(W, T(N)) and R (W, Tyo(N)) C V(W, I'yo(V)) extend to inclusions

D(W, I'(N)) C V(W, I'(N))
D(W, To(N)) C V(W, To(N)).

Let us recall how these inclusions come about. If 2 f; is a sum of true
modular forms over W[1/p] such that for some choice of cusp the g-
expansion 2 fi(q) is integral, i.e. lies in W[[q]], then for n > 0, Z p™f; is a
sum of true modular forms over W, and gives rise to an element = p"f; of V
one of whose g-expansions is divisible by p™. But then this element is
uniquely divisible by p™ in V, and dividing it by p" gives the desired image
in V of the element X f; in D.

1.2.1 Key LEMMA FOR I'(N). Let 2 f, € R'(W[1/p], T(N)) be a sum
of true modular forms on T'(N), defined over W[1/p]. Suppose that at some
cusp, the g-expansion Z f,(q) is integral except possibly for its constant
term, i.e.

> fiq) € WI1/p] + WIlq]].
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Let (a, g) be any element of Z,,* X SL,(Z/INZ) and denote by f+> [a, glfits
canonical action on R'(W[1/p], T(N)). Then the difference

2 fi—[a, 8] X f; € DWW, T(N)),
i.e. 2 f; — 2 [a, glf; has integral g-expansion.

Proof. For n > 0, Zp"f; lies in R (W, I'(N)), and there exists a
constant A € W such that 2 p"f; — A has one of its g-expansions divisible
by p". Hence 2 p"f; — A lies in p"D. Applying the automorphism [a, g] of
D, we see that [a, g] 2 p*f; — [a, g]JA = p" = [a, glf; — A lies in p™D.
Subtracting, we find that p* X f; — p" = [a, g]f; lies in p™D, and hence that
2 fi — 2 [a, glf; lies in D.

1.2.2 KEY LEMMA FoOR T'y((N). Let Z f; € R (W[1/p], Tyo(N)) be a
sum of true modular forms on Tyy(N), defined over W[1/p]. Suppose that

one of the g-expansions Z f,(q) is integral except possibly for its constant
term. Then for any element (a, b) € Z,* X (Z/NZ)*, the difference

Yfi-la, bl X
lies in D(W, T'y,(N)).
Proof. The same.

1.2.3 ALTERNATE VERSION OF THE KEY LEMMA. Let f be an arbi-
trary element of V(W, I'(N)) @y W[1/p] (resp. of V(W, T'y(N)) Qu
WI[1/p)), and suppose that one of the q-expansions of f is integral
except possibly for its constant term. Let (a, g) (resp. (a, b)) be any
element of Z,* X SL,(Z/NZ) (resp. Z,* X (Z/NZ)*). Then the difference
f = la, glf (resp. f — [a, blPhas integral g-expansion and hence lies
in V(W, T(N)) (resp. V(W, Tyo(N)).

Proof. Again the same.

1.3 The Frobenius Endomorphism of V(B,, I',s(N)). Let (E/B, ¢) be a
trivialized elliptic curve. Recall that the canonical subgroup E.,, of E is the
kernel of multiplication by p in the formal group E of E, which by means of
¢ is identified with u, C G,,. Let us denote by

m: E—E/E,,,
the projection onto the quotient, and by

7. EJ/E,,—E
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the dual isogeny. Then 7 is étale, so in particular induces an isomorphism
between the formal groups of E/E.,, and E.

If in addition we are given a point P on E (i.e. a section of E —
Spec(B)) of order exactly N, then the point #(P) on E/E_,, also has order
precisely N, because  is an isogeny of degree p prime to N.

Let’s examine what happens with the Tate curve Tate(g"). The
canonical subgroup is u,, and the p-th endomorphism of G,, induces the

desired isogeny m: Tate(q") = G, /q"* —— z G, /¢*"* = Tate(¢"?). The
dual isogeny 7 is simply passage to the quotient by the subgroup of
Tate(g"?) generated by g". It follows that for any trivialization ¢ of
Tate(g”), the trivialization ¢ o 7 of Tate(g™?) is the one deduced from ¢ by

the extension of scalars W((q))—q—:qie W((qg)). If P is the point {"g™ on
Tate(g"), then 7 (P) is the point {"q™ on Tate(g"?), and thus =(P) is the
point of Tate(g"?) deduced from the point {"q™ of Tate (¢") by the same
extension of scalars g +> q” of W-algebras. Putting this all together, we find
that

(Tate(g")/canonical subgroup, ¢ ° 7, w({"q™))

is deduced by the extension of scalars W((g)) e, W((g)) from
(Tate(@"), ¢, £"q™)
Thus we may define the Frobenius endomorphism
Frob: V(B,, I'y(N)) = V(B,, I'y(N))
by defining
(Frob f)(E, ¢, P) = f(E/Ecan , ¢ © i, w(P)).
Its effect on g-expansion is thus given by the formula
(Frob f)(Tate(q"), ¢, £"q™)
= the image under g + ¢® of f(Tate(q"), ¢, {"q™); (1.3.1)
in particular, for the ‘‘standard’ cusp (Tate(q), ¢, ("), we have
(Frob f)(Tate(q), ¢, {")
= the image under g — ¢” of f(Tate(q), ¢, {™). (1.3.2)

1.4 A Technical Remark. We have viewed the ['y(N) moduli prob-
lem, that of ‘‘classifying’’ elliptic curves together with a point of order
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exactly N, as a quotient of the I'(N) moduli problem, that of classifying
elliptic curves together with a level N structure of fixed determinant. As a
result, we seem to be stuck with choosing an N’th root of unity before
discussing the I'yo(N) problem.

In fact, there are two distinct moduli problems we can consider which
are defined over Z, which both become isomorphic to ‘‘our’’ I'y(N) moduli
problem when we adjoin an N’th root of unity and invert N. They are

1. elliptic curves E plus injections Z/NZ — Ker(N) in E
2. elliptic curves E plus injections gy — Ker(N) in E

For purposes of maximizing ‘‘rationality’’, the second problem is in
fact preferable, simply because the construction of the Tate curve Tate(q)
over Z((q)) as a suitable kind of quotient of G,, makes evident a canonical
inclusion i.,,: my — Ker(N) in Tate(g). Thus the ‘‘standard’’ cusp
(Tate(q), ¢can, &) on the first (V) problem, is defined explicitly in terms
of a chosen ¢{; it may be ‘‘replaced’’ by the cusp (Tate(q), @can > ican) Of the
second T'yo(N) moduli problem, which is defined over Z,. In this way, we
may ‘‘modularly” interpret an element f € V(W, I'y(N)) whose g-
expansion at the standard cusp lies in Z,[[g]] as a generalized modular form
on I'yy(N) in the second sense, which is defined over Z,,.

1.5 Modular Forms on ['j(p") as Generalized Modular Forms. Let us
recall the notion of a modular form on Iy(p") of level N ((p, N)=1) over
Q(&). Ttis a ““function’’ of quadruples (E/B, w, p, ay)

B a Q(¢y)-algebra

E an elliptic curve

o a nowhere vanishing differential on E
P an injection p,. — Ker(p™) in E
ay alevel N structure of determinant ¢

with values in B which satisfies the usual rules for a modular form (cf. [6],
1.2), namely holomorphic g-expansions and commutation with extensions
of scalars B —B’. [As soon as B contains a primitive p™'th root of unity
(i.e. an isomorphism of (u )z = (Z/p™Z)g, the data of p is equivalent to the
giving of a point of order exactly p™ on E.]

Now consider the ‘‘universal’’ trivialized elliptic curve with level N
structure (E, ¢, ay), whose ground-ring of definition is the p-adic comple-
tion of the “‘finite part’ of V(W, [\((N)) (eg, the p-adic completion of V(W,
Ioo(N))[1/A], where A is Ramanujam’s cusp form 2,., 7(n)g").



248 NICHOLAS M. KATZ.

Then the quadruple (E, o*(dT/T), ¢! |pp = Epu, ay), viewed over

/\ . . . . .
V(W, Too(N)[1/A] ®y W[l/p] is an admissible point of evaluation for any
modular form on I'yo(p™) of level N. Evaluating there, we obtain a ring
homomorphism

/\
level N modular forms on I'yy(p™), — V(W, T(N))[1/A]® W[1/p]
w

defined over W[1/p]

which is necessarily injective, because it carries evaluation at (Tate(g"),
@can > ay) to evaluation at (Tate(g"), ®ean » lcan: o —> Ker(@"), ay) .

%
If we restrict to the invariants of the group U = (é 1) C SL,(Z/INZ),

we get a ring homomorphism, again injective,

/\
modular forms on Iy(Np™) — V(W, [\o(N))[1/A]1Q W[1/p],
w

defined over W[1/p]
which carries evaluation at (Tate(q), ¢can » {) to evaluation at (Tate(q), @can
ican: Mo — Kel‘(p"), C)

LeEMMA 1.5.1. The above homomorphisms actually have values in
V(W, T(N)) ® W[1/p] and V(W, Tw,(N)) @ W[1/p] respectively. If fis a
modular form on T'yy(p™) of level N (resp. on I'yy(Np"™)) whose g-expansion
at one of the cusps (Tate ("), Wean 5 ican > @) (resp. (Tate(q), Wean > kcan > £))
lies in W[lqll, then it defines an element of VW, [I(N))
(resp. of V(W, Tyo(N)) with the ‘‘same’’ g-expansion.

. /\ .

Proof. Modularly, the formal scheme given by V(W, I'(N))[1/A] is

just the open set ‘‘the finite part” of the formal scheme given by V(W,
I'(N)). (In the notations of [7], we have

/\
V(W, T (N))[1/A]® W/p™W = lim (the coordinate ring of T3, ,).)
w i

This implies (just as for V(W, I'(N))) that any g-expansion homomorphism
— S
VW, T(N)[1/A]— W((q))

is injective, and has W-flat cokernel.
By the principle of bounded denominators ([6], p. 161), if we replace f
by p*f for v > 0, it will have at least one of its g-expansions in W[[g]]. Thus

/\ /\
its image in V(W, I'(N))[1/A] ® W[1/p] will lie in V(W, I'(N))[1/A]. But
modaularly, this last ring is the ring of all generalized modular functions on
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(V) which are not necessarily holomorphic at the cusps. By hypothesis,

NS
the g-expansions of f all lie in W[1/p][[q]] N W((q)) = W[[q]], and thus f
lands in V(W, T'(N)).
The I'y(N) case is immediately deduced, by passing to invariants of

! i) C SL,(Z/NZ).

the subgroup U = (0

2. Eisenstein Series.

This section provides a leisurely review of Eisenstein series with level,
from both an analytic and, where possible, an algebraic, point of view. The
principal facts we are aiming at are the following.

2.1 Statement of Results.

2.1.1 Letk =1 be an integer. Let f be a periodic functionf: Z — Z of
parity k (f(—x) = (—1)*f(x)) which admits the period N. In the (excep-
tional) case k = 2, suppose also that f(0) = 0. Then there is a true modular
form Gy on I'(N) of weight k& whose g-expansion at the standard cusp
(Tate(q), wean » ican: py —> Ker(V)) is

Gifq) = 3L — k. f) + X ¢" X d*'f(d)

nz1 din

where L(1 — k, f) denotes the value at s = 1 — k of the L-series

L(s,f) = X f(n)n=.

n=1

2.1.2 If we fix a prime p and an integer N = 1 prime to p, then for
any periodic function f: Z — Z of parity £ which admits the period Np" for
some n = 0, there is a generalized p-adic modular form G, € V(W, I'y(V))
® WI[1/p] whose g-expansion at the standard cusp (Tate(q), @ean, ) is

Gidq) = 3L =k, /) + X q" dIZ d“*='f (d)
n=1 n

Let us explain briefly how 2.1.2 follows directly from 2.1.1. As we
have already explained, a true modular form on I'yo(Np™) “‘is’’ a generalized
modular form on I';((N) with the same g-expansion. The only remaining
point is that for k = 2, we no longer require f(0) = 0, i.e. we allow the
constant function f = 1. This is possible because the series

G@=-+ S Sd=RD+Sq Sd

24 n=1 din n=1 din
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is the g-expansion of a generalized modular form of weight two on SL,(Z)
for any prime p (cf. [6], 4.5.4 for a proof).

2.2 Over C. Let (E/C, w, P) be a triple consisting of an elliptic curve
E/C, a non-zero invariant differential ® on E, and a point P on E of finite
order. Viewed analytically, this triple is equivalent to a pair (L, ¢,)
consisting of a lattice L C C and an element ¢, € (L ®, Q)/L. The

equivalence is given explicitly by
(L, ¢,) +~ E: the elliptic curve C/L
w: theinvariant differential dz (z the standard parameter on C)
P: the image of ¢, in C/L
(E, o, P) + L: the lattice f |y € H(E, Z)} of periods of
¥

P
¢,: the class modulo L of f o taken over any path (2.2.1)
0

On the other hand, we recall that for any Z[1/6]-algebra B, if we are
given an elliptic curve with nowhere-vanishing differential (E, w) over B,
then there are uniquely determined meromorphic functions X = X(E, o)
and Y = Y(E, o) on E which are holomorphic except for second and third
order poles respectively along the identity section ‘‘«’’, in terms of which
(E, w) is given by a Weierstrass equation as a plane cubic:

(B, w) = (Y* = 4X® — g,X — g3, 0 = dX/Y).

