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A CONJECTURE IN THE ARITHMETIC THEORY
OF DIFFERENTIAL EQUATIONS

BY

NICHOLAS M. KATZ (^)

ABSTRACT. - This article discusses a conjectural description of the Lie algebra of the
differential Galois group attached to a linear differential equation as being the smallest algebraic
Lie algebra whose reduction mod p contains, for almost all p, the p-curvature of the reduction
mod p of the differential equation in question.

RESUME. - On discute une description conjecturale de Falgebre de Lie du groupe de Galois
differentiel d'une equation differentielle lineaire comme etant la plus petite algebre de Lie
algebrique dont la reduction modulo p contient, pour presquc tout p. la p-courbure de la
reduction modulo p de Inequation differentielle dont il s'agit.
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204 N. M. KATZ

Introduction

Consider a first order n x n system of homogeneous linear differential
equations in one variable T

. /f\ A\^(• : H: ^w \fJ
in which the matrix A is an n x n matrix

A=/...^...\,

of rational functions of T, say with complex coefficients. Denote by S the
finite subset of C constisting of the points s e C at which any of the functions
dij has a pole, and denote by g(T) eC[T} the polynomial

9(T)-Y[^s(T-s).

Then each of the coefficient functions a^ lies in the ring C [T] [1 / g (T)] of all
rational functions holomorphic on the open Riemann surface C—S.

For each point teC-S, we denote by Soln(t) the space of germs at ( of
solutions of the differential equation; this is a C-vector space of dimension
n. Analytic continuation of solutions yields for each f e C — S an
n-dimensional complex representation of the fundamental group n^ (C — 5; t)
on the space Soln(r), the "monodromy representation". For variable
teC—5, these representations are all conjugate to each
other. (Equivalently, the spaces Soln((), teC-S, form a local system on
C—5 of n-dimensional complex vector spaces.) The image of "the"
monodromy representation is called "the" monodromy group of the
equation; up to conjugation, it is a well-defined subgroup of GL(n. C).

Question. — Can one "calculate" the monodromy group of the equation
"algebraically" in terms of the matrix (a^) 7 Can one give "algebraic" criteria
that the monodromy group be finite?

TOME 110 - 1982 - ?2



ARITHMETIC THEORY OF DIFFERENTIAL EQUATIONS 205

Let us define the "algebraic monodromy group" Gnono of the equation to be
the Zariski closure, in GL (n, C), of the monodromy group. Thus Gnono is the
smallest algebraic subgroup of GL(n, C) which contains the monodromy
group. Then we get an apparently more algebraic version of the first
question by replacing "monodromy group" by "algebraic monodromy
group" throughout. (Notice, however, that the monodromy group will be
finite if and only if its Zariski closure is finite, so that this aspect of the question
remains unchanged.)

Because G^ols by definition an algebraic subgroup of GL(n, C), we may
speak of its Lie algebra Lie (G^ono)» which is an algebraic Lie sub-algebra of
M(n, C). We may ask for an "algebraic" description of Lie (Gnono)> and ^OT

"algebraic" criteria that it vanish. (Notice that Lie (G^no) = °if and c^Y if
^monols ̂ mte if and only if the monodromy group is finite, so again this aspect
of the question remains unchanged.)

There is yet another algebraic group attached to our differential equation,
the "differential galois group" Ggai. (In the case when our n x n system is the
system version of a single n'th order equation, this group Gg^ is precisely the
differential galois group of the n-th order equation, whence the
terminology.) The definition of Gy^ is purely algebraic, but none the less,
one does not "really" know how to calculate either Gy^ or its Lie algebra
LieGgJ.

The relation of Gy^ to G^no is this* one always has an inclusion

Gmono^Ggal-GZ^.C),

and one has equality

^ono^gah

whenever the differential equation involved has regular singular points (but
not conversely; one can have G^^=GL(n, C) but irregular singularities).

In this paper, we will put forth a conjectural description of the Lie algebra
of Ggai (or more precisely of a certain' 'form" G^^ of Gga, defined not over C
but over the field C(T) of rational functions on C—5)in terms of certain
invariants, the "p-curvatures", of the "reductions mod p" of our differential
equation, which are the obstructions to the reduction mod p ' s having a full set
of solutions.

BULLETIN DE LA SOC1ETE MATHEMATIQUE DI: FRANCE



206 N. M. KATZ

Let us recall briefly the notion of "reduction mod p " we have in
mind. The n2 rational functions a^ all lie in the ring C [T] [1 / g (F)], so each
a^j may be written

-^-^
where P( ^ lies in C [T], and where n^ ̂ 0 is an integer. Let R denote the
subring of C generated over Z generated over Z by the finitely many
coefficients of the polynomials P»./r) and ofg(T).

Then all the functions a^ lie in R [7] [1 / g (T)], and R is a subring of C which
is finitely generated as a Z-algebra. For any such ring R, the natural map

R ^ H p R / p R ,

is injective, so long as the product extends over any infinite set of prime
numbers p. In principle, then, we lose no information if, instead of studying
the operator

^+A>

operating, say, on n-triples of elements ofR[T\[l/g(T)], we simultaneously
consider its reductions mod p, operating on w-triples of elements of
(^/^R)[r][l/^(r)],forallbutsomefinitesetofprimes. The "^-curvature"
i|/p of this mod p operator is simply its p-th iterate

/ d V
^ P \ df + A) ' taken mod PJ

which turns out (oh miracle!) to be a linear operator rather than a differential
one. In absolutely down-to-earth terms, if we define a sequence A (fe), k > 1,
of n x n matrices over J^[7][l (g(T)] by the inductive formulas

A(1)=A,

A(k^l)^d(A(k))+A.A(k),dT

TOME 110 - 1982 - ?2



ARITHMETIC THEORY OF DIFFERENTIAL EQUATIONS 207

then we have
\|/p = A (p), taken mod p.

Roughly speaking, our conjecture is that the algebra Lie(G^/c(r)) is the
smallest algebraic Lie sub-algebra ofM(n, C(T)) with the property that its
4 'reduction mod p" contains ̂ fp for all but finitely many p. As a special case,
this conjecture contains a conjecture of Grothendieck's, according to which
the vanishing of i^p for all but finitely many primes p should be equivalent to
the existence of a full set of algebraic solutions for our original differential
equation, a condition equivalent to the finiteness of Gy^, i. e. to the vanishing
of Lie (G^).

It turns out that the two conjectures are equivalent (the universal truth of
Grothendieck's conjecture would imply ours).

In the text we work on an arbitrary connected smooth complex algebraic
variety, rather than on C —S, but this generality should not disguise the fact
that C — S is the crucial case; the universal truth of our conjecture on all C — S
would imply its universal truth in the general case.

In an Appendix, we give a fundamental formula for p-curvature due to 0.
Gabber.

I. The algebraic picture (cf. [6] and [8], pp. 307-321)

Let X be a smooth connected algebraic variety over C. By an algebraic
differential equation on X/C, we mean a pair (M, V) consisting of a locally
free coherent sheaf M on X , together with an integrable connection

V : M-M^Il^e.

This means that V is a C-linear mapping which satisfies the connection-rule

V(/w)==/V(m)+m®d/

(for / a local section offi^ an^ w a local section ofM) and which is integrable
in the following sense: for any local section D of Detc(^jo ^)» define the
additive endomorphism V(D) of M as the composite

M;

BULLETIN DE LA SOCIETE MATHRMATIQUE DE FRANCE



208 N. M. KATZ

the requirement of integrability is that for any two local sections D^, D^ of
Per, we have

[V(Di),V(2)2)]=V([Di.D2]).

