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Introduction

This work grew out of another (cf. [Ka-1, Ka-2]) attempt to deal with the following
question:

if one is explicitly given an n’th order differential

equation, how can one “tell at a glance” what its

differential galois group G, is?
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At one extreme, one wants to recognize when G, is a finite group, i.e., when the
D.E. in question has a full set of algebraic solutions. This problem was solved by
Schwarz (“‘Schwarz’s list””) in 1872 for the classical hypergeometric equation, but
since then there has been remarkably little progress. (Even if one were able to prove
Grothendieck’s p-curvature conjecture (cf. [Ka-1]), it is not clear whether it would
really allow one to “tell at a glance” when G, is finite.)

This paper is concerned with the opposite extreme, the problem of recognizing
when G, a priori a Zariski closed subgroup of 4.#(n), is “large”, in the sense that
either it is caught between &£ (n) and 9.2 (n) or (if n is even), between %% (n) and
bS5 (n).

Our main result (4.1.4) and its elaborations (4.1.7-8) give an easily checkable
sufficient condition for G, to be “large” in the above sense.

This allows us to exhibit large classes of differential equations whose G, is
large. Fix integers n 2 2 and m = 1 which are relatively prime. Then

(A) if P,(x)and Q,,(x) are polynomials in C [x] of degrees # and m respectively,

G, is large for 4
Pn <~> + Qm(x)'
dx

(B) if P, and Q,, as above also satisfy

all roots of P, are rational numbers with denominator prime to .
0,(0)=0.

then G, is large for

gal d
Pn <_>+ Qm(x)'

dx

Once we know that G, is large, it is usually but not always a simple matter to
determine its exact value. For example, suppose that the coefficient of x*~! in P,
vanishes. Then .
G = FE(n) if n is odd.

B\ Ip(n) or L m)  if niseven.

In the case n even, G, is ¥%(n) if and only if the n x n first-order system attached to
the operator in question is isomorphic to its dual. By a result of 0. Gabber (1.5.3),a
self-adjoint operator gives rise to a self-dual nxn system, so we have the
implication
neven, P,(x) = P,(—x) = G = S%(n).

In case (A), we expect that the converse implication holds as well, but we can prove
this only for m = 1. In case (B), the converse implication is false, and only for m =1
do we know how to recognize when G, = $%(n) (the condition is that the roots of
P,(x) agree modulo Z with those of P,{—x)).

The problem of recognizing the possible autoduality of the nx n system
attached to an n’th order operator is a special case of recognizing when two
different n’th order operators (e.g., the operator and its adjoint) give rise to
isomorphic n X n systems, i.e., of studying the map

n’th order operators — isomorphism classes of n x n systems.
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That this study may be non-trivial is shown by the following example: If, A+ —1
the 2 x 2 systems attached to the operators

are isomorphic (see 4.3).

We now turn to a more detailed discussion of the contents of this work.

Our approach to differential galois group is via the general theory of Tannakian
categories; this point of view is much better suited to our purposes than the classical
one of looking at differential fields. There are three main ingredients in our
approach:

1. asimple global criterion (1.2.5) for G, to be connected, due to Ofer Gabber.

2. the Tannakian category translation of Levelt’s fundamental work [Le-1] on
the structure theory of D.E.’s over C({(x)) into group and representation-theoretic
information about the corresponding “‘local differential galois group”.

3. the classification of ““cyclically minuscule” representations of semi-simple
Lie groups (this part may be of independent interest).

In working out the second point above, we were very strongly guided by the
well-known analogy between D.E.’s on curves over C and lisse /-adic sheaves, or
l-adic representations, on curves over algebraically closed fields of characteristic
p >0, p=1 This analogy is detailed in the Appendix. The interested reader might
wish to compare Chapter 11 of this paper with Chap. I of both [Ka-3] and [Ka-5].

Here is one concrete instance of the above D. E.-lisse sheaf analogy. Let x be a
multiplicative character of a finite field F, whose exact order is denoted N. Given
nz1 and integers ay,...,qa,, the Kloosterman sheaf (cf. [Ka-4], Chap. 4)
Kl (x",...,x*) on G, over F,is in many ways analogous (cf. [Dw-1, Sp-1]) to the
D.E. on G, over C

for reC* any non-zero constant. Suppose now that N is prime to #, so that this
D.E. has large explicit G, (see (4.5.4)). It then seems reasonable to hope that the
group G, for the corresponding Kloosterman sheaf is equal to G, at least in
characteristics p > 0. That it is so for N = 1 is one of the main results of {[Ka-3]. We
hope to return to this question in the future.

To conclude this introduction, we would like to point out a curious problem. In
[Ka-2], we gave a conjectural description of the Lie algebra of G, in terms of the
p-curvatures of almost all the reductions mod p of the D.E. in question, and we
showed that our description was in fact correct for any D.E. on either A! or G,,. In
this paper, we exhibit extensive classes of D.E.’s on A' and on G,, whose G, is
large. Can one see directly that G, is large in these cases by using the p-curvature
description of its Lie algebra?
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I. The global theory: a miscellany
1.1. Generalities

(1.1.1) Let k be a field of characteristic zero, and X/k a smooth, geometrically
connected k-scheme which is separated and of finite type over k, and with X (k) non-
empty. We denote by D.E. (X/k) the category of all algebraic differential equations
on X/k in the sense of [Ka-2]. An object of D.E. (X/k) is a pair (M, V) consisting of a
locally free @y -module of finite rank M, together with an integrable connection ¥ on
M relative to k; a morphism from (M, V;) to (M, V,) is a horizonal ¢,-linear map
from M, to M,. With the obvious notions of tensor product and internal hom,
D.E. (X/k) is a “‘neutral Tannakian category over k’; any rational point xe X (k)
defines a k-valued fibre functor (though not every k-valued fibre functor is of this
form).

(1.1.2) Let w be any k-valued fibre functor on D.E. (X/k). In order to emphasize
the analogy with the case of local systems, we denote by

(1.1.2.1) n{T(X/k, w),

—read “‘the differential fundamental group of X/k, with base point w” — the affine
k-groupscheme /«¢® (w). By the main theorem on neutral Tannakian categories,
([De-Mi], 2.11) the functor w defines an equivalence of tensor categories

2 (ﬁn. dim. k-reps.)

(1.1.2.2) D.E.(X/k) —> of 4Kk, ) )’
ie., a D.E. on X/k “‘is” a finite dimensional k-representation of the pro-algebraic
affine k-groupscheme n¢ff (X/k, w).

(1.1.3) If kis algebraically closed, any two k-valued fibre functors w; and w, are
(non-canonically) isomorphic. In general, any two k-valued fibre functors become
isomorphic over k. Thus the k-groups 7§ (X/k, w;), i=1,2, become isomorphic
over k, by an isomorphism which is canonical up to composition with an inner
automorphism (by a £-valued point) of either source or target; this is a general fact
about “‘neutral Tannakian categories over k.

(1.1.4) Let V be an object of D.E. (X/k), i.e., Visan (M, V) on X, and denote by
{V> the full subcategory of D.E. (X/k) whose objects are all the sub-quotients of all
finite direct sums of the objects ¥®* ® (VV¥)®™, all n, m 2 0. Then (V) is itself a
neutral Tannakian category over k; the restriction to {¥") of any k-valued fibre
functor w on D.E. (X/k) provides a k-valued fibre functor for (). We denote by

(1.1.4.1) GV, 0)c9Z (w(V)),

—read “the differential galois group of ¥, with base point " — the Zariski closed
subgroup of 4.2 (w(V)) which is ot ®(w|{V)). Again by ([De-Mi], 2.11), w
defines an equivalence of tensor categories

1142 _L’__) fin. dim. k-reps
(1142 N of Gy (Vo) )
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Dual to the inclusion of <V} in D.E.(X/k), we have a homomorphism of
k-groupschemes )
T (X/k, ) > G (V, @),
which by ([De-Mi}, 2.21) is faithfully flat. The composite
1t (X/k, 0) = Gy (V,0) — L (0(V))

is the representation p, of n$f(X/k,w) which “is” V. In particular, for any
“construction of linear algebra” in the sense of [Ka-2], the G, (V,w)-stable
subspaces of Constr(w(V)) are precisely the w-fibres of the sub-equations of
Constr(V). By Chevalley’s theorem [Chev], G, (V, @) is the stablizer in 9% (o (V)
of all such c-fibres in all such constructions; this was the definition of G, given in
[Ka-2].

(1.1.5) Therefore we may view G, (V,w) as the image in 9% (w(V)) of
7§ (X/k, w) under p,, and we may interpret {}") as equivalent, via w, to the full
subcategory of Zep, (n$(X/k, w)) consisting of those representations which factor
through G, (V, w), viewed as a quotient of n{f.

In particular, given an object W of (¥}, corresponding to a representation 4,, of
G, (V, ), we have

(1.1.5.1) (WS ={V> inside D.E. (X/k)
<> Ayt G (V, 0) = 42 (0 (W) is faithful (i.e., a closed immersion).

This equivalence will be used later (2.5.9.1) to bound from below the dimensions of
faithful representations of G, (V, w).

1.2. A criterion for connectedness

(1.2.1) Inthis section, we suppose k = C. We denote by X» the complex manifold
“X(C) in its classical topology”, and by =, (X*n, x) the classical fundamental group
of X with base point xeX®. Given xeX, the functor w, = “fibre at x” «~—
“germs of horizontal sections at x” defines an equivalence of tensor categories

(1.2.1.1) D.E. () —= (10 dim. Creps.)
of m, (X, x)

The corresponding affine pro-algebraic C-group ¢ ® (w,) is thus the inverse limit
of the Zariski closures of the images of 7, (X*, x) in all its finite-dimensional
C-representations.

(1.2.2) For an object V of D.E. (X), we denote by (V) the full subcategory of
D.E. (X*) defined just as in the algebraic case. We denote by

(1.2.2.1) Grone (V, X) & 4L (V(x))

— read “the algebraic monodromy group of V with base point x”, — the group
At ® (0, |<V). Concretely, G, (V, x) is the Zariski closure in 4% (V' (x)) of the
image of m, (X, x) by the monodromy representation of V.
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(1.2.3) There is a natural functor
(1.2.3.1) D.E. (X/C) — D.E. (Xa)
Vs

which for any object ¥ in D.E. (X/C) maps (V) to (V). The dual map of C-
algebraic groups

(1.2.3.2) Grono(V*, %) = G (V, w,)
is a closed immersion (by [De-Mi], 2.21), or cf. ([Ka-2], 5.2)).

(1.2.4) Ifpisarepresentation of G, (V, w,), corresponding to an object Win{V,
then the restriction of p to G, (V*", x) corresponds to the object Wanin (V2 and
we have a commutative diagram of homomorphisms of C-groups

Gmono(Van’ x) — Ggal(V’ wx)
(1241) 1P‘Gmono lp

G rono (W™, %) & G (W, w,,).

(1.2.5) Proposition. (O. Gabber). Notations as above, the natural inclusion
Grono (V2" X) & Gy (V, w,) of C-groups defines a surjection on groups of connected
components:

(1 251) Gmono/(Gmono)O > Gyl/(Ggal)O -
In particular, we have the implication
(1.25.2) Gyono connected = G, connected.

Proof. Pick a faithful representation § of the finite group G, /(G,,)°, and interpret it
successively as a representation p of G, then as an object W of (V). By
construction, G, (W, w,) is finite, and we have a commutative diagram

Gmono(Va“’ x) < Ggal(V’ (Dx) \

(1253) 21G om0 4 Ggal/(Ggal)o

/ s
Gmono(Wan’ x) & Ggal(W, Cl)x).

So it suffices to prove the proposition in the case when V' = Whas G
have the implications (cf. [Ka-2])

4 finite. But we

(1.2.5.4) G, finite = regular singular points = G, =Gp. Q.E.D.

1.3. Dependence on the ground field

(1.3.1) Suppose we begin with X/k as in (1.1.1) above, and fix a rational point
xeX (k). Given an extension field L of &, there is an obvious “‘extension of scalars”
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functor

(1.3.1.1) D.E.(X/k) - D.E. (X@ L/L)
k
Ve V,=VRL.
k

For a given object V in D. E. (X/k), this functor maps (V) to {¥,>. In terms of the
explicit description of G, given in [Ka-2], in terms of all sub-equations of
“constructions of linear algebra”, we see that we have a closed immersion of
algebraic groups over L

(1312) Gga](VLawi) — Ggal(Va wx) ®L
k

where ol denotes the L-valued fibre functor “‘fibre at xeX(k)eX (L)” on
D.E. <X® L/L).
k

(1.3.2) Proposition. (O. Gabber). The closed immersion (1.3.1.2) is an isomor-
phism, i.e., formation of G, commutes with extension of the ground field.

Proof. In view of (1.3.1.2), the proposition only becomes “harder” as L grows, so
passing to an algebraically closed overfield of L, we may reduce to the case when L
is an algebraically closed extension of k. Because & has characteristic zero, the fixed
field of wst (L/k) is k itself; this is the key point.

By definition, G, (V,,, wr) is defined inside 4.2 (w, (V) ()? L as the stabilizer of
all (fibres at x of all) sub-equations W of all M ()P L, for M any ““construction of

linear algebra™ applied to V. But the natural semi-linear action (¢ — id ® o) of
HAut (LIk)yon M @ L permutes (W — W®) its sub-equations, whence G, (V;, o%),
viewed inside 4% (w,(V))@ L, is invariant under the semi-linear action
k
(6~ 1®0)of Aut(Llk) on 4L (w. (V) L. Therefore G, (Vy, ) is “defined
k

over k7, i.e., it is of the form G () L for a unique Zariski-closed subgroup
G %9ZL (w, (V). k

In view of (1.3.1.2), it suffices to show that this k-group G contains G, (V, w,).
By Chevalley’s theorem, G is defined inside ¥ (w, (V)) as the stabilizer of one
k-subspace W, of a “‘construction of linear algebra™ applied to w,(V), i.e., as the
stabilizer of a k-subspace W, of w, (M) for M the *“*same” construction applied to V
itself.