Over C, the meromorphic function X on E becomes the Weierstrass -
function on C/L

X=9@ L) =+ IELZ{O) ((Z e 21—2) , (2.2.2)
the meromorphic function Y becomes ' = i—f ;
Y=2'(z, L) = =2 2 P g)a (2.2.3)
and the differential w becomes dz:
o =dX/Y =dP/P' = dz. (2.2.4)

The Eisenstein series Ax(L, ¢,) are defined analytically for integers &
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= 3 by the formulas
1

Ak(L9 €0)

weL®Q—{0} ;V;
w=¢,mod L
E if ¢,=0modL
¢e L-{0} ik 0
(2.2.5)
1 .
Y ———  if €,%+0modL

éer (€ + £)F

In case ¢, = 0 mod L, we sometimes write A,(L) instead of A,(L, ¢,).
Notice that Ag (L, —¢,) = (—1)*A.(L, ¢,).

These series are closely tied up with the values of the #-function and
its derivatives. Explicitly, we have the formula, valid for k = 3:

1)* k-2
AL, €y) = (lﬁ )1)' ( ) P(z, L)L=a, if €b¥0modL (2.2.6)
while the series A, (L), (which obviously vanish for odd k), enter in the
power series expansion of 2.

P, L) = z— + > (n+ 1)'A,,+2(L) (2.2.7)
n=1
It will in fact be more convenient to deal with the ‘‘normalized”’
Eisenstein series

am (—1F-(k — 1)!

Gy(L, £)) — >

Ax(L, £y) (2.2.8)

As above, we will sometimes write G,(L) instead of G,(L, ¢,) when ¢, =0
mod L.
The formulas become

1 d k-2
Gy(L, ¢,) = 5 (zi‘z'>

for k=3, ¢, ¥0modL
and 2.2.9

72k

Pz, L) == + 2 E Gors2(L) 7y

vt (2k)" Goaal) =0
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2.3.1 Modular Definition of the G, over Q. Let (E, w) be an elliptic
curve with differential over a Q-algebra B. Then there is a unique
isomorphism of the formal group £ with the formal additive group G,
under which the differential ¢ becomes the standard invariant differential
dz on G,. In other words, there exists a unique formal parameter z =
Zz(E, o) in terms of which w = dz. The Eisenstein series Gi(E, w) are
defined as the coefficients of the Laurent series expansion in z of the
meromorphic function X = X(E, w) on E along the identity section:

1

Z2n
2 +2 n§’1 G i2(E, w) an—)'

When B = C, then X = P(z, L), and G(E, w) = G,(L).

X Goaa(E, w) = 0.

N

2.3.2 Modular Definition of the G,(E, w, P) over Z[1/6]. Let (E, w, P)
be an elliptic curve together with a nowhere vanishing differential and a
section P of order exactly N, over a Z[1/6N]-algebra B. Let D = D, be the
unique translation-invariant B-linear derivation of Oy which is dual to .
Then we define, for k = 3

Gk(E’ w, P) = %Dk-2(X)|P'
When B = C, then D = (d/dz), X = P(z, L), and G,(E, w, P) = G,(L, ¢,).
2.3.3 The Magic Triangle. This is a catch-phrase for the fact that two

extremely transcendental procedures ‘‘cancel’’ each other, to yield an
algebraic one.

integration of w over
(E’ (0, P) :(L, (0)

Gy, an archimedean
infinite series

“purely algebraic’’

C

2.4 g-expansions of Eisenstein Series. We will compute analytically.
The Tate curve (Tate(g”), w.an) corresponds to the lattice 2miZ + 2mwiN7TZ,
a point P = {q* of finite order N to ¢, = —;—:,E + 2mwifT. We normalize the

integers j, € by requiring 0 <j, ¢ < N.
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A, QmiZ + 2wiNTZ, 2wij/N + 2mwifr)
_ 1 2 1
Qi) i (n+ mNT + j/N + £r)k

1 1
T Qmiy ,,Eo §Z (n + mNt + j/N + ¢1)*

(2.4.1)

1 1
+
Qi) jez (n + j/N + €1)*

Gl Ul 1)k » 1
(27'”)k m>o nez (n + mNt1 — j/N — €1)k

If we now avail ourselves of the formula valid for Im(x) > 0, (both
sides converge absolutely for & = 2)

1 — 1%k
S+ xF ( (k)—(l;rgl) gl ntletming (2.4.2)

we immediately compute

A QmiZ + 2wiNTZ, 27wij/N + 2wifT)

(k - 1)' go gl nk l(qMN Z)ng—nj

(i——l)m S k-1 gl if ¢+0

(2.4.3)

1 1

o
@mif & (n + j/NF it £=0

Switching to the normalized series G, = (—1)*[(k — 1)!//2]A,, and
adopting the Hurwitz notation

{(s,a) = X 1 (2.4.4)

w0 (n + a)’
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we have the formulas

G(Tate ("), wean » £'q°)

=% 2 nk- 1(qu+l)n€nj + )k 2 "= l(qu f)ng—m

m=1 m,n=1

{—Enkwgw it ¢#0

n=1

k
EE L G /N + (C1¥elh 1 =i/NY i €= 0
2.4.5)
Thus if ¢ # 0, we have
Gi(Tate(q"), Wean » q°) € 39Z[E][4]] (2.4.6)
while in case £ = 0 we have
Gk(Tate(Q), Wean > {j)
=2 g > d Y+ (-1
n=1 (_ :;:Nk(k B 1)' (247)
+ —_2_(2—1713"_— [L(k, char. fct. of j mod N)

+ (= 1)%L(k, char. fct. of —j mod N)].
where for any function f on Z/NZ, we note L(s, f) the function

L(s,f) = X f(n)yn*

n=1

In the case of Eisenstein series ‘‘without level’’, the formula above
remains valid:

0 k odd

Gi(Tate(q), Wean) = (2.4.8)
LR = DY g Y &' keven

(277 )k n=1 din

Evaluation of the constant term. If we define the Fourier transform f
+> fon functions on Z/NZ by the formula




THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION. 255

o=~ S g 2.4.9)

N.z'modN

then the Hurwitz functional equation (cf. Appendix A) for (s, a) gives the
following relation between the integral values of L(s, f):

Ne-(k — D1(—1)F

omif Lk, f(x) + (= 1¥f(=x)),

L1 -k, f)=

fork=2 (2.4.10)
or equivalently for
L(1 -k f)=0 if f(=x) = (=1 f(x),
k=2:

2NFE-(k — DI(—1)*
Qmi)*

L1 =k, f) = Lk, f) if f(=x) = (=1} (x).

We introduce some functions on Z/NZ:
— pix _Jrif x=j
P(x) = ¢ fix) = {0 it ox £ (2.4.11)

They satisfy the identities

fi(=x) = f;(x), Pi(=x) = ¢_;(x)
fi=; ) ) (2.4.12)
S+ U = + (1D,
Thus the functional equation gives
— 1)k NE —
B Ll £+ (=1 = 4L =k + (= 1R)) - 24.13)
i)

and we obtain the g-expansion formula
Gi(Tate(q), wean, &) =1L(1 — k, 4y + (= 1Y9_;)
+3 3 g Y d[Yd) + (- 1Py (d)]. (2.4.14)

n=1 dln

2.5 Definition of the Eisenstein series G, s on I';((N). For any function
fon Z/NZ, say with values in Z and any integer k = 3, we define a modular
form G, ; of weight k on I',(N) over Q({) by

GidE, 0, P)= 3 F(DGLE, w, dP). (2.5.1)

d mod N
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Recalling that G,(E, w, —P) = (—1)*G,(E, w, P), we see that
Ger=0 if f(—x) = (-1 f(x)

Gy, (E, 0, P) = G,(E, w, dP)

G_k,i[wd+<—1)kw_d]
The g-expansion at the standard cusp is thus given by

Gk,f(Tate(q)a Wean » f)

{0 if f(=x)=(=D""f()
(2.5.2)

LA -k )+ 2 q 2 dfd) if f(—x) = (-1 (x)

n=1 din

Grelg =0) =3L(1 — k,f)  foranyf

At any cusp the g-expansion lies in Q[{][[¢]], and is integral except perhaps
for its constant term.

LEMMA 2.53. Let b € (ZINZ)* act on the space of Z-valued
functions on Z/INZ by [b]f(x) = f(bx). Then

Gy = [b]Gy s
where b € (ZINZ)* acts on modular forms on T'oy(N) by
[bIGE, o, P) = G(E, w, bP)
P A
Proof. The point is that [b]f = [b7*]f; thus
P
GiwdE, 0, P) = X [bIf(d)G(E, w, dP)

dmod N

> fd)G(E, w, dP)

dmod N

Y F(d)GE, », dbP)

d mod N

= Gk’f(E, w, bP)

Q.E.D.
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2.6 Eisenstein Series of Weight Two. The Eisenstein series of weight
two A,'(L, ¢,) is defined only for ¢, # 0 mod L, by the formula

1 1 1
ar* Zleraal-reni, eo

(The sum is absolutely convergent.)
The normalized Eisenstein series G,'(L, ¢,) is defined by

G,'(L, €y) = 3A,' (L, €,) = $P(z, L)|z=€q‘ (2.6.2)

Ay (L, fo) =

g-expansion. The g-expansion is readily calculated, just as above:

A, QmiZ + 2wiN7Z, 2mij/N + 2mifr)

__ Ly { 1 1 }
T Qmi? mm Ln+ mN7 +j/N + ¢1)2  (n+ mN7)?

1 1 !
= Qmip mgo gz {(n + mNt +j/N + €12 (n + mNT)z} 2.6.3)

O
Qmiy 5 ((n+j/N + €12 n?

(=12 { 1 1 }
Qmi)? so ez ((n + mN7 — j/N — €72 (n + mr)?
Applying the formula (2.4.2), we find
A,'QmiZ + 2wiNTZ, 2mij/N + 2mwifr)

= Z (Z =1 (g — 2 nk—l(qu)n)

m>0 ‘n=1 nx=1

+ Z Z nk—-l(qu—f)nc—nj _ Z nk—l(qu)n)

m>0 =1 n=1

S g - ——2¢) it exo0 &Y
n=1 (27”)2

1 1 . )
Qmiy? @Z (i +j/NE 2§(2)) if ¢=0

Thus A,'(L, ¢,) has a holomorphic g-expansion. At the cusps (Tate(q),
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Wean » &), the g-expansion is given by

G,'(Tate(q), @can, ) = 2 q" X, d-3[% + {7 - 2]

n=1 din

N?
2(2 7 ——= [L(2, char. fct. of j mod N)

(2.6.5)
+ L(2, char. fct. of —j mod N)]

1
- WC(Z)-

Using the functional equation for L-series (Appendix A) once again, we
may rewrite the constant term. Recalling that {(—1) = —1/12, we find

GZ ,(Tate (q)a wcan ’ ?)
=(=1, ¢ + ¢ y) — %{(— 1)

+31> g g d@Wy(d) + ¥_;(d) — 2) (2.6.6)
=L(-Ly+ v ) +3 > q" dE dW;(d) + ¥_y(d))
n=1 In
“(H+2aZa)
n=1 din

2.6.7 Definition of G;;. For any function f on Z/NZ with values in Z
which has total integral zero (i.e. 2 f(x) =0) we define a modular

x mod N

form Gj; of weight 2 on I',(N), defined over B, by

dfn

Gy {E, 0, P)=—= Y Ff(d)G,(E, w, dP). (2.6.8)
750

Recalling that G,(E, w, —P) = G,(E, w, P), we see that
Gys=0 if f(=x)=—-f(x)

Gé,lbd(E’ w, P) = G2(E’ w, dP) (2.6.9)
|

’
G a0, v,

and the g-expansion of G;, at the standard cusp is given by
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Gy (Tate(q), ®can > )

0 if f(—x)=—-fx)
= [$L(-1,f) + Zl T dlz dr(d) (2.6.10)
~fO(S+ T T d) it fen =0,
24 n=1 dln

2.6.11 Definition of G,; as a generalized modular form. We recall
from [6] the fact that for any prime p, there is a generalized modular form
—24G, of weight 2 and defined over Z, level one whose g-expansion is

—24G,(Tate(q), @ean) =1 -24 X q* D, d. (2.6.12)

n=1 din

Thus we may define G,; € V(W, I',(N)) ® W[1/p] by the formulas
Gy +fOG, if X fl0=0

x mod N
Gy = (2.6.13)
G, if fis the constant function 1.

For any f, noting by [ f its average value 1/N =, ..q 5 f(x), we thus have the
formula

Gos = Gyy—pr + f(0)G, (2.6.14)
Its g-expansion is given by the expected formula:

Gz,:(Tate(Q), Pean g)

0 dd
o (2.6.15)

IL(-1,/)+ X g~ X dfd  f even

nz1 din

2.7 Eisenstein Series of Weight One. Strangely enough, the situation
in weight one vis a vis Eisenstein series is more satisfactory than it was for
weight two. Let us recall the definitions in an analytic context.

