On a Theorem of Ax

Nicholas M. Katz
American Journal of Mathematics, Vol. 93, No. 2. (Apr., 1971), pp. 485-499.

Stable URL:
http:/links.jstor.org/sici ?sici=0002-9327%28197104%2993%3A 2%3C485%3A OA TOA %3E2.0.CO%3B2-W

American Journal of Mathematicsis currently published by The Johns Hopkins University Press.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journal g/jhup.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archiveisatrusted digita repository providing for long-term preservation and access to |eading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It isan initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Mon Oct 15 13:00:22 2007


http://links.jstor.org/sici?sici=0002-9327%28197104%2993%3A2%3C485%3AOATOA%3E2.0.CO%3B2-W
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/jhup.html

ON A THEOREM OF AX.

By Nicmoras M. Karz.

0. Introduction.

0.0. Let & be a finite field of characteristic p, having ¢ = p® elements.
We will be concerned with estimating the number of simultaneous zeroes of
a collection of polynomials in several variables over k, when the number of
variables is suitably large compared to the degrees of the polynomials.

In order to formulate our result, it is convenient to introduce some
notations. For any non-empty finite set 8, let k[S] denote the polynomial
ring on variables indexed by S, and put 45 = Spec(k[S]). Consider a family
of non-constant polynomials f; in k[S] indexed by a second non-empty finite
set T, i.e., a mapping

f: T— the set of non-constant elements of k[S]
1€ T—f;€ k[S].
We put d; = degree (f;).

To such a family of polynomials, or, as we shall say, to a triple (8, T,f)
as above, we attach

0.1. the closed subscheme V(S,T,f) of AS defined by the annullation
of the f;, 1€ T.

0.2. the integer N(S, T, f), defined as the number of points of V(S, T, f)
with values in k.

0.8. the integer u(S,T,f), defined as the least non-negative integer
which is =
Card (§) — Syerd;
sup;ser(d;) ’

The purpose of this paper is to prove
TuEorREM 1.0. N (S8,7T,f)=0modulo g5 T:1,

The idea of obtaining a p-adic congruence for N(S,T,f) is due to
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Warning [10], who proved that if w(S,T,f) >0, i.e., if Card(S) > Sierd;,
then
N(S,T,f) =0modulo p

Warning also obtained a striking (and best possible) archimedean lower bound
for N(S,T,f): it N(8,T,f) =1, then

N(8,T,f) = qCard($)-2a:,

Ax [1] proved 1.0 for hypersurfaces (i.e. Card(7’) =1). As a corollary,
he obtained the following congruence in the general case:
Let A(S,T,f) be the least non-negative integer which is =

Card(S) — 3ierd;
Sierds )

Then N (8, T,f)==0modulo ¢A&T:7,

- The possibility of replacing A(S,T,f) by n(S,T,f) was suggested by
Deligne’s calculation [2] of the “Hodge level” of a projective smooth com-
plete intersection. As an application of 1.0, we give below (cf. 2.8) a
connection between the Hodge level and the p-adic divisibility properties of
the proper values of Frobenius operating on the [-adic etale cohomology of
such a variety [cf. also [V], pp. 164-170].

The body of the paper is devoted to the proof of 1.0. The proof is
based entirely on Dwork’s p-adic theory of the zeta function, via certain
completely continuous endomorphisms of (infinite-dimensional) p-adic Banach
spaces (cf. [8] and [9]). It depends upon giving suitable bounds on the
(operator) norms of these endomorphisms.

The paper concludes by showing that 1.0 is best possible in a suitable
sense. The method is to reduce to the case of hypersurfaces, where the result
is due to Ax [1].

2. Applications to complete intersections.

R.0. Let X be any scheme of finite type over k. By the degree of a
closed point g of X, written deg(p), we mean the degree of its residue field
E(p)/k. The zeta function of X /k may be defined as an element of Z[[¢]]
by the formula

Z(t, X/k) =11 (1 — tdes®)-1,
8
Fixing an algebraic closure % of %k, we denote by %, the unique extension

of k in k of degree s. An elementary calculation then shows that, denoting
by ” the operation of differentiation with respect to ¢, one has
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Z'(t, X/k)

Z(t,X/k)

By [8], the zeta function is a rational function, to which applies Fatou’s
theorem [5]:

— 3 Card (X (ky) ) 7,

THEOREM 2.1. If the power series around zero of a rational function
lies in 1 4-tZ[[¢]], then every one of its zeroes and poles is the reciprocal
of an algebraic integer.

We recall from [1] the following proposition:

ProrosiTioN 2.2. Let X be a scheme of finite type over k, and p a
positive wnteger. The following statements are equivalent:

2.2.1. The reciprocal of every zero and pole of Z (¢, X/k) is of the form
g* (an algebraic integer).

2.2.2. For each integer s =1, one has Card (X (ks) =0 modulo ¢*.

2.2.8. Z(t,X/k) € Z[[q"t]].

Thus 1.0 may be restated:

TaEOREM 1.0bis. The reciprocal of every zero and pole of

Z(t,V(8,T.f)/k)
s of the form
g“STN  (an algebraic integer).