We must show that W, is stable by G, (V, w,), i.e., we must show that W, is of
the form w, (W) for W some sub-equation of M. Because GC),S) L=Gg(Vy,wF)

leaves Wx@ L stable, we know that there exists a sub-equation
WeML
k

with k(W)= Wx@ L inside ol (M )@ L. For any o€ Swt (L/k), W© must be
equal to W (inside M @ L), because both have the same fibre W, (X) L inside
k
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w, (M) @ L=owt (M @ L), Therefore W is defined over k, i.¢., of the form W()? L

for a unique sub-equation W of M, and necessarily W,=w (W), as
required. Q.E.D.

1.4. Effect of a covering

(1.4.1) Consider a situation

Y

n l) G
(1.4.1.1) X

l
Spec(k)

where X and Y are k-schemes as in (1.1.1), G is a finite group, and = is a finite etale
k-morphism which is galois with group G. We denote by D.E.(Y/X/k) the full
subcategory of D.E. (X/k) consisting of those objects V for which n* (V) is trivial.
The natural functor “‘global horizontal sections on Y™

fin. dim. k-reps.
(1.4.1.2) D.E.(Y/X/k) — < of G >

Vi HO(Y,n*V)¥
is easily seen to be an equivalence of tensor categories.
(1.4.3) We have natural functors
(1.4.3.1) D.E.(Y/k) «=— D.E.(Xjk) «—%— D.E.(Y/X/k).
If we fix a k-valued fibre functor w on D.E. (Y/k) and denote by w, and w, the fibre

functors on D.E.(X/k) and on D.E. (Y/X/k) obtained by composition with z* and
with #* o incl. respectively, we have dual homomorphisms of k-groupschemes

(1.4.3.2) i (Y/k, 0) —> 7, (X/k,0,) = G.
By ([De-Mi], 2.21) the homomorphism 4 is a closed immersion, (any V in

D.E.(Y/k) is a direct factor of n*n, V' ~ @ g(V)), while the homomorphism B is
faithfully flat. Clearly the composite Bo A is the trivial homomorphism.

(1.4.4) Proposition. The sequence of k-groupschemes
1441 1 — 2f"(¥/k,0) > 2" (X/k, ;) > G — 1

is f.p.q.c. exact (e.g., on k-valued points).

This proposition is the inverse limit of the following more ““finite” variant. Fora
given object V in D.E. (X/k), consider the functors

(1.4.4.2) (VY 2 (VY 22 (V> AD.E.(Y/X/k),
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and denote by G, the quotient of G whose k-representations ‘‘are”
V> nD.E.(Y/X/k).

(1.4.5) Proposition. The sequence
(1.4.5.1) 1 — G(m*V, )~ Gyy(V, ) —— G, —> 1

is f-p.q.c. exact.

Proof. The only non-obvious point is that Ker(B)= G, (n*V, w).

By definition, ye G, (n* V, w) lies in Ker(B) if and only if it lies in the kernel of
all the k-representations p, of G,,(V, »,) defined by objects W in (V) which
become trivial on Y, i.e., by objects Win (¥ such that py is trivial on G, (n* V, w).
Thus Ker(B) is the intersection of the kernels of all those finite dimensional
k-representations of G, (V,w,) which are trivial on the subgroup G, (z*V, w).

To prove that Ker(B)=G,,(n*V,w), we use a group-analogue of the Lie
algebra argument in ([Ka-2], 4.3). Because k has characteristic zero, it suffices to
prove this inclusion for field-valued points.

In the notations of ([Ka-2],4.3), we claim that any field-valued point y of
Goa(V, 0,) permutes the lines w(L,), ..., w(L,) among themselves. If we grant this,
the corresponding permutation representation of G, (¥, w,) is certainly trivial on
G (n*V, w), so any element of Ker(B) maps each w(L;) to itself, as required.

To prove that a given field-valued point y in G, (¥, 0,) permutes the w(L;), it
suffices to prove that for some integer n = 1, y permutes the lines w (L,)®" = w (L®")
in @ (Symm"(n*W)).

For any fixed n= r — 1, the direct sum

Sm= @ Ly
15:1sr
isa G-stable sub-object of Symm" (= * (W)) (by ([Ka-2], 4.4)), so of the form n* (W,).
Consider Symm? (S (n)) = n* (Symm? (W,)); as objects of D.E. (Y/k), we have
Symm*(S(m)= @ (L)®"®(L)®".
tsigjsr

The sub-module
Sm2)= @ (L)®* < Symm?(S(n)

15isr
is G-stable, so of the form n* (W, ,).

We will exploit the fact that G,,(V, w,) stabilizes the subspace w(S(#,2)) of
@ (Symm? (S(n))). For each 1 £i<r, pick a non-zero vector £;ew{L;). Then

LEn L8 is a k-basis of w (S ()
{¢8"¢®P"} cigjsr 18 @ k-basis of w(Symm? (S(n)))
R A L is a k-basis of w(S(n,2)).

For y a k'-valued point of G, (V,w,), k" an overfield of k, its action on
w(S(n) is

yEE =L Ay Ayek’.
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Squaring, we find
YEE =Y (A (£)®+2 ) Aiink/j®"/k®" .
j<k
Butw(S(n,2))isa G, (V, w, )-stable subspace of (Symm? (S (n))), so we must have

A;; Ay, =0 if j < k. Consequently, (4;;) has the shape of a permutation matrix, as
required. Q.E.D.

(1.4.5.1) Corollary. If G, (V,w,) is geometrically connected, then
GS&](R* V7 w)—:—) GSBI(V’O)I)'

(1.4.6) Proposition. Hypotheses and notations as in (1.4.1)-(1.4.3) above, let W be a
non-zero object of D.E. (Y/k), and V = n, W its direct image in D.E. (X/k). Then the
representation p, of n$(X/k,w,) which “is”’ V is simply the induction of the
representation py, of n$(Y/k, w) which *“is>> W, via the inclusion (1.4.4.1) of n§f’s.

Proof. This is just the representation-theoretic translation of the fact that =, is right
adjoint to n*. Q.E.D.

(1.4.7) — Note added in proof. If X and Y are k-schemes as in (1.1.1), and if n: ¥ — X is any finite étale
k-morphism, then (1.4.4), applied to the *‘galois closure” of ¥ — X, shows that a3 (Y/k, w) is a closed
subgroup of finite index in 1™ (X/k, @,), and the proof of (1.4.6) shows that =, on D.E.s corresponds to
induction of representations.

1.5. Duality and formal adjoint: a compatibility

(1.5.1) Let R be a commutative ring with unit, 6: R— R a derivation. By a
d-module over R we mean a pair (M, D) consisting of a free R-module M of finite
rank s 2 1, and an additive mapping D: M — M which satisfies

1.5.1.1) D(fm)=08(f) m+fD(m)

for feR and meM. The dual (MY,D) of (M,D) is the J-module with
MY =Homg(M,R) and D: MY —» M " defined so that, denoting by

1.5.1.2) (,)MYxM-R
the canonical pairing, we have
1.51.3) o((mY, m))=(Dm",my+ (m",Dm),

for meM and m¥eM ™.

(1.5.2) Wesay that (M, D) is cyclic if M admits an R-basis (e, .. ., €,- ;) for which
De;=e¢;,, for i=0,1,...,n—2; in this case we say that (e,,...,¢,-) is a cyclic
basis and e, a cyclic vector for M. Given a cyclic basis (e, ...,e,-,) for M, the
expression of — De,_, in this basis gives unique elements ay, ..., @, in R such that

n—1
(1.5.2.1) (D"+ 3 a,.D‘> eo=0.
i=0

(1.5.3) Lemma. (O. Gabber). Suppose that (M, D) is cyclic of rank n 2 1 with cyclic
basis (eq,...,e,.,) and defining relation

n—1
(D"+ Y ain) €=0.

i=0
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Let (eq ,...,ey_,) denote the dual basis of M. Then (M, D) is cyclic with cyclic
vector e,_ |, and e, is annihilated by the formal adjoint:

n—1
((—D)"+ ) (—D)“m) ey =0.

Proof. From the defining formulas

(De;’ ,e;)+(e; ,De;)=0(e;’ ,e;)=0(6;;) =0,
we readily calculate

(-D+a,_y)e.=e,

(—D)env—2+an~2ei:/~l :env-S

(—=D)e) +ae_=e’, 1=isn-2
(—=D)eg +age,-;=0.

These relations show that e, , isa cyclic vector for (M ¥, D). Writing D* in place of
— D, we rewrite these relations as:

(D*+an—l)er:/—1 Eenv*Z
D*D*+a, )+a,_)el 1 =¢e/;
D*(D*(D*+ay_ ) +a, )+ a,_3) e, = e/,

D*((D*(D*(D*+a, 1) +a,-3)+a,_3)+ ) +ay) e, =0.
This last relation, multiplied out, is the asserted relation

(D*)y +D*) ta,_, +(D*Y 2a,_,+ - +ag)e),=0. Q.E.D.

II. The local theory: applications of a result of levelt

2.1. The setting

(2.1.1) Let k be a field of characteristic zero, R a k-algebra which is a complete
discrete valuation ring with residue field k, m the maximal ideal of R, K the fraction
field of R. K an algebraic closure of K, and k the algebraic closure of k in K. Given
an integer N 2 1, a finite extension L/K (inside K) is said to be N-standard if its
ramification index is N and if its residue field k' (inside k) is a galois extension of k
which contains the N’th roots of unity. In terms of a uniformizing parameter ¢ in R,
we have k [[t]] —— R, k(()) — K, and the unique N-standard extension with
residue field &’ as above is k' ((¢/V)). Any finite extension of K inside K is contained
in an N-standard extension for some N = 1.

(2.1.2) We denote by 2 the ring of all t-adically continuous k-linear differential
operators of K to itself. If 6 is any non-zero derivation in 9, its powers 1, 0, 62, ...
form a K-basis of 2 as left K-module.
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(2.1.3) We denote by D.E. (K/k) the category of those left Z-modules ¥V whose
underlying K-vector space is finite-dimensional. In terms of a chosen 8, an object V
of D.E. (K/k) is a pair (M, V (8)) consisting of a finite-dimensional K-vector space M
together with a k-linear map V (8): M — M satisfying

(2.1.3.1) v (0) (fm)=0(fym+1V(6)(m)

for all fe K, meM. In this second description, one sees natural notions of internal
hom and tensor product which make D.E. (K/k) into a rigid abelian tensor category
(cf. [De-Mi], 1.7) with End (1) =k which has a fibre functor with values in K
(namely, the functor “underlying K-vector space”). We will see later (2.4.12) that
D.E.(K/k)isin fact a neutral Tannakian category over k, by using the fundamental
work of Levelt to construct a k-valued fibre functor.

2.2. Slopes (Compare [Ince], pp. 424-428, [Ra], pp. 7-12 and [Rob], 1.6).

(2.2.1) Let N=1 beaninteger, and L/K an N-standard finite extension field, with
residue field k’. We denote by @, the ring of all t-adically continuous k-linear
differential operators of L to itself. Any operator in &, is automatically k'-linear,
and every operator D in 2 has a unique extension to an element D, of 2 which on

K coincides with D. [For example, in terms of uniformizing parameter ¢ of K, and

d 1 d
— fUYN . 3 3 Pl
the parameter s= V¥ of L=F'((s)), the unique extension of ¢ ;1S S S.]

Formation of this unique extension defines an injective ring homomorphism
2 <> 2., which gives rise to a canonical isomorphism of right 2-modules

(2.2.1.1) LRI 2.

There is a natural “extension of scalars” functor
(2.2.1.2) D.E.(K/k) — D.E.(L/k")
Ve Vi=2,QV.
2
In terms of the (M, V(0))-description of an object ¥ of D.E.(K/k), V, is
<L @M,V (6,) ) where 0, denotes the unique extension of 6 to L, and where
X

(2.2.1.3) v (6y) (f@;(() m) =0.(NQm+/QV ©)(m)

for fel and meM.

(2.2.2) According to a fundamental result of Levelt [Le-1], given any non-zero
object ¥'in D.E. (K/k), there exists an integer N = 1 and an N-standard extension L
of K such that ¥, is a successive extension of one-dimensional objects of
D.E.(L/k").

(2.2.3) If we fix a non-zero derivation 6 in 2, then any one-dimensional object in
D.E.(L/k’) is of the form

(2.2.3.1) D1/DLOL-f)
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for some feL, and the group of isomorphism classes of such objects is the group

(2.2.3.2)
(the additive group of L)/the subgroup of elements 8, (g)/g, for geL™,

via the map which to 9, /9, (0, — f) attaches the image of fin the above quotient
group.

(2.2.4) If we write 6 in the form

d
2241 0 = (unit in k [[¢1]) x ¢ x tz
then for any geL™ we have
2.24.2) ord, (0(g)/g)=za  forall geL™.
Therefore the non-negative rational number
(2.24.3) max (0, a — ord,(f)) = a — min{a, ord,(f))

isa well-defined invariant of the isomorphism class of 9, /9, (6;, — f), independent
of the auxiliary choice of 8, called its slope (with respect to ord,).

(2.2.5) Returning to an arbitrary object ¥ in D.E.(K/k) of dimension n =1, its
slopes 44, ..., 4, are the n non-negative rational numbers defined as follows. Pick an
integer N2 1 and an N-standard extension L/K such that V, is a successive
extension of one-dimensional objects, and take for A, ..., 4, the slopes, as defined
above, of the one-dimensional objects (with respect to ord,). By Jordan-Holder
theory, the isomorphism classes of the one-dimensional subquotients of ¥; which
occur are an intrinsic invariant of V;, so the slopes 4,,...,4, are an intrinsic
invariant of ¥, . Because any two standard extensions (i.e., N-standard for some N)
are contained in a third, one sees that the slopes 4, ..., 4, are independent of the
auxiliary choice of L as well.

