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THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION 

Introduction. This paper grew out of an attempt to understand the 
arithmetic properties of the Hurwitz numbers [2, 31, particularly the 
possibility of their "p-adic interpolation7' in the style of Kubota-Leopoldt 
181. We are successful precisely "half the time", for those primes p = 1 (4). 
The very nature of our approach, which is an amalgamation of the 
approaches of Serre and Mazur-Swinnerton-Dyer, seems to make it 
inapplicable to primes p = 3 (4). 

The basic idea is this. The archtypical case of successful p-adic 
interpolation is that of the Bernoulli numbers, which in Serre's approach 
[18] appear as the constant terms of the q-expansions of certain Eisenstein 
series. On the other hand, the Hurwitz numbers are essentially the values 
of the same Eisenstein series, but at the lemniscatic elliptic curve (multipli- 
cation by Z[i]) rather than at q = 0, the degenerate "elliptic curve at a". 
The common feature of the lemniscate curve for p = 1 (4) and of the 
"curve at a" is that they both have ordinary reduction, i.e. their formal 
groups become isomorphic to the formal multiplicative group at least after 
a highly non-trivial extension of scalars. 

So more generally one might consider "trivialized elliptic curves7', 
namely pairs (E, cp) consisting of an elliptic curve E over a p-adically 
complete ground-ring together with an isomorphism p of the formal group 
of E with the formal multiplicative group. Then any usual modular form 
(say with p-integral q-expansion) may be viewed as a "function" of 
trivialized elliptic curves. In this context, it is natural to ask if it is possible 
to p-adically interpolate the values of the Eisenstein series at any trivial- 
ized elliptic curve. 

We show that this is in fact the case. The main technical tool upon 
which we rely is the theory of the p-adic Mellin transform ([13], [15]), 
which assures us that p-adic interpolation of a given sequence of p-adic 
numbers is equivalent to the existence of ap-adic measure on Z, such that 
these numbers are the integrals of the power functions x ++ x k .  In fact, we 
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simultaneously construct the needed p-adic measures for all trivialized 
elliptic curves by constructed a single measure on Z, with values in the p-  
adic Banach space of all generalized modular functions (i.e. functions of 
trivialized elliptic curves), such that the integral of x -+ xk is the k'th 
Eisenstein series. This measure we propose to call the "Eisenstein 
measure". (A note to analysts: if one thinks of trivialized elliptic curves as 
the test objects, then generalized modular functions become the distribu- 
tions, and the Eisenstein measure becomes a distribution-valued measure.) 

Thus we attach a p-adic zeta function to any trivialized elliptic curve. 
In the case of the degenerate elliptic curve at a (q = 0), it is the Kubota- 
Leopoldt p-adic zeta function (and so this paper provides yet another 
construction of that function). In the case of a complex multiplication 
curve, (although to fix ideas we treat only the lemniscate curve in detail), 
we relate the values of our zeta function to the values of the classical "L- 
series with grossencharacter" at s = O for the powers of the canonical 
grossencharacter to which the curve gives rise. In the case of a curve over 
Q without complex multiplication which admits a Weil parameterization, 
we do not know the classical meaning of our zeta function, and in 
particular we do not know its relation to the p-adic L-series which Mazur 
and Swinnerton-Dyer [15] and Manin [I l l  attach to such a curve by their 
theory of the "modular symbol". 

For the sake of completeness, we have worked systematically "with 
level", especially with Too(N). This allows us to give an a priori construc- 
tion of the Kubota-Leopoldt L-series L(s, X )  with x any Dirichlet charac- 
ter; sticking to level one would have meant restricting x to have conductor 
a power of p. In any earlier version, the construction of the Eisenstein 
measure made use of the existence of the Kubota-Leopoldt zeta function. I 
owe to Deligne the idea of eliminating this dependence by systematic use 
of the "Key Lemma" (1.2.1-3). It is a pleasure to record my gratitude to 
him. 

In fact, in a recent (Dec., 1973) unpublished letter of Deligne to Serre, 
Deligne has explained how to prove the "good" congruences for the 
Dirichlet L-series of a totally real number field, once one knows the 
irreducibility mod p of certain moduli problems for abelian varieties with 
"real multiplication" by that field. In the case of the rational field Q, the 
moduli problem in question is precisely that of trivialized elliptic curves 
with Too(N) structure, and so this paper may be read as an overlong 
introduction to Deligne's letter. 

We have added several appendices. In the first, we recall Hunvitz's 
form of the functional equation of Dirichlet L-series, which we need (cf. 
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2.4) to compute the constant terms of the Eisenstein series as values of L 
functions. The second appendix is a brief recapitulation of the entire paper 
in a context more suitable to the p-adic interpolation of the L-series 
associated to complex multiplication curves-the point is that T(N) is to a 
quadratic imaginary field as Too(N) is to Q. The final (!) appendix answers 
the question raised in 2.8 about the modular meaning of Eisenstein series of 
weight one. 

Table of Contents 

1. Generalized Modular Functions 

1.1 Basic Definitions 

1.2 Review of the Main Congruence Properties (the Key Lemma) 

1.3 The Frobenius endomorphism 

1.4 A technical remark 

1.5 Modular forms on Too(pn) as generalized modular forms 

2. 	 Eisenstein Series 

Statement of the results 

The situation over C; k 2 3 

Modular definition over Q; k 2 3 

q-expansions; k 2 3 

Definition of Gk,f; k 2 3 

Eisenstein series of weight two, their q-expansions and the 
definition of GZjf 

Eisenstein series of weight one, their q-expansions, and the 
definition of 


A technical remark and a question 


3. The Eisenstein Measure 

3.1 Generalities on measures 

3.2 Measures and pseudo-distributions on 2, 

3.3 The Eisenstein pseudo-distribution and the measures 2Ha3b 

3.4 Construction of the Eisenstein Measure J a a b  
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3.5 Construction of the Eisenstein series JXI,,;relation to the Gk,, 

3.6 Applications to the Kubota-Leopoldt p-adic L function of Q 

3.7 The p-adic L-series attached to an ordinary elliptic curve 

3.8 	 Its computation for complex multiplication curves 

3.9 	 The case of the Hurwitz Numbers 

Appendix A. Hurwitz's Functional Equation 

Appendix B. A slight generalization of our measure, adopted to complex- 
multiplication elliptic curves 

Appendix C. Modular definition of Eisenstein series of weight one, and 
their relation to the universal extension 

1. Generalized Modular Functions on r(N) and on r,(N). 

1.1 Basic Definitions. Fix a prime number p ,  and an integer N 2 1 
prime to p .  In case p = 2 or p = 3, we require N 2 3. Let k be a perfect 
field of characteristic p containing a primitive N'th root of unity 5,. Denote 
by W the Witt vectors of k ,  and by 5 E W the unique N'th root of unity 
lifting &. 

A trivialized elliptic curve of level N is a triple (EIB, cp, a,) consisting 
of 

an 	 elliptic curve E over a p-adically complete and separated 
W-algebra B 

a 	 "trivialization" of the formal group of E by an isomorphism 
(0: E 4 ( G ~ ,  


a level N structure a,: ,E I,(Z/NZ)B2 of determinant 5. 


A generalized modular function on T(N) is a rule f which assigns to 
any trivialized elliptic curve of level N (EIB, cp, cw,) a "value" 
f (EIB, cp, a,) E B, subject to the following two conditions: 

1. f(E/B, cp, ol,) depends only on the B-isomorphism class of 
(EIB, cp, ol,), and its formation commutes with arbitrary extension 
of scalars B -+ B ' of p-adically complete and separated W-algebras. 

2. 	 Denote by W((q)) the p-adic completion of W((q)); then 
f (Tate(qN)lW((q)), cp, a,) lies in the subring W[[q]] of W((q)) for 
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every choice of p and of a,. These series are called the q- 
expansions off. 

(We should remark that the construction of the Tate curve makes 
evident a canonical choice cp,,, of p, such that any other p may be uniquely 
written u p  with a E ZpX; thus all p's are in fact defined over W((q)).) 

For any p-adically complete W-algebra B, , we may define the notion 
of a generalized level N modular function defined over B, by restricting 
attention to trivialized level N curves (EIB, p,  a,) overp-adically complete 
B,-algebras B, and requiring that f (Tate(q")/B,((q)), p,  %) lie in B,[[q]] for 
all choices of cp and a,. 

Let V(Bo , T(N)) denote the p-adically complete ring of all generalized 
level N modular functions defined over B, , and let R '(B, , T(N)) denote the 
(graded) ring of all "true" modular forms on T(N) defined over B,. In a 
natural way, R '(B, , T(N)) maps to V(Bo , T(N)): a true modular form f gives 
rise to the generalized modular function f defined by 

where T is the standard parameter G ~ ~ , + T is the standard on dT/1 
invariant differential on G,, and where p*(dT/l + T) denotes the unique 
invariant differential on EIB whose restriction to E is cp*(dT/l + T). On the 
Tate curve, we have ~p,*~,(dT/l + T) = wcan, hence 

As a,.,,runs over all level N-structures, the right hand side runs over all the 
q-expansions off as true modular form. Thus if we fix the weight off, it is 
uniquely determined by f (thanks to the q-expansion principle), in other 
words f ++ f is injective on the space of modular forms of each given 
weight, but unless B, isj7at over W, the ring homomorphism R'(Bo, T(N)) 
-,V(Bo, T(N)) will not be injective. (The determination of the kernel for B, 
= W/pvW, any v, is the subject of [7].) 

The groups G = SL(ZINz) and Z p x act on the rings R '(B, , T(N)) and 
V(Bo, T(N)) in the following way: 

These actions commute with each other, and under them the homomorph- 
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ism R '(B, ,T(N)) -t V(Bo, r(N)) is equivariant. An element f E V(B, , T(N)) 
is said to have weight x E H O ~ , , , , ~ ~ ( Z ~ ~ ,BOX)if it satisfies 

[a]f = x(a1.f for all a E Zp'. 

Observe that the image in V(B,, T(N)) of a true modular forms of usual 
weight k has weight &, where &(a) = "ak viewed as an element of Bow. 
When B, is flat over W, a generalized modular function admits at most one 
weight (though of course most have no weight). 

A generalized modular function of level N defined over B,  is said to be 
"on Too(N)" if it is invariant under the subgroup 

In concrete terms, f is on T,,(N) if 

whenever 

Equivalently, a generalized modular function on T,,(N) is a "function" of 
triples (E/B, cp, P) consisting of a trivialized elliptic curve together with a 
section P of order exactly N (i.e. order exactly N at every point of 
Spec(B)), whose q-expansions f (Tate(qN)/Bo((q)), cp, P) all lie in B,[[q]]. 
The "standard" q-expansion of a generalized modular function will be its 
value on (Tate(q)/B,((q)), cp,,, , c), where 5 denotes the point of order 
exactly N on Tate(q) obtained from the given N'th root of unity 5 E W by 
viewing Tate(q) as a suitable quotient of G,. 

We denote by V(B,, Too(N)) the p-adically complete ring V(B,, I'(N))U 
of generalized modular functions on Too(N). The action of ZpX respects 
V(Bo, Too(N)). The action of the diagonal subgroup of G = SL,(ZINZ) 
respects V(Bo, T,,(N)), where it is more conveniently written as an action 
of (ZINZ)'; defined by 

[blf (E, cp, P) = f (E, cp, bP) for b E (Z/NZIX. 

An element f of V(B,, r,,(N)) is said to be of "nebentypus" E E 
H O ~ ( ( Z I N Z ) ~ ,BOX)if [b] f = ~ ( b )f for all b E (ZINZ)'. 

Analogously, we denote by R'(Bo, Too(N)) the ring of true modular 
forms defined over B, on r,,(N), defined as the invariants of U in R'(B,, 
r(N)). Thus the homomorphism R'(B,, P(N)) -,V(B,, T(N)) restricts to a 
Zpx x (ZINZ)X-equivariant homomorphism R '(B, , T,,(N)) -+ V(Bo, Too(N)). 
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1.2 Review of the Main Congruence Properties. For any p-adically 
complete ground-ring B,, we have V(B,, I'(N)) = V(W, T(N)) 6,B, and 
V(Bo, Too(N)) = V(W, I',,,,(N)) 6,B,,.  The important case is B,, = W/pnW. 

Over any p-adically complete ground-ring E n ,  any choice of cp, a, on 
the Tate curve gives an injective q-expansion homomorphism 

Applying the results to the rings En = W/pnW, we immediately see 
that over W, the cokernels W[[q]]/V(W, T(N)) and W[[q]]/V(W, r,,,,(N)) are 
flat over W. In concrete terms, this means that a generalized modular 
function on T(N) (resp. on T,,,,(N)) is divisible by p in the ring V(W, T(N)) 
(resp. in V(W, Too(N)) if and only if at least one of its q-expansions is 
divisible by p in W[[q]]. [In particular, if one q-expansion is divisible by p ,  
then all are!] 