The Weierstrass ¢ function associated to the lattice L is the mero-
morphic function on C defined by the absolutely convergent double sum

1 1 1 z
(D) =-+ 3 ((z—;—,; -3+ %) @.7.1)

€€ L~{0)
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The sum converges absolutely and uniformly on any compact subset of C
— L. It is minus the integral of the & function:

d¢(z; L) = —=P(z; L)dz 2.7.2)

Let us recall its relation to ‘‘periods of the second kind’’ (cf. [9], p. 241). In
terms of the coordinates X, Y, we have ‘‘the’’ differentials of the first and
second kinds

(2.7.3)
ax
n= XT =Xdz =P(z; L)dz = —dl(z; L)

which furnish a basis of H(E, C).
For any ¢ € L = H,(E, Z), we denote by (7, ¢) the complex number
obtained by pairing the homology class ¢ and the cohomology class 7:

(n, €) = ln = - fZH dt(z,L)=¢(z; L) - ¢z + ¢ L)  (2.7.4)

R

Now suppose given £, € L ® Q, ¢, & L, and choose an integer N such
that N¢, € L. Following Hecke, we define

1
AL, €)= C(go;L) +‘ﬁ<7l, Nt,). (2.7.5)
It is immediate that for fixed ¢,, the number (1/N){n, N£,) is independent
of the auxiliary choice of N. If we replace ¢, by ¢, + ¢, with £ € L, we
find
AL,y + €)=, + ¢; L) + Al/(n, N¢t, + N¢)
1
=L + ¢ L) + N(n, Nty) + (m, )

: (2.7.6)
= €(€09 L) + N(n’ N€0>

= AL, €,).

The g-expansion of values of the Weierstrass { function. For any z & Z
+ Z7, we have
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¢ 2miz; 2mil + 2milT)

1 1 1 ( 1 1 z )
=+ — - +
| z 2771'%; z+n+mr n+mr (n+ mr)?

1 1 1 ( 1 1 )
= —— = 4 — j—
2mi z 271'1'%; z+n+mr n+mr

27 n + mr)?
=-271'r;' —zl—+§;17-l§ <zin—%)+ﬁ§ ; (n+1m’r)2
* -2711';,,2:0 n (z + n1+ mr - n +1m7) 2.7.7)
* 2L7'rim>0 ; (z + nl— mr - n —1m7>

G2 )
=— -+ +
2mi\z Sy \z+n z-—n 271-1§§:(rz+m7-)2

1 < 1 1 )
+—=> Y -
2o 7 \z+n+mr —z+n+mr

L. m cot(mz) +o— z z

2 (n + mT)2

— Z (2 g™ (e?mine — e—zmnz))

m>0 ‘n=1

The q-expansion of A, .
A,QmiZ + 2mwiNTZ; 2mij /N + 2mwifT)

1 1
= {Q2mij/N + 2mit7) + I {(2miz) — N LQ2miz + 2mwij + 2mwiN{T)

1 1
= oy (m cot(mj/N + mér) + N (7 cot(mz) — w cot(mz + mj + wN£T))

- Z Z qnmN I:(ezrrinj/N+2-rrinl‘r + l eZﬂ'inz — Xl_/ eZ‘rrinz+2m‘nN¢1)

m>0 n=1

— (same with n replaced by —n)] 2.7.8)
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Now we may rewrite the coefficient of g™ as
- 1 : .
(ez’""”"’q”" *N e*mn%(]1 — ¢g"‘) — (same with n replaced by —n)) .

To compute a given coefficient, we may let z — 0; then we see that the
coefficient of g™ is

) 1 .
e2miniiN. gnt 4 N (1 — g"¥) — (same with n replaced by —n).

In the particular case ¢ = 0, then the coefficient of g"'™ is 2™V —
e-—zﬁnj/N‘ Thus

A,2miZ + 2mitZ, 2wij/N)

7 cot(mj/N) + % (m cot(mz) — m cotlm(z + 1))

2mi

- z q 2 (gjd - c—m) (2.7.9)

n=1 din

Because the cotangent function is periodic with period 7, the constant term
simplifies:

A,(2miZ + 2mitZ, 2mij/N)

! cot(mj/N) — X q" >, (£ — ). (2.7.10)

2i n=1 din

We define the normalized series G, by the usual formula:

G, == — 14, 2.7.11)
Thus
G,(Tate(q), ®ean, &) = — %10_%(%11& + 2 q" 2 M- (27.12)
n=1 din
LEMMA 2.7.13.
— cot(mj/N) _ 1 v+1 _ _
Tkt _ 2 (———g, =) = 20,40 - )
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Proof of lemma. Compute:
1(e(ﬂf/N + e-—iﬂle) _1_ (gJ + 1)
cos(mj/N) _ 2 2
1
i

sin(mj/N) - (AN _ ,—imiIN 1 i —
5 (e e ) 5 @&-1

cot(mj/N) =

thus

—meot(m/N) _ 1@ +1)
2mi Co2@-)

As for L(0, f) for any odd function f, we use Abel summation!

- - 2 f1
lmJW=”§ﬂm=§ﬂmw =

In the last expression, both numerator (f is odd!) and denominator vanish
at T = 1, so by L’Hopital’s rule we have

1 N
LO.f) = =5 2 ().
n=1
The lemma thus reduces to checking that
1S . 1 (;f + 1)
- n _ p-in) = — _ (|2
N2 = 0-1

which we leave to the reader (hint: multiply by ¢ — 1).
So in weight one as well, we have the ‘‘correct’’ g-expansion

Gy(Tate(q), wean» &) = 3L(0, 35 — ¥_;))
+3 2 g 2y —yy))d).  (2.7.14)

n=1 din

Thus we may define G, ( just as in the case of higher weight by

Lam_ | Y F(A)G(E, w,dP) if fisodd
G, {E, », P) {“3‘2“0” if Fis even. (2.7.15)

We have
G, = Grawy-v_p = GI(E, 0, jP) (2.7.16)
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and hence by linearity we get the desired g-expansion formula for any odd
function f.

Gy,r(Tate(q), @ean, ) = 3L0, /) + > q* > f(d) 2.7.17)

n=1 din

2.8.1 Another technical remark. The Eisenstein series G, we have
constructed are intrinsically modular forms defined over Q(the values of f)
on the second version of the I'y(N) moduli problem (cf. [1] and 1.4). They
are defined, however, with the help of the modular forms (one for each
integer d mod N)

(Ea w, P) - Gk(E’ w, dP)

each of which is intrinsically a modular form defined over Q on the first
version of the I'y(N) problem. The modular definition of G, is by its
“‘fourier series’’:
GiAE, @, i: py— Ker(N)) = X F(&)-Gy(E, , i)
€y
The fourier transform f of a function f on Z/NZ is the function on my
defined by

FO=~ 3 flaE

NdmodN

2.8.2 A question. By the g-expansion principle, the modular forms
G, we have transcendentally constructed are modular forms on I',(N),
defined over Q({y). How can they be described purely algebraically? (See
Appendix C for the answer!)

3.1 Measures: generalities. Let X be a compact totally disconnected
topological space, and R a p-adically complete ring. We denote by C(X, R)
the R-algebra of all continuous R-valued functions on X. Because any
element of C(X, R) is a uniform limit of locally constant functions, we have

CX,R)=CX,Z,)® R =1im C(X,Z,) ® (R/p"R).
Z, - z,

A measure u on X with values in R is a (necessarily continuous) R-
linear map from C(X, R) to R, or equivalently it is a continuous Z ,-linear

map from C(X, Z,) to R.
i

Suppose U<> X is a compact open subset. Then the characteristic
functions of both U and of X — U are continuous functions on X, hence
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CX,R)=C(U,R®CX — U,R).
A measure u on U gives rise to a measure i+u on X by defining
sw(f) = w(A10),
and a measure v on X restricts to a measure i*» on U, defined by
(*v)(g) = v(g extended by 0 to all of X).
A measure v on X is said to be supported in U if v = isi*v, i.e. if
v(f) = v(f|U extended by 0 to all of X).

The constructions i*, i» provide inverse isomorphisms between the spaces
of measures on X supported in U and of measures on U.

3.2 Measures and Pseudo-distributions on Z,,. We begin by recalling
Mabhler’s characterization of the continuous p-adic functions on Z,. For
each integer n = 0, the ‘‘binomial coefficient function”’

1 forn =20
x——><x)= xx=1)...-x—(m-1))
n

for n>0
n!

maps the positive integers to themselves, hence by continuity maps Z, to
Z,. Thanks to Mahler [21], we know that for any p-adically complete ring
R, the continuous R-valued functions for Z, ‘‘are’’ the sequences (a, ),=o of
elements of R which tend to 0, via the interpolation expansion

f0=Sa(*). @ek a-0 s nom
the a,’s being the higher differences (A"f)(0).

A measure on Z, with values in R is thus uniquely determined by its

values on the functions (Z) Conversely, given any sequence (b,)p=o of

. . X\ .
elements of R, there is a unique measure on Z, whose value on (n) is b,

foralln = 0.

For any finite space T (in the discrete topology!), continuous R-valued
functions on Z, X T are exactly the sequences (a,),=o of R-valued
functions on T which tend to 0, via the expansions

e 0=3 a0 (7).

n=0
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A measure on Z, X T with values in R is uniquely determined by its
restriction to the subspace of C(Z, X T, Z,) consisting of the finite

sums 2 a,(¢) (ﬁ) , and its restriction to this subspace is arbitrary.

For any Z ,-algebra R, we define a pseudo-distribution on Z, X T with
values in R to be a linear form on the R-submodule of Maps(Z, X T, Z,)
spanned by all functions f(x, ¢) = a(®)x", n = 0, a(f) any Z ,-valued function
onT.

Suppose now that R is Z,flat (ie. R C R ® Q) and p-adically

n

X . . .
complete. Then because (Z) = prl + lower terms, it follows immediately

that an R-valued measure on Z, X T is uniquely determined by the R ® Q-
valued pseudo-distribution on Z,, X T to which it gives rise. Conversely, an
R ® Q-valued pseudo-distribution on Z, X T extends to a measure if and
only if its values on the functions a(t) (;C) (n = 0, a(®) any Z-valued
function on 7T) all lie in R (rather than in R ® Q).

Remark 3.2.1. We have adopted the term ‘‘pseudo-distribution’’ so
as to avoid confusion with distributions on Z,, X T in the sense of [13] and
[15], these latter being linear functionals on the space of locally constant
functions on Z, X T. With the exception of the constant functions, the
domains of distributions and of pseudo-distributions are disjoint! We
should also remark that the notion of a pseudo-distribution depends upon
the choice of the coordinate x on Z,,, i.e. on the ring structure of Z,, and
not simply on its structure of compact totally disconnected space.

3.3 The Eisenstein pseudo-distribution on Z, X Z/NZ and the measures
2H*?, We define a pseudo-distribution H on Z, X Z/NZ with values in
V(W, I'yo(N)) ®y W[l/p] by the formula

HE () = Grirs for k=0, f(t) any Z,-valued
function on Z/NZ

(3.3.1)

For each (a, b) € Z,* X (Z/INZ)*, we define the pseudo-distribution H*?
on Z, X Z/NZ with values in V(W, I'ji(N)) ®y W[l/p] by the formula

H* (" (1)) = H("f () — H(a**'x"f (bt))
= Gys1s — la, b]Gk+1,f

THEOREM 3.3.3. The pseudo-distribution 2H*® has values in V(W,

(3.3.2)
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I',(N)), and extends to a (unique) measure on Z, X Z/INZ with values in
V(W, I.(N)).

Proof. What must be shown is that if F(x) € Q,[x] is any polynomial
which takes values on Z, when x € Z,, and if f(¢) is any Z,-valued
function on Z/NZ, then 2H**(F(x)f(¢)) = 2H(F(x)f(t)) — 2[a, bJH(F(x)f(¢))
has integral g-expansions. By the ‘‘key lemma’’ (1.2.1), this will certainly
be the case if one of the g-expansions of 2H(F(x)f(¢)) is integral except
possibly for its constant term. Let’s check that this is indeed the case at the
standard cusp (Tate(q), ¢can, O)-

We recall that G ; has g-expansion

2Gi ATate(q), @ean> &) = $L(1 — k, f(t) + (=1} f(—1)
+ X g Y (@ @) + (- 1)Fdf(-d). (3.3.4)

nz=1 din

Because of the décalage k + k + 1, we obtain

2H(x*f ()X Tate(q). ¢can» &)
= constant + 2. g* O, (d*f(d) — (—d¥f(—d)) (3.3.5)

n=1 dln

By linearity, we obtain
2H(F(x) f()XTate(q), can» &)
= constant + z q" 2 (Fd)f(d) — F(—=d)f(—d)) (3.3.6)

nz1 din

Q.E.D.