(2.2.6) Similarly, if

(2.2.6.1) 0>V, -»V->V,-0

is a short exact sequence of objects in D.E.(K/k), one has
(2.2.6.2) (slopes of V) = (slopes of ¥;) u(slopes of V,).

(2.2.7) In terms of Levelt’s characteristic polynomial ¢(X) of ¥ (cf. [Le-1]; the
chardcteristic polynomial, unlike the slopes, depends upon the choice of
uniformizing parameter r) the slopes may be recovered as follows: if we factor

2271 () = H1 X=B), piek,

then the slopes of ¥ are the numbers
(2.2.7) max (0, —ord, (5,)).

Because the characteristic polynomial has coefficients in K, it follows that the slopes
have the following integrality property:
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(2.2.7.3) each slope A; of ¥V occurs with a multiplicity which is a multiple of its
exact denominator.

This simple fact, which we view as the differential analogue of the integrality of
Swan conductors, i.¢., of the Hasse-Arf theorem, immediately yields the following.

(2.2.8) Irreducibility criterion. Let V be an n-dimensional object of D.E.(K/k) with
n 2 1, whose slopes satisfy

onal .
A=y == (a rational number w1th>

exact denominator »
Then V is a simple object in the category D.E.(K/k).

Proof. If W is a non-zero sub-object of ¥ of dimension r, then its slopes, after
renumbering, are 4,,...,4,, whence by (2.2.7.3) r is a multiple of n. Q.E.D.

(2.2.9) In order to make this criterion useful, we need to be able to calculate the
slopes when ¥ is given explicitly. Fortunately there is a simple algorithm for doing
this when ¥ is presented as a cyclic 2-module (in fact one knows (cf. [Ka-4]) that
any Vis cyclic), and the algorithm itself makes evident the fundamental integrality
property (2.2.7.3) of the slopes, independently of the above ‘‘characteristic
polynomial” argument.

(2.2.10) Algorithm. Let F(x)eK|[x] be a monic polynomial of degree n= 1, say

F(x)= Y ax aeK a,=1.
i=0
Factor it over K:
Fx)=][(x-8)-

For 0 a non-zero derivation in 9, we define
FO)= Y a6° ing.
i=0

If 0 is of the form

0 = (unit in k [[¢]]) x t* x t%,

then the slopes of V= 9|9 F(0) are the numbers
max (0,a — ord, (8)), i=1,...,n.

Proof. Extending scalars to a suitable standard extension L of K, we reduce to the
case when ¥ is a successive extension of one-dimensional objects of D.E.(L/k"). As
explained in ([Robl, §2), this means we have a factorization in 9

FO)=0-a)(0—ap)

with a;€L, and ¥} is a successive extension of the /9 (0 — «;)’s. Therefore the
slopes of V are the numbers

max (0,a~ord, (), i=1,...,n.
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That these numbers agree with the
max (0, a — ord, (8,)), i=1,...,n
when F(x)=1II (x — §;) is proven in ([Rob], 1.6). Q.E.D.

(2.2.11) Here are some elementary properties of the slopes, all of which are easily
checked by reduction to the one-dimensional case, where they are obvious.

(2.2.11.1) Ifois any continuous automorphism of K which maps k to k, it induces
an automorphism, still denoted o, of @, by the rule

oD)(eN))= U(D(f))

for De2, fe K. [Concretely, amaps d ¥
we define Ve to be (¢ (’))

2RV.

a\@

Then Ve has the same slopes as V. [Indeed for V=2/2@~f), V° is
2(9 (0 (0)—a(/))]

(2.2.11.2) 1If V has slopes 4,,...,4,, then for any N= 1, and any N-standard
extension L/K, V; considered as an object of D.E.(L/k’) has slopes NA,,...,N4,.
(2.2.11.3) The dual V" of V has the same slopes as V. [Indeed the dual of
2/120—f)is 2/2 (0 +1).]

(2.2.11.4) If V and W are objects of D.E.(K/k) of dimensions n=1 and m=>1
respectively, with slopes 4,,...,4, and u,,..., 4, respectively, then the nm slopes
v, ; of V(@ W may be indexed by (i,) in [1,n] x [1, m] in such a way that

K

.]Given an object Vin D.E. (K/k),

0< 11Smax(j'iuuj)

vij=max (A, ) if 4+

[Indeed, the tensor product of 2/% (6 — f) and 2/2 (0 —g) is 2/2 (0 — f—g).]

(2.2.11.5) Fix an isomorphism K ~ k ((¢)) and an integer N = 1, and denote by E
the sub-field & ((¢V)). Because of the identity

d 1 d
N = —,
d@¥) N dt

for any n-dimensional D.E. V on K/k, the underlying E-space of ¥ is an Nn-
dimensional D.E. on E/k, denoted [N], (V). If Vhasslopes ,, ..., 4,, then [N], (V)
has slopes (4,/N repeated N times,...,4,/N repeated N times). [Indeed after
extending scalars so that k contains the N’th roots of unity, K/E is an N-standard
extension which is galois with group u,, and ([N], (V))® K— @ Ve,
so the assertion on slopes follows from (2.2.11.2).] o €Gal (KIE)
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2.3. Irregularity, slope decomposition, and obstructions to descent

(2.3.1) Given anobject Vin D.E. (K/k) of dimension n= 1, with slopes 4,,...,4,,
we define its irregularity to be the sum of its slopes:

(2.3.1.1) Irr(V) = Z I
i=1

For the zero-object, we put Irr(¥)=0. In view of the fundamental integrality
property (1.2.7.3) of the slopes, Irr(}) is a non-negative inzeger, which vanishes if
and only if all slopes of V are zero, i.e., if and only if ¥ has a “regular singular
point”, cf. ([De-1], 11, 6.20).

In view of the algorithm (2.2.10) for the slopes, we have the following simple
algorithm for the irregularity:

(2.3.2) Algorithm. Let F(x)eK][x] be monic of degree n= 1,

F(xy= Z a; x', a,€kK, a,=1.
i=o

Let 0 be a derivation of the form (unit in k[[1]]) x t;lt—. Then the irregularity of
V =9/ F(9) is given by !

Irr (V) = max (O, max (—ord, (ai))) .
0sisn—1
(2.3.3) Given an object ¥V'in D.E.(K/k), and a rational number y = 0, we say that
Vis “purely of slope y” if (either ¥ = {0} or if) all the slopes of ¥V are equal to y.

(2.3.4) Proposition. (Compare [Ka-3], 1.1). Any object V in D.E.(K/k) has a
unique “‘slope decomposition’ as a direct sum

V=@V,

yzo

indexed by rational numbers y = 0, in which V (y) is purely of slope y.

Proof. By galois descent, it suffices to prove the existence and uniqueness of such a
decomposition after extension of scalars from K to some standard extension L/K,
for by (2.2.11.1) such a decomposition will necessarily be stable by Gal(L/K). This
reduces us to considering the case when V is a successive extension of one-
dimensional objects. An induction on dim (V) reduces us to showing that if ¥ and W
are one-dimensional objects in D.E.(K/k) which have different slopes, then
Hom,, (V, W) =0, and any extension of ¥ by W splits uniquely. [Once we know
Hom, (V, W)= 0, the splitting is automatically unique if it exists.] Because ¥ and W
have different slopes, they are non-isomorphic, so the required result is a special
case of the following lemma.

(2.3.5) Lemma. If V and W are non-isomorphic one-dimensional objects in
D.E.(K/k), then

(2.3.5.1) Hom,, (V, W) =0 =ExtL (V, W),
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while for V= 2/2 (8 — f) itself we have

(2.3.52) Hom, (V,V)=k.

(2.3.5.3) Exty, (V, V)

is a one-dimensional k-space [with basis the class of 2/% (6 — f)?].

Proof. Twisting by V¥ we reduce to the case when Vis trivial, i.e., V=~ 2/%2 0. Then

2—=" 9 is a D-free resolution of V as left 2-module, so we have

kerg: W—- W i=0
ExtL(2/20,W)= { WO (W) i=1
0 i=z2.

If Whasslope a 2 1, then W is of the form 2/2 ( f) where ord,(f) = —a.

t ! —
dt
Rewriting W as 2/2 (8 — 1) with 0 =(1/f) ta, the derivation 0 is topologically

nilpotent on K. Identifying W with K via the basis ““1” of W= 32/2 (6 — 1), the
action of § on W becomes the action of 1 + 6 on K. As 6 is topologically nilpotent on
K, the map 1+ 0 is bijective on K, i.e., # is bijective on W.

If W has slope zero, then W is of the form 2/% <t % —f) where ord, () =2 0.

Modifying f by adding a logarithmic derivative ¢ 7 (2)/g with g a principal unit in
K, we may assume that fis constant, say f= aek. Then the kernel and cokernel of 8

on W become, for § = t%, the kernel and cokernel of t%+ aon K. If W is non-

.. d .
trivial, then a¢Z, and tﬁ? + a is bijective on K.

If Wis trivial, then we may take f=0, and the ker and coker of ¢ di are each k
itself, viewed as the constant of K=k (()). Q.E.D. !

(2.3.6) Remark. (Compare [Ka-3], 1.6 and 1.9). In terms of the slope
decomposition V ~ @ V(y), we have

(2.3.6.1) Irr(V) =3 ydim(V (»)),
¥y

and each summand ydim (¥ (¥)) is an integer.

(2.3.7) Fix a uniformizing parameter ¢. For each ack *, denote by g, the k-linear
continuous automorphism of K given by ¢ — at.

(2.3.8) Proposition. (Compare [Ka-3], 4.1.6). Let ack™, and V an object of
D.E.(K/k). Suppose there exists an isomorphism Ve~ V. Then

(2.3.8.1) Ifaek™ is not a root of unity, then Irt(V)=0.
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(2.3.8.2) Ifack™ is a root of unity of exact order N, then
Irr(V)=0modN.

Proof. (1). After an extension of scalars from k((#)) to a suitable L = k' ((:¥¥)), V,,
becomes a successive extension of one-dimensional objects. If we enlarge k' so that
it contains a!/¥, the automorphism g, of k((¢)) extends to a k'-linear continuous
automorphism oy~ of k' ((¢1/¥)), given by tUN — g¥¥ t4/¥_This automorphism & v
necessarily permutes the finitely many distinct isomorphism classes of one-dimen-
sional sub-quotients of V;, so replacing a'’¥ by a power of itself, we are reduced to
proving (1) universally in the case when V' is a one-dimensional object in D. E.(K/k).

Writing V as /92 <t % - f), the isomorphism class of V' is the image of fin
(2.3.8.3) Kt % log (K *)=k((t))/Z + th[[1]] «—— k[t~ '}/Z,

on which o, operates by ¢ — at. Thus if

fO= Y bt bek
then V' V@2 if and only if f(¢) =f(at) mod tk [[t]]. Because a" + 1 for all n 0,
SF(®) =f(at) mod tk[[#]] if and only if fek[[¢]], i.e., if and only if Irr (V) = 0.

To prove (2), we may, by extending scalars, assume k to be algebraically closed.
Replacing V' by its semi-simplication, we may assume V is semi-simple. By
decomposing the set of isotypical components of ¥ into orbits under o,, we may
assume that o, cyclically permutes the isotypical components of V. If ¥ has precisely
d = 1 isotypical components, then N = dN,, each isotypical component is stable by
g, with b=a", and by (2.2.11.1) all isotypical components have the same
irregularity. Therefore (replacing V by any of its isotypical components, a by @ and
N by N,) we are reduced to the case when V is isotypical, say V ~(V,)* with V,
irreducible. By Jordan-Holder theory, Ve>—— V implies (V; )@ —— V,, so we
may reduce to the case when V is irreducible.

To prove (2) when Vis irreducible and £ is algebraically closed we will show that
V' descends to an object ¥, in D.E.(K,/k), where K, is the subfield & ((z")) of
K=k((#)). For by (2.2.11.2), we will have

Irr (V)= NlIrr (V).

To perform this descent, view g, as a generator of the cyclic galois group of K/ K,
and view the given isomorphism ¢: V@)~ V as a ¢, -linear automorphism of V. If
@~ = id, then we can descend. In general, ¢¥ is a (k-linear) automorphism of V. Let
us admit temporarily that End ;(V) = k. Then ¢”isin k*, say ¢ = o. Replacing ¢
by a~!/¥, we have ¥ =1.

To see that End , (V) = &, we notice that as Visirreducible, End , (V) is certainly
a division algebra over k. Because k is algebraically closed, any finite-dimensional
division algebra over & is necessarily £ itself, so it suffices to show that End , (V) is
finite-dimensional over k. But this is a general fact:

(2.3.9) Lemma. For any two objects V,W in D.E.(K/k),
dim, (Hom 4, (V, W) < dimy (V) dimy (W).
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Proof. Using the internal hom, we have
Hom, (V, W)=Hom, (K, v ()? W),

so we are reduced to the case V trivial. If Hom , (K, W) is +0, then W contains a
one-dimensional sub-object isomorphic to K, so by induction on dim W we reduce
to the case W= K. But Hom, (K, K) = k, because & is the “field of constants” in
K. Q.E.D.