When X is one-dimensional, any connection is automatically

integrable. In the introduction, we consider X = A1 — S, M = (C^)", and V

the map

7^7+A./r
the operator V ( d / d T ) on M is the map

7-^(7)+A7J.
Because C is a field of characteristic zero, and X is smooth over C, any

coherent sheaf on X with integrable connection is automatically locally
free. It follows from this that, with the obvious notion of horizontal
morphism ((P^-linear maps compatible with V's), the categoric D. E .(X/C) of
all algebraic differential equations on X is a C-linear abelian category.
Given two algebraic differential equations (Mi, Vi) and (M^, V^) on X, one
can form their "internal horn" (Horn (Mi, M^), Vi^) and their tensor
product (Mi (^p M2, Vi ® 1+1 (^V^) in the expected way. Thus the
category D.E. (X/C) is a tanakian category in the sense ofSaavedra. Given
an algebraic differential equation (M, V), with M locally free of rank n, we
may apply to (M, V) any "construction of linear algebra" obtained by finitely
iterating the basic constructions ®*, A^', Symm*, ©. [Strictly speaking,
such a "construction" is nothing other than a polynomial representation of
the algebraic group GL(n) over Z in a free Z-module, but we will make do
with the above more naive point of view.]

Let UaX be a non-empty Zariski open set. There is a natural
"restriction to 17" functor

D.£.(X/C)-^Z).^.([7/C),

which is exact, fully faithful, and compatible with all constructions of linear
algebra. Moreover, given an (M, V) on X, every sub-equation (N\ V) of
(M, V) | U extends uniquely to a sub-equation (N, V) of(M, V). (Proof : if

TOME 110 - 1982 - ?2



ARITHMETIC THEORY OF DIFFERENTIAL EQUATIONS 209

j : U -*- X is the inclusion, then (j * N ' ) n M is a coherent subsheaf of M
stable by V.)

Passing to the limit, we obtain an exact fully faithful functor compatible
with the constructions of linear algebra

D.£.(S/C)-*-D.£.(C(X)/C),

with target the category of finite-dimensional vector-spaces over the function
field C(X) of X endowed with integrable connections relative to
C (X)/C. Given (M, V) in X, the underlying C (X)-vector space of its image
is simply the generic fibre M 0^ C (X) of the underlying M. Just as above,
any V-stable subspace of M ® C (X) is the generic fibre of a unique sub-
equation of (M, V).

For any non-empty X'scheme

/: V-^X,

the "functor" inverse image by /" is an exact faithful functor

Z).£.(X/C)-^LocFree(y),

to the category of all locally free sheaves of finite rank on Y, which is
compatible with all constructions of linear algebra. For example, if
f ' . Y ^ X is the inclusion of a C-valued point yeX, the corresponding
functor

D.£.(X/C) -^ Fin. Dim. C-vector spaces,

is just the functor "fibre of M at /'

(M.V)^MOQ.

The faithfulness of this functor amounts to the fact, applied to the internal
horn differential equation, that a global horizontal section of an (M, V) is
uniquely determined by its 'value in any fibre M(y) ofM. Similarly,
if/: Y-^ X is the inclusion of the generic point Spec(C(X)) of X, then the
corresponding functor

D.E.(X/C) -^ Fin. Dim. C(X)- vector spaces,

is just the functor "generic fibre of M"

(M,V)^M®C(X).

BULLETIN DF I.A SOHRTF MATHRMATIQUF DE FRANCE



210 N. M. KATZ

II. The analytic picture

Let us denote by X^ the connected complex manifold underlying the
algebraic variety X. In complete analogy with the algebraic case, we have
the category D.JE.^0"), whose objects are the pairs (M, V) consisting of a
locally free coherent sheaf M on X0" together with an integrable connection
V, with morphisms the horizontal ones. Just as in the algebraic case, the
category Z). £. (X0") is a C-linear abelian category in which one can perform
all the constructions of linear algebra.

Unlike the algebraic case, however, we have in principle a complete
understanding of this category in terms of the fundamental group ofX0". In
the analytic category, the functor "sheaf of germs of horizontal sections"
defines an equivalence of categories

D.E^X^) ̂  Loc. System (AT0"),

with the category of all local systems of finite-dimensional C-vector speces on
X0". If we fix a base point yeX0", the functor "fibre at /' defines an
equivalence of categories

Loc. System (X0") ̂  Rep (n^ (X0", y)\
with the category of finite-dimensional complex representations of the
fundamental group n^ (X^, y). Both of these functors are compatible with
the constructions of linear algebra.

There is a natural G.A.G.A. functor

Z).£.(X/C)^ D^^X0"),

which is exact, faithful (but not in general fully faithful, unless X is complete)
and compatible with the construction of linear algebra. Let us denote by

D.£.^.S.P.(Jlf/C)cD.£.(A7C),

the full subcategory ofZ).£.(A7C) consisting of those algebraic (M, V) on X
which have regular singular points in the sense of Deligne. This subcategory
is stable by sub-object and quotient, as well as by the constructions of linear
algebra. DELIGNE [2] has shown that the composite functor

D.E.R.S.P. {X/C)

D.£. (JSf/C)————————^ D.£ (X^),

TOME 110 - 1982 - ?2



ARITHMETIC THEORY OF DIFFERENTIAL EQUATIONS 211

in an equivalence of categories. All in all, we may summarize the situation
by the following diagram, in which all functors occuring are exact, faithful,
and compatible with the constructions of linear algebra:

D.£LR.5.P. (X/C)

D.E. (X/C) -——^————^ D.E. {Xs9}
\\ shcaJ-ofgennsof
/ horizontal sections

Y
Loc. System. (X011)

) Fiber at.v

Rep(n,(X^y})

^forgeix,

Fin. Dim. C-vector spaces

III. Interlude: Review of algebraic groups

Let k a field, and V a finite-dimensional k-vector space. Given any
construction of linear algebra, we denote by Constr (V) the finite-dimensional
k-vector space obtained by applying the construction to V. By functoriality,
the algebraic group GL(V) operates on Constr (V), as does its
Lie algebra End(F). [For example, geGK(V) acts on
^i®^ 6^ 0 2 by i?i ®i;2 -^ 9 (v 1)^9(^2)^ while yeEnd(r) acts by
Ul ®U2-^ Y^l) 0^2+^1 8)7(^2)]-

Given a family Constr, of constructions of linear algebra, and a collection
of subspaces of the Constr,,(V)

{^,cConstr,(n},.

we may attach the following algebraic subgroup G of GL(V):

G={geGL(V)^^,g(lV^)^W^}.

The Lie algebra Lie(G) of this G is the algebraic Lie sub-algebra of End(F)
defined by

Lie(G)={yeEnd(F)|V^,Y(^,,)c^,^.}.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



212 N. M. KAT7

The key to understanding algebraic subgroups ofGL(V) is provided by the
following fundamental theorem of CHEVALLEY [1].

THEOREM. — Every algebraic subgroup of GL(V) (respectively, every
algebraic Lie sub-algebra of End(l^) may be defined by the above
procedure. In fact, it can be defined as the stabilizer of a single line in a single
construction.

One striking consequencee of the theorem is that an algebraic subgroup G
ofGL(^)(resp. an algebraic Lie sub-algebra Lie (Oof End (V)) is determined
by the hsi ol < / / / 0-Siahle suhspace in nil possible C o n s t r ( l )s: namely
(j(resp. Lie (G)) is precisely the stabilizer of all these subspaces.

Another consequence is this. Given an ^abstract" subgroup H of GL ( V\
its Zariski closure in GL (V) is the algebraic subgroup defined as the stabilizer
of all ^-stable subspaces in all Constr(FQ's.