COROLLARY 3.3.7. Let B, be any p-adically complete W-algebra, and
let F(x, t) be a continuous Byvalued function on Z, X Z/NZ. Then
2H**(F(x, 1)) lies in V(V,, I'yy(N)) and its g-expansion at the standard cusp
given by

2H*?(F(x, t))(Tate(q), @ean > {) = constant
+ X q" X [Fd,d) — F(—d, —d) — aF(ad, bd) + aF(—ad, +bd)]

n=1 din

COROLLARY 3.3.8. If g(x) is any locally constant function onZ,, then
for k = 0 we have

2H*(x*g(x) (1) = (1 = [a, b])2Gyor

where gf is viewed as a function on Z/p"NZ for n > 0.
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Additional Properties of the Measures 2H ',

PROPOSITION 3.3.9. Let (a, b) and (o, B) be two elements of Z,* X
(Z/NZ)*, and let F(x, t) be any continuous function on Z, X ZINZ with
values in B,. Then we have the formulas
2H**(F(x, 1)) — 2[e, BIH**(F(x, 1))

= 2H*A(F(x, t)) — 2[a, bIH**(F(x, t)). (3.3.10)
2[a, BIH**(F(x, 1)) = 2H*?(aF(ax, Bt)). (3.3.11)
Explicitly, for every ‘‘test object” (E, ¢, P) of our I'y(N) moduli

problem, we have the formulas

2H(F(x, ))(E, ¢, P) = 2H**(F(x, ))(E, a"'¢, BP)
= 2H**(F(x, ))(E, ¢, P) — 2H**(F(x, ))(E, a~'¢, bP) (3.3.12)

and
2H**(F(x, ))(E, o~ ¢, BP) = 2H**(aF(ax, B))(E, ¢, P). (3.3.13)

Proof. We immediately reduce to the case B, = W, then to the case
F(x, t) = x*f(¢). Then H*?(x*f(#)) = (1 — [a, b])Gj.+1s, and H**(aF(ax, B1))
= (1 — [a, bD**'Giyr,080 = (1 — [a, bDle, BIGy, (this last equality by
(2.5.3)). Thus both sides of the first asserted formula become 2(1 — [a,
BD(1l — [a, b])Gy+1,s, and both sides of the second reduces to 2[a, BI(1 —
[@, bDGiss-

Q.E.D.

3.4 Construction of the Eisenstein Measure J*° on Z,* X Z/NZ. For
each (a, b) € Z,* X (Z/NZ)*, we define the measure 2/** on Z,* X Z/NZ
with values in V(W, I'jos(N)) by the formula

2J%b = the restriction to Z,* X Z/NZ of 2H*® 3.4.1)

Let us denote by F + [a, b]F the action of Z,* X (Z/NZ)* on
functions F(x, t) on Z,* X Z/NZ given by

(La, b]F)(x, t) = aF(ax, bt)
The transcription of (3.3.10-11) to the measures J *? is immediate.

PROPOSITION 3.4.2. Let (a, b) and (o, B) be elements of Z,* X (Z/
NZ)*, and let F be a continuous function on Z,* X Z/NZ with values in a
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p-adically complete W-algebra B,. Then we have the formulas
(1 = [e, BH2I**(F)) = (1 = [a, BDQ2J*A(F)) (3.4.3)
[a, BI2J**(F)) = 2J%*([ex, BIF). (3.4.4)
The g-expansion of 2J *(F) at the standard cusp is given by formula
2J4b(F)(Tate(q), ¢can » {) = constant

WA F(d, d) + F(—d, —d) — F(ad, bd) — F(—ad, —bd)

p (3.4.5)

n=1 dln

p,d)=1

3.5 Construction of the Eisenstein series J, ;. Let x: Z,* — B, be a
continuous character (B, a p-adically complete W-algebra as above), and f:
Z/NZ — B, any function. Recall that x; is the character x — x *on Z, .
We define

dfn

2J%4 24 (xx-11) (3.5.1)

Thanks to (3.4.4), we know that 2J2% is a generalized modular function of
weight x on I'y(N), defined over B,. In case f has ‘‘parity x’’, in the sense
that f(—1) = x(—1)f(z), the g-expansion of J>? is given

Ng:?(Tate(q), @Pean » g) = constant

+23 ¢ 3 X @) - xarea) 652

n=1 d|n
pxd

while if f(—t) = —x(—1)f(?), we have 2J&? = 0 (this because (-1, —1) €
Z,* X (Z/INZ)* must operate as the identity on V(B,, [y (N)).

Suppose that B, is an integral domain with fraction field K, and that
the character x is non-trivial. Then for any a € Z,* such that x(a) # 1, we
define an element

Jys € V(By, Tpo(N)) ® K (3.5.3)
By
by
dfn 1
J. S (1
Xsf 1 - X(a) Xf

It is immediate that this definition is independent of the choice of a such
that x(a) # 1, for we have the identity

(1 = x(@)g} = A = [a, 1DJ} = (A — [a, 1DJZ} = (1 — x(a))JZ} .
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Further, for any a, b € Z,* X (Z/NZ)*, we have
Je2 = (1 —[a, by in V(By, [,((N))® K, (3.5.4)
because for any a with x(a) # 1, we have the identity
(1 = x@)Jgt = (1 = [, 1DIR = (1 = [a, bDI}
I
(1 = [a, 6D = x(@)y,s-

In case f has ‘‘parity x’’, the g-expansion of J,, at the standard cusp is
given by

elt. of B, x(d)
J, s(Tate(q), ) =—r———— + n > —f(d (3.5.5)
Xf( q ‘Pcan c 2.(1 _ X(a)) ngl q d%t d
(the a written explicitly in the denominator is arbitrary subject to the
condition x(a«) # 1, though of course the numerator in such a representa-
tion of the constant term does depend on «). In case f has parity —x, Jys
vanishes.

Relation of the J, ; to the G, ;. For any integer £k # 0, we denote by
Jxs the Eisenstein series Jy, , where x; is the character x;: Z,* — Z,* C

W* given by x;(x) = x*. Thus J};is an element of V(W, I',o(N)) ® W[1/p].

LEMMA 3.5.6. Let k = 1 be an integer, and f: ZINZ — W any
function. Then

Jis = Giy = P*"1Frob(Gy,)  in V(W, To(N) ® W[1/p]. (3.5.6.1)

Proof. 1t suffices to show that both sides have the same g-expansion
at the standard cusp (Tate(qg), @can, ), €xcept possibly for their constant
terms. For then their difference would be a constant in W[1/p] which has
weight k& # 0, hence must vanish. To compute g-expansions, we may
assume that f has “‘parity k>, i.e. f(—1) = (—1)*f(¢), for in case f has
“parity £ + 1, both sides of (3.5.6.1) vanish.

Recall that

FrOb(Gk,f)(Tate(q)’ Pean » g)
= the image under g +> g” of Gy {Tate(q), ¢can > )
= the image under g +> ¢* of Gk,ﬂpt)(Tate(q)’ Pean » g)
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and hence

Frob (G, ;X Tate(q), @ecan, {) = constant + 2. g™ >, d*~f(pd).

n=1 din

Hence the g-expansion of the right hand side of (3.5.6.1) is given by
constant + X ¢" X d*7f(d) — X ¢ X (pd)*f(pd)

n=1 din n=1 din

= constant + D, ¢" > d*"lf(d)
nz1 dln
@.d)=1
which agrees with the g-expansion of J, s up to its constant term.

COROLLARY 3.5.7. The constant term of the q-expansion of J,y is
given by the formula

g = 0) = Giflg = 0) — PGy p0(q = 0)
=34L(1 — k, f) — p*~'L(1 — k, f(p1)).

In particular, if f is itself a multiplicative function € on Z/NZ (meaning f(xy)
= f(x)f(y) for all x, y € Z/NZ and f(1) = 1) then both G, . and J, . are of
weight k and nebentypus €, and the formula becomes

(3.5.8)

@Aq=m=lli;iQLa—ha. (3.5.9)

Notice that 1 — p*~e(p) is precisely the value at 1 — & of the reciprocal of
the p-Euler factor which figures in L(s, €).

COROLLARY 3.5.10. If the character X is of the form x.w, where o is
a non-trivial character of Z,* of finite order (extended by 0 to all of Z,,),
we have

St = Giar — P71 Frob(Gy,ur).

In the special case f = €, a multiplicative function on Z/NZ, and we has
parity k, the g-expansion is given at the standard cusp by

Jxoe(@) = 3L(1 — k, we) + 2 " Y, d*'w(d)e(d).

n=1 din

(The Euler factor disappears because (we)(p) = w(p)e(p) = 0-e(p) = 0.)

3.6 Applications to the Kubota-Leopoldt p-adic L-function of Q. Let C
be a complete algebraically closed overfield of Q,, and let @ = @ denote
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its ring of integers. Fix an integer N prime to p. The Kubota-Leopoldt L-
function is the C-valued function on Homnn(Z,* X (Z/NZ)*, C*)—{the
trivial character}) defined by

L pyen (&9
T=x@)-<®) 2J ”( )(Tate(q), Pean> Olo=o  (3.6.1)

6‘x”
(the right hand side is independent of the choice of (a, b) € Z,* X (ZINZ)*
such that x(a)e(b) # 1). It has a first order pole at the trivial character, in
the sense that for each (a, b) € Z,* X (Z/NZ)*, the function

(x, € = (1 = x(a)e(b))Z(x; €)

extends to a continuous O-valued function on all of Homgen(Z,* X
(Z/NZ)*, C*). Because this last function is the restriction of a measure, its
values satisfy the Kummer congruences:

Lx, €) =

Whenever a finite C-linear combination X ¢, x € of characters satisfies a
congruence

Y cyex(a)e(b) € p0  for all (a, b),
Then for each (a, b), the values ¥(x, €) satisfy the congruence
Y cxell = x(@) )L x, €) € pO.
If we denote by x, the character x,(x) = x* of Z,,*, we have the formula
valid fork = 2, any €, @
L(xx,€) = (1 = P le(p))L(1 ~ k, we) (3.6.3)

valid for k = 1 only if
€ is an odd character

For any nontrivial character w: Z,* — C which is of finite order we have
the supplementary formula

valid for k = 2, any o, €

L(x;'w, €) = L(1 — k, we) (3.6.4)

valid for £ = 1 only if
we is an odd character

(where we view we as a Dirichlet character of conductor p*o%¢" X N).

3.7 The p-adic L-series attached to an ordinary elliptic curve (N = 1 for
simplicity). Let C, O be as above, and suppose given an elliptic curve E/0
together with a nowhere vanishing differential . We suppose that E is
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ordinary, in the sense that modulo % its Hasse invariant is non-zero. Then
E admits a trivialization ¢: £ = G,, defined over @, and a trivialization ¢ is
uniquely determined by the constant A € 0* defined by ¢*(dT/1 + T) =
Aw. Indeed, a constant A € 0> comes from a trivialization if and only if the
differential Aw is formally logarithmic. In terms of a uniformizing parame-
ter ¢ at the origin (‘‘infinity’’) on E, the condition is that the power series in

t
t, exp ()\ f w) have coefficients in @ rather than in C (compare [1a]).
0

Let us choose such a A (any other would be a\, with a € Z,), and
write (E, Aw) instead of (E, the unique ¢ such that ¢* (d7/1 + T) = \w).

We define the p-adic L-series L\, as the C-valued function on
Homgpiin(Z,*, C*)—{the trivial character} given by

n 1
Foaod) 2 s e () 20 G2

It has a first order pole at the trivial character, in the sense that for each a
€ Z,*, the function
X+ (1 = x(@) €@ rn()

extends to a continuous O-valued function on all of Homegp,(Z,*, C ).
Because this last function is the restriction of a measure on Z,*, the
Kummer congruences are satisfied:

If a C-linear combination of character = cy-x
satisfies a congruence

> coexl@ € po  forall a€Z,
3.7.2)
then for each a € Z,* the values L\ (X)
satisfy

2 ex(1 = x(@)ZEan(X) € PO.

We might summarize the situation by saying that £ ., is just as good a
function as the Kubota-Leopoldt p-adic L function.
What about special values? By construction, we have, for kK = 1

LenawXi) = 20 (E, Ao) = 2G(E, A\w) — 2p¥~Y(Frob G )(E, Aw), (3.7.3)

a formula we will be able to unwind only in special cases. But in any case
we always have a limit formula for £ .\(Xx), for k # 0.
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(1 = a)LErw(Xi) = 2J*(x = ¥*")(E, \w)
= 2H%x — x*~*on Z,*, extended by 0)(E, \w)

= lim 2H%(x — x*~ @~ 7" on 7 )(E, Aw) 3.7.4)
N—>x
= lim (1 — ak“p_DpN)'Z'Gka_l)pn(E, o)
N—x
Thus
LroXe) = lim 2:A+@-02"G o (E, w) (3.7.5)
N>

3.8 Computation of Z ,.)(x;) for complex multiplication curves.
Suppose in addition that there is given an endomorphism of E

F,. E—>E

which modulo % is the absolute Frobenius F. This is possibly only when E
mod % comes from an elliptic curve E, defined over the prime field F,,, and
the curve E/0 is deduced by extension of scalars Z, — O from the
canonical lifting of E, (cf. [16a], Appendix).