2.4. Canonical extension: construction of a fibre functor (Compare [Ka-5])
(2.4.1) In this section, we must fix a uniformizing parameter ¢ in R, by means of

which we identify k ((¢)) ~ K. We denote by G,, ® k the multiplicative group over k
with coordinate “x”:

(2.4.1.1) G, ® k =Spec(k[x,x™1]).
By means of the k-linear embedding
(2.4.1.2) klx,x" 1] < k(1)

x Vet

we view K as the completion at oo of the function field of G,,® k. Thus we have a
natural inverse image functor

(2.4.1.3) D.E.(G, ®k/k) - D.E.(K/k)
Ve V,.
(2.4.2) We will interpret D.E.(G,,® k/k) as the category of xd—d;-modules

over k[x, x 1], cf. (1.5.1). The rank-one objects L which are regular singular at zero
are those of the form

d .
2.4.2.1 k . D=x-— xt
( ) ( [x,x7'] xdx-i—Za,x)
where Z a, x' ek [x], and the group of isomorphism classes of such L is the additive
group
(2.4.2.2) k[x|/Z,

via the map L — Y a;x'mod Z. In view of (2.2.3.2) and (2.3.8.3), we see that the
inverse image functor

(2.4.2.3) D.E.(G,, ® k/k) gsuo — D.E.(K/k)
induces an equivalence between the full subcategories of rank-one objects.

(2.4.3) An object of D.E.(G,, ® k/k) (resp. of D.E.(K/k)) is called “R.S.
unipotent™ if it is isomorphic to a successive extension of the trivial object

<k [x,x 1, D=x %) (resp. (K,D)= t%) by itself. We denote by (Nilp End/k)
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the category of pairs (V, N) consisting of a finite-dimensional k-vector space V'
together with a k-linear nilpotent endomorphism N of V, with maps the k [N]-linear
maps. The natural functors

(Nilp Endjk) — <R.S. unip. objects)

in D.E.(G,, ® k/k)

(243.0) d
— -1 =X —
(V,N) (k[x,x ]@V,D xdx®1+1®N>,
. R.S. unip. objects
(Nilp End/k) — ( in D.E. (K/k) )
(2.4.3.2)

(V,N) - <K® V, D-——t%@ 1-1 ®N),

k
are both equivalences, with inverses given by
(24.3.3) (M, D) ~ <U Ker (D), iD).

nzt

Therefore the inverse image functor
(24.3.9) D.E.(G, ® k/k) — D.E.(K/k)
induces an equivalence on the full subcategories of R.S. unipotent objects.

(2.4.4) Anobject of D.E.(G,, ® k/k) is called very special if it is a finite direct sum
of objects of the form L ® U where

L is of rank-one, regular singular at zero

2.4.4.1
( ) U is R.S. unipotent.

(2.4.5) An object of D.E. (K/k) is called very special if it is a successive extension
of one-dimensional objects.
(2.4.6) Theorem. (Levelt). The inverse image functor

D.E.(G, ® k/k) - D.E.(K/k)
induces an equivalence between the full subcategories of very special objects.
Proof. This is immediate from (2.4.2.3) and the preceding discussion. Q.E.D.

(24.7) Given an integer N =1 and a finite galois extension £’ of k (inside k)
which contains the N’th roots of unity, an object of D.E.(G,, ® k/k) is called
(N, k')-special if its inverse image in D.E.(G,, ® k'/k") by the composite map

(N]

(2471) G,k

G, ®k

G,k
(x= xM@id id ® (extn. of scalars)

is very special. An object V of D.E. (K/k) is called (N, k’)-special if for the unique

N-special extension L/K with residue field &', ¥, in D.E.(L/k') is a successive

extension of one-dimensional objects.
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By combining the previous theorem (2.4.6) with the descent argument of
([Ka-5], 1.4.1), we obtain

(2.4.8) Theorem. For any (N, k') as above, the inverse image functor
D.E.(G, ® k) » D.E.(K/k)
induces an equivalence between the full subcategories of (N, k')-special objects.

(2.4.9) Let us say that an object of D.E.(G,,®k/k) (resp. of D.E.(K/k)) is
special if it is (N, k')-special for some (N, k’) as above. By Levelt’s fundamental
result ([Le-1]), every object of D.E.(K/k) is special. So, passing to the limit over
(N, k'), we obtain

(2.4.10) Theorem. The inverse image functor
D.E.(G,, ® kjk) - D.E.(K/k),
when restricted to the full subcategory S.D.E.(G, ®k/k) of D.E.(G,®k/k)
consisting of the special objects, induces an equivalence of tensor categories
S.D.E.(G,,® k/k) —— D.E.(K/k).

(2.4.11) ““The” quasi-inverse functor

D.E.(K/k) — S.D.E.(G,, ® k/k)

denoted
V — Yean s

is called the “canonical extension”.
(2.4.12) Corollary. For any point ack™ = (G, ®k) (k), the composite
D.E.(K/k) —=— S.D.E.(G, ®k/k)

N D.E.(G, ®k/k)

\
\
N fibre at a
N

“\ /fin. dim. k-vect.
spaces

is a k-valued fibre functor on D.E.(K/k).

(2.4.13) For any object ¥ in D.E. (K/k), and any fibre functor w on D.E. (K/k),
the “local differential galois group” G, (V, ) of V as object of D.E.(K/k) is
din

defined b
Y Groo (Vs 0) & st ® (@ICVY).

(2.4.14) Corollary. For any object V in D.E.(K/k), and any fibre functor w on
D.E.(K/k) of the form w, can for some ack™ (i.e., (V)= fibre at a of Vn), we
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have
Gloc(Vs (D} = GgaI(Vcan9 wa)
inside 4L (w,(Var)).

Proof. 1t is obvious from the definition of “special” that any sub-object in
D.E.(G,, ® k/k) of a special object is itself special. Therefore the category (V=) is
the same whether we view J'<a as lying in S.D.E. or in D.E. Therefore the functors

D.E.(K/k) «— S.D.E.(G,®k/k)c D.E.(G,,®k/k)
induce equivalences
(V> «=— (Venin S.D.E> — (¥ in D.E.>. Q.E.D.

(2.4.15) Corollary. (O. Gabber). For L/k any extension field of k, K, = L((t)), V
any object of D.E.(K[k), V, its inverse image in D.E. (K /L), and any ack ™, we have

G (Vp, ko can)= G, (V,w,0 can)X) L
foc\" L .

inside 9% (w,(V *0)) @ L.

Proof. Since (Vp)em~(Ven), this follows by combining (2.4.14) with
(1.32). Q.E.D.

(2.416) Corollary (O. Gabber). Let VbeaD.E.on G, ® k/k, and L|k an extension
field of k. Then V is special on G,, ® kik if and only if V, is special on G,,® L/L.

A

Proof. The “only if” direction is trivial. Denoting by
completion at oo, we have

passage to the formal

Vy special <> ¥, —— (V1))

while for any ¥ on G,, ® k/k we have
(V" )em)y, = (V) ") .
Therefore if ¥V, is special, we have an L-isomorphism
V= (V)=o)

In view of (4.1.2) (proven later, but with no circularity?), the existence of the above
L-isomorphism implies the existence of a k-isomorphism ¥ —— (¥ ")z, whence
V is special if ¥, is. Q.E.D.

2.5. The local differential galois group; upper numbering

(2.5.1) Fix a k-valued fibre functor v on D.E.(K/k). We denote by
(2.5.1.1) IE Aut®(w),
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read — the local differential galois group, — the pro-algebraic affine algebraic group
over k whose finite-dimensional k-representations ‘‘are” the objects of D.E. (K/k).
We think of 7 as being the differential analogue of the local galois group of a local
field of finite residue characteristic. [Though our notation, “I”’ for “inertia” is only
reasonable when k is algebraically closed.]

(2.5.2) Pursuing this analogy, we next define the ‘““upper numbering filtration” on
1. For every real number x = 0, we denote by

(2.5.2.1) D.E. =9 (K/k)

the full subcategory of D.E. (K/k) of objects all of whose slopes are < x. Similarly,
for real x >0, we denote by D.E.(<9(K/k) the full subcategory of D.E.(K/k) of
objects all of whose slopes are < x. As is obvious from (2.2.11.3-4) and (2.2.6.2)
both D.E.<=® and D.E.(<» are stable by internal hom, tensor product, and sub-
quotients.

(2.5.3) Dual to the inclusions

D.E.(<?(K/k) < D.E.(K/k)

(2.5.3.1) D.E.s9(K/k) = D.E. (K/k)

we have homomorphisms of the corresponding groups

I— et ® (w|D.E.<9(K[k))

(2532) I— ,Q/ﬂi@’(wlD.E.(@‘)(K/k))’

both of which are faithfully flat (by [De-Mi], 2.21). Their kernels are closed normal
subgroups of I, denoted I and I'** respectively (defined for x > 0 and for x = 0
respectively). Concretely, if for each object ¥ in D.E.(K/k) we denote by p,:
1—- %% (w(V)) the corresponding representation of I, we have

(2.5.3.3) Y= () Ker(p,)
VeD.E.(<X)(K/k)
(2.5.3.4) 160 = N Ker(p,).

VeD.E.(39(K/k)

By Tannakian duality, we have, for a given object V in D.E. (K/k), the following
equivalences:

(2.5.3.5) For x>0, V has all slopes <x< I < Ker(p,).
(2.5.3.6) For x=0, V has all slopes <x<I**) = Ker(p,).
(2.5.4) For 0<x<y, we have

(2.5.4.1) I 5T 5@ 5+ 5 0),

which we view as the differential analogue of the “‘upper numbering filtration” (cf.
[Se-1], pp. 80-82).

(2.5.5) Given an object ¥ in D.E. (K/k), its slope decomposition
(2.5.5.1) V=@V

y20
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is characterized in terms of the representation p, of I on w (V) as follows: its image
under o is the unique I-stable decomposition of w (V) in which

I®*) operates trivially on o (V(0)),
(2.5.5.2) for y >0, I¥*) acts trivially on « (V(y)), but IV
has no non-zero invariants in (V' (»)).

(2.5.6) Given a non-zero object ¥V of D.E. (K/k), we denote by p,: I - 4.Z (w(V))
the corresponding representation of 7, and by

(2.5.6.1) GV, ) Z p, ()= %L (0(V))

the image of this representation. Equivalently (just as in (1.1.5)), we have (cf.
(2.4.13))

25.6.2) Goe (V) = tut ® (w|<VY).
(2.5.7) Thelargest slope of  may be described in terms of the representation p as
(2.5.7.1) =glb. {real xz 0 such that I** = Ker(p,)}.

It is thus an intrinsic invariant of the subgroup Ker(p,).

(2.5.8) Inview of (2.5.2), the largest slope of V is equal to the sup, over all objects
W in {(V"), of the largest stope of W.

(2.5.9) Proposition. Let V be a non-zero object of D.E.(K/k), with largest slope
written a/N in lowest terms (i.e.,a=0inZ, Nz 1inZ, and (a, N)=1).

(2.5.9.1) The k-algebraic group G,,.(V, w) @ k has no faithful k-representation of
dimension <N.

(2.59.2) If N=dim(V), the given inciusion of G, (V,w) in 4L (w(V)) is an
absolutely irreducible representation of Gy, (V, w).

(2.5.9.3) If N=dim(V), the given inclusion of G\o.(V, ) in % (w0 (V)), viewed as a
representation of G..(V,w), is not isomorphic to a tensor product of two strictly
lower-dimensional representations of Gy,.(V, w).

Proof. Since any two k-valued fibre functors are k-isomorphic, we may suppose o is
the fibre functor constructed by picking a uniformizing parameter ¢ and taking the
fibre at a point of G,, (k) of the corresponding canonical extension. If we extend
scalars from k((¢)) = K to k((¢)), the slopes of V' do not change, while G,.(V, w) is
replaced by G (V,w) ():) k (cf. 2.4.15). So it certainly suffices to prove the

proposition in the case k= k.

(1) If A is a faithful k-representation of G, (V, w), corresponding to an object
W of {V), then W has the same largest slope, a/N, as V (because p, = 4, p, has
Ker(p,) =Ker(p,); alternately, because (W) =<V, cf. (2.5.8)). By the fundamen-
tal integrality property of slopes (2.2.7.3), the multiplicity of a/N as slope of W is
multiple of N, so = N.

(2) If N=dimV, then a/N is the unique slope of ¥ - there is room for no others
by (2.2.7.3) — and so V is irreducible by (2.2.8).
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(3) If V=V, ® ¥, with ¥, and ¥, in (¥}, and with N, £ dim (V}) < N = dim (V)
fori=1,2, we obtain a contradiction as follows. Let 4; denote the largest slope of V;.
Then A; £ a/N (because V,e(V), cf. (2.5.8)). But 4, has exact denominator < N,, so
its exact denominator is certainly <N, while by hypotheses a/N has exact
denominator N. Therefore 4, = a/ N, so we must have A; < a/N. But the largest slope
of V=V, @V, is <sup(4,, 4,) (cf. (2.2.11.4)), contradiction. Q.E.D.

2.6. Upper numbering and change of field; structure theorems

(2.6.1) Let N=1, and suppose k contains the N’th roots of unity. Denote by K
the extension k((#''V)) of K, and by D.E.(K,/K/k) the full subcategory of
D.E.(K/k) consisting of the objects which become trivial over K. The diagram of

functors
& Ky

(2.6.1.1) D.E.(Ky/k) «*— D.E.(K/k) e nd D.E.(Ky/K/k)

gives rise to an exact sequence of local differential galois groups (with respect to
compatible fibre functors)

(2.6.1.2) 1 - I(Ky/k) > I(Klk) > py—> 1,

cf. (1.4.4).

(2.6.2) Proposition. For any real numbers x>0, y >0, the above inclusion of
I(Ky/k) in I(K/k) induces isomorphisms of “upper numbering’’ subgroups

(2.6.2.1) I(Ky k)N 2y [(KJk)*)
(2.6.2.2) Iy )™ o [(Kjk)W.

Proof. The diagram of functors

® Ky ‘
(2.6.2.3) D.E.(Ky/k)s¥ % D.E.(K/k)s? 22 D E.(Ky/K/k)

gives, by (2.2.11.5) and the same argument as in (1.4.3-4), an exact sequence
(2.6.2.4) 1 = I(Ky /) T(Ky /)™ - I(KJK)/I(K[K)* ) - gy — 1

which is the quotient of the exact sequence (2.6.1.2) above, so the snake lemma gives
the assertion for (x+). Similarly for (y). Q.E.D.