IV. The differential Galois group Gy^ (compare [5], [8])

Lei us fix an algebraic differential equation (.W. V) on .V. i.e.. {M. V ) is an
object ot D. L. (A / L). For any construction ot linear algebra, we may tbrm
the corresponding object Constr(M, V) of D.E.(X/C). In each such
construction, we next list all of its algebraic sub-equations, i. e. all of its sub-
objects in the category D.E. (X/C). In this way we obtain the (rather long)
list

(^,V)<=Constr,(M.V),

of all algebraic sub-equations of all constructions.
Now let y e X (C) be any closed point of X. We will apply the preceding

discussion of algebraic groups to the vector space V=M(y) over the field
fe=C. The list of subspaces of all the Constrf(M(^))'s,

^,^)cConstr,(M^))=(Constr.(M))(^),

provided by the fibres at y of all algebraic sub-equations of the
Constr,(M, V)'s defines an algebraic group over C,

G^(M^,y)^GL(M(y)\

the "differential galois group" of (M, V), with base point y.
Instead of a closed point ycX(C), we could carry out the same

construction with the generic point of X, i.e., we consider the vector space
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ARITHMETIC THEORY OF DIFFERENTIAL EQUATIONS 213

V=M®C(X) over the field k=CCY), and the list of subspaces of all
constructions.

W^ ® C (X) c= Constr, (M ® C (X)),

provided by the generic fibres of all algebraic sub-equations of all the
Constr,(M, V)'s. The associated algebraic group over the function field
cm,

G,J\/.V: C(X))c:GL(M®C(X)).

is the differential galois group of (M, V), with base point the generic point
o f X .

What is the relation among the Gg^/s of a fixed (M, V) based at different
points ? It follows from the general theory ofTanakien categories that the
groups attached to any two "fibre functors" are "inner forms" of each
other. However, in the concrete situation at hand, we can see this explicitly.

PROPOSITION 4 . 1 . — Let y e X (C) be a closed point ofX, 6^ y the complete
local ring of X at y , and K the fraction field of(S^ y. Then we have a canonical
isomorphism, for any (M. V) in D.E.(X/C)

.W(n(X) K ^A/®,, C(X))(X):,v,K,

which is compatible with all constructions of linear algebra, and which induces a
canonical isomorphism of algebraic groups over K

G,,(.V. V: y)® K^G,.,,(M, V: C(X))(X),,v,K.

Proof. - Let us denote by (M (X^^.^ the space of formal horizontal
sections at y . By the formal version of the Frobenius integrability theorem,
this is an yi==rank(M)-dimensional C-vector space, which by reduction
modulo Max,, is isomorphic to the fibre M(y) of M at v:

(M®^,)^^).

Moreover, the natural map

(^ OOfcA. ̂ ®A.^ M (g)̂ ,,
is an isomorphism of 6^ y-modules. Combining these two isomorphisms,
we find a canonical isomorphism of 6jc y-modules

A^)®A.^A^Ar

RI 1 1 ITI \ DI i A sonnr MATHI MATIQL'I: DI mANCE



214 N. M. KATZ

Extending scalars from 6^y to its fraction field K yields the required
isomorphism

M(y)^)cK^(M^C(X))(^^K,

which, in view of its construction, is visibly compatible with the constructions
of linear algebra. In particular, for any construction of linear algebra, and
for any algebraic sub-equation

(^,V)<=Constr(M,V),

these isomorphisms give a canonical identification

W(y)(S)cK^(W^C(X))^)K,
inside

ConstT(M(y)^K^(M ® C(X)) ®cw-K.

These canonical identifications (of the subspaccs to be stabilized) give a
canonical isomorphism of algebraic groups over K

G^(M, V; y)(S)cK^G^{M, V; C(X))(g)c^K.
Q.E.D.

PROPOSITION 4.2 .— The group G^ (M, V; C (X)) is a birational invariant of
(M, V), in the sense that it depends only on the restriction of(M, V) to the
function field C(X).

Proof. - This group is defined by the list of all V-stable C (.X>subspaces of
all ConsiT(M(SC(Xys, for these are precisely the generic fibres of the
algebraic sub-equations, defined on all of X, of the Constr(M, V)'s.

Q.E.D.

PROPOSITION 4 .3 .— Given a finite etale covering ofX by a smooth connected
complex variety Y,

Y
/!,
x

we have a natural injective homomorphism of differential galois groups:

G^(f*(M, V), C(V))-.G^(M, V, C(X))®cwC(Y),

TOME 110 - 1982 - ?2



ARITHMETIC THEORY OF DIFFERENTIAL EQUATIONS 215

which induces an isomorphism between their Lie algebras:

Lie(G^(/*(M, V), C(Y)}^Lie(G^(M, V. C(X)))(^^C(Y).

Proof. — We have an injective homomorphism simply because the list of
V-stable C(y}-subspaces of Constr ((M®^C(V)))'s includes those
obtained, by extending scalars from C(X) to C(V), from the V-stable
CGX>subspaces of Constr (M®^CGY))'s. To see that this injective
homomorphism is bijective on Lie algebras, we must show that
<y6End(M®C(A^)) which stabilizes all V-stable C(A:)-subspaces of
Constr (M ® C (X)YS necessarily stabilizes all V-stable C (Y) subspaces of the
Constr(M ® C(V))^ (Constr (M ® CCY)))(g)cwC(y). Thus let W be a
V-stable C(r)-subspace of some Constr (M®C(y)). To show that y
stabilizes W, it suffices to show that y stabilizes the C(y)-line A dim ̂ (W) in
A dun ^(Constr(M ® C(Y)). Thus we may assume that Wis itself a V-stable
line L in some Constr (M ® C (Y)). Replacing (M, V) by Constr (M, V), we
see that it suffices to treat (universally) the case of a V-stable line L in
M ® C(Y). Replacing Y by a finite etale covering of itself, we see that it
suffices to prove the theorem under the additional hypothesis that Vis a finite
etale galois covering of X, say with galois group S:

V' \ 1
X

For each <7€Z==Gal(y/X), the conjugate line o(L) is another V-stable
line in M®C (V). Among all the conjugates CT (L), o € S, let Li, ..., Ly be
the distinct lines which occur. We must show that y stabilizes
each L,. For every integer n^ 1, the subspaces:

^,L?"cSymm"(M®C(y)),

^Lf2ncSymm2(Symmn(M®C(Y)),

will be y-stable, because they are V-stable and are "defined over C(X)"
(because E-stable).

Let f, 6 L, be a non-zero vector. Suppose we knew that for some n ̂  1, the
vectors If" are linearly independent in Symm". Then the vectors { /®" /8>n},

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



216 N. M . K A T 7

i^;, are of course linearly independent in Symm^Symm"). By the
7-stabililv of S /-^". we can write:

whence:
y^)-!^,,^,

Y(??2n)=2/?nY(f?n)=2S,A,,(?/fn.

As the products If" I J " are linearly independent in Symm2 (Symm"), this last
equation is incompatible with the y-stability ofSZf2" unless we have A^=0
for i^-j. Then we obtain:

Y^?")^..^, in Symm".

On the other hand we have:

y^")^?01-1^.), in Symm";

because the symmetric algebra Symm is an integral domain over a field C (V)
of characteristic zero. and 1,^0. we may divide by nJf^'^ to infer that:

TC,)-^',.

To conclude the proof, we need the following lemma.
LEMMA 4.4. — Let k be afield of characteristic zero, V a finite dimensional

vector space over k, and v^ ..., Vy a set of non-zero vectors in V which span
distinct lines. Then for any integer n^r-1, the vector r?", ..., v^ are
linearly independent in Symm"^).