Let D(W, T(N)) (resp. D(W, T,,,,(N))) denote the subring of R'(W[l/pl, 
T(N)) (resp. of R '(W[llp], r,,,(N))) consisting of elements Cf, such that for 
one (and hence for every) choice of q-expansion, Cf (q) lies in W[[q]]; the 
elements of D are the "divided congruences" of [7]. The inclusions R '(W, 
T(N)) C V(W, T(N)) and R'(W, T,,,(N)) C V(W, T,,,(N)) extend to inclusions 

Let us recall how these inclusions come about. If 2 f;: is a sum of true 
modular forms over W[llp] such that for some choice of cusp the q- 
expansion C fi(q) is integral, i.e. lies in W[[q]], then for n 9 0, C py i  is a 
sum of true modular forms over W, and gives rise to an element Cp$ of V 
one of whose q-expansions is divisible by pn. But then this element is 
uniquely divisible by p n  in V, and dividing it by p'l gives the desired image 
in V of the element Cfi in D .  

1.2.1 KEYLEMMAFOR I'(N). Let C A E R'(W[l/p], T(N)) be a sum 
of true modular forms on T(N), defined over W[l/p]. Suppose that at  some 
cusp, the q-expansion 2 L(q) is integral except possibly for its constant 
term, i.e. 

C A(q) E W[l/pl + W[[qll. 
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Let (a ,  g) be any element of Z p X  X S&(ZINZ) and denote by f ++ [a ,  g] f its 
canonical action on R ' ( W [ l / p ] ,  T(N)) .  Then the difference 

C A - [a,  81 C .6 D(W, T(N) ) ,  

i.e. E A - E [a,  g]A has integral q-expansion. 

Proof. For n % 0, Ep";fi lies in R ' ( W ,  T(N)) ,  and there exists a 
constant A E W such that C p x .  - A has one o f  its q-expansions divisible 
by pn. Hence E pyi  - A lies in pnD. Applying the automorphism [a, g]  o f  
D ,  we see that [a,  g] C pnA - [a,  g]A = pn C [a, g]A - A lies in pnD. 
Subtracting, we find that pn C A - pn E [a,  glh lies in pnD, and hence that 
E A  - E [a,  g]Alies i n D .  

1.2.2 KEY LEMMAFOR Too(N). Let 2 A  € RR'(W[l /p] ,Too(N))be a 
sum of true modular forms on Too(N), defined over W [ l / p ] .  Suppose that 
one of the q-expansions EA(q)  is integral except possibly for its constant 
term. Then for any element (a ,  b)  E Z p Xx (ZINZ)' ,  the difference 

C.6 - [[a bl C.6 
lies in D(W, roo(N)) .  

Proof. The same. 

1.2.3 ALTERNATEVERSIONOF THE KEY LEMMA.Let f be an arbi- 
trary element of V ( W ,  r ( N ) )  8, W [ l / p ]  (resp, of V ( W ,  Too(N)) 8, 
W [ l / p ] ) ,  and suppose that one of the q-expansions of f is integral 
except possibly for its constant term. Let (a ,  g) (resp. (a ,  6 ) )  be any 
element of Zpx  x SL,(Z/NZ) (resp. ZpX x (ZINZ)').  Then the difference 
f - [a,  g l f  (resp. f - [a,  blf)has integral q-expansion and hence lies 
in V(W,  r ( N ) )  (resp. V(W,  roo(N)).  

Proof. Again the same. 

1.3 The Frobenius Endomorphism of V(Bo,  Too(N)). Let (EIB, cp)  be a 
trivialized elliptic curve. Recall that the canonical subgroup Ecan o f  E is the 
kernel o f  multiplication by p in the formal group E o f  E ,  which by means o f  
cp is identified with p p  C G,. Let us denote by 

T: E -+ E/Ecan 

the projection onto the quotient, and by 



246 NICHOLAS M .  KATZ. 

the dual isogeny. Then iiis ktale, so in particular induces an isomorphism 
between the formal groups of EIE,,, and E.  

If in addition we are given a point P on E (i.e. a section of E + 

Spec(B)) of order exactly N ,  then the point r(P) on EIE,,, also has order 
precisely N ,  because r is an isogeny of degree p prime to N.  

Let's examine what happens with the Tate curve Tate(qN). The 
canonical subgroup is p p ,  and the p-th endomorphism of G, induces the 

x+z=

desired isogeny r :  Tate(qN) = G, /q"VZ -Gm /qpNZ = Tate(qNP). The 
dual isogeny ii is simply passage to the quotient by the subgroup of 
Tate(qNp) generated by qN. It follows that for any trivialization cp of 
Tate(qN), the trivialization cp iiof Tate(qNP) is the one deduced from cp by0 


9 - 8 

the extension of scalars W((q)) -----t W((q)). If P is the point 5"qm on 
Tate(qN), then r (P)  is the point S"pqmp on Tate(qNP), and thus T(P) is the 
point of Tate(qNP) deduced from the point Fpqm of Tate (9") by the same 
extension of scalars q ++ qP of W-algebras. Putting this all together, we find 
that 

(Tate(qN)/canonical subgroup, cp 0 ii,r(gnqm)) 

9+8

is deduced by the extension of scalars W((q)) ------+ W((q)) from 

Thus we may define the Frobenius endomorphism 

Frob: V(Bo, roo(N)) -+ ~ ( B o ,~ o o ( N ) )  

by defining 

Its effect on q-expansion is thus given by the formula 

= the image under q ++ qPoff (Tate(qN), cp, rpqm) ;  (1.3.1) 

in particular, for the "standard" cusp (Tate(q), cp, C),we have 

= the image under q -+ qPoff (Tate(q), cp, pp).  (1.3.2) 

1.4 A Technical Remark. We have viewed the Too(N) moduli prob- 
lem, that of "classifying" elliptic curves together with a point of order 
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exactly N ,  as a quotient of the T(N) moduli problem, that of classifying 
elliptic curves together with a level N structure of fixed determinant. As a 
result, we seem to be stuck with choosing an N'th root of unity before 
discussing the Too(N) problem. 

In fact, there are two distinct moduli problems we can consider which 
are defined over Z, which both become isomorphic to "our" Too(N) moduli 
problem when we adjoin an N'th root of unity and invert N. They are 

1. elliptic curves E plus injections ZINZ + Ker(N) in E 
2. elliptic curves E plus injections p, + Ker(N) in E 

For purposes of maximizing "rationality", the second problem is in 
fact preferable, simply because the construction of the Tate curve Tate(q) 
over Z((q)) as a suitable kind of quotient of G, makes evident a canonical 
inclusion i,,,: p, -+ Ker(N) in Tate(q). Thus the "standard" cusp 
(Tate(q), cp,,,, , 5) on the first Too(N) problem, is defined explicitly in terms 
of a chosen 6 ;  it may be "replaced" by the cusp (Tate(q), cp,,,, , i,,,) of the 
second Too(N) moduli problem, which is defined over Z,. In this way, we 
may "modularly" interpret an element f E V(W, Too(N)) whose q-
expansion at the standard cusp lies in Z,[[q]] as a generalized modular form 
on Too(N) in the second sense, which is defined over Z,. 

1.5 Modular Forms on Too(pn)as Generalized Modular Forms. Let us 
recall the notion of a modular form on Too(pn) of level N ((p, N)= 1) over 
Q(lN). It is a "function" of quadruples (EIB, o,p ,  a,) 

B a Q(5,)-algebra 
E an elliptic curve 
w a nowhere vanishing differential on E 
P an injection p,, +Ker(pn) in E 

a, a level N structure of determinant 5 

with values in B which satisfies the usual rules for a modular form (cf. [6], 
1.2), namely holomorphic q-expansions and commutation with extensions 
of scalars B -+B '. [As soon as B contains a primitive pn'th root of unity 
(i.e. an isomorphism of (ppn)B = the data of p is equivalent to the ( Z I P ~ Z ) ~ ,  
giving of a point of order exactly pnon E.] 

Now consider the "universal" trivialized elliptic curve with level N 
structure (E, 9,  a,), whose ground-ring of definition is the p-adic comple- 
tion of the "finite part" of V(W, Too(N)) (eg, thep-adic completion of V(W, 
Too(N))[l/A], where A is Ramanujam's cusp form En,, 7(n)qn). 
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Then the quadruple (E,cp*(dT/T), cp-' 1 p,,, = E ~ , ,, %), viewed over 

V(W, Too(N))[l/A] €9, W[l/p] is an admissible point of evaluation for any 
modular form on Too(pn) of level N.  Evaluating there, we obtain a ring 
homomorphism 

A 
level N modular forms on Too@"), -+ V( W, T(N))[l /A] €9 W[l /p] 

W 


defined over W[llp] 

which is necessarily injective, because it carries evaluation at (Tate(qN), 
cp,,, , aN)  to evaluation at (Tate(qN), w,,, , ican:pp81 +Kerbn), aN)  . 

If we restrict to the invariants of the group U = ( ;) C sL(Z/NZ),  

we get a ring homomorphism, again injective, 
A 

modular forms on Too(Npn) + V(W, Too(N))[l/A] €9 W[l/p], 
W 

defined over W[llp] 
which carries evaluation at (Tate(q), cp,,, , 5) to evaluation at (Tate(q), cpc, , 
ican : pp" +Kerbn), 6). 

LEMMA1.5.1. The above homomorphisms actually have values in 
V(W, T(N)) 8 W[l/p] and V(W, Too(N)) 8 W[l/p] respectively. Iff is a 
modular form on Too(pn) of level N (resp. on Too(Npn)) whose q-expansion 
at  one of the cusps (Tale (qN), mean, &an, (YN)  (resp. (Tate(q), mean ican 5)) 
lies in W[[q]], then it defines an element of V(W, T(N)) 
(resp. of V(W, Too(N)) with the "same" q-expansion. 

A 
Proof. Modularly, the formal scheme given by V(W, T(N))[l/A] is 

just the open set "the finite part" of the formal scheme given by V(W, 
T(N)). (In the notations of [7], we have 

A 
V(W, T(N))[l /A] 8 W/pmW= lim (the coordinate ring of T;,,) .) 

W 73 

This implies (just as for V(W, T(N))) that any q-expansion homomorphism 
A n 

V(W, T(N))[l/AI -+ W((9)) 

is injective, and has W-flat cokernel. 
By the principle of bounded denominators ([6], p. 161), if we replace f 

by p y f o r  v 0, it will have at least one of its q-expansions in W[[q]]. Thus 
A 0 

its image in V(W, T(N))[l/A] €9 W[l/p] will lie in V(W, T(N))[l/A]. But 
modularly, this last ring is the ring of all generalized modular functions on 
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T(N) which are not necessarily holomorphic at the cusps. By hypothesis, 
n 


the q-expansions off all lie in W[l/p][[q]] n W((q)) = W[[q]], and thus f 
lands in V( W, T(N)). 

The Too(N) case is immediately deduced, by passing to invariants of 

the subgroup U = { (  ;) } C sL(Z/NZ). 

2. Eisenstein Series. 

This section provides a leisurely review of Eisenstein series with level, 
from both an analytic and, where possible, an algebraic, point of view. The 
principal facts we are aiming at are the following. 

2.1 Statement of Results. 

2.1.1 Let k r 1 be an integer. Let f be a periodic function f : Z +Z of 
parity k (f (-x) = (- l)kf (x)) which admits the period N.  In the (excep- 
tional) case k = 2, suppose also that f (0) = 0. Then there is a true modular 
form Gkaf on Too(N) of weight k whose q-expansion at the standard cusp 
(Tate(q), mcan ican PN + Ker(N)) is 

where L(l - k, f)denotes the value at s = 1 - k of the L-series 

2.1.2 If we fix a prime p and an integer N r 1 prime t o p ,  then for 
any periodic function f :  Z +Z of parity k which admits the period Npn for 
some n 2 0, there is a generalized p-adic modular form Gk,f E V(W, TOO(N)) 
63 W[l/p] whose q-expansion at the standard cusp (Tate(q), pea, , 6 )  is 

Gk,f(9)= iL(1 - k , f )  + C qn C dk-lf (dl 
n b l  d ln  

Let us explain briefly how 2.1.2 follows directly from 2.1.1. As we 
have already explained, a true modular form on Too(Npn) "is" a generalized 
modular form on Too(N) with the same q-expansion. The only remaining 
point is that for k = 2, we no longer require f (0) = 0, i.e. we allow the 
constant function f = 1. This is possible because the series 

1 

24 n r l  d l n  n 2 1  din 
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is the q-expansion of a generalized modular form of weight two on SL,(Z) 
for any prime p (cf. [6], 4.5.4 for a proof). 

2.2 Over C. Let (EIC, w, P) be a triple consisting of an elliptic curve 
EIC, a non-zero invariant differential w on E ,  and a point P on E of finite 
order. Viewed analytically, this triple is equivalent to a pair (L, t o )  
consisting of a lattice L C C and an element toE (L Q)/L. The 

equivalence is given explicitly by 

(L, t o )  * E:  the elliptic curve CIL 

w: 	 the invariant differential dz (z the standard parameter on C) 

P :  the image of toin CIL 


(E, w, P) * L: the lattice {I;, y E H,(E, Z) I ofperiods of w 


to: 	the class modulo L of w taken over any path (2.2.1) 

On the other hand, we recall that for any Z[116]-algebra B, if we are 
given an elliptic curve with nowhere-vanishing differential (E, w) over B, 
then there are uniquely determined meromorphic functions X = X(E, w) 
and Y = Y(E, w) on E which are holomorphic except for second and third 
order poles respectively along the identity section "w", in terms of which 
(E, w) is given by a Weierstrass equation as a plane cubic: 

(E, w) = (Y2= 4X3 - g2X- g3,w = dX/Y). 