(2.6.3) Proposition. Suppose k is algebraically closed. Then for every integer N 2 1,
I(Ky/k) is the unique closed subgroup of index N in I.

Proof. Let I' = I be a closed subgroup of index N, and consider the permutation
representation of 7 in I/I". Take the associated N-dimensional k-linear repre-
sentation of I; the corresponding object W in D.E.(K/k) has G (W, ) a finite
group. Pick a parameter ¢ of K, i.e., a k-isomorphism K =~ k ((¢)), and consider the
associated canonical extension W<t on G,, ® k. By construction of the canonical
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extension, we have
G..(W,0) ~—~— G

gal

(Wan, ).

Therefore W< on G,, ® k has its G, finite, so it becomes trivial on a finite etale
covering of G,, ® k, necessarily of the form {M]: G, ®k - G, ®k, x - xM, for
some M = 1. Returning to Witself, we see that W becomes trivial on some extension
field K,,, i.e., I(K,,/k) acts trivially on I/I". Therefore we have inclusions

IK,Jk)ycT'<=1.

For any M =1, I/I(K,/k) is cyclic of order M, canonically isomorphic to
Gal(K,,/k). Therefore N|M, and I'/I(K,,/k) is the unique subgroup of index N in
I/I(K,,/k); whence I' = I(Ky/k) by unicity. Q.E.D.
(2.6.4) Proposition. Suppose that k is algebraically closed. If

p: I Aut (M)

is any finite-dimensional k-representation of I, then (2.6.4.1) the restriction of p to
1Y) is diagonalizable.

(2.6.4.2) For any real numbers x 20 and y > 0, the images p(I* ™) and p (I") in
et (M) are connected tori.

Proof. In virtue of (2.6.2), we may replace p by its restriction to any subgroup
I(Ky/k) = I, for any integer N = 1. In virtue of (2.2.2), there exists an integer N > 1
such that for the object V' in D.E.(K/k) corresponding to p, V();) Ky has a direct

sum decomposition
V@ Kx=@L®U,

where the L, are one-dimensional objects of D.E.(Ky/k), and where the U,
successive extensions of the trivial object, have all their slopes equal to zero.
Therefore as representation of I(Ky/k), we have

arep. of I(K,/k) )

M~ (a char. of I(K,/k)) ® (trivial on I(Ky/k)®+)

This proves (1), and shows that the restriction of p to I°* is of the form

X1, 0
0 Xn

where the y; are characters of 7°*) which extend to characters of I(K/k) for some
Nz1.

To prove that for any real numbers x> 0 and y > 0, the images p(/**’) and
p(I*) are connected tori, we must show that for any integers a,,...,a,, the

haracter a a
characte 1= )" )™,

when restricted to either I*™* or to I", is either trivial or is not of finite order.
Interpreting such a character y as arising from a one-dimensional object L of
D.E. (Ky/k), recall (2.5.3.5-6) that y is trivial on I**’ (resp. on I*) if and only
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the slope of L, as object of D.E. (Ky/k), is £ Nx (resp. < Ny). But for any integer
o d .
k %0, L®* has the same slope as L does | if Lis | Ky, ¢ = +f> with feKy, then L®*

is | Ky, ¢ E+ k- f) . This means exactly that if y is of finite order on either I**}

or on I, then y is already trivial on that group. Q.E.D.

(2.6.5) Corollary. Suppose that k is algebraically closed, and denote by K
= {J Ky the algebraic closure of K, and by 0, =\ Oy, the ring of integers in K .

Nz1
Then, in terms of a uniformizing parameter t of K, we have
P
(2.6.5.1) I®Y s the pro-torus over k whose character group is

Koo/(gco = U K,,/@[(N

Nz1
(2.6.5.2) 1“7, for any real x 20, is the pro-torus over k whose character group is
K /{fek, with ord,(f) = —x}.
(2.6.5.3) I, for any real y >0, is the pro-torus over k whose character group is
K /{feK,, with ord,(f)> —y}.

e . . d
In this identification, an object L in some D.E. (Ky/k) of the form <KN, tE + f)

with fe Ky gives rise to the character named by the image of fin the named quotient
of K.

Proof. Because the groups I'° ), I* ™) [9 are all closed subgroups of I, they are the
inverse limits of their images in “all”” the finite dimensional representations of I.
Therefore each is a pro-torus. The preceding proof shows that any character y
of one of these groups which occurs in a finite-dimensional representation of 1
extends to a character of 7(Ky/k) for some N = 1. This, together with (2.3.8.3) and
(2.5.3.3-4), gives the asserted formulas for the character groups. Q.E.D.

(2.6.6) Theorem. Suppose k is algebraically closed, and
p: I— Aut (M)
is an irreducible finite-dimensional k-representation of I, of dimension n2 1. Then

(2.6.6.1) the restriction of p to I(K,[k) is the direct sum of n distinct characters
XI’“-,Xn ofI(Kn/k)

(2.6.6.2) The conjugation-induced action of u,= I/1(K,/k) on I(K,/k) by outer
automorphism is transitive on the characters x,,..., Yy,-

(2.6.6.3) Ifn=2, the restrictions to I'°™) of the characters y,,...,y, are all non-
trivial and are all distinct.

(2.6.6.4) Ifnz=2andif the unique (by (2.3.4)) slope of p isr/n with(r,n) = 1, then the
restrictions to I"'™ of the characters x,, ..., x, are all non-trivial and all distinct, and
p(I™™) is a connected torus of dimension o(n)=deg(Q((,)/Q).
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Proof. We first prove (1) and (2).

By Levelt, any representation of I is, on some I (K} /k), a successive extension of
characters. Because p is irreducible on /, it remains semi-simple on any of the
normal subgroups I(Ky/k). Therefore, for some N = 1, p|I(Ky/k) is the direct sum
of characters. Pick such an N, and consider the /(K /k)-isotypical decomposition
of M:

(2.6.6.5) M=@M,.
aeR
Because M is J-irreducible, I acts transitively on the set of these R isotypical
components. Consequently, d =dim(M,) is independent of «, and

(2.6.6.6) n=dr, r=%R.

Let S, 1 be the stabilizer of M,. Then I(Ky/k) < S,, and I/S, —— R, so by
uniqueness we have S, = I(K,/k), independent of «. Therefore as representation of 7
we have

(2.6.6.7) M=1Indj, ,,(M,) for any aeR.

Because M is irreducible on I, M is certainly irreducible on I(X,/k). We must
show dim (M ) = 1. [For then n = r = # R by (2.6.6.6), the characters y, of I(K,/k)
on M, are distinct because they are distinct on the subgroup I(Ky/k) of I(K,/k), and
u,=1I/I(K,/k) acts transitively on the x,’s, because M is I-irreducible.}

Renaming M, I(K, /k) as M, I, we are reduced to the situation:

M is an irreducible representation of I of dimension n= 1, but for some N> 1,
I(Ky/k) acts on M by scalar matrices, i.e., there exists a character y of I{Ky/k) such

h
that P =z()m  for yeI(Kyfk).

The character y is invariant by I-conjugation (because it is equal to (1/n) trace
(p)). Because I/1(Ky/k) is cyclic, and k is algebraically closed, x extends to a
character j of L.

Twisting M by the inverse of ¥, we reduce to the case where M is an irreducible
representation of 7 which is trivial on I(Ky/k). As the quotient I/1(Ky/k) is cyclic,
and K is algebraically closed, we find dim (M) = 1, as required. This concludes the
proof of (1) and (2).

We next prove (3). Fix an n’th root r'/* of ¢, and write

s=1/ttm

Then K, is k ((1/5)), u, acts by s — (s, and the characters y; of 1 (K, /k) which occur in
p correspond to one-dimensional objects L; in D.E.(K,/k) which are transivitely
permuted among themselves by the action s —~ (s of g,. Fixing one such L,, say

L~ (K,,, t %-&- P(s))
with
P(s)ek|s],
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all the L; which occur are precisely the n objects

td
LE — Cep,.
4 <Kn7 dt+P(CS))’ (aeﬂn

To prove (3), we must show that if {, & {, are two distinct n’th roots of unity,
then the corresponding ratio of characters is non-trivial on I°"), ie., that
L, ®(L,)" has slope >0, i.e., that

deg (P({;5) = P((;5)>0.

We have already proven that the corresponding ratio of characters is non-trivial on
I(K,/k), so certainly we have

P(L,5)— P(L,9)+0.

But this can only happen if P({,s) — P({,s) actually has degree > 0, because its
constant term is zero.
We now prove (4). The hypothesis of (4) is

deg(P(s))=r, (r,m=1.
Therefore for {eu,,
P((s)={"P(s) mod(deg <r in ).

To show that the y; remain distinct on I*™ we must show that for {, £,
distinct elements of u,, we have

deg(P((y8)— P (L) =7,
which is the case because
P((y8)— P((19)=({; — {3) P(s) + lower terms,
and (r,n)=1.

Similarly, a monomial in the L;’s,

® (L)%,  aecl

{en,

is trivial as character of 7"/ if and only if
degree <Z a.P( s)) <r.
i
But this holds if and only if
Ya"=0 in k.
r
Therefore the character group of p (1) is, via L, the Z-submodule of k spanned

by the {"as { runs over u,. Because (r,n) =1, this is precisely the ring Z [{,] of
cyclotomic integers in Q({,). Q.E.D.

(2.6.7) Corollary. With the hypotheses and notations of part (4) of the Theorem
(2.6.6), suppose further that n is odd. Then



42 N.Katz

(2.6.7.1) there exists no non-zero I"™-invariant k-bilinear form M x M — k.

(2.6.7.2) Every slope of M ();)M as I-representation is r(n.

Proof. Clearly (2) = (1). To prove (2), we must show that, in the notations of
the proof of (2.6.6.3) above, L, ® L; has slope r (with respect to K,), for every
0<ij=n~1.But L;® L; is, for { a suitable primitive n’th root of unity,

(K,,, t%+P(Cis)+P(Cfs)>,
and
P((is)+ P(¢is) = (" + () P(s) mod (deg < r).

Because (' and (" are each n’th roots of unity with n odd, we have
"+ ¢r+0. Q.E.D.
(2.6.8) Remark. Under the hypotheses of part (4) of the Theorem (2.6.6), if n is

even then the above argument shows that of the »n? slopes of MR M as
Irepresentation, k

there are n? — n slopes =r/n

(2.6.8.1) there are n slopes < r/n.

2.7. Local groups as subgroups of global ones

(2.7.1) Let k be an algebraically closed field of characteristic zero, C/k a proper
smooth connected curve, D = C a finite set of closed points, and U= C — D. For
each “point at o0 xeD, we denote by K, the completion of the function field £ (C)

63,90

at the discrete valuation which “is” x.

(2.7.2) Given an object V in D.E.(Ujk), we denote by V, its inverse image in
D.E.(K,/k). If we chose a k-valued fibre functor w on D.E. (X, /k), then V' — w (V,)
is a k-valued fibre functor, say @, on D.E. (U/k). Given an object ¥ in D.E. (U/k),
the inverse image functor maps

(2.7.2.1) VY (V.

By ([De-Mil, 2.21), the dual homomorphism of k-algebraic groups
(2.7.2.2) Gioo(Vy» @) = Gy (V, &)

is a closed immersion.

(2.7.3) Because k is algebraically closed, any two k-valued fibre functors on
D.E. (U/k) (resp. on D.E. (K, /k)) are isomorphic. Therefore for any k-valued fibre
functors ' and @ on D.E.(U/k) and on D.E.(K,/k) respectively, and any
isomorphism a from w o {inverse image) to w’, we have a closed subgroup

(2.7.3.1) Groe (Ver @) = GV, '),

the “inertia group at x™ to speak figuratively, whose conjugacy classin G, (V, o) is
independent of the chice of (w, «), and compatible with change of w'.
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I11. Interlude: cyclically minuscule representations
3.1. The Lie algebra setting

(3.1.1) Throughout this chapter, we fix an algebraically closed field £ of
characteristic zero. A ‘‘Lie algebra” will mean a finite-dimensional Lie algebra
over k.

(3.1.2) Let® be a semi-simple Lie algebra over k, $ = G a Cartan subalgebra, and
W the Weyl group of the root system of (&, ). If V' is any finite-dimensional k-
representation of ®, the restriction of V'to § is a direct sum of characters (i.e., one-
dimensional representations) of §. The characters 4 of § which occur in V are called
the weights of ¥; for each weight A of ¥, the dimension of V'4is called the multiplicity
of Ain V. The Weyl group W acts on the set of weights of V; for 4 a weight of V, and
weW, A and w(4) have the same multiplicity in V. If Vis a faithful representation of
®, then the set of weights of Vis a faithful permutation representation of W (simply
because for V faithful, the Q-span of its weights in $* is equal to the Q-span of the
roots). If Vis an irreducible representation of &, then at least one of its weights has
multiplicity one (e.g., its “highest weight” in any ordering of the Q-span of the
roots).

(3.1.3) A finite-dimensional k-representation V of a semi-simple ® is called
cyclically minuscule (CM) if it satisfies the following three conditions:

(3.1.3.1) Vis irreducible.
(3.1.3.2) V is faithful.

(3.1.3.3) There exists an element we W which cyclically permutes the weights of V,
i.e., the cyclic subgroup I' = W generated by w acts transitively on the set of weights
of V.

(3.1.4) Under these conditions, we say that ¥ is CM of type w.

(3.1.5) Lemma. Suppose V is CM of type w, and I' = W is the cyclic subgroup
generated by w. Then:

(3.1.5.1) every weight of V has multiplicity one
(3.1.5.2) the order of w is dim (V), i.e., (') =dim (V)
(3.1.5.3) T acts simply transitively on the set of weights of V.