Proof. - Extending scalars if necessary we may suppose that k is
algebraically closed. If dim(^)=l, then r=l and there is nothing to
prove. Suppose dim(FQ^2. We first reduce to the case
dim V=2. Given any finite set of non-zero vectors in V, we can find a
hyperplane in V which contains none of them. Let ^ be a linear form on V
whose kernel is such a hyperplane, so that ^(i;,)^0 for
f= l , ..., r. Multiplying the y/s by non-zero scalars, we may assume that:

M^)=l tor f = l , . . . , r .

Because the r, span distinct lines, the differences v^—Vp i<j, are all non-
zero. So we may find a linear form H on V such that:

^(r,-i?,)^0 if i<j.
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The pair (?i, n) defines a map of Fonto a 2-dimensional quotient space k2,
under which the images of v^ ..., Vy are r vectors of the form:

(I,A,)=(MI\-),^)),

in which the r scalars A i, ..., Ay are distinct. Because Symm" (k2) will be a
quotient of Symm"^), it suffices to prove our theorem for V=k2, and
r vectors Fi=(l, A,), 1 ̂ i^r, with distinct A,'s. In this case the vectors vf"
in Symm^fe2) have coordinates relative to the standard basis given by:

^-fl^Aj^A2,...^^^..,^

That these vectors are linear independent, for n ^ r — 1, results from the non-
vanishing of the van der Monde determinant on A^, ..., A .

Q.E.D.
The following proposition will be proven further on. We state it here for

the sake of continuity of exposition.

PROPOSITION 4.5. — The following conditions are equivalent:
(1) (M, V) becomes trivial on a finite etale covering Y of X;
(2) the group Gy^ attached to (M, V) is finite;
(3) the Lie algebra Lie(Gg^i) vanishes.
There is a last functoriality concerning the Gy^ which is worth pointing out

explicitly. If we begin with an (M, V) on X and perform a "construction of
linear algebra" that very construction defines a homomorphism of algebraic
groups (with *=any chosen base point):

G,,,(M, V, *)-^ G^i(Constr(M, V). *).

Similarly, if^, V) is an algebraic sub-equation of a Constr(M, V), we have a
natural ••restriction to {W, V)" homomorphism of algebraic groups:

G^(Constr(M, V), *)^ G^(^, V, *).

Their composition is the homomorphism

G^(M, V, *) -. G^(W, V, *)cGL(^(*)),

by which G^{M, V, *) acts on the subspace ^(*)c:Constr(M(*)).
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V. The algebraic monodromy group G ô

We continue to work with a fixed algebraic differential equation (M, V)
on X. We denote by (M, V)0" the corresponding analytic differential
equation on X0". For each construction of linear algebra, we form the
corresponding object Constr (M, 7)'"')^ (Constr (M, V))0" in the analytic
category D.E.CY*"*). In each such construction, we list all of its analytic
sub-equations, i.e., all of its sub-objects in the category D.E^X0"). In this
way, we obtain the list:

(^,V)c:Constr(M,Vr.

of all analytic sub-equations of all constructions.
For any point y e X an == X (C), we apply the discussion of algebraic groups

to the vector space V^ M (y) over the field k = C, and the list of sub-spaces of
all Constr (M 00)'s provided by the fibres at y of all analytic sub-equations of
the Constr (M, V^'s. The corresponding algebraic group

G^(M,V,y)c:GL(M{y)\

is called the algebraic monodromy group of (M, V), based at y.

PROPOSITION 5.1. - Let p: TiiCY0", y)-^GL(M(y)) be the monodromy
representation attached to the analytic differential equation (M, V)0"
on X0". The algebraic group

G^(M,V,jQc=GL(MOQ).

is the Zariski closure in GL (M (y)) of the image p (n^ (X fln, y)) in GL (M {y)) of
n^ (X0", y), i. e. G^^(M, V, y ) is the Zariski closure of the monodromy group
of(M, vr.

Proof. — Under the equivalence of categories

D.E^X^^Rep^^X0'1^)),

induced by the functor "fibre at /\ the list of all analytic sub-equations of all
Constr (M, V^'s becomes the list of all n^ (X^, jQ-stable subspaces of all
Constr (MOO)'S where ^(X0",^) acts on M{y) by the monodromy
representations of (M, V)0". As we have already noted, the algebraic group
defined by this list is none other that the Zariski closure in GL{M{y)) of the
"abstract" subgroup p(n^ (X^, v)).

Q.E.D.
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PROPOSITION 5.2.- For any (M, V) on X, and any point y e X (C), we have
an inclusion of algebraic groups (both inside GL(M(y))

G^no(M^,y)^G^(M^,y).

If(M, V) has regular singular points, then we have an equality

G»ono(^V^)=Ggal(^V^).

Proof. — We have an inclusion because the list of analytic subequations of
Constr(M, V^'s includes the list of "analytifications" of all algebraic
subequations of Constr(M, V)'s. If (M, V) has regular singular points, it
follows from Deligne's equivalence of categories

D.E.R.S.P^X/^^D.E.iX^),

that these two lists actually coincide.
Q.E.D.

Caution. — It may very well happen that we have the equality G^no = Gy^
for an (M, V) which does not have regular singular points, e.g., this will
happen for any (M, V), regular or not, whose monodromy group is Zariski
dense in GL.

PROPOSITION 5.3. - Suppose that (M, V) on X has regular singular
points. Then the following conditions are equivalent:

(1) (M, V) becomes trivial on a finite etale covering of X;
(2) the algebraic monodromy group G^no attached to (M, V) is finite;
(2 bis) the differential galois group G^ is finite;
(3) the Lie algebra Lie(Gn^) vanishes;
(3 bis) the Lie algebra Lie (Gy^) vanishes.
Proof. - The equivalences (2) (3), {2bis)o(3bis} are obvious. The

equivalence (2}^>(2bis) is clear from the equality Gn^=G^i. Clearly
(1)<^(2), while (2) implies thaCt (M, V)*"* becomes trivial on a finite etale
covering Y0" of X " " . Such a covering is the analyticification of a unique
finite etale covering Y-^X, on which / * ( M , V F has trivial
monodromy. As/* (M, V) has regular singular points on V, it follows trom
Deligne's equivalence on Y

D.£.J?.S.P.(r(C))^D.£.(yfln),
that/*(M, V) on Y is trivial.
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The unproven Proposition 4.5, stated at the end of the previous section, is
an immediate consequence of this Proposition 5.3 taken together with the
following one, whose proof will be given further on!

PROPOSITION 5.4. — Let (M, V) be an algebraic differential equation on
X . If the Lie algebra Lie(G^) vanishes, then (M, V) has regular singular
points.

VI. Spreading out

Let X be a connected smooth C-scheme of finite type. It is standard that
we can find a sub-ring R <= C which is finitely generated as a Z-algebra, and a
connected smooth J?-scheme X/R of finite type, with geometrically connected
fibres, from which we recover X/C by making the extension ofscalars R c;C.

If in addition we are given an algebraic differential equation (M, V)
on X/C, we can choose X/R in such a way that there exists on X/R a locally
free coherent sheaf .Vf. together with an integrable (relative to X / R )
connection V on .V, such that we recover (M, V) on A / R from (Ml, V)
on X ' R by making the extension ofscalars R^C.

OfcoursethechoiceofsuchanJ?,andofsuchdataX/R,(M, V)on X/R,is
highly non-unique. One can say only that given any two such data

J^, X.AR,, (M., V,) on X(AR(,

for i=l,2, there exists a third

^3, ^3/^3. (MS, V3) OH X3/R3,

such that
^i^*^-* ^^-^

and there exist isomorphisms, for i=l, 2:

(X,. (M,, V,))(X)^3^3, (^3, Va)).