Then the kernel of F, is just the canonical subgroup E.,,, and hence
F, may be factored

FP
(3.8.1)
E-Z>E/E,,—>E
Let us denote by
V,: E—E (3.8.2)

the transpose of F, (thus F,V, = V,F, = p, and V, modulo ¥ is
Verschiebung V). The mapping V is etale, so that

p—>peV

defines an automorphism of the Z,*-torsor Isom(E, G,,), which is neces-
sarily of the form

© > pe for some u € Z,*.
The unit u € Z,* is precisely the image of V, in End(E),
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E

Ve G (3.8.3)

hence u is the image of V in End(£ ® (0/%)), which by duality is the image
of F, in End(T,(E ® (0/%)). This makes it clear that w is none other than
the “‘unit root’’ of the zeta function of the elliptic curve E, over F, which
gives rise to E @ O/¥ by extension of scalars:

(1 = DA — pp™'T)
(1 -1 - pT)

Zeta(E, /F,, T) = (3.8.49

Recall now the definition of the Frobenius endomorphism of general-
ized modular functions in terms of the projection 7: E — E/E,,,

Frob(f)(E, ¢) = f(E/Ecan s @ oT). (3.8.5)

In our situation, we have a commutative diagram

(3.8.6)

so that A defines an isomorphism between (E/E,,,, ¢ ° ) and (E, ¢ © V,).
The formula for Frob becomes

Frob(f)(E, Aw) = f(E, V*(\w)) = f(E, ulw). (3.8.7)
In particular

Frob(G, )(E, A\ow) = G,(E, phw) = w*G,(E, \w), (3.8.8)
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and, referring back to (3.7.3), we obtain the formula

LeroXi) =201 = pF~1u7%)-G.(E, \w) for k=1.
=2(1 = p*'u %) N G (E, w)

3.9 The Case of the Hurwitz Numbers. The Hurwitz numbers k4, are
defined by looking at the power series expansion of the ? function which
corresponds to the elliptic curve with differential

(E: ¥ =4x —4x,w=£i}-j—c->:

znhn Zn——z

P@2) = ;5 + ; ] (3.9.1)
Referring to the general formula 2.2.9
1 2%k
P L =5+ 221 Gire+2(L) a0
we see that
2"h,
pa 2G,(L) = 2G,(y* = 4x® — 4x, dx/y) € Q. (3.9.2)

Because there is an automorphism of this curve (multiplication
by i =V —1, defined by x - —x, y — iy) which multiplies the differential
dx/y by i, it follows that h, = i"h,, and hence

h, =0 unless n = 04) (3.9.3)

[Hurwitz labels them E, e h,, , but we have too many E’s already.]
Because of the multiplication by i, the lattice L must be a locally free
Z[i] module of rank one, which will in fact be free because Z[i] is a
principal ideal ring. By standard considerations, we may generate the
lattice L by taking twice the integrals of a single-valued branch of  in the
x-plane between the x-coordinates of the finite points of order two (i.e. the
zeros of 4x® — 4x, namely *1 and 0). Thus L is spanned by the two periods

0 dx ! dx
2 —_—, 2 —_— (3.9.4)
-1V4x® — 4x o V4x® — 4x
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the first of which is %/ times the second. The second is
) f ! dx =2 ood®)
o V4x3 — 4x o V418 — 472

Loodt voodt
= 2] = —2if . (3.9.5)
0 o V1i—¢#

Thus the period lattice of (2 = 4x® — 4x, dx/y) is

L =1Z[i]Q
(3.9.6)
Loodt
Q=2f = 2.622057 . ..
o VI- B
Thus we obtain transcendental formulas for the 4, ;
h, = n-217*"G,(L) = n-:27*(—1)"(n — 1)!A,(L)
(— 1yt . 3.9.7)
—1)"n!
- Qe Z,, (a + biyr
or equivalently
4n
> L___Qo hy  for n=1. (3.9.8)

(a + biy»  (4n)!

Suppose now that p = 1 mod (4). Then the curve y? = 4x® — 4x viewed
over Z, is ordinary, and we may choose a constant A in W(F,), the
completion of the ring of integers of the maximal unramified extension of
Q, such that A dx/y comes from a trivialization (i.e. A dx/y is formally
logarithmic).

The values of the p-adic L series associated to (y> = 4x® — 4x, A dx/y)
at the characters x; are thus given by the formula

Lir=azs—az d.r/y)(Xk )

=2(1 = PP ' NG, (y? = 4x® — 4x, dx/y) (3.9.9)
=(1- p""u"‘))\“"Z"% for k=1

where u is the ‘‘unit root’’. We will recall its precise value below. As a
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corollary, we obtain the Kummer congruences for the Hurwitz numbers:

[ Whenever a polynomial Y, c,.x* with

k=1
coefficients in C satisfies 2 ca* € p’0
{ foralla € Z,%, then for each a € Z,* the (3.9.10)

Hurwitz numbers satisfy

h
2 (1= a1 - P2k St e po.

The Relation to L-series with Grossencharacteren. We recall that the
numerator of the zeta function of y> = 4x3 — 4x over F, is given by

Lp(T) =(1-71- pT)Zp(T)

___{1+pT2 if p=3mod4
Q-1 — =7 if p=1mod4

(3.9.11)

where 7 and 7 are the unique Gaussian integers satisfying

T =P
{77, 7 = 1mod (2 + 2i). (3.9.12)

The L-series of this curve over Z[1/2] is the Dirichlet series

_dm_ 1
==

il 1 1

i 1 Pl_zspslln (1= ap=)(1 — @wp~*)

(3.9.13)

which we may more conveniently express as an infinite product over the
odd (prime to 2) primes ¥ of Z[i]

I 1 where 7 is the unique
L(s) = (——————_—-) generator of & such that (3.9.14)
vous \L = mINY/ oy 2,

We denote by p the ‘‘identical’’ grossencharacter of Z[i], i.e. the ideal-
character of conductor (2 + 2i) defined on ideals prime to 2 by

pla) = a if a=(a), a=12 + 2). (3.9.15)
We denote by p the complex conjugate of p.
pla) = a if a=(a), a=12+ 2) (3.9.16)



THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION. 279

Then the L function L(s) is precisely the L-series with grossencharacter p
for the field Q():

) _ I T W L))
Lis) = Lis, p) = @gd (l - P(@)‘N@l"*> a%d Na*’

I (3.9.17)

L(s, p)

Now if we return to our prime p = 1(4), and if we choose a square root
of —1in Z,, then we determine an embedding Z[i{] — Z, (send i to the
chosen v/—1) which identifies Z, with the %-adic completion of Z[i] for
one of the prime ideals of Z[i] lying over p. On the other hand, we have the
‘‘unit root” u € Z,%; it is given as a ‘‘function’ of ¥ by the equation

= p%) = N¥/p(¥) (3.9.18)
(meaning that u € Z, is the image of the gaussian integer p(%) under
embedding corresponding to %).

Thus when we view Z, as the ¥-adic completion of Z[i], we may write

h
Lopmssi-azrazmXi) = (1= NYF/P@NHE 2L (3.9.19)

Looking at the Euler factor (1 — N®%*~YpX®)), it is unavoidable to
suppose that we are ‘‘really’’ looking at

1
L1 =k, (p)™" = —_— .9.20
( @ aozdd Na‘p(a)*l _ (3.9.20)
which is ‘“‘joined’’ by the functional equation with
1
LO, (™) = 2 —— 3.9.21
=3, 57 692

This last value is easily computed in the case of interest to us, namely
=4n,n = 1:

L. =1 3 L

4 aczZ[i] &
(@,2)=1

_1 1 !

TP
4 ( (l + i)47l an[[] a4n

a#0

-3 (1-(F)) -G

(3.9.22)
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To summarize:
There is a constant A € C such that

27 NP () _ B
(1 —_ p4k—1/4'—4k) 4k

and there is a constant ) € C such that (3.9.23)
@Q)*-L(O, (0)*) _ h
T
4

—the constants A and Q™! are analogous, in the sense that

Ao is formally logarithmic

O ~'» has integral periods on the real points
of the curve, whose connected component
is §'1, the compact form of G, .

Appendix A. Hurwitz’s Form of the Functional Equation for L-series
We define (s, a) be the series, convergent for Re(s) > 1,
(A.1)
. 1
Us,a)= 2

n=0 (n + ay

(we’lltake 0 <a =1)

It has a meromorphic continuation to the entire s-plane, which satisfies
Hurwitz’s functional equation:

is, a) = 2Ll {Si“ (fz) > c_os_n(_f%n) + cos (s—ﬂ) D s_m(Lan)}

(27.‘.)1—3 2 n=1 2 n=1 nt=s
(A.2)
for Re(s) < 0.
Thus for Re(s) > 1 we have
_J2ls) . (A =87 cos(2man)
{1 =5, a)= {(277)s - ( 2 >n§1 "
(A.3)

a- s)w) D sin(27ran)}

+ cos (
2 n?
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If s = 2k is an even integer, then

sin((1—2k) )-sm(%—kﬂ)—( 1)"s1n( )—( 1)*

cos ((1 —2k) %) = cos (127- - kar) = (—1)* cos (g) =0

2F(2k) (= 1) z cos(2mran)

Qmy* PR

2 (2k ) ( l)k E é(e2man + e—z‘n'ian)

(2 )Zk n=1 nZk

_2 2k —1)!
Q)

if s = 2k + 1is an odd integer then

L1 - 2k, a) =

() L(2k, $(dy + ¥_4))

sin ((1 —1-2k) %) = sin(—kw) =

cos ((1 —1-2k) g) = cos(—km) = (—1)*

2T (sk + 1)( 1y E sin(2mwan)

(1 - Q2k+1),a) =

(27)2k+ 1 2k+ 1
2(2k)|l'2k l (e21rian — e~21rian)
(27,.)2k+ 1 n2k+ 1

_ 2(2k)1k-1

= g L@k + 14 = da))

where we denote by ¢, the function

l,’a (x) - e27ria.r

Thus
k— 1)
t - 2k = 22 L0k, 4 + 00
'2k+1'2k 1
Lot - ek .0 = 2258 10k + 1,40 - v0)
2(2k)!

= Wl(zk + 1,3, — ¥_,))

281

(A4)

(A.S5)

(A.6)
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so in all cases, for integers k = 2, we have

2%k = 1)! _
{0~k a)= (Tm')TL(k’ $Wo + (=1_,) (A7)

Now if a = A/N, with A, N € Z, and if we define

fa = the characteristic function of A mod N as function

onZ/NZ
(A.8)

Yy: x— eV a5 function on Z/NZ

then

L1 —k,a)= Z (n + a)¢t
" (A.9)

Thus we obtain

2(k — 1)INk-1

Gy Lk, $(ys + (= 1)¢_4)) (A.10)

LA -k, f)=

This shows in particular that
L(l - k’f;i) = (_l)kL(l - k9f—A)

(A.11)
=L -k, 3(fs + (_l)kf—A))
If we define the Fourier transform on Z/NZ by
o) = _116 2 fr™ g = e (A.12)
then
Ja= J‘A
: (A.13)
fA = —1\7 Y_4

We may now rewrite (A.10-11) in two equivalent forms:
For any function F on Z/NZ of parity k(F(—x) = (—1)*F(x)), we have

A 2(k — 1)INF-L

LU~k B ="pom— Lk F)  for k=2 (A1)

For any function F on Z/NZ, and any integer k = 2, we have
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L(1 — k, F) (A.15)

2k — DIN*(—1)*
Qmi)t

Lk, F) if F(-x) = (=1)F(x)

0 if F(—x)=—(—1)F(x)

Appendix B. A slight generalization of our measures, adapted to complex
multiplication curves

B.1 Let’s continue to work over the same ground ring W, but no
longer fix a primitive N th root of unity { € W. Then for each choice of ¢,
we have the ring V(W, ¢, T'(N)) which we had previously denoted simply
V(W, I'(N)). We define

V(W,T(N) = G? V(W, ¢, T(N))

the sum taken over the ¢(n) primitive N’th roots of unity { in W. The ring
V(W, I'(N)) is exactly the ring of all generalized modular functions on I'(N)
as defined in 1.1, save that we no longer fix the determinant of the ey
pairing.

The group GLy(Z/NZ), rather than ‘‘just’’ SL,(Z/NZ), operates on
V(W, I'(N)) in the obvious manner ((g]f)(E, ¢, ay) = f(E, ¢, g ' ay). The
ring V(W, I'.,(N)) may be viewed in this context as the subring of invariants
of the subgroup

168

in V(W, T'(N)).
Another ‘‘advantage’ is that the Frobenius endomorphism operates
on V(W, T'(N)), through the rule

(Frob f)(E, ¢, ay) = f(E/Ean , @77, m(ay))

xXE€ZINZ, o E (Z/NZ)X} C GL,(Z/NZ)

where
E..n C Eis the canonical subgroup

w:. E — E/E,,, is the projection, 7 its (etale) dual

7r(ay) is the unique level N structure on E/E,,, making
the diagram

(ZINZ)*

w(ay)

—— v(E/Ecan)
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[It is clumsy (though possible!, cf. [6]) to formulate the Frobenius
endomorphism of V(W, I'(N)) as a o-linear endomorphism, the difficulty
being that det(m(ay)) = (det(ay))?,]

We may carry over the proof of the ‘‘Key Lemma’’ to our new situation,
and we get:

KeEYy LEMMA ForR V(W, I'(N)). Let f be an arbitrary element of V(W,
I'(N)) ® W[1/p]. Suppose that on each of the ¢(N) components of V(W,
I'(N)), there is at least one cusp at which the g-expansion is integral,
except possibly for its constant term. Then for any element (a, h) € Z,* X
SL,(Z/NZ), the difference f — [a, hlf lies in V(W, T'(N)).