Proof. Because V is irreducible, it has some weight of multiplicity one; because V is
CM, every weight of V' is a W-transform of this one, so it also has multiplicity one.
Because V'is faithful, Wis a faithfully represented as a permutation group on the set
of the dim (V) weights of V, so w generates a cyclic subgroup which acts transitively
if and only if w is itself a cyclic permutation of the dim (V) weights. Q.E.D.

(3.1.6) Lemma. Suppose ® =6, x &, is the product of two semi-simple Lie
algebras. Let V be a faithful irreducible k-representation of ®, V=V, ® V, its unique
expression as the tensor product of faithful irreducible k-representations V, of ®,,
fori=1,2.
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The following conditions are equivalent:
(3.1.6.1) V is a CM-representation of G.

(3.1.6.2) V, and V, are CM-representations of ®, and ®, respectively, and their
dimensions are relatively prime: (dim ¥, dim ¥,) = 1.

Proof. Choose Cartan subalgebras §; < ®, for i=1,2, and take =9, x H,. Any
character of § is uniquely of the form (4,,4,): (hy, ) = A, (h,) + A, (h,), where A;
is a character of §,;. The Weyl group W of ® is canonically the product W, x W, of
the Weyl groups of &, and &, respectively. The set S of weights of V' is the product
set S| x S,, S; = {weights of V;}, on which W= W, x W, operates by the product

action (Wi wy): (Ay, Ap) = (Wydy, wydy).

Counting weights, we see that V" has all its weights of multiplicity one if and only if
both V] and V, have their weights of multiplicity one. In view of (3.1.5.1), to prove
(1)< (2) we need only consider the case when V, V,, ¥, each have all their weights of
multiplicity one. We henceforth suppose this to be the case.

Thus #(S,)=dim (V) for i=1,2, and W,cAut(S;) is a subgroup. But an
element (w;, w,)e W, x W, cyclically permutes S; x S,, if and only if all the
following conditions hold: (#S,, {S;)=1, and for both i=1,2, w; cyclically
permutes S;. [The <> direction is obvious. For =, suppose (w;,w,) cyclically
permutes all of S; x S,. Then each component w, must cyclically permute its S;. But
then w; has order = #S;, so (w,, w,) has order Le.m. (S, #5,) in W, x W,. But
(wy, w,) cyclically permutes S; x S,, so has order (#S,) (#S,). Comparing, we see
#S, and £S5, must ve relatively prime.] Q.E.D.

3.2. The group setting

(3.2.1) Now let G be a connected semi-simple algebraic group over &, ® its Lie
algebra, Ta maximal torusin G, § = Lie (T), N (T) the normalizer of Tin G. Then $
is a Cartan subalgebra of ®, and N (T)/T is the Weyl group W.

322) Let
(3:2.2) Le p: G EL V)

be a finite dimensional k-representation of G. We say that p is a CM-representation
of G if Lie(p) is a CM-representation of &. Concretely, then, p is a CM-
representation of G if and only if all of the following conditions are satisfied.

(3.2.2.1) p is irreducible
(3.2.2.2) Ker(p) is finite

(3.2.2.3) the restriction of p to T is the direct sum of dim (V') distinct characters
of T

(3.2.2.4) there exists an element w e N(T) which, acting by conjugation on 7,
cyclically permutes the above characters.
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(3.2.3) Let® =6, x ®, be a product of two semi-simple Lie algebras over k. Let
G, G,, G, be the connected, simply connected semi-simple groups over & with Lie
algebras ®, ,, ®, respectively. Thus G = G, x G,. Suppose we are given a CM-
representation ¥ of ®. Then we can write it as ¥, ® V,, where V; and V, are CM-
representations of ®, and &, respectively, and where (dim V;, dim ¥,)=1. The
representations V, V, V; of ®, &, 6, “integrate” to representations p, p, , p, of G,
Gy, G,onV,V,,V,, and we have p=p, @ p,on G=6G, ® G,.

(}.2.42 Lemma. Hypotheses as above, Ker(p)=ZKer(p,)xKer(p,) (in
G=G, ®G,).

Proof. Let Z, denote the center of G, for i =1,2. Then Z = Z, x Z, is the center of
G. Because Lie(p), Lie(p,), Lie(p,) are faithful, the kernels of P P> pz, lie in Z,
Z, 7, respectively. Now p; is an irreducible representation of G, on V;, and (as
G, is connected and semi-simple) p(G)=LZ V), so by irreducibility
pi(Z) = Z(FL L (V)= Bgimy- In other words, the restriction of p; to Z; is a
character y; of order dividing dim (V). Thus p=p, ® p, on Z=2, ® Z, is the
character (z,,z,) ~ y,(z,) %2 (z). But dim V/; and dim ¥V, are relatively prime, so
x1(z))x2(zz) =1 if and only if x, (z) = x,(z;)=1. Q.E.D.

(3.2.5) Corollary. Let G be a connected semi-simple group over k, ® = Lie (G), p:
G- %L (V) a faithful CM-representation of G. Let & =6, x &, be a product
of semi-simple Lie algebras. Then we have a canonical product decomposition
G=G xG,,p=p, Q@ ponV=V,®V,, where p, is a faithful CM-representation
of G;, Lie(G) =6, and (dim V,, dimV,)=1.

Proof. In the notations of the preceding proof, we have G = G/Ker(p),
G,=G;/Ker(p;,) fori=12. Q.E.D.

(3.2.6) Corollary. Let G be a non-trivial connected semi-simple group over k, p:
G — 9L (V) a faithful CM-representation of G.

(3.2.6.1) If p is not isomorphic to a tensor product p, @ p, of two strictly lower-
dimensional representations of G whose dimensions are relatively prime, then G is
simple (i.e., Lie(G) is simple).

(3.2.6.2) If ® =Lie(G) is not simple, then G=1I1G, and p =~ ® p;, where G, is
simple (i.e., Lie(G,) is simple) and where p, is a faithful CM-representation of G;. The
dimensions dim (p;) are pairwise relatively prime.

(3.2.7) Classification theorem. Let V be an n-dimensional CM-representation of a
simple Lie algebra ® over k. Then (®, V) is one of

® =S (n), sud. rep. or its contragredient
® = Sp(n), std. rep. if nis even.

Proof. 1t is clear that the named candidates are CM-representations. To show that
there are no others, we must use classification. Because ¥ is CM, it is certainly
minuscule, (i.e., the entire Weyl group acts transitively on the weights of V). By
Bourbaki, Lie VIII, § 7.4, Prop. 8, we have the following list of all pairs (&, V) with
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A,p 21 w4,...,0,
B,(23; o,
C,tz2;, o
D,tz4;, w,,w,_;, 0
Es; Wy, We

E;; Wy

So what we must check is that none of

A, 623, 0y, 03,...,0,
B,tz23 o,
D, 2z4; o, 0,4,
Es; Wy, We
E;; W

is CM.

We first eliminate the cases

B,¢(z23 o,(dim=2%)
D, /25 w,_,and w,(dim=2¢"1)
E; ®, and wg (dim = 27)
E, @, (dim = 56)

by showing that in these cases, the Weyl group contains no element whose order is
equal to the dimension of the representation in question. For & of rank ¢, the action
of its Weyl group W on the free Z-module of rank ¢ spanned by the roots gives an

injective homomorphism
W 99, 7).

Any element we%.Z (¢, Z) of finite order N has a monic characteristic polynomial
P(T)inZ[T]of degree £, all of whose roots are N’th roots of unity. Therefore P (T)
is some product of cyclotomic polynomials, say

P(T)=.]L[ ®,(T), all d|N.

If we define
d=\1l.cm. (the d;)

then w* has all eigenvalues 1, so (being of finite order), w'=1, ie.,
the order of w=1lcm. (d{,...,d,).

If whas order a power of a prime, say p°, then all the d; divide p¢, and at least one
d; = p°, since p, is their l.c.m. Therefore

deg(P)=¢= ; ¢ (d) 2 ¢ ().



On the calculation of some differential galois groups 47

In particular, if the Weyl group W contains an element of order p°, then

£ 2 e (p%).

Taking p° = 2¢ rules out the spin representation w, of B,, £ 2 3.

Taking p°® =2¢-1 rules out the spin representations w,_,, w, of D,, £ = 5.

Taking p® = 3% =27 rules out the representations w,, wg of Eg.

Similarly, if w has order p® ¢* with p, g two distinct primes, either p®¢® divides
some d;, or p® divides some d; and ¢* divides another. So if W contains an element of

order p®q®, then )
either £ 2 ¢ (p*q”) or £ Z 0 (»") + 9 (¢").

Taking p® ¢°* = 23 7 = 56 rules out the representation w, of E;.
It remains to eliminate the cases

A,, 223 owfor2g5is(—-1

D, w, and o,
D24 o
For (D,, w,), i.e., the standard representation of S0(2¢), the 2/ weights are
+é&,..., T &. An element weW permutes the ¢, ,...,¢, and then changes an even
number of their signs. If we Wis to cyclically permute all the + ¢&/’s, its ““underlying
permutation” of {1, ..., ¢} must itself be cyclic, so renumbering ¢, .. ., ¢, the effect
of wis 6, —a, 5, a,=+1
£y —> 0585 a,==*1
£,—> a8 a,=t1,

with the auxiliary condition a, a, - -a,=1.Buta, *-- a, =1 insures that v fixes each
&;, so w/=1id, and so w cannot cyclically permute the 2¢ weights {+ &;},., .

For D,, the Weyl group contains no element of order 8 [indeed the preceding
permutation argument shows that if £ is a power of two, then the Weyl group of D,
contains no element of order 2£].

For the A4, case, we put n=¢ + 1. We must eliminate the A* (std. rep.) of &1 (n)
for n24, 2£i<n—2. By duality of A' with A"~%, the weights of A’ are just
the negatives of those in A", so it suffices to treat the case i = 2, 2i £ n. An element
weW is just a permutation of ¢,,...,¢,. The weights of A’ are the (¥) sums
Byt + &, Where 1S n(1) <m(2) <--- £n. Write w as a product of disjoint
cycles (including cycles of length one!) arranged in decreasing length; after
re-numbering, w becomes

(1’2""’d1) (dl+1""’d1+d2)“'(d1+'”+dr—1+1""’dl+'“+dr)’

with d, 2d, 2 - 2d, and d{ + - +d,=n. If w is not a single cycle, i.e. if
rz2,then 2(dy +--+d,_)=n, sod +---+d,_, =i Therefore in A’ the orbit
of ¢, +&,+-+¢ under w contains only weights which involve none of
the last d, variables. Finally, if w is a single cycle, i.e. if r=1, then w"=1, but
dim(A) =) >n for 2Lisn—2 (“binomial coefficients increase toward the
middle”). Q.E.D.
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(3.2.8) Corollary. Let G be a non-trivial connected semi-simple group over k, p:
G — %L (V) a CM-representation of G. Then G=1G;, V=Q V;, p=® p; where
each (G,, p,) is one of the following:

FL (n), p;=std. or its contragredient
Fp(n), p;=std. if n; even

and where the n; are pairwise relatively prime and = 2. In particular, if p is not
isomorphic to the tensor product of two strictly lower-dimensional representations of
G, then (G, p) is one of

F&L(n), p=std. orits contragredient
S4h(n), p=std. if n even.

(3.2.9) CM Criterion. Let k be an algebraically closed field of characteristic zero, V
a k-vector space of finite dimension n 2 2, G < ¥ L (V) a Zariski closed subgroup of
the special linear group, H = G a Zariski closed subgroup of G,and H . = H a Zariski
closed normal subgroup of H.

A. Suppose that

(1) G is connected

(2) H, is a connected torus

(3) as representation of H, , V is the direct sum of n distinct characters of H, .

(4) there exists an element he H whose action on H . by conjugation cyclically
permutes the n characters of H, acting on V.

Then G is semi-simple, G acts irreducibly on V, and V is a faithful CM-
representation of G.

B. If in addition we suppose that

(5) asrepresentation of H, V is not isomorphic to the tensor product of two strictly
lower-dimensional representations of H whose dimensions are relatively prime,

then G is simple (i.e., Lie(G) is simple).

Proof. Conditions (3) and (4) guarantee that H acts irreducibly on V. Therefore G
acts irreducibly on ¥, so by (1) G is a connected irreducible subgroup of & (V),
whence G 1s semi-simple (cf. [Ka-3], 11.5.3.2). Now consider the decomposition of
V as the direct sum of the » one-dimensional eigenspaces ¥V, for the » distinct
characters x4, ..., x, of H, which occur in V:

V=®V,, H, actson V; by yx;.

Because x;, ..., x, are distinct characters of H , , the centralizer Z,(H )of H, in G
maps each V; to itself, and any element in the normalizer N;(H,) of H, in G
permutes the V;, i.e., in terms of any basis v,,...,v, of ¥V with v;e¥;, we have

Z;(H,) = G n(diagonal matrices)
Ng(H ;) < G n(permutation-shape matrices).

Now let T'< G be a maximal torus of G which contains the torus H , . Because T
centralizes H,, we have T« Z;(H,), whence T < G n(diagonal matrices). By
maximality, we must have

T = (G n(diagonal matrices))°.
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This explicit description of 7 makes it clear that
G N (permutation-shape matrices) < Ng(T).

The torus T acts on the V; by n distinct characters (because H, < T, and these
characters are already distinct on T). Therefore replacing H, by T, we find

N;(T) = G n(permutation-shape matrices),
whence we have
Hc< N;(H, )< G n (permutation-shape matrices) = Ng (7).

Therefore if h € H cyclically permutes the n characters y; of H, in V, the matrix
of h is (after suitably ordering the y;) of the shape

00 - 0 *
*0 00
O’k -
.0 .
00 *0

Therefore this same % cyclically permutes the » distinct characters of T which occur
in V. This proves 4. Part B follows from A and part (1) of (3.2.6). Q.E.D.

(3.2.10) Corollary. If hypotheses (1), (2), (3), (4), (5) of 3.2.9 all hold, then either

G=92V)
or

V is even-dimensional, and there exists a non-degenerate alternating form
<, >:VxV -k onV with respect to which G= %V, < , >).