The following lemma, applied to both the rings R, and the coordinate rings
ofaffme open sets of the X,, provided the technical justification of our non-
concern with this plethora of choice.

LEMMA 6 . 1 . — Let Pi and R^ be two integral domains with fraction fields of
characteristic zero, which are both finitely generated as Z'algebras. Suppose

TOME 110 - 1982 - ?2



ARITHMFTIC THFORV OF DIFFFRFVTIM FQl'ATIONS 221

that R^aR^ Then for all but finitely many primes?^ the induced map
between their reductions mod p is injective:

R^lpR^R^IpRz for almost all p.

Proof. — We may first reduce to the case when R^ is flat over R^ (Because
for some/^0 in R^, R^ [1 If} will be Hat over R^, and if the theorem is true foi
R^ <=.R^ [I//], it is certainly true for R^ cj^ with at worst the same set of
exceptional primes). If R^ is Hat over R^, then by Chevalley's
"constructible image" theorem, there exists an element g^O in R^ such that
Rz[\lg\ is faithfully Hat over R^[l/g]. Therefore ^J1/^]-^!1/^] is

universally injective, in particular injective mod p for all p. Therefore we
are reduced to treating the case R^ c: R^[l lg\. Now the map of reductions
mod p

^i^-Fp-^ill/^D^Fp-^i^Mll/^-lim.^^Fp,

is injective if (and only if) the endomorphism "multiplication by g" is injective
onRi®Fp.

Consider the short exact sequence

O-^R^R^R^/gR^Q.

The quotient R ^ / g R i is a finitely generated Z-algebra, and therefore if we
invert some integer N>.1 the algebra { R ^ / c / R ^ ) [ l / N ] will be Hat over
Z [1 / N ] . For such an N, we have a short exact sequence

0-.RJl/N]^^i[l/N]^(^i/^i)[l/N]-.0,

whose last term is Z [1 /N]-flat. Therefore our sequence remains exact if we
tensor over Z[1/N] with any Z[l/N]-module, in particular with Fp for p a
prime not dividing N. Thus for p not dividing N, we have an exact sense:

0-Ri®y^R,0Fp^(^i/^i)®F,-0,

and in particular the required injectivity of "multiplication by g" on R^ ®Fp.

Q.E.D.
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The point of spreading out an (M, V) on X/C to an (M, V) on X/R is that
the spread-out object is susceptible to reduction mod p, i. e. we can form, for
each p, the locally free coherent sheaf with integrable connection
(M, V)(x^(J((x)z Fp) on the smooth J?®Fp-scheme X(g)^®Fp). It then
makes sense to ask what can be inferred about the original (M, V) on X/C
from mod p knowledge about sufficient many reductions mod p of such a
"spreading-out".

VII. The p-curvature (c/. [6])

In this section, we consider an F^p-algebra R, a smooth J?-scheme X , and a
pair (M, V) consisting of a locally free coherent sheaf M on X together with
an integrable connection

V: M -»- M®nĵ .

The associated construction D -^ V(D), viewed as an fi^-linear map

Der ̂ (^.^)- End ̂ (M).

need not be compatible with the operation "p-power" (remember that by the
Liebnitz rule, the p-power of a derivation in characteristic p is again a
derivation), i.e., it need not be the case that V(DP)=(V(D))P. The
p-curvature ^fp(D) is the obvious measure of this failure:

^(D)^(V(Z)))P--V(DP).

One verifies easily that ^p(D) is an ^-linear endomorphism of M, and
somewhat less easily that the assignment. D -^ x|/p(D) is p-linear, i. e. we have:

^(/l^l+/2^2)=/?^(^l)+/S^(^)2).

^fi.filoca! sections of 6^, and D^ D^ local sections of Per p (Oy, Oy). It
follows easily from this that the various ̂ p(D)'s mutually commute, and that
each of them is a horizontal endomorphism of M. Under the constructions
of linear algebra, ^fp(D) behaves in a "Lie-like" manner, e.g. if we take a
tensor product

(Mi®M2,Vi(g)l-hl®V2).
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its p-curvature is given by the formula:

^;M^W=^;M.(^)®1-H®^.M,(0).

Because \|/p is a differential invariant, it is compatible with etale
localization. To be precise, let /: Y ^ X be an etale morphism, D a
derivation on X,f*(D) the pulled-back derivation on V. For any (M, V)
on X/R, the p-curvature of/*(M, V) on Y / R is given by:

^./•(M.V)(/^)=/*(^.(M.V)(^)) in End^(/*(M)).

The importance of p-curvature is that it is the obstruction to the Zariski-
local existence of enough horizontal sections, a fundamental fact discovered
by Carrier.

THEOREM 7.1 (Cartier). — Hypotheses as above, let A^cAf denote the
kernel ofV: M -» M®ft1, i. e. M^ is the sheaf of germs of horizontal sections
of M. Then M is spanned over Oy by M^ if and only if all i|/p(D)'5 vanish.

VIII. Influence of p-curvature

We return to the situation of an algebraic differential equation (M, V) on a
smooth connected algebraic variety X over C. We will say that (M, V) has
"quasi-unipotent (resp. finite) local monodromy at infinity" if for every
smooth connected complete complex curve C, every finite subset 5 of C, and
every morphism:

/: C~5^X,

the pulled-back equation/* (M, V) on C — S has quasi-unipotent (resp. finite)
local monodromy around every point s e S . (Along the same lines, we
should recall that (M, V) on X has regular singular points if and only if all of
its pull-backs to curves as above have regular singular points in the classical
sense.)

Now consider a "spreading out" (M, V) on X/R of our (M, V) on
X/C. We have the following theorem.

THEOREM 8.1 (cf. [6], [7]).
(1) If, for an infinite set of primes p , the p-curvatures x|/p(Z>) of(M, V)® Fp

are all nilpotent (in the sense that ^fp(D) is a nilpotent endomorphism
of M® Fp), then (M, V) on X has regular singular points.
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(2) If the ^fpS are nilpotentfor a set of primes p of{Dirichlet) density one, in
particular if the v|/p are nilpo tent for almost all p, then (M, V) has quasi'
unipotent local monodromy at infinity.

(3) If the ̂ fpS vanish for a set of primes of density one, then (M, V) has finite
local monodromy at infinity.

(4) If(M, V) becomes trivial on a finite etale covering ofX, then \|/p=0/or
almost all primes p.

(5) If^p vanishes for almost allp, and if (M, V) is a "suitable direct factor" of
a Picard-Fuchs equation on X, (the relative de Rham cohomology, with its
Gauss'Manin connection, of a proper smooth X-scheme minus a relative
"divisor with normal crossings") then (M, V) becomes trivial on a finite etale
covering ofX.

IX. A conjectural description of Lie (G i)

We consider an algebraic differential equation (M, V) on our smooth
connected X over C. Let

^c:End(M®C(JC)),

be an algebraic Lie sub-algebra of the C(X)-Lie algebra
End (M®C(X)). We will say that V "contains the /^-curvatures ^fp for
almost all p" if the following criterion is satisfied:

CRITERION 9.1. - Pick a finite collection ofsubspaces of constructions:

^<=Constr,(M®C(J!0),

which defines ^. Pick a non-void Zariski open set UaX such that the
named C(^)-subspaces W, are the generic fibres of locally free sheaves W^ „
on [7 which themselves are locally direct factors, over C7, of the
corresponding constructs:

W^ y <= Constr, (M) 117 with locally free quotient.

Now "spread out" this data on U/C to:

UAR, ( M , V ) on UAR,
locally free sheaves W, on U,

W(C:Constr,(M) with locally free quotient.
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Then for almost all primes p, the p-curvatures ̂ fp(D) attached to (M, V)®Fp
on U®Fp over J?®Fp, are required to stabilize the sub-sheaves
W,®FpC=Constr,(M)®Fp=Constr,(M®Fp).