Over C, the meromorphic function X on E becomes the Weierstrass 9 -  
function on CIL 

the meromorphic function Y becomes 9 ' = -'f9 . 
dz 	 ' 

1 
Y = P 1 ( z , L )= -2 C ---

PEL 

and the differential w becomes dz: 

w = dX/Y = d 9 / 9 '  = dz. 	 (2.2.4) 

The Eisenstein series A,(L, t o )  are defined analytically for integers k 
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2 3 by the formulas 

In case to= 0 mod L ,  we sometimes write A,(L) instead of Ak(L, to). 
Notice that Ak(L,- to)= (- l)kAk(L,to). 

These series are closely tied up with the values of the 9-function and 
its derivatives. Explicitly, we have the formula, valid for k 2 3 :  

Ak(L, t o e , )  = --- if tof 0 mod L (2.2.6) 

while the series Ak(L), (which obviously vanish for odd k) ,  enter in the 
power series expansion of 9 :  

It will in fact be more convenient to deal with the "normalized" 
Eisenstein series 

dfn ( - l )k ' (k- I)!
Gk(L, 80) = A,(L, ( 0 )2 

As above, we will sometimes write Gk(L)instead of G,(L, to)when to= 0 
mod L .  

The formulas become 

for k ~ 3 ,t o+OmodL  

and 
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2.3.1 Modular Definition of the G, over Q. Let (E, o) be an elliptic 
curve with differential over a Q-algebra B. Then there is a unique 
isomorphism of the formal group E with the formal additive group G ,  
under which the differential L becomes the standard invariant differential 
dz on G , .  In other words, there exists a unique formal parameter z = 
z(E, w) in terms of which o = dz. The Eisenstein series G,(E, w) are 
defined as the coefficients of the Laurent series expansion in z of the 
meromorphic function X = X(E, w) on E along the identity section: 

Godd(E, a )  = 0. 
nrl 


When B = C, then X = Y(z, L), and G,(E, o )  = G,(L). 

2.3.2 Modular Definition of the Gk(E, o ,  P )  over Z[1/61. Let (E, o ,  P)  
be an elliptic curve together with a nowhere vanishing differential and a 
section P of order exactly N, over a Z[1/6N]-algebra B. Let D = D, be the 
unique translation-invariant B-linear derivation of OEwhich is dual to o .  
Then we define, for k r 3 

When B = C, then D = (dldz), X = 9(z ,  L), and G,(E, w, P) = Gk(L, t o ) .  

2.3.3 The Magic Triangle. This is a catch-phrase for the fact that two 
extremely transcendental procedures "cancel" each other, to yield an 
algebraic one. 

integration of w over T, 


(E, 0,P )  4% foe,> 


Gk, an archimedean 
infinite series 

C 

2.4 q-expansions of Eisenstein Series. We will compute analytically. 
The Tate curve (Tate(qN), o,,,) corresponds to the lattice 2riZ + 2 r i N ~ Z ,  

5jqL of finite order N to to -
2Tij + 2 ~ i t ~ .a point P = = We normalize the 
N 

integersj,8 by requiring 0 5j,l < N 
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If we now avail ourselves of the formula valid for Im(x) > 0, (both 
sides converge absolutely for k r 2) 

we immediately compute 

Switching to the normalized series Gk = (- l )k[(k- 1)! /2Hk,and 
adopting the Hurwitz notation 
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we have the formulas 

Thus if t + 0, we have 

while in case t = 0 we have 

+ (- l)kNk(k- l)! 
[L(k, char. fct. o f j  mod N) 

2 ( 2 ~ i ) ~  

+ (- l)kL(k, char. fct. of -j mod N)]. 

where for any function f on ZINZ, we note L(s, f)the function 

U s ,  f)= C f (n).n-" 
n a l  

In the case of Eisenstein series "without level", the formula above 
remains valid: 

f 0 k odd 

Gk(Tate(q), wean = (2.4.8) 
5(k)(k - I)! + 

qn 2 k even( 2 ~ i ) ~  n a l  d l n  

Evaluation of the constant term. If we define the Fourier transform f 
++ y o n  functions on ZINZ by the formula 
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then the Hurwitz functional equation (cf. Appendix A) for 5(s, a) gives the 
following relation between the integral values of L(s,  f ) :  

for k 2 2 (2.4.10) 

or equivalently for 

L(l  - k, f )  = 0 

k 2 2: 

IL(l - k, f )  = 
2Nk.(k- I ) ! ( - l )k

L(k,f )  if f ( - x )  = (- l )kf  (x).  (2.iri)l 


We introduce some functions on ZINZ: 


They satisfy the identities 

Thus the functional equation gives 

and we obtain the q-expansion formula 

+ f C qn C d,-l[i,!~~(d) (2.4.14)+ (- ly"$-,(d)]. 
n r l  d ln  

2.5 Definition of the Eisenstein series Gk,fon T,,(N). For any function 
f on ZINZ, say with values in Z and any integer k r 3, we define a modular 
form Gk,fof weight k on T,(N) over Q(Q by 

G,,~(E,w, P)= C J ( ~ ) G , ( E ,o,d p ) .  (2.5.1) 
d mod N 
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Recalling that Gk(E,o,-P)  = (- l)kGk(E,w, P),  we see that 

Gk,f= 0 if f ( - X )  = (- l )k+Y(X)  

The q-expansion at the standard cusp is thus given by 


if f ( - x )  = (- l)"+'f (x)  

(2.5.2) 

hL(1 - k , f )  + 1 qn 1 dk-lf(d) if f ( - X )  = (- l)lef(x) 
n b l  d i n  

Gk,f(q= 0)  = iL(1 - k , f )  for any f 

At any cusp the q-expansion lies in Q[(][[q]], and is integral except perhaps 
for its constant term. 

LEMMA2.5.3. Let b E (ZINZ)X act on the space of Zvalued 
functions on ZlNZ by [b] f (x)  = f (bx). Then 

where b E (ZINZ)' acts on modular forms on Too(N) by 

n 
Proof. The point is that [b] f= [b-']A thus 


A 

Gk,[b,(E, o,P) = C [blf  (d)Gk(E, w, dP) 


d mod N 

= 1 o,d ~ )? ( b - l d ) ~ , ( ~ ,  
d mod N 

= C ?(~)G,(E,o,dbp) 
d mod N 
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2.6 Eisenstein Series of Weight Two. The Eisenstein series of weight 
two AZ1(L, t o )  is defined only for to+ 0 mod L ,  by the formula 

(The sum is absolutely convergent.) 
The normalized Eisenstein series GZ1(L, t o )  is defined by 

Gzl(L, 80) = hAzl(L, to) = h%, L)Ir=e,. (2.6.2) 

q-expansion. The q-expansion is readily calculated, just as above: 

AZ1(2riZ+ 2 ~ i N r Z ,21rijlN + 2 ~ i e r )  

Applying the formula (2.4.2), we find 

Thus AZ1(L, t o )  has a holomorphic q-expansion. At the cusps (Tate(q), 
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ocan,  (j), the q-expansion is given by 

G, '(Tate(q), o,,, , 5j) = 2 qn C d.i[<jd + 5-jd - 21 
n z l  d ln  

+- N2 
[L(2, char. fct. o f j  mod N) 

2(2~i ) ,  
(2.6.5)

+ L(2, char. fct. of -j mod N)] 

Using the functional equation for L-series (Appendix A) once again, we 
may rewrite the constant term. Recalling that ((- 1) = -1/12, we find 

+ h 2 9" 1d($j(6) + $-j(d) - 2) (2.6.6) 
1 d in  

= iL(- 1, +j + +-j) + 4 2 qn 2 d(+j(d) + $-j(d)) 
n b l  d in  

-(;+ n 8 1  dln  d,z 9 ° C  

2.6.7 Definition of GLaf. For any function f on ZINZ with values in Z 
which has total integral zero (i.e. C f(x) = 0) we define a modular 

x mod N 

form Gi,f of weight 2 on T,(N), defined over B, by 

GL,f(E, o ,  P )  C .?(~)G,(E, o ,  dP). (2.6.8) 
d mod N 

d # O  

Recalling that G2(E, w, -P) = G,(E, o ,  P), we see that 

and the q-expansion of G i ,  at the standard cusp is given by 
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I n s l  dln 

2.6.11 Definition of G,, as a generalized modular form. We recall 
from [6] the fact that for any prime p ,  there is a generalized modular form 
-24G2 of weight 2 and defined over Z, level one whose q-expansion is 

1
-24G2(Tate(q), cp,,,) = 1 - 24 2 qn d. (2.6.12) 

n z l  d ln  

Thus we may define G, ,  E V(W,T,(N)) @3 W[llpl by the formulas 

+ f (0)G2 if f (XI= 0 
x mod N 

Gz,f = (2.6.13) 
if f is the constant function 1. 

For any f ,  noting by Jf its average value 1/N Xzrno,. f(x), we thus have the 
formula 

Its q-expansion is given by the expected formula: 

f odd 
(2.6.15) 

[1L(- 1, f )  + 2 qn df ( 4  f even 
n a l  d ln  

2.7 Eisenstein Series of Weight One. Strangely enough, the situation 
in weight one vis a vis Eisenstein series is more satisfactory than it was for 
weight two. Let us recall the definitions in an analytic context. 

The Weierstrass 5 function associated to the lattice L is the mero-
morphic function on C defined by the absolutely convergent double sum 
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The sum converges absolutely and uniformly on any compact subset of C 
- L .  It is minus the integral of the B function: 

dc(z; L )  = -B(z ;  L)dz (2.7.2) 

Let us recall its relation to "periods of the second kind" (cf. [9], p. 241). In 
terms of the coordinates X, Y, we have "the" differentials of the first and 
second kinds 

which furnish a basis of H1(E,C). 
For any f E L = Hl(E, Z), we denote by (7, f )  the complex number 

obtained by pairing the homology class f and the cohomology class 7: 

( q , f ) = / v = - [ + ' d c ( z , L ) = < ( z ; L ) - < ( z + f ; L )  (2.7.4) 

Now suppose given to€ L LQ, tof$ L,  and choose an integer N such 
that N f oE L.  Following Hecke, we define 

It is immediate that for fixed t o ,the,number (l/N)(q, N f o )is independent 
of the auxiliary choice of N .  If we replace f o  by to+ f ,  with 8 E L ,  we 
find 

The q-expansion of values of the Weierstrass 5 function. For any z 6 Z 
+ ZT, we have 
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The q-expansion of A , .  

Al(2aiZ + 2aiNrZ; 2a i j lN + 2aier) 

- (same with n replaced by -n) I (2.7.8) 
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Now we may rewrite the coefficient of qnmN as 

ez?rinj/Nqne + -1 eZainz (1 - qn"9 - (same with n replaced by -n) 
N 

To compute a given coefficient, we may let z + 0; then we see that the 
coefficient of qnmN is 

ezainjiN-qne+ -1 
(1 - qnNe)- (same with n replaced by -n).

N 

In the particular case 8 = 0, then the coefficient of qnNm is e2ainj'N -
e- Zatnj/N. Thus 

a cot(aj/N) + + 
1 

(a  cot(az) - a cot(a(z + j ) ) )  

n s l  d i n  

Because the cotangent function is periodic with period a ,  the constant term 
simplifies: 

= -
1 

cot(aj/N) - 2 qn C (cd- 5-jd). (2.7.10)
2i n = l  din 


We define the normalized series G, by the usual formula: 


dfn
GI =- $4 

Thus 

G,(Tate(q), w,,, ,C) = - -
1 a cot(aj/N) + 2 qn C :(gjd -5-jd) (2.7.12)
2 2ai 1 d ln  
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Proof of lemma. Compute: 

thus 

As for L(0, f )  for any odd function f ,  we use Abel summation! 

In the last expression, both numerator Cf is odd!) and denominator vanish 
at T = 1, so by L'Hopital's rule we have 

The lemma thus reduces to checking that 

which we leave to the reader (hint: multiply by - 1). 
So in weight one as well, we have the "correct" q-expansion 

G,(Tate(q), wean, 5') = 1L(O, 1($j - $-i)) 

+ 1 C qn C 1($j - $-j))d). (2.7.14) 
n s l  d ln  

Thus we may define just as in the case of higher weight by 

z f( d ) ~ l ( ~ ,  if (2.7.15)w ,  dP) f is odd
Gl,f(E, o ,  P)  = if f is even. 

We have 
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and hence by linearity we get the desired q-expansion formula for any odd 
functionf. 

Gl , f (Ta t e (q ) ,wcan ,S )= IL(O , f )+CqnCf (d )  (2.7.17) 
n 8 1  dln  

2.8.1 Another technical remark. The Eisenstein series Gk,f we have 
constructed are intrinsically modular forms defined over Q(the values off) 
on the second version of the T,,(N) moduli problem (cf. [I] and 1.4). They 
are defined, however, with the help of the modular forms (one for each 
integer d mod N) 

each of which is intrinsically a modular form defined over Q on the Jirst 
version of the T,,(N) problem. The modular definition of Gkjfis by its 
"fourier series" : 

The fourier transform of a function f on ZINZ is the function on p, 
defined by 

2.8.2 A question. By the q-expansion principle, the modular forms 
Glafwe have transcendentally constructed are modular forms on T,(N), 
defined over Q(5,). How can they be described purely algebraically? (See 
Appendix C for the answer!) 