3.3. Remarks and questions on CM-representations

(3.3.1) Let® beasimple Lie algebra, and V' a faithful irreducible representation of
®. In view of our explicit determination of which ¥’s are CM, a glance at the tables
shows that

(3.3.1.1) VisCM<dim (V) = h, the Coxeter number of &. (And when Vis CM, it
is CM of type ¢ where ¢ € Wis any Coxeter element). Can this equivalence be proven
a priori?

(3.3.2) If we make use of the classification (cf. [Ka-3], 11.6) of ¥’s which are
irreducible when restricted to the “principal &8(2)” of ®, we obtain the
equivalence

V is minuscule and

(3.3.21) Vis CM<= { V is irreducible for the principal &1(2) in &.

Can this equivalence be proven a priori?
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IV. Application to global differential galois groups
4.1. The main theorem

(4.1.1) Let & be a field of characteristic zero. X/k a proper smooth geometrically
connected curve over k, S < X a finite set of closed points of X, U= X — S, K= k(X)
the function field of X. We suppose that U(k) is non-empty.

(4.1.2) Lemma. Let V and W be objects in D.E.(U/k), and let L/k be an over-field
of k.
(1) There exists an isomorphism V=W in D.E.(U/k) if and only if there

exists an isomorphism V()? L~ W()? LinD.E. (U@ L/L).

) Hom, g g (V, W)@ L — Homp, <V(>:) LW® L).

Proof. Interpreting Homp, p o (V, W) as HJ(Ulk, V¥ ® W), we see that
formation of the Hom commutes with arbitrary extension of scalars k — L. We may
suppose ¥ and W have the same non-zero rank n, otherwise there is nothing to
prove. For any point x € U(k), we have an injective k-linear map

Homy, g ) (V, W) < Hom, (V(x), W(x)),
¢~ o),
and ¢ is an isomorphism if and only if ¢ (x) is. Pick basese,, ..., e, of V(x),1,..../,
of W (x), so we can speak of the determinant of an element of Hom,,, (V (x), W (x)).
Then ¢ - det (¢ (x)) is a polynomial function on the finite-dimensional k-vector
space Z=Homy,p qu,(V, W). Because k is infinite, this polynomial function

vanishes identically (and so at every point of Z @ L)if and only if vanishes at every
point of Z itself. Q.E.D.

(4.1.3) We say that V is self-dual if it admits an isomorphism with its dual. By the
above Lemma 4.1.2, this notion is invariant under field extension.

(4.1.4) Main theorem. Let V be an object of D.E.(U/k) of rank n = 2. Suppose that

(1) det(V) is trivial

(2) there exists a rational point s € S(k) such that the slopes of V ® K, are all
equal to rin for some integer r = 1 prime to n

(3) there exists an embedding k — C for which the geometric monodromy group
G ono 0f (V) on (Ug)™ is connected.

Then

(1) Ifnis odd, V is not self-dual.

(2) If n is even, and if V is self-dual, the space Homy, g 0, (V, V™) is one-
dimensional over k, and every non-zero element, viewed as a bilinear form on V’, is non-
degenerate and alternating.

(3) For any k-valued fibre-functor w on D.E.(U/k), the differential galois group

Go=Gyu(V,0) c 9L (w0 (V) = 9% (n) is given by

G = S%(r)  neven and V self-dual
#7122 (n) if not.
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Proof. We first reduce to the case when k= C and the embedding k<~ C is the
identity. Suppose the theorem true over C. Then by Lemma (4.1.2), parts (1) and (2)
hold over the subfield k<> C. Therefore, over k we have a priori inclusions
G P L(m if V is not self-dual, G, F%(n) if V is seli-dual. That these
inclusions of k-groups be equalities may be checked after extending scalars from &
to k, so the question is independent of the choice of k-valued fibre-functor w.
Threfore we may take for w “fibre at x € U (k). By (1.3), G, doesn’t change when
we extend scalars, i.e., we have G, (Ve, xc) = Gy (V, x)@ C, so we may reduce
to k=C.

Suppose now & = C. Because det (V) is trivial, G, liesin &% (n). Because G0,
is connected, G, is connected (1.2.5.2). We apply (3.2.9)to G = G, H= G, — the
imagein G, of the inertia group /,at s, H , = theimage of I, Because V' ® k, has
slopes of exact denominator #, it follows from (2.6.6) that conditions (2), (3), (4),
and (§) of (3.2.9) are satisfied [as is condition (1), the connectedness of G, c.f.
above]. Therefore by (3.2.10), G, is ¥ & (n) for n odd, and is & £ (n) or Y%(n) for n
even. Conclusions (1) and (2) are immediate consequences of this list of possible
Ga's. Q.E.D.

3

(4.1.5) We now give some ‘‘concrete’” examples to which the Main Theorem
applies. All our examples occur on U= X — S with X =P, because it is only on
P! — § that we know any “‘checkable’” conditions which guarantee the connectness
of G one, the Zariski closure of the monodromy group.

(4.1.6) Theorem. Let k be a field of characteristic zero, T < A' (k) = k a finite set
of rational points of Ay , U= A; — T=P} — {0, T}. Let VinD.E.(Ujk) have rank n
2 2, and suppose

(1) det(V) is trivial

(2) at oo, all the slopes of V ® K, are r[n, with (r,n)=1

(3) at every point teT, V is regular singular (i.e., all its slopes =0) and its
exponents (cf. [Ka-6], 12.0) all lie in Z.

Then c S%(n)  if nis even and V is self-dual
= V2L (n) if not.

Proof. By the invariance property (1.3.2) of G, under field extension, we may first
replace k by an absolutely finitely generated subfield &, over which everything is
defined, then embed k, <~ C to reduce to the case k = C. The point then is that
condition (3) means precisely that the Jocal monodromy around each point t e T is
unipotent. Because n, (C — T, x) is generated by these local monodromies and all
their conjugates, its image in 4.4 (n) is generated by their unipotent images, and
therefore the Zariski closure of this image, G, ,,, is connected. Now apply the Main
Theorem (4.1.4). Q.E.D.

Here are two minor but useful variations on the preceding theorem.

(4.1.7) 'Theorem Let k be a field of characteristic zero, T < A' (k) =k a finite set
of rational points of AL, U=AL—T=P; —{o0,T}. Let V in D.E.(Ufk) have
rank # 2= 2, and suppose

(1) det V is trivial

(2) at w0, all the slopes of V ® k,, are r[n with (r,n) = 1.
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(3) at every point teT, V is regular singular

(4) at all but at most one point of T, all the exponents (cf. [Ka-6], 12.0) of V lie in
Z, and there exists an integer N 2 1 with (n, N) = 1 such that at every point of T the
exponents of V lie in (1/N)Z.

Th

e _ &) ifnis even and V is self-dual
B PP (n) if not.

Proof. Asin the proof of (4.1.6) above, we reduce easily to the case k = C. We need

only treat the case when there is an exceptional point ¢, € T. Consider the finite etale

py-covering Uy — U defined by (x — #,)'""; via (x — 1,)'"" as coordinate, we
have Uy = A' — n =1 (T). The inverse image n* ¥ of ¥ on Uy, is easily seen to satisfy
all the hypotheses of (4.1.6) (it is in checking (2) that we need (n, N) = 1), and hence

Ip(n)  if nis even and n* V is self-dual
L& (n) if not.

In view of the obvious inclusions

Gu(m* V) Gy (V) =L Z (n),

Ggal(n* V) = {

the asserted theorem is obvious except in the case when 7 is even and n* V is self-
dual; in that case we have

Gu(*V)=Sp(n) = Gu (V) =« S Z ().

In this case we use the fact that G, (n* V') is a normal closed subgroup of finite index
dividing N (1.4.5) in G, (V). Then G, (V)= G has G°=9%(n), and G acts on
G° =% (n) by conjugation. Because every automorphism of #%(n) is inner, and
the standard representation of F%(n) is irreducible, we have G « %%(n) - (scalars).
Because G« & (n), we have G < %%(n) - p,. Because the index of ¥%(n) in G
divides N and (n, N) =1, we have G = #%(n), whence G = F%(n). Q.E.D.

(4.1.8) Theorem. Hypotheses and notations as in the previous theorem (4.1.7), let L
be a rank-one object of D.E.(U/k), and denote by

reG,=%2Q1)

the Gy, for L itself (concretely, I' = G,, unless L®Y s trivial for some integer N 2 1,
in which case I = py for the least such N). Then G, (V ® L) is given by

GuVRL)=G, (V) Tc%Z(n)
Ip(n)- I  ifnis even and V is self-dual
FLn-TI if not
Proof. The differential galois group of V' ® L is a subgroup K of G, (V) x G, (L)
which projects onto each factor. We claim that K is equal to this product. Because
G (V) iseither &L (n) or F4(n), G,y (V) is equal to its own commutator subgroup,
while G, (L) is (trivially) commutative. Therefore the commutator subgroup

[K, K] of K is equal to G, (V) x {1}; because K maps onto G, (L), we must have
K=G (V) x Ggy(L).
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If we now view V' ® L as an object of (V'@ L, its G, (V' ® L) is the image of
K= G, (V® L) in the corresponding representation p of K, which is the composite
homomorphism

K=Gu(V® L) Gpuy(V) x Gy (L)

~
~
~
~
~

P \\\\Ggal(V) ' Ggal(L)

~
~

N
G (n).
Because K=G (V)X Gpu(L), we find p(K)=G (V) Gpy(L), as asserted.

Q.E.D.
4.2. FEquations of Airy type on A!

(4.2.1) Let k be a field of characteristic zero, Al = Spec(k[x]) the affine line
over k,

4.2.1.1) a=%,

and

4.2.1.2) 9 = k|x, @) the Weyl algebra.
Given a polynomial

(4.2.1.3) P(x)=Y ax' ek([x],

we denote by

4.2.1.9) P =) ad

the corresponding constant-coefficient differential operator on A}.

(42.2) Let n=z1 and m=1 be strictly positive integers, P,(x) and Q,,(x)
polynomials in & [x] of degrees n and m respectively. The differential operator on A}
defined by

(4.2.2.1) P (0)+ On(x)e2

will be called an Airy operator of bidegree (n, m). The corresponding cyclic object
D% (P, (8) + Q,(x)) of D.E.(A}/k) will be an Airy D.E. of bidegree (n, m); its rank
as D.E. is n, and all of its slopes at co are equal to (n+ m)/n.

(4.2.3) If n=2, the determinant of the Airy equation corresponding to the Airy
operator

4.2.3.1) PO+ Q,(x)=a,0"+a, " '+ + 0,(x)
is the cyclic D.E. of rank-one corresponding to the constant-coefficient operator

(4.23.2) 0+ (ay-1/an)-
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(4.2.4) Forany a ek, and any Airy operator P, () + Q,,(x), the tensor product of
the rank-one D.E.

4.2.4.1) L(@)=2/2( + )
with the Airy D.E.

(4.2.4.2) D/2 (P(0) + Qm(x))
is the Airy D.E.

4.2.4.3) DD (P, (0 + o) + O, ().

(4.2.5) Finally, recall that on A}, the group (under ®) of isomorphism classes of
rank-one D.E.’s is isomorphic to the additive group underlying k& [x], with fe k [x]
corresponding to 2/9 (0 + f). Because this group is torsion-free, the differential
galois group of an object 2/2 (0 + f) is equal to G, if f+ 0, and to {1} if f=0.
Because the group of rank-one D.E.’s is uniquely divisible, being a k-vector space,
we may speak of fractional powers of its elements. Putting all this together, we find

(4.2.6) Lemma. Let V be an Airy D.E. on A} of bidegree (n, m).

1) fn=1, then G, (V)= G,,.

(2) If nz 2, then V may be written uniquely in the form V ~V, ® L, where V,,
is an Airy D.E. of bidegree (n,m) whose determinant is trivial, and where
L=(det(¥)''". In terms of the Airy operator

Pn(a) + Q,,,(x)=a,,6"+a,,_1 6"_1 +o + Qm(x)
defining V, V, is defined by the Airy operator
P,(0—(1/n)(a,-1/a,)) + Qn(x),
and L is defined by the first order operator

o+ (1/n)(a,-/ay,).
(4.2.7) Theorem. Let

P(0)+ Qn(x)=a,0"+a,-1 "' + -+ 0, (%)

be an Airy operator of bidegree (n,m) on A', V the corresponding Airy D.E., and V,,
the Airy D.E. corresponding to the Airy operator

P, (0 —(I/n) (an/a,-1)) + Qu(X).
Suppose that n and m are relatively prime. Then the G, of V is given by
1) ifn=1G,=G,
(2) ifnz3isodd, Gy = {
(3) if nis even, then
S4(n) ifa,_,=0andV, is self-dual
G (n) if a,-, £0 and V, is self-dual
SELn ifa,.,=0andV, is not self-dual
YLy ifa,_,+0andV, is not self-dual,
where $5%(n) = G,, - S4(n) denotes the group of symplectic similitudes.

SLn ifa,_ ;=0
%% ifa,_,+0

Gp=
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Proof. If n =1, the fact that m = 1 insures that V' is a non-trivial rank-one D.E. on
Ai, so its G, is necessarily G,,.

Ifn22, wewrite V=V, ® Lasin (4.2.6). Because n and m are relatively prime,
the slopes of ¥, at oo are all (n + m)/n, of exact denominator n. So we simply apply
(4.1.6) to V,, and then combine this with (4.1.8). Q.E.D.

In general, we do not know how to decide whether or not V,, is self-dual when nis
even. The next corollary gives a sufficient condition.

(4.2.8) Corollary. Hypotheses and notations as in the Theorem (4.2.7)
above, suppose in addition that n is even and that the polynomial in @,
P, (0 —(1/n)(a,_,/a,)), is a polynomial in 07 (i.e., it is invariant under 8 —» — 0, or
equivalently, it is formally self-adjoint). Then V, is self-dual, and (consequently) the

G, of V is given by By ifa, =0
— n—17—
G = {?yﬁ(n) if a,_; +0.