It follows easily from Lemma 6.1 that if this criterion is satisfied for one
collection of choices involved, then it is satisfied for any collection of choices.

Clearly the intersection of any two algebraic Lie-subalgebras of
End(M(g)C(.Y)) which "contain the ^p for almost all p" is another one
(simply work with the union of two finite collections of subspaces of
constructions which define the two). Because any descending chain of Lie
subalgebras of a finite-dimensional Lie algebra must stabilize after finitely
many steps, it makes sense to talk about the smallest algebraic Lie-subalgebra
of End(M®C(X)) which "contains the ^p for almost all p".

CONJECTURE 9.2.- The Lie algebra Lie (G^ (M, V, C (X ))) is the smallest
algebraic Lie sub-algebra ofEnd(M^C (X )) which contains the ^pfor almost
all p.

One inclusion, at least, is easy.

PROPOSITION 9.3. - The Lie algebra Lie (Gg^(M, C(X))) contains the ^fp
for almost all p.

Proof. — The group Gy^ is defined by the list of all horizontal subspaces of
all Constr (M®C (X ))'s. Because GL is noetherian, Gy^ is defined by some
finite sublist, say { H^crConstrf }„ then by © W,<=. ©Constr,, and finally by
the horizontal line Z^A1""^®^) in the corresponding exterior power of
©Constr,. Thus Gy^ is defined by a single horizontal line L in a single
Constr (M®C(X)). As already noted, such an L is the generic fibre of a
unique rank-one sub-equation (L^, V) on all of X:

(L^,V)<=Constr(M,V)

(the quotient M/Ly is automatically free on X, thanks to V). We may
choose a thickening of this situation:

X/R, (M,V) on XAR, (L,V) on X/R,

(L, V )c= Constr (M, V) with locally free quotient.
Then for any prime p , L®Fp is a V-stable line in Constr (M®Fp), and is

therefore stable by v|/p.
O.E.D.

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE



226 N. M. KATZ

COROLLARY 9.4. - If Lie (G^(M, V, C(Jf))=0, t/wi (M, V) fcas regular
singular points (and therefore becomes trivial on a finite etale covering ofX, cf.
Proposition 5.3).

Proof. — By the preceding proposition 9.3, ifLie(Ggai)=0, then we must
have x|/p=0 for almost all p. And as already noted (8.1, (1)), the vanishing
of ^p for almost all p guarantees regular singular points.

Q.E.D.

X. Reduction to a conjecture of Grothendieck, and applications

In 1969, Grothendieck formulated the following conjecture.

CONJECTURE 10.1 (Grothendieck). - If(M, V) has ̂ p=0for almost all p,
then (M, V) becomes trivial on a finite etale covering ofX.

In view of Corollary 9.4, this amounts to asking that Lie(Ggai) vanish if
almost all the ̂ p vanish. It is therefore the special case '^p^O for almost
all p" of our general conjecture. In fact, our general conjecture is a
consequence of Grothendieck's.

THEOREM 10.2. - Let (M, V) on X be given. Then Conjecture 9.2 is true
for (M, V) on X ifGrothendieck^s conjecture is true for all equations on X of
the form (W^ Vi)®(^» ̂ f, where the equations (W,, V,)/w f= l , 2 are
each subequations ofConstr(M, V)'s, and (W^, V^) is of rank one.

Proof. - Let V be the smallest algebraic Lie subalgebra of End (M®C (X ))
which contains the x|̂  for almost all p. We must show that
Lie(G^(M, V, C(X))) lies in ^.

Because ^ is algebraic, it is definable by one line L in one construction
Constr (M®C (X)). We must show that this line is stable by Lie (GgJ. If
this line L is V-stable, then, by the very definition of Gy^, L will be stable by
Lie(Gg^). Suppose that L is not V-stable, and let W be the C(Z)-space
spanned by some non-zero vector JeL and all its various higher derivatives:

H )̂")'0
(where { x , } is some separating transcendence basis of C(X) over C).

Thus we have:

L<= W^L Constr (M®C (AT)),
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and W is clearly the smallest V-stable C (X )-subspace of Constr (Af®C(X))
which contains L. Because W is V-stable, it is the generic fibre of some
algebraic sub-equation:

(W^ V)c: Constr (M, V).

We will now show that (^, V) has scalar p-curvature for almost all p.
It we choose a small enough afflne open set VczX, the functions

^FI, . . . , ̂  will be a "local coordinate system on F" (i.e. an etale map
V -^ y4^), the line L will extend to an invertible sheaf Ly on V, the vector I e L
will extend to a basis, still noted I, of L^, and the locally free sheaf Wy \ ^will
be free on a basis of the form:

{l, certain nvf ̂ Y(01.

We may further assume that this basis is adapted to the "filtration by order of
differential operator" in the sense that for any monomial, T N ( S / 8 x ^ 1 ' the
expression ofIIV { S / S x ^ ' (1) in terms of our chosen basis involves only those
basis vectors V{8 /9x^(1) with En^SM..

Now "spread out" this entire situation, to some U / R , and reduce
modp^O. We know that L®Fy is xl/p-stable (because we chose
Lc: Constr (M®C(X)) to define the smallest algebraic Lie sub-algebra of
End(M®C(X)) which contains i|/p for almost all p). Therefore we have:

v|^(D)(0=fl(p,D)(modp.

Because the endomorphism \|/p(Z)) of W® Fp is horizontal, when we compute
\|/p(D) of one of the other basis vectors, we find:

^(D)(^V(^)"')(/)=(ITV(^)B')^(D)(/))

=(^v(^)n')(a(p•D)J)^J )
•n nv/=a(p.z)).^vfay'(o

\ ̂ i /

+ lower-order derivatives of I.
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Therefore the matrix of x|^(Z>) acting on W® fp in the basis:

{^(^N'
which we have assumed adapted to the "filtration by order of differential
operator", is upper triangular, with o(p, D) along the diagonal:

/a(p.D) \

\ 0 • fl(p,D)/.

We will show that for p>rank(W) this matrix is diagonal.
Let r denote the rank of W. Then the p-curvature of det( W, V) ® Fp,

which in general is the trace of the p-curvature of( W, V) g) fp, is given by the
formula:

^(Z))|det(W,V)®F^=r.a(p.D).

But the p-curvature of any rank one equation (JSf, V) is a horizontal section of
^nd(.Sf, V)^(^, d). Therefore the function r.o(p, D) on U ® F^ is killed
by the operator V (5/5x,). For p^> 0, we certainly have p > r = rank (W), and
for such p we may infer:

v[^\fl(p,P))=0 for all i.

Going back to the earlier calculation of the matrix ofi|/p(jD) on W® Fp, we
see that it is the scalar matrix o(p, D), as claimed.

Now consider the algebraic differential equation:

(Symm^^V^det^vr.

Because (Wy, V) has scalar p-curvature for almost all p, an immediate
calculation shows that this equation has \|/p=0 for almost all p.

This equation is of the required form {W^, Vi) ® (W^, VaF* ̂ ^

f (W^ V^^Symm^^, V^Symm^Const^M, V)),
{ (W^ V2)=det(^, V)cAr(Constr(M, V)).
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Therefore by the hypothesis of the theorem being proven, we may conclude
that the equation:

Symm^.V^det^.VF,

has its Lie (Ggai)==0. It follows immediately that:

Symm^.V),

has its Lie (GgJ contained in the Lie algebra of scalar matrices, whence it
follows that (W^, V) itself must have its Lie (Gg^i) contained in the Lie algebra
of scalar matrices.