3.1 Measures: generalities. Let X be a compact totally disconnected 
topological space, and R ap-adically complete ring. We denote by C(X, R) 
the R-algebra of all continuous R-valued functions on X. Because any 
element of C(X, R) is a uniform limit of locally constant functions, we have 

C(X, R) = C(X, 2,) & R = lim C(X, Z,) 63 (R/pnR). 
z, + Z D  

A measure p on X with values in R is a (necessarily continuous) R- 
linear map from C(X, R) to R ,  or equivalently it is a continuous Zp-linear 
map from C(X, Z,) to R.  

i 


Suppose U+ X is a compact open subset. Then the characteristic 
functions of both U and of X - U are continuous functions on X, hence 



265 THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION. 

C(X, R) = C(U, R) @ C(X - U, R). 

A measure p on U gives rise to a measure i*p on X by defining 

(i*P)(f)= P(f l U), 

and a measure v on X restricts to a measure i*v on U,defined by 

(i*v)(g) = v(g extended by 0 to all of X). 

A measure v on X is said to be supported in U if v = i*i*v, i.e. if 

vCf) = vCfl U extended by 0 to all of X). 

The constructions i*, i* provide inverse isomorphisms between the spaces 
of measures on X supported in U and of measures on U. 

3.2 Measures and Pseudo-distributions on Z,. We begin by recalling 
Mahler's characterization of the continuous p-adic functions on Z,. For 
each integer n r 0, the "binomial coefficient function" 

(1 for n = 0 

x- (:) = {x(x - 1 )  . . . ( x  - (n - 1)) 
for n > 0

n! 

maps the positive integers to themselves, hence by continuity maps Z, to 
Z,. Thanks to Mahler [21], we know that for any p-adically complete ring 
R ,  the continuous R-valued functions for Z, "are" the sequences (a,),,, of 
elements of R which tend to 0, via the interpolation expansion 

the an's  being the higher differences (Ay)(O). 
A measure on Z, with values in R is thus uniquely determined by its 

, ~ 

values on the functions (3. Conversely, given any sequence (b,),,, of 

elements of R ,  there is a unique measure on Z, whose value on (E) is b, 

for all n r 0. 
For any finite space T (in the discrete topology!), continuous R-valued 

functions on Z, x T are exactly the sequences (an)nao of R-valued 
functions on T which tend to 0, via the expansions 
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A measure on Z, x T with values in R is uniquely determined by its 
restriction to the subspace of C(Z, x T, Z,) consisting of the finite 

sums P a,(t) (:), and its restriction to this subspace is arbitrary 

For any Z,-algebra R ,  we define a pseudo-distribution on Z, x T with 
values in R to be a linear form on the R-submodule of Maps(Z, x T, Z,) 
spanned by all functions f (x, t) = a(t)xn, n 2 0, a(t) any Z,-valued function 
on T. 

Suppose now that R is Z,-flat (i.e. R c R 63 Q) and p-adically 

complete. Then because (f;) = 5+ lower terms, it follows immediately 

that an R-valued measure on Z, x T is uniquely determined by the R 63 Q-
valued pseudo-distribution on Z, x T to which it gives rise. Conversely, an 
R €3 Q-valued pseudo-distribution on Z, x T extends to a measure if and 

only if its values on the functions a(t) (3(n r 0, a(t) any Z-valued 

function on T ) all lie in R (rather than in R 63 Q). 

Remark 3.2.1. We have adopted the term "pseudo-distribution" so 
as to avoid confusion with distributions on Z, x T in the sense of [13] and 
[15], these latter being linear functionals on the space of locally constant 
functions on Z, x T. With the exception of the constant functions, the 
domains of distributions and of pseudo-distributions are disjoint! We 
should also remark that the notion of a pseudo-distribution depends upon 
the choice of the coordinate x on Z,, i.e. on the ring structure of Z,, and 
not simply on its structure of compact totally disconnected space. 

3.3 The Eisenstein pseudo-distribution on Z, X ZINZ and the measures 
~ H " J ~ .We define a pseudo-distribution H on Z, x ZINZ with values in 
V(W, Too(N)) 63, W[llp] by the formula 

H(xkf (t)) = Gk+l,f for k 2 0,f (t) any Zp-valued 
(3.3.1) 

function on ZINZ 

For each (a, b) E ZpXX (ZINZ)', we define the pseudo-distribution Ha,b 
on Z, x ZINZ with values in V(W,Too(N))63w W[llp] by the formula 

Hasb(Xf (t)) = H(Xf (t)) - H(akf'Xf (bt)) 

= Gk+l,f- La, blGk+l,f 

THEOREM3.3.3. The pseudo-distribution 2Hajb has values in V(W, 
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r,(N)), and extends to a (unique) measure on Z, x ZINZ with values in 
V(W, r,(N)). 

Proof. What must be shown is that if F(x) E Q,[x] is any polynomial 
which takes values on Z, when x E Z,, and if f(t) is any Z,-valued 
function on ZINZ, then 2Hajb(F(x) f (t)) = 2H(F(x)f (t)) - 2[a, b]H(F(x) f (t)) 
has integral q-expansions. By the "key lemma" (1.2.1), this will certainly 
be the case if one of the q-expansions of 2H(F(x)f(t)) is integral except 
possibly for its constant term. Let's check that this is indeed the case at the 
standard cusp (Tate(q), cp,,, , 5). 

We recall that Gk,f has q-expansion 

+ 2 qn 2 (dk-lf(d) + (-lydk-tf(-d)). (3.3.4) 
n a l  d ln  

Because of the dCcalage k * k + 1, we obtain 

= constant + x qn x (dkf (d) - (-dy"f (-4) (3.3.5) 
n z l  d l n  

By linearity, we obtain 

2H(F(x)f (t))(Tate (q), G,,,5) 
= constant + x qn (F(d)f (d) - F(-d) f (-4) (3.3.6) 

n a l  d ln  

Q.E. D. 

COROLLARY Let B, be any p-adically complete W-algebra, and 3.3.7. 
let F(x, t) be a continuous Bo-valued function on Z, x ZINZ. Then 
2Hajb(F(x, t)) lies in V(Vo, Too(N)) and its q-expansion a t  the standard cusp 
given by 

2Hajb(F(x, t))(Tate(q), a,,, 1;) = constant 

+ x qn [F(d, d) - F(-d, -d) - aF(ad, bd) + aF(-ad, +bd)] 
n a l  d i n  

COROLLARY3.3.8. If g(x) is any locally constant function on Z,, then 
for k r 0 we have 

where gf is viewed as a function on ZlpnNZ for n 0. 
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Additional Properties of the Measures 2H l j b .  

PROPOSITION Let (a ,  b)  and ( a ,  P )  be two elements of Z p X  x3.3.9. 
(ZINZ)', and let F(x, t )  be any continuous function on Z p  x ZINZ with 
values in Bo . Then we have the formulas 

2Ha3b(F(x,t ) )- t ) )2[a, @lHasb(F(x, 

= 2HasP(F(x,t ) )- t ) ) .2[a, b]HffsP(F(x, (3.3.10) 

2[a, Pma3b(F(x,  t ) )= 2Hasb(aF(ax,Pt)). (3.3.11) 

Explicitly, for every "test object" (E,  c p ,  P)  of our Too(N)moduli 
problem, we have the formulas 

and 

Proof. We immediately reduce to the case Bo = W, then to the case 
F(x, t )  = $f ( t) .  Then Hajb($f ( t))  = ( 1  - [a,  b])Gk+l,f, and Ha.b(aF(ax, Pt)) 
= ( 1  - [a ,  b])f fkf lGk+l,Aan ( 1  - [a,  b])[a ,  P]Gk,f (this last equality by = 

(2.5.3)). Thus both sides of the first asserted formula become 2(1 - [a ,  
@ ] ) ( I  - [a, b])Gk+l, f ,  and both sides of the second reduces to 2[a,PI(1 -
[a, bl)Gk+l,f. 

Q.E.D. 

3.4 Construction of the Eisenstein Measure Ja,bon Z p x  X ZINZ. For 
each (a, b )  E Z p Xx (ZINZ)', we define the measure 2.Jajb on Z p xx ZINZ 
with values in V ( W ,Too(N))by the formula 

2Ja3b= the restriction to Z p XX ZINZ of 2Hajb (3.4.1) 

Let us denote by F * [a,  b]F the action of Z p x  X (ZINZ)' on 
functions F(x, t )  on Z p XX ZINZ given by 

The transcription of (3.3.10-1 1 )  to the measures Jajbis immediate. 

PROPOSITION3.4.2. Let (a ,  b )  and (a, P )  be elements of Z p X  x (ZI 
N Z ) X ,  and let F be a continuous function on Z p X  X ZINZ with values in a 
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p-adically complete W-algebra B,. Then we have the formulas 

( I  - [ a ,  P])(2Jasb(F)) = ( 1  - [ a ,  bl)(2Ja3P(F)) (3.4.3) 

[ a ,  P](2Jajb(F)) = 2Jasb([a,@IF). (3.4.4) 

The q-expansion of 2Jajb(F)at the standard cusp is given by formula 

2Jajb(F)(Tate(q),(p,,, ,1;) = constant 

+ C q n  C F(d,  d )  + F ( - d ,  - d )  - F(ad,  bd)  - F(-ad ,  -b d )  
J 
 (3.4.5) 

3.5 Construction of the Eisenstein series JxS f .  Let X :  Z p X-+ BOXbe a 
continuous character (B ,  ap-adically complete W-algebra as above), and f :  
ZINZ +Bo any function. Recall that X, is the character x + x on Z p  I. 
We define 

d f n
2J;:fb =2Jaab(xx- f )  (3.5.1) 

Thanks to (3.4.4), we know that 2Jlf:,b is a generalized modular function of 
weight x on T,(N), defined over B,. In case f has "parity x", in the sense 
that f ( - t )  = x ( - 1 )f ( t ) ,the q-expansion of J;;? is given 

2Jlf:fb(Tate(q), pcan, 1;) = constant 

while iff (- t )  = -x(- 1 )f ( t ) ,  we have 21lf:fb = 0 (this because (- 1 ,  - 1 )  E 

Z p X x (ZINZ)' must operate as the identity on V(B, ,  T,,(N)). 
Suppose that B ,  is an integral domain with fraction field K ,  and that 

the character x is non-trivial. Then for any a E Z p Xsuch that ~ ( a )# 1 ,  we 
define an element 

d f n  1 . JU.1 
J X > f  = X , f

1 - x(a)  

It is immediate that this definition is independent of the choice of a such 
that ~ ( a )# 1 ,  for we have the identity 

( 1  - x(a))J;;j = ( 1  - [ a ,  11)J;;j = ( 1  - [a ,  1I)J;:j = ( 1  - x(a))J;:j. 
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Further, for any a, b E ZpXx (ZINZ)', we have 

JErb = (1 - [a, bl)Jx,f in V(Bo , roo(N))@ K ,  (3.5.4) 

because for any a with ~ ( a )  # 1, we have the identity 

(1 - x(a))J;;,b = (1 - [a, l])J;;,b = (1 - [a, b])J;;; 

I I 
(1 - [a, bl)(l - X(ff))JX,f. 

In case f has "parity x", the q-expansion of Jx,fat the standard cusp is 
given by 

elt. ofBo 
Jx,f(Tate(q), %an 5) = 

2'(1 - x ( ~ ) )  nal d l n  

(the a written explicitly in the denominator is arbitrary subject to the 
condition ~ ( a )  # 1, though of course the numerator in such a representa- 
tion of the constant term does depend on a). In case f has parity -x, Jx,f 
vanishes. 

Relation of the JXjfto the Gk,f. For any integer k # 0, we denote by 
Jk,fthe Eisenstein series J,,, where X, is the character xk :  ZpX + ZpXC 

WX given by xk(x) = xk. Thus Jk,fis an element of V(W, Too(N)) 8 W[l/p]. 

LEMMA3.5.6. Let k r 1 be an integer, and f: ZINZ + W any 
function. Then 

Proof. It suffices to show that both sides have the same q-expansion 
at the standard cusp (Tate(q), cp,, , 0,except possibly for their constant 
terms. For then their difference would be a constant in W[llp] which has 
weight k # 0, hence must vanish. To compute q-expansions, we may 
assume that f has "parity k", i.e. f (- t) = (- l)kf(t), for in case f has 
"parity k + I", both sides 'of (3.5.6.1) vanish. 

Recall that 

= the image under q ++ qP of Gk,ATate(q), cp,,, , t;P) 

= the image under q .HqP of Gk,xpo(Tate(q), ,5) 
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and hence 

Frob(Gk,,)(Tate(q),a,, ,5) = constant + C qnp C dk-lf  (pd) .  
n a l  d i n  

Hence the q-expansion of the right hand side of (3.5.6.1) is given by 

constant + 1 qn dk- l f (d )  - 1qnp 1 ( ~ d ) ~ - l f ( p d )  
n a l  d i n  na l  d l n  

= constant + 1qn 1 dk- l f (d )  
n a l  d(n  

(P,d)= 1 

which agrees with the q-expansion of J k j fup to its constant term. 