Proof. The auto-duality of V;, is immediate from the compatibility (1.5.3) of formal
adjoint and dual. The determination of G, for ¥ then results from the theorem
(4.2.7). Q.E.D.

gal

(4.2.9) Example. Fornz2,m=1,Aek™, and n and m relatively prime, the Airy
D.E. given by 0" + Ax™ has G, equal to & # (n) for n 0dd, and to #%(n) for n even.
In the case m =1, we have a converse to the above Corollary (4.2.8).

(4.2.10) Corollary. Hypotheses and notations as in the Theorem (4.2.7)
above, suppose in addition that n is even, m=1, and the polynomial in 0,
P, (0 —(1/n)(a,-/a,)) is not invariant under & — — 0. Then V,, is not self-dual, and
(consequently) the Gy, of V is given by

G - {yy(n) ifa, =0
# VgL ifa,_, +0.
Proof. We know by (1.5.3) that the dual of V, is the Airy D.E. corresponding to the
Alry operaor Py(=0 = (1/1) (@ 1/a,) + O ()
by hypothesis this operator is not a k*-multiple of the Airy operator
P (0 = (1/n)(a,-1/a,)) + @ (X)

which gives rise to Vj, itself. The required result is then the special case m = 1 of part
(2) of the following proposition.

(4.2.11) Proposition. Let A, and A, be two Airy operatorson A}, andlet V, and V,
be the corresponding Airy D.E.’s on A} . Suppose that there exists an isomorphism
V,~V, of D.E.’s on A}. Then

(1) the operations A, and A, have the same bidegree, say (n, m).

Q) Ifn=1o0rifm=1,then A, =AA, for some Aek™ (i.e., Ay = A, if both A,
and A, are monic in 0).

Proof. We recover the bidegree (;, m;) of 4;) of 4, from the isomorphism class of ¥,

by the rules n, = rank (V)), (#; + m;)/n; = the unique slope at co of V;. This proves
(1). Assertion (2) is obvious for n =1 (c.f., the above discussion of rank-one D.E.’s
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on A}), and follows from this case for m =1 by formal Fourier transform (the
automorphism (x — 0, d — —x) of the Weyl algebra), which interchanges Airy
operators of bidegree (n, m) with those of bidegree (m,n). Q.E.D.

4.3. An open problem

If we suppose only that nand m are relatively prime, does it remain true that V', ~ ¥,
implies 4, = A 4, for some A € k * ? This can be proven (by brute force) if n = 2 (and
so for m =2 by Fourier transform), but the general case remains unclear. On the
other hand, if we drop the requirement that n and m be relatively prime, V, ~V,
need not imply the k *-proportionality of 4, and 4,. Here is a simple counter-
example: pick aek, a + —1, and consider

A, =0%-x—a
A, =3 —x'—2—q.

Direct calculation shows that if e is a cyclic vector for V; with ¢” = (x*>+ a)e
then xe + €’ is another cyclic vector for V, which satisfies (xe + ') = (x?+ 2+ a)
(xe + ¢’'). Therefore if f is a cyclic vector for ¥V, with /"= (x?+2+a)f, then
S~ xe+ e’ defines an isomorphism V, —— V.

4.4. Equations of Kloosterman type on G,,

(44.1) Let k be a field of characteristic zero, G, ,=Spec(k[x,x!]) the
multiplicative group over k,

d
44.1. =X -
(4.4.1.1) D=x_,
Dif¢ =k [x,x~1, D] the ring of differential operators on G,, .

Given a polynomial

4.4.1.2) P(x) =Y a;x' ek(x],
we denote by
(4.4.1.3) PD)=YaD'

the corresponding constant-coefficient (w.r.t. D) operator on G,, .

(44.2) Letnz1and m21 be strictly positive integers, P, (x) € k [x] a polynimial
of degree n, and Q,,(x) € k [x] a polynomial in & [x] of degree m with Q,,(0) = 0. The
differential operator on G,, , defined by

4.4.2.1) P,(D)+ 0, (x)

will be called a Kloosterman operator of bidegree (, m). The corresponding cyclic
object Zift|Dett (P, (D) + @, (x)) of D.E.(G,, \/k) will be called a Kloosterman
D.E. of bidegree (n, m); its rank as D. E. is n, all of its slopes at co are equal to m/n, it



On the calculation of some differential galois groups 57

has a regular singular point at x = 0 and (because Q,,(0) = 0) its exponents (cf. [Ka-
6], 12.0) at x =0 are the zeroes of the polynomial P,(x).

(4.43) On G, ,, the group (under ®) of rank-one D.E.’s is the quotient
kx,x 'YZ, with fek[x,x~ ] mod Z corresponding to 2t/ Dit¢ (D + f). (The
isomorphism between Zef/Pit¢ (D + f) and Dett|Dit¢ (D + f+n) is given by
“multiplication by x"".)

(4.4.4) If n = 2, the determinant of the Kloosterman D.E. corresponding to the
operator

(4.4.4.1) P(D)+Q,(x)=a,D"+ a,_; D" 14+ Q,(x)
is the cyclic D.E. of rank-one corresponding to the constant-coefficient operator
4.4.4.2) D+(a,_/a,).

(4.4.5) For any a €k, and any Kloosterman operator P,(D) + Q,,(x), the tensor
product of the rank-one D.E.

44.5.1) K(o) = Dottt | Doty (D + «)
with the Kloosterman D.E.

(4.4.5.2) Ditt | Digf (P, (DY + Q,,(x))

is the Kloosterman D.E.

(4.4.5.3) Ditt| Ditt (P, (D + x) + Q) (%))

(4.4.6) Theorem. Let
P,(D)+ @ (x)

be a Kloosterman operator on G, ,, V the corresponding Kloosterman D.E. Suppose
that

(a) n and m are relatively prime

() if n = 2, all the zeroes of P,(x) lie in Z.
Then the differential galois group G, of V is given by

(1) l:fn'—: 1’ Ggal'__ Gm

(2) ifnz3isodd, Gy=SZ(n).

. _ SRy ifV is self-dual
(3) if n is even, G = {yg’ () if not.

Proof. If n =1, the fact that m = 1 insures that no strictly positive tensor power of
is trivial as D.E. on G,, , (i.¢., a polynomial in x of degree m = 1 is a non-torsion
element in & [x, x"']/Z), so the G, of V is necessarily G,,.

If n 2 2, the hypothesis that P,(x) has all roots in Z insures that a, _,/a,, being
+ (the sum of the roots), lie in Z, and hence that det (V) is trivial. It also insures that
at x =0, which is a regular singular point of ¥, all the exponents of V lie in Z.
Because » and m are relatively prime, the slopes of V at oo are ail m/n, of exact
denominator n. So we simply apply (4.2.6), with T={0}. Q.E.D.

(4.4.7) Corollary. Hypotheses and notations as in the Theorem (4.4.6) above,
suppose that n is even, and that for some integer a€ Z, P,(D + a) is a polynomial in
D2, Then V is self-dual, and (consequently) G, = % (n).
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Proof. Replacing D by D + a amounts to tensoring with the rank-one object K (a)
corresponding to D + a, which for a e Z is trivial. Thus we may reduce to the case
when P,(D) is a polynomial in D?, in which case the operator P,(D) + Q,,(x) is
formally self-adjoint in the sense of (1.5.3). The autoduality of ¥ then follows from
(1.5.3). Q.E.D.

(4.4.8) Corollary. Let n and m be integers z1, Aek™, and consider the

Kloosterman operator on G,, ;
D" 4+ ix™,
V the corresponding D.E. (We do not assume n and m to be relatively prime.) Then the
G, of V is given by G, P
G= {FL ) fnz3isodd
4 (n) if n is even.

Proof. We easily reduce to the case k= C (compare (4.1.6)).
If m =1 (indeed if m is prime to n), this a special case of (4.4.6~-7). Consider the
Kloosterman operator D" 4 Ax

on G, ;, and the corresponding D.E. W. Under the finite etale g, covering n:
G, — G,, given by x — x™ we have
W=V,

so, by (1.4.5), G, (V) is an open subgroup of finite index in G, (W). By the result
with m =1, applied to W, we see that G, (W) is connected, s0 Gy (V) = G (W) is
as asserted. Q.E.D.

4.5. A special class of Kloosterman equations on G,

(4.5.1) We continue to work over a field & of characteristic zero. Fix an integer
n=1. Given an element A ek *, and elements a,, ... a, in k, consider the Klooster-
man operator

(4.5.1.1) f[ D —a)+ ix,
i=1

and the associated Kloosterman D.E. on G, ,, which we denote
(4.5.1.2) Kll(al,...,a,,,).
(4.5.2) Proposition. There exists an isomorphism

Kl (ay,...,a,)~KL (b,,...,b,)

in D.E.(G,, ,/k) if and only if both of the following conditions are satisfied:

(1) A=pin k*

(2) after possibly renumbering the b’s, we have a,— b,€Z (inside k) for
i=1,...,n

Proof. To prove the “if” direction, it suffices to exhibit an isomorphism

Kl (ay,...,a,) «— Kl,(a, +1, a,,...,a,).
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In terms of the standard cyclic vector e for K1, (a,, ..., a,), which is annihilated by
n
H (D - ai) +4x,
1

one verifies easily that (D — a,)e is another cyclic vector for Kl (a,,...,a,), and
that (D — a,) e is annihilated by

D—-a, -1 I’i[z D —a)+ Ax.
Therefore if we view each Kl as Z¢¢/Pe¢f (the Kl, operator), then right
multiplication by D —a, defines the required isomorphism. [The inverse
isomorphism is right multiplication by (—1/Ax) ﬁ D -a).]
Suppose now that we are given an isomorphii:ril
Kl (ay,....a,) =K1, (by,...,b,).

Dropping first to an absolutely finitely generated subfield &, of k over which this
isomorphism is defined, and then embedding &, in C, we may reduce to the case

k = C. Then the » eigenvalues of “‘local monodromy around x=0" of Kl,(ay, ..., q,)
are the n numbers exp(—2nia;), j=1,...,n (cf. [Ka-6], 12.0). Therefore the g
mod Z are determined by the isomorphism class of K, (a, ..., a,). Consequently,

if Kl,(ay,...,a,)~Kl,(b;,...,b,), then after renumbering the b’s we have
a;=b,modZ. Using the ‘“if” part, we may construct an isomorphism
KL (b,,...,b,) =Kl (ay,...,a,). Thus we obtain an isomorphism

Kli(ay,...,a,) =Kl (ay,...,a,).

We must prove that A=pg. But in terms of the multiplicative translation
automorphisms 7},: x — ax of G,, ; given by each x ek ™, we clearly have

(T, 0*Kl(as,....a,)=Kl (ay,...,a,),

. d . L . .
simply because D=xd— is translation-invariant on G,,. Thus we obtain an
isomorphism *

(T

H

/1)*Kl}.(a1a'--9an):Kl}.(a1’--~aan)'

Because V=K, (a,,...,a,) hasIrr , (V) =1, and is irreducible at co (because it has
rank #, and all slopes 1/n at 00), the existence of the above isomorphism contradicts
(2.3.8.2) unless g/A=1. Q.E.D.

(4.5.3) Theorem. Fix an integer n> 2, an element Ack™, andn elementsa,,...,a,
in k.
Suppose that
(1) there exists an integer N 2 1 prime to n such that
Na;eZ for i=1,...,n

(2 Y a liesinZ.
i=1
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Then the G, of Ki,(ay,...,a,) is given by

|2y ifnis even and {a;mod L} = { ~a;mod Z}
=) PP (n)  otherwise.

Proof. In view of (4.5.2) above, this is just an application of (4.1.7). Q.E.D.

(4.5.4) Variant. Notations as in the above theorem, suppose only that there exists
an integer N 2 1 prime to n with all Na;eZ fori=1,...,n. The ) a; liesin (1/n) Z.
Because N is prime to n, there exists an element b € (1/N)Z, unique modulo Z,
which satisfies

Y a,—nbelZ.

In terms of the rank-one D.E.

K (b) = Datf| 2ty (D — b),
we have
Kl(a,,...,a,)~ Kl (@, ~b,...,a,— b)) ® K(b).

ForKl,(a, —b,...,a, — b), all the hypotheses of (4.5.3) are verified. For K(b), G,
is the unique subgroup “{e2#>” of u, of order the exact denominator of b mod Z.
So by (4.1.8) we find that Kl,(a,,...,a,) has G, equal to

(e S (ny if nis even and
{a;—bmodZ} = {b— a,mod Z}
ety P &L (n) if not.

Appendix: A table of analogies

Connected smooth curve
C over C,
with marked point “c0”

D.E.on C— 0

Ggal

“Regular singular” at oo

Local diff. galois group I,
with its upper numbering
filtration

The subgroup I+ of I,

I'°*) is a connected torus;

every rep'n is a @ of characters,
every char. of finite order is
trivial

Slopes at

Irregularity at oo

Deligne’s Euler-Poincaré formula
([De-11, 11, 6.21)

“Canonical extension” to G,,
of a D.E. on a punctured formal
nbd. of c©

connected smooth curve C over
an algebraically closed field of
characteristic p > 0, with
marked point “c0”.

lisse Z-adic sheaf on C — o0,
for £ % p, i.e., an /-adic
rep'n. of n, (C— c0).

G 4 7ariski closure of Im(p).

geom

tamely ramified at co.

inertia group /I, with its
upper numbering filtration.

the wild inertia subgroup P, of /.
P, is a p-group; every rep’n of
dim < p is @ of char.’s,

every character of finite order <p
is trivial.

breaks at co.

Swan conductor at co.

Grothendieck’s Euler-Poincaré
formula.

“canonical extension” to G,,
of a lisse sheaf on a punctured
formal neighborhood of oo,
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