Therefore every line in the generic fibre W^ ® C (X) = IV, in particular L, is
stable by Lie (Gy^), as required.

COROLLARY 10.3. - Let (M, V) be an algebraic differential equation on
P1 —S, an open set in P1. Suppose that (M, V)"" has abelian monodromy {a
condition which is automatically fulfilled if(S) ̂  2, for in that case
TCi (P1 - S) is itself abelian). Then the general conjecture holds for (M, V) on
P^S.

Proof. - Any sub-equation (W, V) of any Constr(M, V) will also have
abelian monodromy, also any (W^ V^) ® (W^ Vzf. So we are reduced to
proving Grothendieck's conjecture on P^S for (M, V)'s with abelian
monodromy. Suppose x|^=0 for almost all p. Then (M, V) has regular
singular points (8.1), so it suffices to show that (M, V) has finite global
monodromy. As n^ (P1 - S) is generated by the local monodromies around
the missing points 5, it suffices to show that these local monodromy
transformations are of finite order (since we have assumed that they
commute). But the finiteness of local monodromy is also a consequence of
the hypothesis ^p=0 for almost all p" (8.1, (3)).

Q.E.D.
Here are some examples to which the corollary applies.

EXAMPLES 10.4. - (1) The Airey equation on A l, indeed any equation on
A1, satisfies the general conjecture, because A1 is simply connected. The
Airey equation,

(^
Bl'l IITIN DF I.A SOCII'TI' MATHI'MAIiyi'l 1)1 hRANd



230 N. M. KATZ

written in system form

df[gr[T o)[g)9

to provide us with an (M, V), is known [5] to have G^ = SL (2). Therefore
SI(2) is the smallest algebraic Lie subalgebra of 2 x 2 matrices which
contains the x|̂  for almost all;?. Can one see this "directly"?

(2) The confluent hypergeometric (Whittaker) equation on G,,:

{̂-̂ .< .̂.o.

Here again the general conjecture holds, because n^ is abelian. Can one
calculate Lie (GgJ, as a function of the parameters (k, m) ?

(3) Any first order equation on any P1—S necessarily has abelian
monodromy, hence the conjecture holds for it.

THEOREM 10.5. - Suppose that the general conjecture is true for all (M, V)'s
on all open subsets ofP1. Then the general conjecture is universally true on all
smooth connected algebraic varieties over C.

Proof. - In view of (10.2), it suffices to prove that Grothendieck's
conjecture holds universally. Because the condition "^p=0 for almost
all p" implies regular singular points, Grothendieck's conjecture may be
restated as the conjecture:

(*) if (M, V) has x|^=0 for almost all p, then (M, V)0" has finite
monodromy.

Let/: Y-^Xbesi morphism of smooth connected C-schemes, such that
the image/^ {n^ (Y011)) is a subgroup of finite index in n^ (X M). Because the
condition "xj/p = 0 for almost all p" is preserved by arbitrary inverse image, to
prove the universal truth of * for X it suffices to prove the universal truth of *
for V. But whatever X, we can choose a smooth connected curve Y cz X
such that TCI (V0") maps onto n^ (X011).

[Proof. — We may replace X by a non-empty quasi-projective open set
17<=X, since ^((/^-^(X011). Take some projective embedding
U <= P^. For a general linear-space section W of P^ with
codim(HQ=dim([7)-1, the curve V= W r\ U in 17 has n^Y0") -^ n^ (l/^)
(cf. [3],1.4 or [4]).]
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Thus we are reduced to proving * on smooth connected curves. If X is a
smooth connected curve, we may replace it by any non-void open set 17 c= X
(because n^ (I/4"1) -^ ̂  (X^)).

Shrinking X if necessary, we may assume that X is finite etale over some
non-empty open set P1 —S of P1. Now replacing this X by a finite etale
covering YofX (allowable because n^ (V") c» iti (X M) as a subgroup of finite
index), we may assume that X is finite etale galois over some P1 —S:

x \n [ I galois group Z.
P^S/

If(M, V) on X has x|^=0 for almost all p, then n^ (M, V) has x|^=0 for almost
all p. By assumption, then, ^(Af, V)°" has finite monodromy on
P1-S. Therefore its pull-back to X has finite monodromy onX. But
(M, V) is itself a direct factor of n^ n*(M, V) indeed we have:

7c^(M.V)^@^(M.Vn

These (M, V) has finite monodromy on X, as required.
Q.E.D.

(10.6). To conclude this section, we will give a direct proof that the general
conjecture holds for any equation on G^ of the form:

A (^\ (^ V-^^0 H ' • • )('•}=Q•\fJ \ x,/ V/.

where ^.i,. . . ,X, are complex constants (although it is a special case of
Corollary 10.3).

This equation visibly has regular singular points, so Gg»i = G,nono- '̂ le

monodromy representation carries the generator "turning counterclockwise
once around the origin" of TC, (G,J to the automorphism:

/ /x.
^==exp |-27ci|
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Therefore G^=G^ is simply the Zariski closure in GL(n) of the abstract
subgroup {A'] reZ. The Lie algebra Lie(G^) is the smallest algebraic Lie
sub-algebra of M(n) which contains the endomorphism:

'Ini^

2niK..

In particular, Lie(GgJ is the Lie algebra of an algebraic sub-torus of the
standard diagonal torus. Therefore Lie (GgJ is defined inside all diagonal
matrices:

î

^

by the vanishing of all linear forms:

SN,^,=0.

where (N;, . . . , NJ is any n-triple of integers such that:

2N,^.€Q.

Now let us compute p-curvatures (for the obvious "spreading out" over the
subring R = Z [^,..., ?J <= C). We have:

^)WM^J)
-(v(^))'-v(^)". y-f.)^/ \ ^/

/^i)"-^
(^)'>- ,̂,
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The smallest algebraic Lie subalgebra ofM(n) containing the \|̂  for almost
all p is a sub-algebra of Lie (Gg.i), so it is itself defined inside all diagonal
matrices:

/ X , \.

X.

by certain equations:

£M.X,=0

with integers M,. The n-triples (Mi, ..., MJ which occur are precisely
those for which we have:

^,M,(()L.y-^,)= mod p.

for almost all p. What must be shown is that for any such n-triple
(MI, ..., MJ, we have:

SM,^6Q.

But this is clear, because the quantity ^i€<=Z[Xi, ..., ^J defined by:

H=£M^.,

satisfies the congruence:

H = ̂  mod pR,

for almost all p(cf. [6]).

XI. Equations of low rank

We will first discuss the case of equations of rank one, about which we
know embarrassingly little (cf. [7]). Thus let (JSf, V) be a rank one equation
on an arbitrary X. Then Lie (Gg^) is either reduced to zero, or it is the entire
one-dimensional Lie algebra Lie (GL(1)).

Let ^ be the smallest algebraic Lie sub-algebra of Lie (GL(1)) which
contains the i|̂  for almost all p. Thus:

f 0 if ^p=0 for almost all p,
[ Lie (GL(1)) if \|/p ̂ 0 for infinitely many p.
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We have the inclusions:

0 c <S c Lie(G^) c Lie(GL(l)).

PROPOSITION 11.1. — //(.Sf, V) on X does not Aai?e regular singular points,
or if it does not have finite local monodromy at infinity, then the general
conjecture (9.2) is true for (-S?, V) on X , and we have
^^LieG^)=Lie(GL(l)).

Proof. - Thanks to (8.1), we know that neither of the possibilities
envisaged can arise if ̂ fp = 0 for almost all p. Therefore we must have \|̂  ̂  0
for infinitely many p, whence ^=Lie (GL(1)).