COROLLARY The constant term of the q-expansion of Jk,, is 3.5.7. 
given by the formula 

In particular, iff is itself a multiplicative function E on ZINZ (meaning f ( xy )  
= f ( x )  f (y)for all x ,  y E ZINZ and f ( I )  = 1 )  then both G , ,  and Jk,€are of 
weight k and nebentypus E ,and the formula becomes 

Notice that 1 - pk-%(p)  is precisely the value at 1 - k of the reciprocal of 
the p-Euler factor which figures in L ( s ,  E ) .  

COROLLARY Zfthe character x i s  o f  the form xko,  where o is3.5.10. 
a non-trivial character of  Z p X  o f  finite order (extended by 0 to all o f  Z,) ,  
we have 

In the special case f = E, a multiplicative function o n  ZINZ,  and W E  has 
parity k,  the q-expansion is given a t  the standard cusp by 

Jx,,,E(9) = iL (1  - k ,  we) + C qn C d k - l w ( d ) 4 ) .  
n z l  d l n  

(The Euler factor disappears because ( o ~ ) ( p )  = w ( p ) ~ ( p )= O . E ( ~ )= 0.) 

3.6 Applications to the Kubota-Leopoldt p-adic L-function of Q. Let C 
be a complete algebraically closed overfield of Q,, and let O = 0,denote 
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its ring of integers. Fix an integer N prime t o p .  The Kubota-Leopoldt L-
function is the C-valued function on HomCOntin(Zp x (ZINZ)' , C ')-{the 
trivial character)) defined by 

(the right hand side is independent of the choice of (a, b) E ZPXx (ZINZ)' 
such that x(a)~(b) # 1). It has a first order pole at the trivial character, in 
the sense that for each (a, b) E ZpXx (ZINZ)', the function 

(x, 4 + (1 - x(a)~(b))=%x,4 
extends to a continuous 0-valued function on all of H O ~ & , , , ~ ~ ( Z ~ ~X 

(ZINZ)', C '). Because this last function is the restriction of a measure, its 
values satisfy the Kummer congruences: 

Whenever a finite C-linear combination C. cX,,x.s of characters satisfies a 
congruence 

1 cx,,x(a)4b)E pug for all (a, b), 

Then for each (a, b), the values 2 ( x ,  E) satisfy the congruence 

2 cx,,(l - x ( Q ) ' E ( ~ ) ) ~ ( x ,€1 E ~ ' 0 .  

If we denote by X, the character xk(.x) = xk of ZpX,  we have the formula 

[valid for k = 2, any s, w 

P ~ - ~ ~ ( P ) ) ~ ( ~$ D ( ~ k9 €1 = - - k, 	 valid fork a 1 only if (3.6.3) 
E is an odd character 

For any nontrivial character o:ZpX+C which is offinite order we have 
the supplementary formula 

valid fork r 2, any w, s 

L(b.w, E) = L(l - k, we) rvalid fork = 1 only if 
(3.6.4) 

ws  is an odd character 

(where we view ws as a Dirichlet character of conductor pPoWerX N). 

3.7 The p-adic L-series attached to an ordinary elliptic curve (N = 1 for 
simplicity). Let C, 0be as above, and suppose given an elliptic curve El6 
together with a nowhere vanishing differential w. We suppose that E is 



THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION. 273 

ordinary, in the sense that modulo 9its Hasse invariant is non-zero. Then 
E admits a trivialization cp: E 4 G~defined over 0, and a trivialization cp is 
uniquely determined by the constant A E OX defined by cp*(dT/l + T) = 
A&.--Indeed,a constant A E OX comes from a trivialization if and only if the 
differential Ao is formally logarithmic. In terms of a uniformizing parame- 
ter t at the origin ("infinity") on E ,  the condition is that the power series in 

t,  exp (A [o) have coefficients in 0 rather than in C (compare [la]). 

Let us choose such a A (any other would be ah ,  with a E ZPX), and 
write (E, Ao) instead of (E, the unique cp such that cp* (dT/1 + T) = lo) .  

We define the p-adic L-series Lt',,,,, as the C-valued function on 
H o ~ F ~ ~ ~ ~ ~ ( Z ~ ~ ,C ')-{the trivial character} given by 

dfn 1 
%E, Am) (x)= 

1 - x(a) 

It has a first order pole at the trivial character, in the sense that for each a 
E ZPX,  the function 

extends to a continuous 0-valued function on all of H o ~ o n t i n ( Z P x ,  C '). 
Because this last function is the restriction of a measure on Z p X ,  the 

Kummer congruences are satisfied: 

If a C-linear combination of character X c , . ~  
satisfies a congruence 

~ c x . ~ ( a ) ~ p u O  a E Z p Xforall 
(3.7.2) 

then for each a E ZPX the values 9,E,A,)(X) 
satisfy 

We might summarize the situation by saying that 9(,,,,,is just as good a 
function as the Kubota-Leopoldt p-adic L function. 

What about special values? By construction, we have, for k 2 1 

~ ( E , A , ) ( x ~ )  = 2Gk(E, Aw) - 2pk-'(Frob Gk)(E, Ao), (3.7.3)= 2Jk(E, 

a formula we will be able to unwind only in special cases. But in any case 
we always have a limit formula for 9(E,A,,(~k),  for k # 0. 
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= 2Ha(x-+xk--' on ZpX,extended by O)(E,Aw) 

-- lim 2Ha(x+ on Z,)(E, Aw) 
(3.7.4) 

N+m 

Thus 

9 (E ,Xw)(~k)  k+(p-i)pN(E, (3.7.5)= lim ~ . A ~ + @ - ~ ) ~ " G  W) 
N+m 

3.8 Computation of oFe(E,hw)(~k) curves.for complex multiplication 
Suppose in addition that there is given an endomorphism of E 

which modulo 9 is the absolute Frobenius F. This is possibly only when E 
mod 9comes from an elliptic curve E, defined over the prime field Fp, and 
the curve El0 is deduced by extension of scalars Zp += 6 from the 
canonical lifting of E, (cf. [16a], Appendix). 

Then the kernel of F, is just the canonical subgroup E,,, , and hence 
F, may be factored 

Let us denote by 

Vp: E + E  

the transpose of Fp (thus FpVp = VpFp = p, and Vp modulo 9 is 
Verschiebung V). The mapping V is etale, so that 

defines an automorphism of the ZPx-torsor1 s o m ( ~ ,&), which is neces-
sarily of the form 

'p-p'p forsome p € Z p X .  

The unit p E Zpxis precisely the image of V, in ~ n d ( ~ ) ,  
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hence p is the image of V in ~ n d ( ~  8 (0/9)), which by duality is the image 
of F, in End(T,(E 8 (0/9)). This makes it clear that is none other than 
the "unit root" of the zeta function of the elliptic curve Eo over F, which 
gives rise to E 8 6'19 by extension of scalars: 

Recall now the definition of the Frobenius endomorphism of general- 
ized modular functions in terms of the projection T:E -,E/Ecan 

In our situation, we have a commutative diagram 

so that A defines an isomorphism between (E/Ecan, cp 0 ii) and (E, p 0 V,). 
The formula for Frob becomes 

Frob(f)(E, Ao) = f (E ,  V*(Ao)) = f(E, pAw). (3.8.7) 

In particular 
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and, referring back to (3.7.3), we obtain the formula 

%E,ho) (~k)= 2(1 - ~ ~ - l e p - ~ ) . G ~ ( E ,  forAw) k 2 1. 

= 2(1 - ~ " - ' p - ~ ) . k - ~ G ~ ( , ( ,W) 

3.9 The Case of the Hurwitz Numbers. The Hurwitz numbers h, are 
defined by looking at the power series expansion of the 9 function which 
corresponds to the elliptic curve with differential 

(E: y2 = 4x3 - 4x, w = 

Referring to the general formula 2.2.9 

we see that 

Because there is an automorphism of this curve (multiplication 
by i = a, -x,defined by x + y + iy) which multiplies the differential 
dxly by i,  it follows that h, = Ph,, and hence 

h, = 0 unless n = O(4) (3.9.3) 

dfn
[Hurwitz labels them En =h,, , but we have too many E's already.] 

Because of the multiplication by i,  the lattice L must be a locally free 
Z[i]  module of rank one, which will in fact be free because Z[i] is a 
principal ideal ring. By standard considerations, we may generate the 
lattice L by taking twice the integrals of a single-valued branch of w in the 
x-plane between the x-coordinates of the finite points of order two (i.e. the 
zeros of 4x3 - 4x, namely +1 and 0). Thus L is spanned by the two periods 
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the first of which is ki times the second. The second is 

Thus the period lattice of (y2 = 4x3 - 4x, dxly) is 

L = Z[i].R 

Thus we obtain transcendental formulas for the h, ; 

or equivalently 

1 ---( 2 ~ ) ~ ~h,, for n 2 l .  '(a + bil4" (4n)! 

Suppose now thatp = 1 mod (4). Then the curve y2 = 4 2  - 4x viewed 
over Z, is ordinary, and we may choose a constant A in ~ ( p , ) ,the 
completion of the ring of integers of the maximal unramified extension of 
Q, such that A dxly comes from a trivialization (i.e. A dxly is formally 
logarithmic). 

The values of the p-adic L series associated to (y2= 4 2  - 4x, A dxly) 
at the characters xk are thus given by the formula 

= (1 - pk-lp-k)A-k2k h, for k 2 1
k 

where p is the "unit root". We will recall its precise value below. As a 
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corollary, we obtain the Kummer congruences for the Hurwitz numbers: 

Whenever a polynomial 2 c,xk with 

I 
k 2 l  

coefficients in C satisfies ckakE puB 

{ for all a E Z p X ,then for each a E Z p Xthe (3.9.10) 

Hurwitz numbers satisfy 

h
( 1  - ak) ( l- p k - 1 p - k ) ~ - k . 2 k2E pp"O. 

\ k 

The Relation to L-series with Grossencharacteren. We recall that the 
numerator of the zeta function of y2 = 4 2  - 4x over Fp is given by 

L,(T) = ( 1  - T)(1 - PT)ZP(T) 
(3.9.11)

1 + pT2 if p ~ 3 m o d 4  
= ( 1 - 1 - 5 )  if p = 1 mod 4 

where .rr and i i  are the unique Gaussian integers satisfying 

IT+ = p  
.rr, ii = 1 mod (2 + 2i). 

The L-series of this curve over Z[1/2] is the Dirichlet series 

which we may more conveniently express as an infinite product over the 
odd (prime to 2) primes 9 of Z[i ]  

n ( 1 where .rr is the unique 
US) = generator of 9 such that (3.9.14) 

%odd 1 - 4 N 9 ) - ) . r r - 1 ( 2 + 2 i ) .  

We denote by p the "identical" grossencharacter of Z [ i ] ,  i.e. the ideal- 
character of conductor ( 2  + 2i) defined on ideals prime to 2 by 

We denote by T, the complex conjugate of p. 



THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION. 279 

Then the L function L(s) is precisely the L-series with grossencharacter p 
for the field Q(i): 

u s ,  PI 
Now if we return to our primep = 1(4), and if we choose a square root 

of -1 in Z,, then we determine an embedding Z[i] -, Z, (send i to the 
chosen G)which identifies Z, with the 9-adic completion of Z[i] for 
one of the prime ideals of Z[i] lying overp. On the other hand, we have the 
"unit root" p CL ZpX; it is given as a "function" of 9 by the equation 

p = P(9) = N % / P ( ~ )  (3.9.18) 

(meaning that p E Z, is the image of the gaussian integer p(9) under 
embedding corresponding to 9 ) .  

Thus when we view Z, as the 9-adic completion of Z[i], we may write 

Looking at the Euler factor (1 - N9*-llpk(9)), it is unavoidable to 
suppose that we are "really" looking at 

L(l - k, (p)-*) = C Inodd NasP(a)k s=l-k  

which is "joined" by the functional equation with 

This last value is easily computed in the case of interest to us, namely 
k = 4n, n r 1: 
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To summarize: 
There is a constant h E C such that 

and there is a constant R E C such that (3.9.23) 

-the constants h and a-I are analogous, in the sense that 

hw is formally logarithmic 

1 R - h  	 has integral periods on the real points 
of the curve, whose connected component 
is S l, the compact form of G, . 

