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On a certain class of exponential sums

By Nicholas M. Katz at Princeton

Abstract. In a recent note ([1]), Birch and Bombieri consider the following family
of exponential sums over finite fields F,; for a;, a, € [F;, and y a non-trivial additive
character of [,

dfn
S(q ay, 03, W) = ). L Pty +z+e).
x,¥,z,telF§

2 4 a2 =
xy+zt 1

They prove the existence of constants c, and c; such that for any finite field F, of
characteristic p=c,, one has

3
IS(q, al’ a29 'P)|§C1 qf'

In this note, we will explain how a quite general class of exponential sums “with
the same shape” can be similarly estimated, with no exceptional characteristics (i.e.,
¢o=1) and with a completely explicit ¢, (e.g., ¢c; =8 for the above sums).

For us, the key structural feature of the above sums is that the equation defining
the variety of summation,

% % _q
— b

t+0
Xy zt xyzt ¥

is of the form f = f, where f=+0 and where f is a sum of inverse monomials in disjoint
sets of variables, i.e., each variable occurs in precisely one monomial.

Thus we consider an integer n= 1, a second integer r > 1, and a partition
n=n1+n2+"'+n,
of n as the sum of r integers n;, with each n,> 1. For each i=1, ..., r, we introduce n,

indeterminates,

Xi,j’ j=1, soey n,-.
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We fix a collection of strictly positive integers

b, ;21 for 1<igr,1<j<n,,

ih,j=

a finite field F,, a non-trivial additive character y of [, a collection of (possibly trivial)
multiplicative characters of FJ

Xijp for 15isr, 1£j<sn,
and r elements
Ay, ..y &, € [

For each f € [F,, we denote by V; the subvariety of (G, ® F)" (with coordinates
the X;;) defined by the equation

=Y oy

and by S, the exponential sum

Sﬂ = Z Z ll) H le(xu)

xe Vg (Fq) ij

Theorem. Hypotheses and notations as above, for f+0 we have

1S,/ < Cy (/Y
with
i=1 j=1

The proof is based upon the simple observation that the additive Fourier
transform of S; with respect to f is an r-fold product of multiple Kloosterman sums.
Explicitly, one finds by elementary calculation the identity, for variable t € [,

Y, w(thS= ﬂ KIG, o;t),

ﬂeq

where

KI(, a) £ Y n Xij(xi5) W(Z xij‘*'n—axb—”>,

Xi, 1,...,%i,n;€Fg Jj ij
i

for arbitrary a € F,.
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Let us now pick a prime number !+ char(F,), and an l-adic place A of the field
E=@ ({,, values of x;). Denote by KI(i) the lisse E,-sheaf on G, ® [F, which is
denoted

KI(IP, la Xi,la sy Xi,m; 1’ bi,la AR bi,ni)

in ([4] 4. 1. 1). Let j: G,, < A" be the natural inclusion, and consider the sheaf j, K1(i)
on A' @ F,. According to ([4] 4. 1. 1) and ([4] 7. 3. 2 (3)), its trace function at
rational points t € A' (F) is given by

tr(F](j, K10} = (= 1" KIG,1).

In terms of the automorphisms T,: x—o;x of A' ® F,, we may rewrite the
above identity as

tr (F, | (T.Xj K1(@®)) = (= 1)" KI(G, a;t).
In terms of the E;-sheaf J on A' ® F, defined by
3= @ F (7 K10),
we thus have, for every ¢t € A (F),
tr(F,| 39 =(~1 1_‘[1 KI(, o,t)
=(-1) ; v(h) S,.
By Fourier inversion, we obtain
q'Sﬂ=Z p(—tp) tr(F|3p).

In terms of the additive character x — y(—pfx) of [, and the corresponding Artin-
Schreier sheaf £,_,, on A'® F,, the Lefschetz trace formula applied to J® £,
yields

2
(_1)"qsﬂ= '=ZO (—1)‘ tr(FlHiomp(Al ® ”:;p 3 ® Qw(—ﬂx)))'

It remains only to study the individual cohomology groups in question.

Lemma 1. The sheaf j*3J on G, ® [, is lisse of rank

i[:[l (1 + 2 (the prime-to-p part of b,-j)),

j=1

pure of weight n=Y" n;, and tame at zero.

Proof. Indeed, each KI(i) on G, ® F, is lisse of rank
1+ (prime-to-p part of b;),
J

pure of weight n;, and tame at zero (cf. [4] 4. 1. 1). Q.E.D.
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Lemma 2. The stalk at zero of J is one-dimensional.

Proof. By ([4] 7. 3. 2), each factor T.* (j,KI(i)) has one-dimensional stalk at
zero. Q.ED

Lemma 3. For every f, HH(A' @ F,, 3 ® £, (—px)=0.