B.2 We may now define the Eisenstein measure on Z, X (Z/NZ)?, as
follows. For (a, h) € Z,* X SL,(Z/NZ), we define 2H*" as the pseudodis-
tribution on Z, X (Z/NZ)?%, with values in V(W, I'(V)), whose value on x*-F
is

(1 = [a, hD2Gy41,r
where G, is the Eisenstein series in V(W, I'(N)) ® W[1/p] defined by
Gir(E, ©, ay)
Y F(a, b)Gi(E, o,y (a, b))  F of parity (—1)

a,b mod N

0 F of parity (—1)¥*!

The Key Lemma (applicable thanks to all our g-expansion computations)
assures us that this pseudo-distribution, which a priori takes values in V(W,
['(N)) ® W[1/p], in fact takes values in V(W, ['(N)), and therefore extends
to a measure 2H*" with values in V(W, I'(N)). We might also observe that
our present construction for I'(V) is compatible with the previous one for
[,o(N), in the following sense: For any function f on Z/NZ, if we define

%f(a) if b=0
Ff(a’b) =

0 if b#0
then we obtain the identity
Gir, = Gi.s-
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B.3 The transcendental expression for Gy r is, for k = 3,
. 1 -1k —=1)!
Gi.r (L,ba51s e ,e of-ﬁL) = L—)— z F(a,b)A, (L, ae, + be,).

2 a,bmod N

1. 1 A .
If we use oo L/NL -S> N L/L — (Z/NZ)? to identify F with a function
(still noted F) on L/NL, then we have

(—1y(k — 1)!N* F(¢)
2 fELZ_(O}W

Ger (L, % L/L = (Z/NZ)Z) -

B.4 Variances (compare 3.4.2). We make the group Z,* X GLy(Z/
NZ) operate on the continuous functions on Z, X (Z/NZ)? by the action:

(b, g]F)(x,y) = bF(bx, g'y)  x€E€Z,,y € (ZINL)
As noted, this group operates on V(W, I'(N)) by the rule
(b, e1N)NE, ¢, ay) = f(E, b7 ¢, g7" o ay)
It follows immediately from the definition of G ¢

Gir(E, ¢, ay) = D, Gi(E, ¢, ay'(y))-F(y)

that
(6, 81Gir = VG iir
and hence, for any (a, h) € Z,* X SL,(Z/NZ), we have
[b, gl 2H*"(x*F(y)) = [b, 82Gy+1,r — [b, glla, h12Gy11,r
= V*'2Gys1i0r — @ Grt 1,i0n0m11007)
= bFH1I2H®M (X ([g]F)(y))
= 2H>*""'([b, g](x*-F))

An obvious limiting argument then gives

Variance Formulas. For (a, k) € Z,* X SL,(ZINZ), (b, g) € Z,* X
GL,(Z/NZ), and F a continuous function on Z, X (Z/NZ)* we have an
identity in V(W, I'(N)):

[b, gl2H>"(F)) = 2H*""" (b, g](F))
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B.5 We may also define the V(W, I'(V))-valued measure 2J %" on Z,*
X (Z/NZ)? by the formula

2J%" = the restriction to Z,* X (Z/NZ)* of 2H®.
For any continuous character x: Z,* —. B, *, we define
205k = 2 %(x"X-1F)

(where x_, is the character x — x~! on Z,*), which we know to be an
element of V(B,, I'(V)) of weight x.

When B, is an integral domain with fraction field X, and x is non-
trivial, we can define

1

I = a,1
X.F 1 - X(a) X.F

EV(B,,TN)® K
by choosing a € Z,* where x(a) # 1.
The analogue of 3.5.6 is

LEMMA 3.5.6. Let k = 1 an integer, F any function on (Z/NZ)?; then
Jir = Gip — P*71 Frob(Gy,r) in V(W, T(N)) ® W[1/p].

Proof. Imitating the proof of 3.5.6, it suffices to check that at one
cusp on each component of V(W, I'(N)), both sides have the same g-
expansions.

Let’s use the cusps (Tate(g"), q, &), L = ¥, j € (ZINZ)*, whose
given level N structures have all possible determinants. We may and will
suppose F is the characteristic function of (a, b). Then

Gk,F(Tate(qN)a Wean » (CI, ;J)) = Gk(Tate(qN)a Wean » qacbj)
=} z nk—l(qu+a)n)nbj

n=1

m=0 (by 2.4.5)
+ ¢ z nk—l(qu——a)ng—nbj
2 m,n=1
Because the restriction of the function x* to Z,* (reextended by zero

to all of Z,) is uniformly approximated by the functions x**®~V?" we have

Jop =4 2 pe=1(gmN+ayn gnbi

n=l

m=0

(p,n)=1

+_(:2_IX E nk—l(qu—a)ng—nbj
m,n=1

(p,n)=1
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Thus it remains to check that
Frob (G r)(Tate(g"), @ean» (@, £))
=} z pk—lnk—l(qu+a)rm§npbj

n=l
m=0

(=1 . N
47 Z pk 1k l(qu a)npc npbj

2 m,n=1

= G, r(Tate(g"?), wean,> g% L%).
But this is easily seen to be the case, for the canonical subgroup of

Tate(g¥) = G, /q"* is p,. The quotient is Tate(g"?) = G,./q”**, and the
projection map is the one deduced from the p’th power map on G, by
passage to quotients. Thus

FrOb(Gk,F)(Tate(qN)a Wean » (q’ Cj)) = Gk,F(Tate(qu)’ Wean » qp, C"’)
= Gk(Tate(qu)’ Wean » qapcpjb)

which was the desired formula.

Application to complex multiplication curves

B.6 Let D be the ring of integers in a fixed quadratic imaginary
extension of Q, and fix an isomorphism of abelian groups

(Z/NZ)* = D/ND.
This determines an inclusion of groups
(D/ND)*<> GL,(Z/NZ)
which makes the diagram below commute.

(D/ND)* &————— GL,(Z/INZ)

Norm\ / det

(Z/NZ)*

For any (a, d,) € Z,* X (elements of Norm 1 in (D/ND)*), we obtain
V(W, I'(N))-valued measures 2H%% on Z, X D/ND and 2J%% on Z,* X
D/ND by ‘‘transport of structure’’. The transcription of the formula (3.4.3-
4) becomes
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Variance Formula. For (a, d,) € Z,* X (elements of norm 1 in
(D/ND)®), (b, d) € Z,* x (D/ND)*, and F a continuous function on Z, X
D/ND (resp. on Z,* X D/ND), we have the following identities on V(W,
I'(N)):

(b, dICH>%(F)) = 2H*%([b, d](F))

(resp.) [b, dI2J*4(F)) = 27 **([b, d1(F))

[One must remember that (b, d) € Z,* X (D/ND)* acts on functions F on
Z, X D/ND by the formula (b, d]F(x, y) = bF(bx, d'y).]

B.7 Let ¢ be a Dirichlet character of D of conductor N; we may view
Y as a group homomorphism

¥: (D/ND)* — C*

which is extended by zero to all of D/ND.

Let (E, w) be an elliptic curve as in 3.7, and fix a level N structure ay
on E. In the notations of 3.7, we define the p-adic L-series &£ g,x0.q,) as the
C-valued function on Homgopn(Z,* X (D/ND)*, C*)—{characters trivial
on Z,* X (elts of norm 1)} by the formula

1
1 = x(a)/¥(d,)

(this is easily seen to be independent of the choice of point (a, d;) where x/
Y is # 1). It has at worst a first order pole at the excluded characters
(which are precisely those which factor through the composite

L Eavap(X X P) = < 2JLE, Ao, ay)

pry Norm

Z,* X (D/ND)* —— (D/ND)y* —— (ZINZ)*)
in the sense that for any point (a, d;) € Z,* X (elts of norm 1), the function
x¥ = (1 - x(a)/¥(d, ))g(E,xw,uN)(X’l//)

extends to a continuous O-valued function on all of Homgypn(Z,* X
(D/ND)*, C*).
The Kummer congruences are also satisfied:

Whenever a C-linear combination of characters , c,,x\ satisfies
Y e x(b(d) € p>0  forall (b, d) € Z,* x )d/ND)*,
then for any (a, d,) € Z,* X (elts of norm 1), we have

Yl = X(@)/W(d))L 0.0 X) € PO.
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B.8 Suppose now that the curve E has D as its endomorphism ring,
and that the hypothesis of 3.8, the existence of F, € D lifting absolute
Frobenius, is fulfilled. We further suppose that the composed isomorphism

Qy
NF——— (Z/NZ)>* > D/ND

is an isomorphism of D/ND-modules.
Then we may carry through the computations of section 3.8, which
show that, in the notations of that section we have

Frob(G, , )(E, Ao, ay) = Gy 4(E, pho, oy F,7?)

'«p(Fp )_l',u'_ka,cl/(E, )\(D, aN)a

(Notice that w = p/F, in D.) Combining this with the formula (3.5.6 vis
A.6) we obtain the explicit formula

g(E,}\w,aN)(Xk'«p) =2(1 - Pk_l/l‘«kll’(Fp )Gy (E, Ao, ay)
=201 = PP/ W(F, ) N Gy (E, o, ay)

An explicit look at the Lemniscate curve y*> = 4x* — 4x (D = Z[{], p = 1(4)).

B.9 The presence of the automorphism i of this curve E dictates that
we have

&L =gz 4x,Adx/y,aN)(Xklp) =0 unless  y(i) = i*,
so let us henceforth assume that Ys(¢) = i*. Then
£ (= sz sz da.op X)) = 2(1 — PP/ W (F))N Gy (E, o, ay)
When we view Gy ,(E, w, ay) as a complex number, it is given by

Gk’w(QZ[l], (XN)

k- 1) W(a + bi)

B 2 Q ka,H%#o (a + bi)*

DR =D 1 i}
- 2 Q7ENE4 (1 — W+ /0 + i)")) 2 V@)

where the sum is taken over all ideals of Z[i] which are prime to 2N, and
where Yp~* is the grossencharacter of (not necessarily exact) conductor (2
+ 2i)N defined by

Yp~*(a) = Y(a)/a* if a=(a with « =1mod (2 + 2i).
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So we may summarize our findings in the following ‘‘equality’’ of a p-adic
and a complex expression for the same algebraic number G, ,(E, @, ay)

Gk,lb(y2 = 4X3 - 4x9 dx/ya aN)

N 1
T <1 — P uky(F, )) L o= sz dzivioy Xe)
(-1 1 )
—2-—Q kNk4 (;____m;) L, yp7*).
1+

From the point of view of p-adically interpolating values of L-series
with grossencharacter, the hypothesis that (i) = # is not very natural
because for k = 3 and any ¥, the value L(0, yp~%) is given by its absolutely
convergent Euler product, hence is non-zero. So let us explain how our
methods apply to all these values. .

Let us denote by e the following Z-valued function on the Gaussian
integers Z[i]:

. 1 if a+ bi=1mod?2 + 2i
cla + bi) = {0 if not

Then the product €y is a function on Z[i]/(4N),

ep(a + bi) = {g(d + bi) g go‘: bi= 12 + 2i)

which by transport of structure (B.8) becomes a function on (Z/4NZ)>.

Consider the Eisenstein series of level 4N and weight k, Gy, . It’s
value on the lattice L = Z[i] with basis 1/4N, i/4N of (1/4N)L/L is the
archimedean series

(= 1%k — 1)!1(4N)* D ef(a + bi)
2 atviro (@ + bi)*
_ (=1 — 1)!@NY W(a + bi)
2 atviztesan (@ + biff
—1Ye(k —
_ Dk . D!(4NY* agd Wp
_ (=DFk = 1)I@NY*
2

(@)

L0, yp7").

From an algebraic point of view, the lattice Q-Z[i] with level 4N-
structure given by V4N, iQ/4N is none other than the curve (y* = 4x* —




THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION. 291

4x, dx/y) with one of its level 4N-structures ayy (all of which are defined
over the ‘‘ray-class field of conductor 4N over Z[i]”’):
(—1)*k — )IAN)Y-Q*
2
From the p-adic point of view, if we introduce the previously chosen
p-adic transcendental unit A such that A dx/y is formally logarithmic, we

may reinterpret the algebraic value Gy (y* = 4x* — 4x, dx/y, ay) p-
adically.

Gk,edl(yz = 4-x3 - 4x7 dX/y, a4N) = Ak.(;k,elll(yz = 4x3 - 4x7 )\ dX/y, a3N)‘

We next express this in terms of J;y = Grey — P*~* Frob(Gy,«). Recall
that for this curve, the Frobemus endomorphism F, when viewed in Z[{], is
the unique generator of % satisfying F, = 1 mod (2 + 2i); it follows from
the definition of € and the multiplicativity of ¢ that we have the transforma-
tion equation

(e¥)(Fpy) = W(F,)(ep)(y)  forall y € Z[i]/(4N).
Thus we have (compare 3.8)
Frob(G,.)(y® = 4x® — 4x, A dx/y, ay)

1
 wWy(F,)

L(O’ ‘I’P_k) = Glc,elll(yz - 4.X3 - 4X, dX/y, a4.N)‘

Gk,ew(yz = 4x® — 4x, N dx/y, auy),

and hence

Ad
e, ()’2 = 4x® — 4x, _y‘{ , aw)

k—1
= (1 - E‘%]—(—F‘—i) }\_ka’ew(yz = 4.x3 - 4x, dx/y, am).
p

If we choose any a € Z,* and any d € (Z[{]/(4N))* of norm one which
is = 1 mod (2 + 2i), we can express the generalized modular function J; ¢,
in terms of the Eisenstein measure J %% on Z,* X Z[0]/(4N):

1
ooy = —————
BT~ d /p(d)
Evaluating at the lemniscate curve gives the equality of values
Jiew? = 4x° — dx, N dx/y, ay)
1

T a0 = A e/, )

Ja,d(xk— 16!]1)
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So for each (a, d) as above, we may define a measure u®® on Z,* X
Z[i1/(N), with values in 0., by decreeing that

X ”(ﬂ,d) X
(n) F—— Jad ((n) eF) (32 =4x° — 4x, N dx/y, auy)

This ‘‘lemniscate measure”’ u®® is related to the problem of interpo-
lating the classical L-series values L(0, yip™*) by following two formulas
valid for any character ¢ of (Z[i]/(N))* and any integer k = 3:

oD )
= (1 = /UL = P WH(F, DN * Gy 07 = 45° = 4x, dx/y, )

(=DFk — DIANy Q"
2

Gre(? = 48 — 4x, dx/y, agy) = L(0, yp7*).