Appendix A. Hurwitz's Form of the Functional Equation for L-series 

We define g(s, a) be the series, convergent for Re@) > 1, 

1 
g(s, a) = C --- (we'll take 0 < a 5 1) 

n=o (n + aIS 

It has a meromorphic continuation to the entire s-plane, which satisfies 
Hurwitz's functional equation: 

213 - s) sin (27ran) 
a s ,  a) = ( 2 ~ ) ~ - n z  1 

for Re(s) < 0. 
Thus for Re(s) > 1 we have 
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If s = 2k is an even integer, then 

sin ( ( 1  -
 ;)2k)  = (;sin -
k T ) (;)sinl)k(-= = (- 1 ) ~  

if s = 2k + 1 is an odd integer then 

where we denote by $, the function 

&(x) = eZrriaz 
Thus 



282 N I C H O L A S  M .  KATZ.  

so in all cases, for integers k r 2, we have 

Now if a = AIN, with A, N E Z, and if we define 

If A  = the characteristic function of A mod N as function 
on ZINZ 

(A.8) 

: x 4 e2~iAxlNas function on ZINZ 


then 


Thus we obtain 

This shows in particular that 

L(l - k,h )= (- 1)"(1 - k, f-,) 
( A .1 1 )  

= L(1 - k, H f A  + (- U k f - A  )) 

If we define the Fourier transform on ZINZ by 

(A.12) 

then 

p = e  
( A .13) 

We may now rewrite (A.10-11) in two equivalent forms: 


For any function F on ZINZ of parity k(F(-x) = (- l)"(x)), we have 


L(l - k ,  f i )  = 
2(k - l)!Nk-I

L(k,F)  for k 2 2  ( A .  14) 
( 2 ~ i ) ~  

For any function F on ZINZ, and any integer k r 2, we have 
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Appendix B. A slight generalization of our measures, adapted to complex 
multiplication curves 

B.l  Let's continue to work over the same ground ring W ,  but no 
longerfix a primitive N'th root of unity 5 E W .  Then for each choice of 5 ,  
we have the ring V(W, 5 ,  T(N))which we had previously denoted simply 
V(W,  r ( N ) ) .  We define 

the sum taken over the cp(n)primitive N'th roots of unity 5 in W .  The ring 
V ( W ,  T (N) )  is exactly the ring of all generalized modular functions on T(N) 
as defined in 1.1, save that we no longer fix the determinant of the eN 
pairing. 

The group GL,(ZINZ), rather than "just" SL,(ZINZ), operates on 
V ( W ,  r ( N ) )  in the obvious manner ( [ g ] f ) ( E ,c p ,  cr,) = f  (E, c p ,  g-I 0 cr,). The 
ring V ( W ,  f , (N))  may be viewed in this context as the subring of invariants 
of the subgroup 

{( z ) 1 Ix E ZINZ, n  E (ZINZ) C GL2 (ZINZ) 

in V ( W ,  r ( N ) ) .  
Another "advantage" is that the Frobenius endomorphism operates 

on V ( W ,  U N ) ) ,  through the rule 

(Frob f ) (E ,c p ,  ol,) =f (EIEcan ,cp.ir, T ( ~ N ) )  

where 
E,,, cE is the canonical subgroup 

T :  E +E/Ecanis the projection, 7i its (etale) dual 

~ ( a , )is the unique level N structure on EIE,,, making 
the diagram 
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[It is clumsy (though possible!, cf. [6]) to formulate the Frobenius 
endomorphism of V(W, T(N)) as a cr-linear endomorphism, the difficulty 
being that det(.rr(aN)) = (det(aN))P,] 

We may carry over the proof of the "Key Lemma" to our new situation, 
and we get: 

KEYLEMMAFOR V(W, T(N)). Let f be an arbitravy element of V(W, 
T(N)) C3 Wl/p]. Suppose that on each of the p(N) components of V(W, 
T(N)), there is at  least one cusp at  which the q-expansion is integral, 
except possibly for its constant term. Then for any element (a, h) E ZpXx 
S&(ZINZ), the difference f - [a, h] f lies in V(W, T(N)). 

B.2 We may now define the Eisenstein measure on Zp x (ZINZ)', as 
follows. For (a, h) E ZpXx S&(ZINZ), we define 2Hajhas the pseudodis- 
tribution on Zp x (ZINZ)', with values in V(W, T(N)), whose value on xk.F 
is 

where Gk,F is the Eisenstein series in V(W, T(N)) C3 W l l p l  defined by 

F(a, b)Gk(E, w, a,.-'(a, b)) Fof parity (- l)k 
a,b mod N 

0 Fof parity (- l)k+' 

The Key Lemma (applicable thanks to all our q-expansion computations) 
assures us that this pseudo-distribution, which a priori takes values in V(W, 
r(N)) C3 W[l/p], in fact takes values in V(W, T(N)), and therefore extends 
to a measure 2Ha9hwith values in V(W, r(N)). We might also observe that 
our present construction for T(N) is compatible with the previous one for 
Too(N), in the following sense: For any function f on ZINZ, if we define 

then we obtain the identity 
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B.3 The transcendental expression for Gk,F is, for k 2 3 ,  

G,,, ( L ,basis el ,e2of I L )= 
(- 1Ik(k- I ) !  C F(a, b)Ak(L, ael + be2).

N a,bmodN 

If we use -
1 

0 cr,: LINL i-
1 

L / L  + (Z/NZ)2to identify fi with a function 
N N 

(still noted on L/NL,  then we have 

B.4 Variances (compare 3.4.2). We make the group Z P XX GL2(ZI 
N Z )  operate on the continuous functions on Z p  x (ZlNZ)2by the action: 

([b ,  g@)(x, Y )  = bF(bx, g-ly) x E Z,,  Y E (ZINZ)2 

As noted, this group operates on V ( W ,  l?(N)) by the rule 

([b ,  g l f ) (E ,  9 ,  f f N )  = f ( E ,  b-l9, g-I %) 

It follows immediately from the definition of GkjF 

that 

and hence, for any (a ,  h) E Z P Xx SL(ZINZ),we have 

= 2H " . Q ~ Q - ' ( [ ~ ,  g](X.  F)) 

An obvious limiting argument then gives 

Variance Formulas. For (a, h) E Z p Xx SL2(ZINZ), (b ,  g) E Z p Xx 
G&(ZINZ), and F a continuous function on Z p  X (ZINZ)2we have an 
identity in V ( W ,  T(N)): 

[b, gl(2H a,h(F)) = g](F)) 
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B.5 We may also define the V(W, r(N))-valued measure 2Jajh on ZpX 
x (ZINZ)' by the formula 

2Jaah = the restriction to ZpX X (ZINZ)' of 2  ~ " ~ ~ 

For any continuous character X: ZpX += Bo ', we define 

(where X-, is the character x + x-l on ZpX), which we know to be an 
element of V(Bo, r(N)) of weight X. 

When Bo is an integral domain with fraction field K, and x is non- 
trivial, we can define 

by choosing a E Z p X  where ~ ( a )  # 1. 
The analogue of 3.5.6 is 

LEMMA3.5.6. Let k 2 1 an integer, F any function on (ZINZ)'; then 
Jk,F = Gk,p - pk-l Frob(Gkjp) in V(W, T(N)) @ W[llpl. 

Proof. Imitating the proof of 3.5.6, it suffices to check that at one 
cusp on each component of V(W, T(N)), both sides have the same q- 
expansions. 

Let's use the cusps (Tate(qN), q,  c ) ,  5 = ezVilN,j E (ZINZ)', whose 
given level N structures have all possible determinants. We may and will 
suppose F is the characteristic function of (a, 6). Then 

Gk,,(Tate(b"), WC,,, (9, C)) = GdTate(dJ), a,,, ,qa5bj) 
n k - l  mN+a n nbj= 1  C (4 ) ) '  

n 2 l
m2O (by 2.4.5) 

Because the restriction of the function xk to Zp (reextended by zero 

to all of Z,) is uniformly approximated by the functions ~ ~ + + ' ~ - l ) ~ ' ,  we have 
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Thus it remains to check that 

But this is easily seen to be the case, for the canonical subgroup of 

Tate(qh') = G, /qNZ is p p .  The quotient is Tate(qNP) = G,lqpNZ, and the 
projection map is the one deduced from the p'th power map on G, by 
passage to quotients. Thus 

Frob(Gk,,)(Tate(qN), a,,, , (q, 5 j ) )  = Gk,,(Tate(qNp),a,,,, qp, gp3 

which was the desired formula. 

Application to complex multiplication curves 

B.6 Let D be the ring of integers in a fixed quadratic imaginary 
extension of Q, and fix an isomorphism of abelian groups 

(ZINZ)' 4 DIND. 

This determines an inclusion of groups 

(D/ND)'+ GL,(ZINZ) 

which makes the diagram below commute. 

(DIND)' UGL,(ZINZ) 

Nor\ /det 

(ZINZ)' 

For any (a, dl)  E ZpXx (elements of Norm 1 in (DIND)'), we obtain 
V(W, r(N))-valued measures 2Haad1 on Zp x DIND and 2Jaadl on Z p X  X 

D/ND by "transport of structure". The transcription of the formula (3.4.3- 
4) becomes 
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Variance Formula. For (a, dl)  E ZpX X (elements of norm 1 in 
(D/ND)X), (6, d) E ZpXx (D/ND)', and F a continuous function on Zp x 
DIND (resp. on ZpX X DIND), we have the following identities on V(W, 
r(N)): 

[b, d](2Ha,dl(F)) = 2Ha,dl([b, d](F)) 

(resp.1 [b, d](2Ja,d1(F)) = 2Jaadi([b, dl(F)) 

[One must remember that (6, d) E ZpXx (DIND)' acts on functions F on 
Zp X D/ND by the formula [b, d]F(x, y )  = bF(bx, d-ly).] 

B.7 Let + be a Dirichlet character of D of conductor N;  we may view 
+ as a group homomorphism 

which is extended by zero to all of DIND. 
Let (E, a)be an elliptic curve as in 3.7, and fix a level N structure a, 

on E. In the notations of 3.7, we define thep-adic L-series 2?(E,Ao,aN) as the 
C-valued function on H O ~ , , , , , ~ ( Z ~ ~(DIND)' , Cx)-{characters trivialx 
on ZpX x (elts of norm 1)) by the formula 

1 
9 ( E , ~ o , a , ~ ) ( ~+) = 

1 - x(a)/+(d1) 
2JR:$(E, hw, a,+,) 

(this is easily seen to be independent of the choice of point (a, dl) where XI 
+ is + 1). It has at worst a first order pole at the excluded characters 
(which are precisely those which factor through the composite 

in the sense that for any point (a, dl) E ZpXx (elts of norm l) ,  the function 

extends to a continuous 0-valued function on all of Hom,,n,in(Zpx X 

(DIND)', C '). 
The Kummer congruences are also satisfied: 

IWhenever a C-linear combination of characters cX,x+ satisfies 

i1 cx,.x(b)+(d) E p"f7 for all (b, d) E ZpXx )dIND)', 

then for any (a, d l )  E ZpXx (elts of norm I), we have 
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B.8 Suppose now that the curve E has D as its endomorphism ring, 
and that the hypothesis of 3.8, the existence of Fp E D lifting absolute 
Frobenius, is fulfilled. We further suppose that the composed isomorphism 

is an isomorphism of D/ND-modules. 
Then we may carry through the computations of section 3.8, which 

show that, in the notations of that section we have 

(Notice that p = p/Fp in D.) Combining this with the formula (3.5.6 vis 
A.6) we obtain the explicit formula 

= 2(1 - w, a,) pk-l/pk$(Fp)).h-kGk,*(E, 


An explicit look at the Lemniscate curve y2 = 4x3 - 4x (D = Z[i], p = l(4)). 

B.9 The presence of the automorphism i of this curve E dictates that 
we have 

9 ( u z = 4 x 3 - 4x,AdxI~/,a,~~(Xk$)0 unless $(i) = ik,= 

so let us henceforth assume that $(i) = ik. Then 

When we view Gk,,(E, w, a,) as a complex number, it is given by 

Gk,l(fl.Z[iI, ffN) 


-- (- 1Ik(k- I)! 
a-kNk C $(a + bi) 


2 a+biZO (a + bilk 


where the sum is taken over all ideals of Z[i] which are prime to 2N, and 
where +pPk is the grossencharacter of (not necessarily exact) conductor (2 
+ 2i)N defined by 

$ ~ - ~ ( a )= $(a)/ak if a = (a) with a = 1 mod (2 + 2i). 



290 	 NICHOLAS M .  KATZ.  

So we may summarize our findings in the following "equality" of a p-adic 
and a complex expression for the same algebraic number Gk,,,,(E,a,or,) 

From the point of view of p-adically interpolating values of L-series 
with grossencharacter, the hypothesis that +(i) = ik is not very natural 
because fork 2 3 and any +, the value L(0, +p-" is given by its absolutely 
convergent Euler product, hence is non-zero. So let us explain how our 
methods apply to all these values. 

Let us denote by 6 the following Z-valued function on the Gaussian 
integers Z[i]: 

Then the product E+ is a function on Z[i]/(4N),  

€+(a+ bi) = 
+(a + bi) 	 if a + bi = l(2 + 2i) 

if not 

which by transport of structure (B.8) becomes a function on (Z14NZ)'. 
Consider the Eisenstein series of level 4N and weight k ,  Gk,Ellr.It's 

value on the lattice L = Z[i]with basis 1/4N, i14N of (1 /4N)L/Lis the 
archimedean series 

(- l)k(k- 1)!(4N)k +(a + bi)-- C2 a+bi=1(2+2i) ( a  + biy 

L n odd 

From an algebraic point of view, the lattice fl.Z[i] with level 4N-
structure given by fl/4N, iW4N is none other than the curve (-y2 = 4 2  -
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4x, dxly) with one of its level 4N-structures a, (all of which are defined 
over the "ray-class field of conductor 4N over Z[i]"): 

(- l)"k - 1)!(4N)kfl-k
L(0,$pPk) = Gk,,,Jy2- 4 2  - 4x, dx/y, a,). 