Q.E.D.
Here is an example. Take JSf=A1, and (f, V)=(^, d^-dT), the

differential equation for exp (-T):

^(/»+/-0.

The p-curvature is given by the simple formula:

^H '̂-GH'--
We have already pointed out (10.4, (3)) that on an open set P1 -S of P1,

the general conjecture (9.2) holds for any equation of rank one.
We now turn to the case of equations of rank two. For simplicity of

exposition, we will consider only those rank two equations (M, V), on an
arbitrary X, whose determinant det (M, V) is either trivial, or becomes trivial
on a finite etale covering of X. As before, we denote by ^ the smallest
algebraic Lie subalgebra of End(M®C(AT)) which contains the ^p for
almost all p. We have the inclusions:

Oc^cLie(Ggj£Sl(2).

THEOREM 11.2. — Let (M, V) be a rank two equation on an arbitrary X,
whose determinant becomes trivial on a finite etale covering of X. Suppose
that y ^ 0, i.e. that (M, V) has non-zero ^pfor infinitely many p. (77n5 is
automatically the case if(M, V) does not have regular singular points, or if it
does not have finite local monodromy at infinity.) Then the general conjecture
(9.2) holds for (M, V) on X, i.e. we have ^=Lu?(GgJ.
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Proof. — We will suppose successively that ̂  is one of the short list of non-
zero algebraic Lie sub-algebras of£ I (2, C (X)), and show that in each case we
have Lie (G^)c^.

Case 1. — ^=®I(2). There is nothing to prove.
Case 2. - ̂ =a non-split Cartan. This means that there is a quadratic

extension C(V) of C(X), and a pair of conjugate irrational lines Li, L^ in
M 0c(;n c (Y), such that ̂  is their stabilizer in SJ(2). If these lines are both
V-stable, then they are both stabilized by Lie(Ggai), whence
Lie(Ggai) c: ̂ . If, say, Lj is not horizontal, then it and its derivatives span
M ® C(V). Because Z^ (and £2) arc eac^ sta&k by ^fp for almost all p, it
follows that (M, V) has scalar v|/p for almost all p (cf. the proof of 10.2),
whence ^ <= (scalars)n ®1(2)=0, a contradiction.

Ca5^ 3. — ^=a split Cartan. There are two distinct lines L^
L^ <= M (g) C(X) such that ̂  is their stabilizer in S((2). Same argument as
in case 2.

Case 4. - ̂  = a Borel. There is one line L c: M ® C (X) such that ̂  is its
stabilizer in Sl{2). Same argument as in case 2.

Q.E.D.

EXAMPLE 11.3. — Let A be a lattice in C, £=C/A the corresponding
elliptic curve, and ^(z)=^(z; A) the associated Weierstrass ^-function.
Let a, b be complex constants, and consider the Lame equation on £— {0}:

(^(.n^^+b)./;
which visibly has trivial determinant. This has a regular singular point at
the origin 2=0 of £, with exponents the roots of the polynomial
X2 - ?i = a. Therefore if a is not of the form a (a -1) with a 6 Q, the exponents
are irrational, and the local monodromy around z = 0 is necessarily of infinite
order. The theorem (11.2) then applies, to show that the general conjecture
(9.2) is true for this Lame equation, so long as a is not of the form a (a— 1)
with a e Q. [Unfortunately it is precisely the case in which a = a (a -1) with
aeQ that is in many ways the most interesting.]

THEOREM 11.4. — For any rational numbers a, b, c, the hypergeometric
equation on P1 - {0,1, 00} with parameters (a, b, c):

nr-i)^ +(c-{fl+b+i}r)^-hd?/=o,
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satisfies the general conjecture (9.2), i. e. its Lie (G^) is the smallest algebraic
Lie sub-algebra ofQl(2) containing the ^fpfor almost all p.

Proof. — Because a, fc, c are rational, the determinant becomes trivial on
the finite etale covering defined by the function
r'^T— l)*—0-''-1. Therefore we may conclude by theorem (11.2), except
in the case ^=0. In the case ^=0, the required vanishing of Lie (GgJ is
proven in ([7], 6.2) for the hypergeometric equation.

Appendix: A formula of 0. Gabber

Let S be an arbitrary Fp-scheme, X / S a smooth S-scheme, and (M, V) a
pair consisting of an fl^-module M together with an integrable connection
relative to S

V: M-^M®n^.

The p-curvature of(M, V) defines a p-linear map offi^-modules

Der,(g^,^)^End^(M),
D^^^D).

By transposition, this map may be viewed as a global section ^Fp over X of
the ^-module

End^^(M)^(n^)^
&

where for any ^-module N, we denote by N^ its inverse image by the
absolute Frobenius endomorphism F^s °f X (elevation to the p'th power):

N^F^N^N^^x'

In local coordinates x^, ..., x^ for X / S , the expression of^Vp as section of
End. (A^x^)^ is simply:

^-^^^(dx,)^

Now consider a second Fp-scheme T, a smooth 7-scheme Y / T , and a
commutative diagram:
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y—f-—^x

T——9^S

On V/T, we dispose of the inverse image (/, g)* (M, V) of (M, V) on X / S .
which is the t y-module/* {M) together with the induced connection. It's
/^-curvature, which we note ^(/.^(M.V)' ls a global section on Y of the
C y-module:

End^,(/*(M))(g^,(n^r.

It is natural to ask how to compute ^.(/.^(M.V) m terms of the Vp for
(M, V) itself. There is an obvious "candidate solution" to this problem,
defined as follows.

First, there is a natural "extension of scalars" homomorphism of
^y-modules:

(A) /* (End^ (M)) -. End^ (/* (M)).

Second, the functoriality of Q1 yields a natural homomorphism of
^y-modules (pull-back of a one form):

.^Q1,,-^.^

which in turn may be "pulled back" by absolute Frobenius to yield an
^y-homomorphism:

(B) r ((tw^) ̂  (/* w - (^/rr.
The tensor product of (A) and (B) yields an ^y-homomorphism:

(A 00 B) ./ * (End^ (M) (X^ ̂ ^{p)) - End, ^. (/* M) ̂  (^r)^

given in local coordinates x, . . . . . x,, for X / S by the formula:

I^,®(^,)^-.Z/*(^,)®^(/*(x.))n

Given any global section over X:

AeEnd^(M)®(nj^r,
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we denote by:
(/, gY (A)6End^ (/* (M)) (g^ (lî r,

the global section over Y obtained by applying (A ® B) to/* (A).

FORMULA (0. Gabber). - With the notations and hypotheses as above, the
p-curvature ^,(/.^)*(M,V) of (/> g)* (Af, V) on Y/T is obtained from the
p-curvature Vp of(M, V) on X / S by the formula:

^^(M.^a^OFp)

(equality inside End^ (/* M) (gfc^ (ft^^^.
Proo/. — We may factor the given morphism through the fibre product:

V————^TxX ————^X
I s I[ {_[

and the assertion is obvious for the right-hand square (use local coordinates).
Therefore it suffices to treat the case when S= T. The question is local

(Zariski) on V, so we may assume that Y is affine over S, say:

yc.A^.
Then we may factor the given S-morphism V-^Xas:

y ^ A ^ x ^ r ^ y.

Once again (via local coordinates) the assertion is obvious for the right hand
map pr^. Thus we are reduced to the case of a closed immersion of smooth
S-schemes:

Yc—————^x
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Because the question is Zariski-local on X, we may assume that X admits
local coordinates x^, ..., x^ (i. e. an etale map X -^ A^) and that Vis defined
inside X by the vanishing of x^, ..., x^. Again in this case, the formula
becomes obvious in local coordinates.

Q.E.D.
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