Appendix C. Modular Definition of Eisenstein Series of Weight One, and
Their Relation to the Universal Extension

In this final appendix, we answer the question raised before (2.8.2).
The answer is completely classical. It was crystallized by the reading of
Lang’s book [9], esp. pp. 240-241, a conversation with Mazur, and yet
another reading of Whittaker and Watson [20]!

C.1 The Universal Extension. Let S be an arbitrary scheme, and E/S
an elliptic curve. We will freely identify E with its ‘‘Picard variety’’ Picds.
Recall that as functor on S-schemes, Pic) is the f.p.p.f. sheaf associated
to the presheaf

T +  isomorphism classes of invertible sheaves £ on

E X T which point by point on T are of degree zero.
S

The identification
E = Picls
is given by

P € E(T) + the invertible sheaf I ~(P) ® I(0), wherel "}(P) is the
inverse of the ideal sheaf which defines the section P of
E X T, and I(0) is the ideal sheaf of the zero-section
S

of E X T.
S

Now let E* be the ‘‘universal extension’’ of E by a vector group. It is
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a smooth commutative S-group scheme which sits in an exact sequence of
S-groups

0> wys— E'S>E—0

in which we have written wgg for the ‘‘vector group’’ whose T-valued
points are given by

wgs(T) = HYE >s< T, Ql.li'g(T/T)-

The group ET, as functor on S-schemes, is the f.p.p.f. sheaf associated to
the presheaf

T+  isomorphism classes of pairs (£, /) consisting of an invertible
sheaf £ on E X T which has degree zero over each point of
N

T, and of a (necessarily integrable) T-connection 7 on £.

When T is an S-scheme which is (absolutely) affine, then the long exact
f.p.p.f. cohomology sequence gives a short exact sequence of abelian
groups

0—> HYE X T, Q x ryr) = E"(T) = E(T) > 0
S N

(the next term would be H},,¢(T, (wgs)r) , which vanishes because T is
affine and w is quasi-coherent).

LEMMA C.1.1. Let n be an integer which is invertible on S, and let P
€ E(S) be a point of (not necessarily exact) order n. Then there is a unique
point

Pcan e ET(S)
which lies over P, and which has (not necessarily exact) order n in E'(S).

Proof. Unicity is clear, for the difference of any two would be a
section of the Og-module wgs which is killed by n. Further, for any S-
scheme T which is absolutely affine, we can find some point P € E'(T)
which maps onto P in E(T). But nP maps onto 0 € E(T), hence nP = wisa
section of w over T. Since n is invertible on T, the section (1/n)w of ®
makes sense, and P — (1/n)w is point of E'(T) lying over P and having
order n. So we have the desired Py € E'(T) for all absolutely affine S-
schemes T. By the unicity, it follows that these P;°@" descend to give the
desired element P<an € E'(S).

We now recall the dictionary between connections on invertible
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sheaves on curves and ‘‘differentials of the third kind’’ (compare [5],
sections 7.2-7.4).

LEmMMA C1.2. Let S be any scheme, X/S a smooth curve, P, € X(S)
a finite number of disjoint sections, and n; some integers. Then an S-

connection on the invertible sheaf ® I(P,)®™ is given by any element
of H'X, Qs @ I™Y(P)® . .. ® I"X(P,)) (a differential one-form on X/S
having at worst first order poles along the P; and holomorphic elsewhere)
whose residue along each P; is the image of the integer —n; in I'(S, Og).

Proof. The correspondence is as follows. The differential o gives the
connection

Vo: @ IP)®" — Q I(P)®™ @ Qs
defined by
Vo(f) = df + fo.

Let’s check this indeed defines a connection. For f a local invertible
section, we may write

df
V() = (L + o)
f
and the hypothesis on the residues of w assures that (df/f) +  is a local
section of (%,s. Any local section may be written fg with g a local section
of Oy, and the product rule gives

Vo(fg) = fdg + g V,(f)

which shows that V,, does indeed map ® I(P;)®" to ® I(P,)®*™ @ Q.

Conversely, any connection is of the form f— df + fw, and taking f to
be a local invertible section shows that » must have a worst first order pole
at the P; with the prescribed residues.

REMARK C.1.3. Suppose that S = Spec(k) with k a field. Let P €
E(k) be a point of order N, with N prime to the characteristic of k. Then by
Abel’s theorem we can find a rational function fp on E whose divisor is
N[P] — N[0]. The function fp is only unique up to k*-multiples, but dfp/fp is
unique. Moreover, the differential

dfn

1
- o lfy 2= g
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is independent of the choice of the integer N prime to char(k) which kills P.
It is a section of Q}y @ I71(P) ® I71(0) with residue 1 at P and residue —1
at 0, hence corresponds to a connection on I7Y(P) @ I(0), i.e. it corre-
sponds to a point of E'(k). This point is none other than the point P " of
Lemma C.1.1. To see this, it suffices to check that the connection w$*" on
I"'(P) ® I(0) is of order N. Its N’th ‘‘power’” is the connec-
tion dfp /fp = N 0" on I7"(P) ® I"(0), which is mapped isomorphically by
“multiplication by f;’’ to 0 with its trivial connection d, which is the zero-
element of E'(k).

C.2 Construction of a rational cross-section of E — E when 6 is
invertible. Henceforth, we will assume that S is a scheme on which 6 is
invertible, in order to be able to make free use of Weierstrass normal form.
Given an elliptic curve E/S, we denote by E2f/S the complement of the
zero section. If we are also given a nowhere-vanishing invariant differential
o on E, we may write a unique Weierstrass equation

(E, ) = (0" =4x° — gox — g3, o = dx/y) &, 8 € I'(S,05)

in which the zero section becomes the point at infinity. In this picture E 2ff
is exactly the affine curve of equation y®> = 4x°* — g,x — g,. We will now

. . . m
construct a cross section of the projection E' — E over E 2,

LeEMMA C.2.1. Let (E, w) be an elliptic curve with differential over
the Z[1/6)-scheme S, and let P € E?*(S) be a point with Weierstrass
coordinates x = a, y = b. Then the differential

2 x—a Yy

lies in H'(E, Q},s ® I"Y(P) @ I7Y(0)), and has residues +1 at P and —1 at
0. (Thus it provides (C.1.2) a connection on I71(P) ® I(0).)

Proof. The question being local on §, we may suppose S affine =
Spec(A). By reduction to the universal case, we may further assume A
finitely generated over Z, hence noetherian. Localizing further, we may
assume A a noetherian local ring, then (by faithful flatness of the comple-
tion) a complete noetherian local ring, and finally (by ‘‘holomorphic
functions’’) we may assume A an artin local ring.

Near the zero section “‘®”’, wp = 3[1 + (b/y)] dx/x — a, and as the




296 NICHOLAS M. KATZ.

function x — a has a double pole at ““©’, and 1/y a triple zero there, it
follows that wp has a first order pole at « with residue —1.

If b € A is nilpotent, then P modulo the maximal ideal of A is a point
of order exactly two, and the section P is locally defined by the uniformiz-
ing parameter y — b.

where f(x) = 4% — g,x — g5
_ y? — b? . dy
(x—a)f'(x) y—b

_f&) —fla dy-1b)
T k-af® y-b

As f'(a) is invertible, it follows that

f(x) = f(a)
(x —a)f'(x)

which shows that w, has a first order pole at P, with residue +1. To check
that wp is holomorphic in E 2% — P, it suffices to check that both (x — a)w,
and (y — b)wp are holomorphic in E 2 (because P is globally defined in E aff
by the ideal (x — a, y — b). But

= 1 + afunction vanishing at x = a

d
x —a)wp =3y + b) ?x is holomorphic on E 2ff

=5 (f(x) f(a)) a;x is holomorphic on E 2f,

X —a

If b € A is invertible, then the function x — a has simple zeroes at P (x
=a,y = b)and at —P (x = a,y = —b), but the function y + b has a zero at
—P. Thus y + b/x — a is holomorphic on E2f — P, and has a first order
pole at P. Thus w,’s only finite pole is a simple one at P, and near P we

have
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_11-b+2bdx —a)

wP_Zy—b+b (x—a)
y—2>b
+._—_.

=1 2b 'd(x—a)

1_'_y;b xX—a

. : 3 d _
= (1 + function vanishing at P) —i—xlTa)

so that wp has residue +1 at P.

REMARK. The differential wp constructed above is independent of the
auxiliary choice of w. For if we replace w by Ao, A € I'(S, O5)*, then we
replace x by \"%x, y by A3y, and the new coordinates of P become (A 2a,
A=3b), whence

1 y+b dx 1 A3+ A3 ] d(\"%x)

2 x—a y 2 NZXx—\NZa M3y

Thus we may define a cross section

ET
m yo

E ) Eaff

as follows. For any S-scheme T, and any point P € E?3(T), we define
Fo(P) = the connection given by wp on I"(P) ® I(0) € E(T).

C.3 Construction of a rational map E' — wg,s when 6 is invertible.
We will define a morphism

E: 7 YE?) > wg
simply by defining for z € =~ (E2%(T))
E(z) = #¢(7z) — z € oy s(T)
In down to earth terms, a point of 7~k 2%)(T) C E'(T) with values in T is a
pair

(PEE*(T),w€ H(E;, )}

Erir

R IY(P)QI1(0) with residues 1 at P, —1 at 0).
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Its image wg,s(T) = HYE,, }gm,) is the differential
(I)P - w.

We summarize this in the following diagram.

0

DEs
E (not a section of anything)

é‘*r o5 ml(Eat)
Fo (a section of )

E ) Eaff

0

C.4 The construction of a modular form of weight one when 6 is
invertible. Let N be an integer = 2. We will construct a modular form A,
of weight one on I'yo(N) over Z[1/6N] as follows. Given a ring R in which
6N is invertible, and a triple (E, w, P) consisting of an elliptic curve with
differential over A and a point of order exactly N, the value at (E, », P) of
A, is defined by

E Pcan
A(E, o, P) = &)

(Recall that P¢a" € E'(R) is the unique point of order N lying over P, and
that as P has exact order N = 2, P¢<a lies in 7~ }(E 2f), so that E(P¢@") is a
well-defined element of wg z(R) = HY(E, )z), a free R-module of which @
is a basis. Thus the ratio is a well-defined element of R.)

It is clear that the formation of A,(E, w, P) is compatible with arbitrary
extension of scalars, and that it has degree —1 in w. That it has
holomorphic g-expansions will result from the theorem we will later prove,
identifying it with the A, of 2.7.
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C.5 The transcendental expression of the universal extension E*. Let
(E, w) be an elliptic curve with differential over C, corresponding to the
lattice L C C of periods of w:

L= {fw |y € H,(E, Z)} C C, z a standard variable on C
Y

E=C/L,o =dz

(E, w) = ()* = 4x° — gox — gs, dx/y)

x = P(z)
y=2'(2)
w=dz

We have the Weierstrass { function
1
L(z) = 7 + holomorphic near 0

§'(2) = -2()
which is not doubly-periodic, but satisfies
Lz +€)—L2)=—-n) for ¢€L
where
dx
n(¢) = Lx; = f{g’(z)dz
is the ‘‘period of the second kind’’.
The differentials
dx
@ = —
y
form a basis of H'(E, C) = Hom,(H,(E, Z), C) = Hom, (L, C) when we

view them as the linear forms on L defined by

0= [0, mO=[,n

x dx
n=—-———
y

By Legendre’s relation (cf. [6], A.1.3.13), we have a formula for their cup-
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product:
(w, n) = 2mi (topological cup-product).

We may view any element ¢ € L = H,(E, Z) as an element of
H'(E, C), namely the unique element y(¢) € H'(E, C) such that under cup-
product we have

[ o= 0.y
f/’l =(n, y(O)

The 1image of L under <y is none other than HYE,Z) =
Homz(H1 (E,Z),Z) = Homz(L, Z). If we remember that

(w,m) =2mi=—(n,w), (w,o)=(nmn) =0,

then we immediately find the formula

s ([ -]

(both sides have the same cup-products with @ and 7).
If we view ¢ € L C C as a complex number, it’s exactly the complex
number [ , @, so that in our earlier n(¢) notation we may rewrite this last

formula
2wiy(€) = €m — n(€)o in HYE, C)

Now let’s recall that E'(C) is the group of isomorphism classes of
invertible sheaves on E with integrable connections (the existence of the
connection implies that the degree is zero, when we are over C). By
GAGA, E'(C) is equivalently the group of isomorphism classes of analytic
invertible sheaves with connection on E 2", which group is just the group

Hom(m(E), C*)

(A line bundle with connection gives rise to a representation of the
fundamental group by considering the effect of analytic continuation on the
local horizontal sections of the dual line bundle with its dual connection.)
Thus we have
E'(C) = Hom(m(E), C*) = H'(E, C*) & H'(E, C)/2miH\(E, Z).

exp
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In terms of the basis m, w of HY(E, C), we have
H'(E, C) = pairs (a, b) of complex numbers < an + bw
2miH'(E, Z) = the subgroup consisting of all pairs (¢, —n(¢)), ¢ € L.