9 


From the p-adic point of view, if we introduce the previously chosen 
p-adic transcendental unit h such that A dxly is formally logarithmic, we 
may reinterpret the algebraic value Gk,,*(y2 = 4 2  - 4x, dx/y, a,) p -
adically . 

We next express this in terms of J,,, = Gk,,, - Pk-I Frob(Gk,,,). Recall 
that for this curve, the Frobemus endomorphism Fpwhen viewed in Z[i], is 
the unique generator of 9 satisfying Fp = 1 mod (2 + 2i); it follows from 
the definition of E and the multiplicativity of $ that we have the transforma- 
tion equation 

Thus we have (compare 3.8) 

Fr0b(Gk,€)(y2= 4 2  - 4x, A dxly, a,) 

1- Gk,,,(y2 = 4 2  - 4x7 A ~ x I Y ,ff,),
pk$(F, ) 

and hence 

If we choose any a E ZpX and any d E (Z[i]I(4N))' of norm one which 
is 3 1 mod (2 + 2i), we can express the generalized modular function Jk,& 
in terms of the Eisenstein measure Ja,don ZpX X Z[o]l(4N): 

Evaluating at the lemniscate curve gives the equality of values 

Jk,,,(y2 = 4 2  - 4x, A dxly, a,) 

-- Ja ,d (P-1~) (y2= 4 2  - 4x, A dxly, a,). 
1 - akl$(d) 
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So for each (a, d) as above, we may define a measure P'",~'on ZPX X 

Z[i]l(N), with values in 6,, by decreeing that 

w(a,d)

(i) ((:) EF) (y2 = 4 2  - 4x, A dx/y, a,)F -
This "lemniscate measure" is related to the problem of interpo- ~ ( " 9 ~ ) 

lating the classical L-series values L(0, $p-" by following two formulas 
valid for any character $ of (Z[i]I(N))' and any integer k 2 3: 

Appendix C. Modular Definition of Eisenstein Series of Weight One, and 

Their Relation to the Universal Extension 


In this final appendix, we answer the question raised before (2.8.2). 
The answer is completely classical. It was crystallized by the reading of 
Lang's book [9], esp. pp. 240-241, a conversation with Mazur, and yet 
another reading of Whittaker and Watson [20]! 

C.l  The Universal Extension. Let S be an arbitrary scheme, and EIS 
an elliptic curve. We will freely identify E with its "Picard variety" Pic;,s. 
Recall that as functor on S-schemes, Pic&, is the f.p.p.f. sheaf associated 
to the presheaf 

T +-+ isomorphism classes of invertible sheaves 2 on 
E x T which point by point on T are of degree zero. 

S 

The identification 

E 4Pic;,, 

is given by 

P E E(T) +-+ the invertible sheaf I-'(P) €4 I(O), whereI-'(P) is the 
inverse of the ideal sheaf which defines the section P of 
E X T, and I(0) is the ideal sheaf of the zero-section 

S 

of E x T. 
S 

Now let ETbe the "universal extension7' of E by a vector group. It is 
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a smooth commutative S-group scheme which sits in an exact sequence of 
S -groups 

in which we have written wEls for the "vector group" whose T-valued 
points are given by 

The group E t ,  as functor on S-schemes, is the f.p.p.f. sheaf associated to 
the presheaf 

T -H 	 isomorphism classes of pairs ( 3 ,  v) consisting of an invertible 
sheaf 9on E X T which has degree zero over each point of 

S 

T, and of a (necessarily integrable) T-connection v on 3. 

When T is an S-scheme which is (absolutely) affine, then the long exact 
f.p.p.f. cohomology sequence gives a short exact sequence of abelian 
groups 

0 + HO(EX T, flk ,,,) + Et(T) +E(T) + 0 
S 	 S 

(the next term would be HiPp,(T, ( u ~ ~ ~ ) ~ )  , which vanishes because T is 
affine and w is quasi-coherent). 

LEMMAC. 1 . 1 .  Let n be an integer which is invertible on S,  and  let P 
E E(S) be a point of (not necessarily exact) order n. Then there is a unique 
point 

which lies over P ,  and which has (not necessarily exact) order n in Et(S). 

Proof. Unicity is clear, for the difference of any two would be a 
section of the 0,-module UEIs which is killed by n. Further, for any S-  
scheme T which is absolutely affine, we can find some point P E Et(T) 
which maps onto P in E(T). But n~ maps onto 0 E E(T), hence n~ = w is a 
section of w over T. Since n is invertible on T, the section (l/n)w of w 

makes sense, and P - (1ln)w is point of Et(T) lying over P and having 
order n .  So we have the desired PTcan€ Et(T) for all absolutely affine S-  
schemes T. By the unicity, it follows that these PTcandescend to give the 
desired element P can E Et(S). 

We now recall the dictionary between connections on invertible 
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sheaves on curves and "differentials of the third kind" (compare [ 5 ] ,  
sections 7.2-7.4). 

LEMMAC1.2. Let S be any scheme, X / S  a smooth curve, Pi E X ( S )  
a finite number of  disjoint sections, and ni some integers. Then an S-

connection on  the invertible sheaf @ I(Pi)@ni is given by any element 
of H O ( X ,  fl$,, €4 I - l (P,)  €4 . . . €4 I P 1 ( P m ) )(a  differential one-form on  X / S  
having at worst first order poles along the Pi and holomorphic elsewhere) 
whose residue along each Pi is the image of the integer -ni in T ( S ,  Os). 

Proof. The correspondence is as follows. The differential w gives the 
connection 

defined by 

Let's check this indeed defines a connection. For f a local invertible 
section, we may write 

and the hypothesis on the residues of w assures that ( d f l f )  + w is a local 
section of a;,, . Any local section may be written fg with g a local section 
of Ox,and the product rule gives 

which shows that V, does indeed map €4 Z(Pi)@nito €4 Z(Pi)@ni€4 a;,, . 
Conversely, any connection is of the form f + df + fw, and taking f to 

be a local invertible section shows that w must have a worst first order pole 
at the Pi with the prescribed residues. 

REMARKC.1.3. Suppose that S = Spec(k) with k a field. Let P E 

E(k)  be a point of order N, with N prime to  the characteristic of  k .  Then by 
Abel's theorem we can find a rational function f p  on  E whose divisor is 
N[P] - N[O]. The function fp is only unique up to  kx-multiples, but d fp l fp  is 
unique. Moreover, the differential 

1 d f n  
- dfp Ifp =wFan
N 



295 THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION. 

is independent of the choice of the integer N prime to char(k) which kills P. 
It is a section of a;,,@ IP'(P)63 ZP'(0) with residue 1 at P and residue - 1  
at 0 ,  hence corresponds to a connection on I-'(P) 63 Z(O), i.e. it corre- 
sponds to a point of Et(k) .  This point is none other than the point Pcanof 
Lemma C .1 . 1 .  To see this, it suffices to check that the connection wFanon 
I- '(P) @ I(0) is of order N. Its N t h  "power" is the connec-
tion d fp / fp= N . w y  on I-n(P)@ Zn(0),which is mapped isomorphically by 
"multiplication by f," to 0,with its trivial connection d,  which is the zero- 
element of Et(k) .  

C.2 Construction of a rational cross-section of Et -+ E when 6 is 
invertible. Henceforth, we will assume that S is a scheme on which 6 is 
invertible, in order to be able to make free use of Weierstrass normal form. 
Given an elliptic curve E / S ,  we denote by E a f f / S  the complement of the 
zero section. If we are also given a nowhere-vanishing invariant differential 
o on E ,  we may write a unique Weierstrass equation 

in which the zero section becomes the point at infinity. In this picture E a f f  

is exactly the affine curve of equation y2 = 4 2  - g2x - g,. We will now 

construct a cross section of the projection Et A E over E a f f .  

LEMMAC.2.1. Let ( E ,  o)be an elliptic curve with differential over 
the Z[1/6]-scheme S ,  and let P E E a f f ( S )  be a point with Weierstrass 
coordinates x = a ,  y = b.  Then the differential 

1 y + b dx a f n-.-.--
2 x - a  y -UP 

lies in HO(E ,  @ I-'(P) @ I-'(O)), and has residues + 1 at P and - 1 at 
0. (Thus it provides (C.1.2) a connection on I-'(P) @ Z(O) . )  

Proof. The question being local on S ,  we may suppose S affine = 

Spec(A). By reduction to the universal case, we may further assume A 
finitely generated over Z, hence noetherian. Localizing further, we may 
assume A a noetherian local ring, then (by faithful flatness of the comple- 
tion) a complete noetherian local ring, and finally (by "holomorphic 
functions") we may assume A an artin local ring. 

Near the zero section "m", o, = $ [ I  + (b / y ) ]  d x / x  - a ,  and as the 
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function x - a has a double pole at "m", and lly a triple zero there, it 
follows that ophas a first order pole at with residue -1. 

If b E A is nilpotent, then P modulo the maximal ideal of A is a point 
of order exactly two, and the section P is locally defined by the uniformiz- 
ing parameter y - b. 

1 y + b  dx y + b  dy= - . . -= -. - where f ( x )  = 4 2  - g2x - g3
2 x - a  y x - a  f l ( x )  

As f ' ( a )  is invertible, it follows that 

-
= 1 + a function vanishing at x = a 

( X  - a ) f  ' ( x )  

which shows that o, has a first order pole at P ,  with residue + 1. To check 
that opis holomorphic in E aff - P, it suffices to check that both ( x  - a)wp 
and Oi - b)opare holomorphic in E aff (because P is globally defined in E aff 

by the ideal ( x  - a ,  y - b). But 

( x  - a)op = 10, + b)-
dx 

is holomorphic on E aff 
Y 

1 y 2 - b 2  dx(y - b)op = - . ---. -

2 x - a  y 


f(n)- ('I) $ is holomorphic on E aff. 

If b E A is invertible, then the function x - a has simple zeroes at P (x 
= a ,  y = b ) and at - P  ( x  = a ,  y = -b) ,  but the function y + b has a zero at 
-P. Thus y + b l x  - a is holomorphic on Eaff- P ,  and has a first order 
pole at P .  Thus up 's  only finite pole is a simple one at P ,  and near P we 
have 
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1 1  - b + 2b d(x - a)
wp = -

2 y - b + b  ( x - a )  

1 +-y - b  

-	- 2b d ( x - a )  
y - b  x - a  

I + -
b 

= ( 1  + function vanishing at P )  
d(x - a)  

x - a  

so that wp has residue + 1 at P .  

REMARK. The differential wpconstructed above is independent of the 
auxiliary choice of w. For i f  we replace w by hw, X E T(S , Qs) ' ,  then we 
replace x by X-'x, y by X-3y, and the new coordinates of P become (A-'a, 
X-3b), whence 

Thus we may define a cross section 

as follows. For any S-scheme T,  and any point P E Eaf f (T ) ,we define 
Y o ( P )= the connection given by wp on I-'(P) @ Z(0) E E(T). 

C.3 Construction of a rational map Et + WEISwhen 6 is invertible. 
We will define a morphism 

E: T-'(Eaff)+WEIS  

simply by defining for z E w l ( E a f f ( T ) )  

E(z)= Y o(Tz)- Z E WEIS(T) 

In down to earth terms, a point of T-O(E af f ) (T)c Et(T) with values in T is a 
pair 

(P€Eaf f (T) ,wE HO(ET,Ok,,,@ I-'(P)@Z-'(0) with residues 1 at P ,  - 1 at 0). 
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Its image wEls(T) = HO(ET,a,&,.,,.) is the differential 

We summarize this in the following diagram. 

I / E (not a section of anything) 

(a section of .rr) 

C.4 The construction of a modular form of weight one when 6 is 
invertible. Let N be an integer 2 2. We will construct a modular form A, 
of weight one on Too(N) over Z[1/6N] as follows. Given a ring R in which 
6N is invertible, and a triple (E, w, P )  consisting of an elliptic curve with 
differential over A and a point of order exactly N ,  the value at (E, w, P )  of 
A, is defined by 

(Recall that PcanE Et(R) is the unique point of order N lying over P ,  and 
that as P has exact order N 2 2, Pcanlies in .rr-'(Eaf?, so that E(PCan) is a 
well-defined element of wEIR(R) = HO(E, a free R-module of which w 
is a basis. Thus the ratio is a well-defined element of R.)  

It is clear that the formation of A,(E, w, P)  is compatible with arbitrary 
extension of scalars, and that it has degree -1 in w. That it has 
holomorphic q-expansions will result from the theorem we will later prove, 
identifying it with the A, of 2.7. 



THE EISENSTEIN MEASURE AND P-ADIC INTERPOLATION. 299 

C.5 The transcendental expression of the universal extension E'. Let 
( E ,  w) be an elliptic curve with differential over C, corresponding to the 
lattice L C C of periods of w: 

L = {loy E H I @ ,  Z )  IC C ,  z  a standard variable on C 

(E ,  w )  = (Y2 = 4 2  - g2x - g 3 ,  d x / y )  

y  = 9' ' ( z )  

w  = dz 

We have the Weierstrass 5 function 

C ( Z )  = -
1 + holomorphic near 0 
Z 

which is not doubly-periodic, but satisfies 

5(z + - 5(z>= - q ( l )  for e E L 

where 

is the "period of the second kind". 
The differentials 

dx x  dx 
(,,=- v = -

Y Y 

form a basis of H 1 ( E ,  C )  = Hom,(H,(E, Z ) ,  C )  = Hom,(L, C) when we 

view them as the linear forms on L defined by 

By Legendre's relation (cf. [6], A. 1.3.13), we have a formula for their cup-
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product: 

(w, 7)  = 2 7 ~ i  (topological cup-product). 