Proof. Because £, g, is lisse and non-zero on A' ® F,, the lemma for any
single B is equivalent to the injectivity of the canonical map J — j,j* 3. This injectivity
is obvious from rewriting the individual factors T.* j, KI(i) in the definition of J as
Jx (T, G* (KI(@))=Jj, (a lisse sheaf on &,). Q.E.D.

Lemma 4. Every co-break of J (as representation of 1,) is < 1.

Proof. Indeed, each KI(i) has rank @;=1+n;=2, and all its oo-breaks are

Ql%d (cf. [4] 4. 1.1). QED.

Lemma 5. For 40, we have

(@) every oo-break of I ® L, (—px is 1.
(b) HA'® F,, 3® L,(—px)=0.

(c) Swan, (I ® L, px) =rank(j*3J).

Proof. For B+0, the co-break of £,_g, is 1, so (a) follows from lemma 4. We
have (a) = (c) trivially, and (a) = (b) because J ® £, ;) is totally wild at co, so has
vanishing H2. Q.E.D.

Lemma 6. For 0, H}(A' ® F,, 3 ® 8, -4x) has dimension

- b =rank(j*3J) -1,
and it is mixed of weight <n+ 1.
Proof. For B+0, H! is the only non-vanishing cohomology group, so

he=—x(A' ® Fyy I ® L (—px)-

Because J has one-dimensional stalk at zero, the exact sequence

0= i 5 — (one-dlml, o) o

conc. at zer
gives
X::(’ml ® Ep 3 ® gw(-—ﬂx));_ 1 +XC(Gm ® F;» ]*3 ® 2w(—[lx))

=1—Swan, (I ® £, -y
=1-—rank(j*J).
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As for the weights, the above exact sequence exhibits the H! in question as a
quotient of

Hcl(Gm ® F;p ]*3 ® ﬂw(—ﬂx));

because j*J ® £, -4, is lisse on G, ® F, and pure of weight n, this last group is
mixed of weight <n+1 by Deligne’s fundamental estimate ([3] 3. 3. 1). Q.E.D.

For f+0, lemmas 3 and 5 give
(—1y"'q- Sg=trace of F on H}(A' @ F,, I ® £, (-pn);
combining this with lemma 6 yields the estimate
181 < (rank (* ) - 1) Vg" ",
and by lemma 1 we have
rank (j* J) =[] (1 + Z (prime-to-p part of b,~,-)>.
i=1 j=1
This concludes the proof of (a slight sharpening of) the theorem. Q.E.D.

Remarks. (1) For =0, we obtain the estimate

ISl <rank (j*3) - 1/q"** + (rank (*3)— 1) - |/q"~*
<(l+c) (/" +/a").

To show this, it suffices to show that

rank (j* J) for i=2,

3 i 1
‘ dim H.(A ®F‘1’3)§{rank(j*3)—1 fo.r i=1.

For this, we argue as follows. The Euler-Poincaré formula gives
h?—h!=1—Swan (3J),
while in terms of the break-decomposition of J as I -representation,

I=D I&)

x20

we have the trivial inequality

K2 < dim 3(0)=rank(*3)— ¥ dim(3(x).

x>0

Because all oo-breaks of J are <1, we have

Swan,, (3)= Y, x dim(F@)< Y (dim3I(),

x>0 x>0
whence
h? + Swan , (3) < rank (j* ).

In view of the Euler-Poincaré formula, this yields

1+ h! <rank(j*3). QED.
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(2) If we keep B0, we can ask how the sum S; depends upon B and also upon
the r non-zero quantities a;, ..., o,. Let us denote by T the r+ 1-dimensional torus
(G ® F)y*! over F,, with coordinates aj, ..., &,, f. Then we may form the sheaf

I® 9w(~ﬁx)=(@l Tai"(J'*Kl(i))> ® Ly (-px)

on Al. By Deligne’s semicontinuity theorem ([5] 2. 1. 2) applied to J and the
projection pr: Ar — T, the “Fourier transform” sheaves R’ pr,(J ® £,-5,) are all
lisse on T. They vanish for i+ 1, and the remaining sheaf R'pr, provides a lisse sheaf
on T of rank = (rank (j* 3)— 1), mixed of weight <n+ 1, whose trace at any point
(«y, ..., &, P)€ T(k), k a finite extension of F,, is equal to

(“1)"_1 (#K) Z (potr) (Z xij) H (XijoN) (xi,j)
xeVa(k) ij i, j

where trace and norm are with respect to the extension k/[F,, and where V; now denotes
the subvariety of (&,, ® k)" defined by the equation

Except in some very special and atypical cases (e.g., 7 =1), this sheaf will not be pure of
weight n+ 1.
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