The analytic description sits in the commutative diagram

0

o(C) =—=H[E, QO},,) <5z~ C

b— (0, b)

E'(C) «—— H(E, C)/2miH(E, Z) <gmmr— C*/{(£, —n(£)}

E(C) c/L

C.6 The comparison theorem: statement.

THEOREM C.6.

(1) Under the isomorphism C3{€, —m(€)} = ET, the class of the point
(a, b) € C?2 gives the point a mod L in C/L = E(C) and the
connection on the divisor [a] — [0] (meaning: on the invertible
sheaf I'(a mod L) ® I(0)) given by the differential

&z —a)—&@) +b)dz
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(2) The section &,: E3*(C) — 7 Y(E*(C)) is given analytically by
a € C/L — the class of (a, {(a)) in C2/{¢, —q(£))}
(3) The morphism E: n=(E*(C)) — w(C) is given analytically by
(a, b) > ((a) — b) dz

Before the proof, let’s give the corollary which motivated this whole
appendix.

CoRrROLLARY C.4. Let P be a point of order exactly N = 3 on E(C) =
C/L, represented as (1/N)¢ for some € € L. Then the modular form A,
defined in C.4 is given by

1

A, 0,P)=¢ (ﬁ t”) + % 7€)

Proof of the corollary. The point P¢2» € E'(C) is the unique point of
order N in E*(C) lying over P = (1/N)¢, so we must have
1 .
pean = N (¢, —m(¢)) in E™(C)=C*/{(¢, —n(£)}.

By definition of A,, we have

1

_ E(Pcan) _ E (N ¢ - %n(f))

dz

Al(Ea O), P)
By (3) of C.6, E(a, b) = ({(a) — b)dz, whence

1,1
A(E, w, P) =E <N &dZNT’(()) =¢ (% t”) + %"q(f)

Q.E.D.

C.7 Proof of the theorem. We begin with the proof of (1). Let (a, b)
€ C?2. We wish to compute which connection on 7~(a mod L) ® I(0) it
corresponds to, or equivalently which differential w,; on E with only first
order poles at a mod L and at 0, residues +1 at a, —1 at 0, it corresponds
to. The differential w,, gives the connection

f=df + fou,
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on I %a mod L) ® I(0). The dual connection is the connection on
I(a mod L) ® I7(0) given by
g—>dg — gwyp.

A local horizontal section of this dual connection is thus a meromorphic
function ¥, ;, on C, not doubly periodic, such that

dd“ab —
d’ab

The corresponding representation p,;, of 7(E) = L in C* is given by

l»”a,b(z + [) = pa,b(g)d’a,b(z)

(since d log ¥, ; is doubly-periodic, translating ¥, ; by € € L only changes it
by a scalar factor!)

On the other hand, we know explicitly in terms of (a, b) which
representation p,, is, for under our isomorphisms, we have

Wg,p

(a, b)) e C%®~an + bo € H\(E, C) ~ ¢ = an(f) + b¢ € Hom(L, C)

exp

€ — "% & Hom(L, C*)

Thus

Pap(f) = LN+ bE

So in order to prove (1), it suffices to exhibit a function y,;, meromorphic
on C, such that

{d%’b/w“’” = G~ @) = L) + b) dz
Yan(Z + €)/ P 5(z) = ea1O+¢

But this is just what the Weierstrass o function is all about; it satisfies

{ do(z)/a(z) = L(z)
d(z + €)/o(z) = f(£)-e "=+

where f(£) is a certain *1-valued function on L/2L. So if we define y,, by
the formula
(z-a

'J’a,b(z) = -4

v exp(bz)
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then we clearly have the requisite properties, to wit

Aoy [Wap = &z —a) — L) + b
and
oz —a+ O)a(z + €)exp(bz + b?)

o(z — a)o(z) exp(bx)

Yoz + €)W p(2) =

F(€)eMOG=a+30

- F(£)e"OE+10 v

4

— ean(t’)+bt’
This proves (1).
To prove (2), we must show that the point (a, {(a)) gives the
differential
12'(2) + P'(a) dz
2 P(z) — P(a) )
As we have just proven,
Wy = Lz — a) — L(z) + b)dz
so we must check that
lg‘”(z) + P '(a)

2P0 — P e+

or equivalently, replacing a by —a and remembering that { and #’ are odd
functions while 2 is an even function, we must check that
1?/"(2) - P'(a) _
2 2(z) — Pa)
This last formula is well-known (Whittaker and Watson, p. 451, example

2); it is the value at t = a of the result of applying 9/0z + 9/dt to the
logarithms of both sides of the formula

iz +a) — ¢ — &)

—P(z) + P(t) = Z%
To prove (3), simply recall that, by definition, we have
E(a, b) = w4q0) ~ @
=[lz—-a) - L@+ L@ - &z —a) — k) + b)]dz
= (L(a) — b) dz
Q.E.D.
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C.8 A philosophical remark. The section
ET

T o

E ») Eaff

whose transcendental expression is

a—(a, ¢a) = (J;a dz, — J;azemm P(z) dz)

is the ‘‘Abel-Jacobi map’’ for periods of the first and second kind. So we
may summarize the comparison theorem by saying that ‘‘the Abel-Jacobi
map for periods of the second kind is algebraic’’.

C.9 Reformulation of a Conjecture (compare [5], 7.5). Let E be an
elliptic curve over Z[1/N] such that EQ has a rational point of order two.

Let E, denote E ® F,. Then (cf. [5], 7.5) for p = 7, p | N, the group E(F,)
= E,(F,) is of order prime to p. Now let P € E(Z[1/N]) = E(Q) be a point
in E2%(Q). Then at the expense of enlarging N, we may assume that P €
E3*YZ[1/N]). Let P, € E(F,) denote the reduction mod p of P; it is a
rational point on EF,, of finite order prime to p. Thus the modular form A, is

defined at (EF,,’ P,);
AI(EF,,’ Pp) € (Jl’EF (Fp) = HO(EP ’ Qép/Fp)

It is natural to consider the map

EQ) — [] HYE,, O} )/HAE, O} z0m)

P

which is a group homomorphism, and to ask whether its kernel lies in the
torsion subgroup.

C.10 Effect on Tangent Spaces. Recall that if A is an abelian scheme
over any affine scheme S, then the universal extension of Pic},g, noted AT,
sets in an exact sequence of S-groups

0— wA/S_)AT_) Picg/5_> 0.

Its tangent space along the identity section, tg(A"), is canonically equal
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to H}r(A/S), and the short exact sequence of tangent spaces

0= w45 — Hpr(A/S) — tg(Picl,s) > 0

I I
H(A, Q) H'(A, 04)

is the Hodge filtration on H}z(A/S) .

Suppose now that A = E, an elliptic curve. Then H}z(E/S) is selfdual
under the cup-product pairing (e.g. in the Weierstrass model the DR cup-
product (w, n) = 1). Thus there is a unique isomorphism

ctg(E") — Hpg(E/S)
under which the canonical pairing
ctg(E") X tg(E") > O,

becomes the cup-product pairing on Hjg(E/S) .

We recall from ([6], p. 163) that the inclusion of complexes
O — Qhs) = T7H0) - QF,s® [7%(0)) though not a quasi-isomorphism,
gives rise to an isomorphism

H}g(E/S) > HYE, I7'(0) = Qs @ I72(0)) > H(E, Q45 @ I7%(0)).
THEOREM C.10.1. Consider the composite map

HYE, QL;s ® 17%(0)) > Hpp(E/S) > ctg(E") C HYE", Qi)

restriction to
T 1 ( E aff)

HO(n H(E2), Q)
Fo*

HYE2®, Q)

U HYE, Q}s ® 17(0)).

n=1

It is simply the inclusion of
HYE, Qs ® I740)) in Uy=y HYE, Qfys ® 17(0)).
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Proof. By ‘‘reduction to the universal case’’, it suffices to check the
case when S is the spectrum of a finitely generated subring R of C. Further
localizing on S, we may also suppose that H*(E, Q},s ® I7"(0)) is free of
rank n for n = 2, and 3—it will then automatically be true for all n = 2.
Then our assertion is that two maps between free R-modules are equal.
For this, it suffices that they become equal after any injective extension of
scalars R — R'. Choosing R' = C, we are reduced to the case § =
Spec(C), which we will check transcendentally.

{E*(C) = H'(E, C)/2miH\(E, Z) = C2/{(¢, —m(£))}
tgE* = H(E, C) = C?, via the basis 7,

Taking coordinates (a, b) on C?2, the invariant differentials are da, db and
da, db is the basis of ctg(E") dual to the basis n, w of tg(E"). Using the
DeRham cup-product on H(E, C), we have

(@, Mpg = 1= —(m, w)pg
and thus the dual basis to (1, ) is (o, —7), hence the isomorphism

ctg(E") = H}R(E/S)

is given by
{da <o
db - —n
Now the section &, is given by
z—>(z, £(2));
Thus
{.9’0*(da) =dz=w
Po*(db) = dt(z) = —P(2)dz = —m
as desired.

Q.E.D.

C.11 Relation with Mazur’s modular form. He begins with an elliptic
curve E over a field k, and a point P € E 2(k) of order N prime to char(k).
The divisor

N*(PI-[0D)= XY D1- X [

Ny=P Nz=0

is easily seen to be principal, by Abel’s theorem, for it has degree zero,
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and it sums to zero on E. (If we choose one point y, such that Ny, = P,
then
2y-2z=2 otz - 2 z=N¥y=NP=0)

Ny=P Nz=0 Nz=0 Nz=0
So there is a function g on E, unique up to a k*-multiple, such that
(&) = N*((P] - [0D

Clearly, the divisor of (g) is invariant by translation by points of order N,
hence the function g itself only changes by a k*-multiple under such
translation, and hence the differential dg/g is invariant by such transla-
tions. Hence there is a unique differential, noted wp®", such that

dg/g = N*(wp°).

LEMMA C.11.1. Let f be any function such that (f) = N[P] — N[0].
Then

wpemn = = dflf

Proof. We must check that N*(wp®") = N*((1/N) dflf), i.e. that
N-dg/g = N*(df/f), i.e. that dg¥/g" = N*(df/f). So it suffices to show that
(g") = N*(f), or equivalently that N(g) = N*(f). But (g) = N*([(P] — [0]),
and (f) = N[P] — N[0].

Q.E.D.

Thus the differential wp°a" is precisely the connection on I~(P) ® I(0)
which is the point P¢a" € E'(k) (cf. C.1.3).

Mazur’s modular form is defined as follows. If P and Q are two
distinct points of E2f(k), both of finite order N prime to char(k), then
Mazur defines

M(E, 0, P, 0) = 2= (Q).

Over any base scheme § where N is invertible, we may define wp®" €
HYEIS, Qs ® I™Y(P)® I7%(0)) as the element giving the connection on
I7'(P) ® I(0) which is P & ET'(S). So over any base where N is
invertible, whenever we are given two disjoint sections P, Q € E*(S) of
order N, we may define

Q’P can

M(E, o, P, Q) = (Q),

(0]
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the value along the section Q of the function

can

“"; € HYE, I"'(P) ® I71(0)).

We now express M in terms of the Eisenstein series A, .

LEMMA C.11.2. Over C, if (E, w) < the lattice L C C, and P =
(1/N)¢, then

wpen = (¢ (2 -5 ¢) - 1) - 3 00)

Proof. The point Pcar € E*(C) is [(1/N)¢, —(1/N)n(£)], which by (2)
of C.6 is the connection given by the differential

(¢(z-%¢) - t@ -1 m0) az
An alternate proof would be to remark that the elliptic function
1 N
%))
(‘T (z N
f= N—1 —
(c@) 1oz =€)

has divisor (f) = N[P] — N[0], and then simply to compute

o= = el (5 ) ke o)

(¢(z- %) -t + 11w - 1 - 01) d

(t(z-5¢) - t@ -5 n@) =

ProrosiTioN C.11.3. Let S be any scheme where 6N is invertible,
(E, w) an elliptic curve with differential over S, and P, Q € E2%(S) two
disjoint sections (meaning P — Q € E?3%(S)), both of (not necessarily exact)

order N. Then
ME, 0, P, Q) = A(E,», Q — P) — A(E, w, Q)

Proof. By standard reductions, it suffices to check the case § =
Spec(C). Then (E, w) corresponds to a lattice L C C, P is (1/N)¢, Q is
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(1/N)¢', and

can (C (Z - % [) - 8@ - %n(f)) dz

w dz

Wp

Thus

M(E, o, P, Q) = =~

P
=g Loy et —o-g(Le) - Lae

= Al(Ea (1), Q - P) - AI(E, w, Q)'

Q.E.D.

PRINCETON UNIVERSITY.
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