We may view any element t? E L = Hl(E, Z) as an element of 
H1(E, C), namely the unique element y ( 0  E H1(E, C) such that under cup- 
product we have 

The image of L under y is none other than H 1 ( E , Z ) =  
Homz(Hl (E, Z), Z) = HomZ(L, Z). If we remember that 

( 0 , ~ )= = -(T, w), ( 0 , ~ )= ( 7 , ~ )= 0, 

then we immediately find the formula 

(both sides have the same cup-products with w and 7). 
If we view t? E L C C as a complex number,  it's exactly the complex 

number J, w, so that in our earlier ~ ( t )  notation we may rewrite this last 

formula 

Now let's recall that Et(C) is the group of isomorphism classes of 
invertible sheaves on E with integrable connections (the existence of the 
connection implies that the degree is zero, when we are over C). By 
GAGA, E t(C) is equivalently the group of isomorphism classes of analytic 
invertible sheaves with connection on E an, which group is just the group 

(A line bundle with connection gives rise to a representation of the 
fundamental group by considering the effect of analytic continuation on the 
local horizontal sections of the dual line bundle with its dual connection.) 

Thus we have 
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In terms of the basis 7 ,  o of H l(E, C ) ,  we have 

H1(E, C )  = pairs (a, b )  of complex numbers t,a7 + bw 

2riH1(E,Z) = the subgroup consisting of all pairs (e,- r ) ( t ) ) ,  8 E L. 

The analytic description sits in the commutative diagram 

0 

C.6 	 The comparison theorem: statement. 

(1) 	Under the isomorphism C2/{e,  -7(Q)  4 Et, the class of the point 
(a ,  b)  E C 2  gives the point a mod L in C I L  = E(C) and the 
connection on the divisor [a] - [0] (meaning: on the invertible 
sheaf I-'(a mod L) @ I(0)) given by the differential 
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(2)  The section Y o :Eaf f (C)-,n--'(Eaff(C))is given analytically by 

a E C I L  -+ the class of (a ,  5(a)) in C 2 / {e ,  - ~ ( t ) ) )  

(3) The morphism E: w l ( E a f f ( C ) )  + a ( C )  is given analytically by 

(a ,  b )  +- (5(a>- b)  dz 

Before the proof, let's give the corollary which motivated this whole 
appendix. 

COROLLARYC.4. Let P be a point of order exactly N r 3 on E(C) = 
C I L ,  represented as (1 /N)4  for some C E L .  Then the modular form A,  
defined in C.4 is given by 

Proof of the corollary. The point PcanE Et(C) is the unique point of 
order N in Et(C)  lying over P = ( l / N ) e ,so we must have 

pcan = -
N 
1 (e, - ~ ( e ) >  in Et(C) = C 2 / { ( e ,-v(e)I. 

By definition of A , ,  we have 

E(Pcan)-
A1 (E ,  w , P)  = ------

w dz 

By (3)of C.6, E(a,  b )  = (5(a)- b)dz, whence 

Q.E.D. 

C.7 Proof of the theorem. We begin with the proof of ( 1 ) .  Let (a,  b )  
E C 2 .  We wish to compute which connection on I-'(a mod L )  @ Z(0) it 
corresponds to, or equivalently which differential w,,, on E with only first 
order poles at a mod L and at 0 ,  residues + 1 at a ,  - 1 at 0 ,  it corresponds 
to. The differential w,,, gives the connection 
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on I-'(a mod L )  @ I(0). The dual connection is the connection on 
I(a mod L) 63 I-'(0) given by 

A local horizontal section of this dual connection is thus a meromorphic 
function +a,b on C, not doubly periodic, such that 

The corresponding representation pajb of n-,(E) = L in C is given by 

(since d log +a,b is doubly-periodic, translating +a,b by e E L only changes it 
by a scalar factor!) 

On the other hand, we know explicitly in terms of (a, b) which 
representation pa,b is, for under our isomorphisms, we have 

(a, b) E C 2  - ar) + bw E H1(E, C) - 8 -+ar)(t?)+ be E Hom(L, C) 
I 

Thus 

So in order to prove ( I ) ,  it suffices to exhibit a function +a,b , meromorphic 
on C, such that 

But this is just what the Weierstrass cr function is all about; it satisfies 

where f (4is a certain +- I-valued function on Ll2L. So if we define +a,b by 
the formula 
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then we clearly have the requisite properties, to wit 

d$a,b/$a,b = ( ( z  - a )  - ( ( z ) + b 
and 

a ( z  - a + e ) a ( z  + l)exp(bz + b e )
$a,b(z + [)/$a,b(z) = 

a ( z  - a ) a ( z )exp (bx )  

-- eav(e)+be 

This proves (1). 
To prove ( 2 ) ,  we must show that the point ( a ,  5(a))  gives the 

differential 

-1 P ' ( z ) + P ' (a)
dz .

2 P ( z )  - 9 ( a )  

As we have just proven, 

Wa,b = ( ( ( z  - a )  - ( ( z ) + b)dz  
so  we must check that 

1 P 1 ( z )+ P 1 ( a )- = ( ( z  - a )  - ( ( z ) + ( ( a )
2 P ( z )  - 9 ( a )  

or equivalently, replacing a by -a and remembering that 5 and 9 '  are odd 
functions while 9 is an even function, we must check that 

-1 9 ' ( z )  - P 1 ( a )  
= ( ( z  + a )  - ( ( z ) - ( ( a )

2 P ( z )  - 9 ( a )  

This last formula is well-known (Whittaker and Watson, p. 451, example 
2); it is the value a t  t = a of the result of applying a/az  + d /a t  to the 
logarithms of both sides of the formula 

To prove (3), simply recall that, by definition, we have 

= [ ( ( z  - a )  - <(z)+ ( ( a )  - (<(z- a )  - ( ( z ) + b ) ]dz  
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C.8 A philosophical remark. The section 

whose transcendental expression is 

d z )a + ( a ,  < (a) )  = ('dz ,  - I. ~ ( z )  
a zero of 5 

is the "Abel-Jacobi map" for periods of the first and second kind. So we 
may summarize the comparison theorem by saying that "the Abel-Jacobi 
map for periods of the second kind is algebraic". 

C.9 Reformulation of a Conjecture (compare [5 ] ,  7 . 5 ) .  Let E be an 
elliptic curve over Z [ l / N ] such that EQ has a rational point of order two. 

Let Ep denote E 63 F , .  Then (cf. [ S ] ,  7 .5 )for p 2 7, p 1 N ,  the group E(F, )  
= E,(Fp) is of order prime to p .  Now let P E E ( Z [ l / N ] )= E(Q) be a point 
in Eaff (Q) .Then at the expense of enlarging N ,  we may assume that P E 
E a f f ( Z [ l / N ] ) .Let P p  E E(F,) denote the reduction mod p of P ;  it is a 
rational point on EFDof finite order prime t o p  . Thus the modular form A ,  is 

defined at (EFD, P, ); 

It is natural to consider the map 

which is a group homomorphism, and to ask whether its kernel lies in the 
torsion subgroup. 

C.10 Effect on Tangent Spaces. Recall that if A is an abelian scheme 
over any affine scheme S ,  then the universal extension of Pic!,, , noted A +, 

sets in an exact sequence of S-groups 

0 -+ rnAiS- + A t  -+ Pic!,, + 0 .  

Its tangent space along the identity section, tg(A '), is canonically equal 
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to HhR(A/S) ,and the short exact sequence of tangent spaces 

is the Hodge filtration on HhR(A/S ) .  
Suppose now that A = E, an elliptic curve. Then HhR(E/S)is selfdual 

under the cup-product pairing (e.g. in the Weierstrass model the DR cup-
product (a,7)= 1 ) .  Thus there is a unique isomorphism 

ctg(Et)--HhR(E/S)  

under which the canonical pairing 

ctg(Et) x tg (Et )+ 0, 

becomes the cup-product pairing on HhR(E/S) .  
We recall from ( [6] ,  p. 163) that the inclusion of complexes 

(OE+ a,&,,)-+ (I-l(0)+ n;,, @ ZP2(0))though not a quasi-isomorphism, 
gives rise to an isomorphism 

HhR(E/S)-5 H ' (E ,z-l(o) + a;,,EI z - ~ ( o ) )1,H ~ E ,a;,, @ z - ~ ( o ) ) .  
THEOREMC.10.1. Consider the composite map 

Hn(E,a;,,63 Z-2(0))4 HhR(E/S)4 ctg(Et) C Hn(Et, a;,,,)I d 

I restriction to 
.rr-'(E a f f )  

Hn (Ea f f ,a;,,) 

U Hn(E,a:,, @ z-nco)). 
n r l  

It is simply the inclusion of 


Hn(E,a;,,@ Z-2(0)) in U,,, Hn(E ,a;,,@ Z-n(0)). 
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Proof. By "reduction to the universal case", it suffices to check the 
case when S is the spectrum of a finitely generated subring R of C. Further 
localizing on S ,  we may also suppose that HO(E, a;,,63 I-"(0)) is free of 
rank n for n = 2, and 3-it will then automatically be true for all n 2 2. 
Then our assertion is that two maps between free R-modules are equal. 
For this, it suffices that they become equal after any injective extension of 
scalars R -, R ' . Choosing R ' = C, we are reduced to the case S = 

Spec(C), which we will check transcendentally. 

Et(C) = W E ,  C)/2.rriH1(E, Z) 2 c2/{(e, - ~ ( e ) ) )  
tgEt = H1(E, C) --C 2,  via the basis 7 ,  w 

Taking coordinates (a, b) on C2,  the invariant differentials are da, db and 
da, db is the basis of ctg(Et) dual to the basis 7,  w of tg(Et). Using the 
DeRham cup-product on H l(E, C), we have 

and thus the dual basis to (7, w) is (w, -7), hence the isomorphism 

is given by 

da * w 
db* -7 

Now the section Yo is given by 

Thus 

as desired. 

Q.E.D. 

C.l l  Relation with Mazur's modular form. He begins with an elliptic 
curve E over a field k, and a point P E E aff(k) of order N prime to char(k). 
The divisor 

is easily seen to be principal, by Abel's theorem, for it has degree zero, 



308 NICHOLAS M .  KATZ. 

and it sums to zero on E.  (If we choose one point yo such that Ny, = P,  
then 

So there is a function g on E ,  unique up to a kx-multiple, such that 

Clearly, the divisor of (g) is invariant by translation by points of order N ,  
hence the function g itself only changes by a kx-multiple under such 
translation, and hence the differential dglg is invariant by such transla- 
tions. Hence there is a unique differential, noted upcan, such that 

LEMMAC. 11.1. Let f be any jiinction such that (f) = N[P] - N[O]. 
Then 

1 
N dflf = 

Proof. We must check that N*(wpcan) = N*((lIN) dflf), i.e. that 
N.dglg = N*(df/f), i.e. that dgNlgN = N*(df/f). SO it suffices to show that 
(gN)= N *Cf), or equivalently that N(g) = N *Cf). But (g) = N *([PI - [O]), 
and (f)= N[P] - N[O]. 

Q.E.D. 

Thus the differential upcan is precisely the connection on I-'(P) C3 Z(0) 
which is the point P can E E'(k) (cf. C.1.3). 

Mazur's modular form is defined as follows. If P and Q are two 
distinct points of Eaff(k), both of finite order N prime to char(k), then 
Mazur defines 

Over any base scheme S where N is invertible, we may define upcan E 
HO(EIS,a;,, C3 Z-l(P) 8 Z-'(0)) as the element giving the connection on 
I-'(P) C3 Z(0) which is PcanE EE'(S). So over any base where N is 
invertible, whenever we are given two disjoint sections P ,  Q E Eaff(S) of 
order N ,  we may define 
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the value along the section Q of the function 

We now express M in terms of the Eisenstein series A,. 

LEMMAC.11.2. Over C, i f  (E ,  o) ct the lattice L C C, and P = 

( l / N ) e ,  then 

Proof. The point P Can E Et(C)  is [ ( l / N ) e ,-( l / N ) q ( e ) ] ,which by (2 )  
of C.6 is the connection given by the differential 

An alternate proof would be to remark that the elliptic function 

has divisor ( f )  = N[P]- N[O],and then simply to compute 

PROPOSITION Let S be any scheme where 6N is invertible, C.11.3. 
(E,  o) an elliptic curve with differential over S ,  and P, Q E Eaf f (S )two 
disjoint sections (meaning P - Q E Eaf f (S ) ) ,both of (not necessarily exact) 
order N .  Then 

Proof. By standard reductions, it suffices to check the case S = 

Spec(C). Then (E ,  w) corresponds to a lattice L C C, P is ( l /N)! ,  Q is 
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( l / N ) e f ,and 

Thus 

= a,Q - - Al(E, a,Q).  

Q.E.D. 
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