2.3. We now recall the connection of the zeta function to the [-adic
étale cohomology. We denote by X the k& scheme X,k deduced from X by
extension of scalars, and, for each prime number [ £ p, we denote by H(X, Qr)
the [-adic cohomology groups, with compact supports, of X. These are finite-
dimensional Qr-vector spaces on which the galois group Gal(k/k) operates.

Let & denote the inverse of the canonical generator (z-— 2?) of Gal( k/k) ;
one has the fundamental relation [6]

R.3.1 Z(t, X/k) =11 [det (1 — 13 | Hi (X, Q))]ev™,

Suppose now that X/k is a projective and smooth complete intersection of
dimension n. We denote by

Prim™ (X, Q)

the primitive (in the sense of Hodge-Lefschetz theory, cf. [2]) subspace of
H(X, Q) (the subscript “c¢” is now superfluous, as X/% is proper). Using
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the known cohomological structure of projective smooth complete intersections,
(2.8.1) may be simplified to give
2.3.2 {Z (¢, X/k) TT (1 —qit) } " = det (1 — ¥ | Prim"(X, Qy) ).

=0

(This shows, incidentally, that the proper values of & acting on Prim” (X, Qr)
are algebraic integers which are independent of the choice of the prime
number [5£p. Needless to say, this independence of choice of [ in general
is an open problem.)

Combining 2.8.2 with 2.1 and 2.2, we find

ProposiTION 2.4. Let X < PN be a projective and smooth complete
intersection of dimension n, Xy <> AN its affine cone, and w an integer,
0=u=n. The following statements are equivalent.

R.4.1. For every prime 1s£p, every proper value of & acting on
Prim® (X, Qy) 1s of the form

g* (an algebraic integer).

2.4.2. 2(4,X/k) TI (1 —q't) € Z[[g#4]].

2.4.3. For every integer s=1,

Card (X (k) ) = lth-é modulo g*%
R.4.4. For every integer s=1,
Card (X g (ks) ) = 0 modulo g~.

Consider now a triple (S,7,f) as in 0.0, which is homogeneous, in the
sense that each of the polynomials f;, 1€ T, is homogeneous. Putting P (S)
=Proj(k[S]), we denote by X (S,T,f) the closed subscheme of P(S)
defined by the annullation of the f;, ¢€ 7. Combining 1.0 and 2.4, we find

PropositioN 2.5. Let (8,T,f) be a homogeneous triple such that
X(S,T,f) is @ smooth complete thtersection of dimension

n= Card(S) — Card(T) —1.
Then, for every prime [ £ p, every proper value of & acting on
Prlm"(X'(S, T, f): QI)

is of the form
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q“STN (an algebraic integer).

2.5. We now explain the connection with Hodge cohomology. As before,
let X/k be a projective and smooth complete intersection of dimension n.
For each pair of positive integers (p,q) with p 4 ¢=mn, we define integers

hpyq(X) == dlmqu(X, mx/k).

These integers depend only on the dimension of X and on its multidegree [2].
We also define integers

ho??(X) = h#2(X) —38;,4, &= Kronecker’s §;

these are the dimensions of the primitive parts of the spaces He(X,Q%x).
We now define the “primitive Hodge co-level ” of X, v(X), to be the least
integer a such that he»me(X)s40; if he®me(X) =0 for every a, we put
v(X) =o. Deligne [2] has proven:

PropositioN 2.%. Let (S, T,f) be as in 2.5, and suppose that sup;er(ds)
=2 (so that X(8,T,f) is not a linear subspace of P(S)). Then

(X (8, T,f) =wn(S,T,f).
Combining 2.5 and 2.7 gives

TuroreM 2.8. Let X/k be a projective and smooth complete intersection

of dimension n. Then every proper value of & acting on Prim"(X, Qy) is of
the form

@@ (an algebraic integer).

The theorem is vacuous in case X is a linear subspace of projective space,
as Prim”(X, Q) is then reduced to zero.)

We conclude this section by formulating a conjecture generalizing 2.8,
whose truth in the case of hypersurfaces (of degree prime to p) is due to
Dwork [4, p. 286]. Recall that the p-Newton polygon of an element
igoaitiel[t] is the convex closure in R X R of the points (4,ord,(a;)),

i—0,1, - -. ’

CoNJECTURE 2.9. Let X/k be a projective and smooth complete tnter-
section of dimension n. Then the Newton polygon of

det(1—¢F | Prim™(X, Qy))

is contained in (t.e. in the (z,y)-plane 1t lies above) the Newton polygon of

15
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IT (1— qot)he.
a=0
3. The proof of 1.0.

3.0. We begin by noting that it suffices to prove 1.0 for homgeneous
triples. Indeed, given a triple (S, 7, f), in which, to fix ideas, § =(1,- - -, N)
and 7= {1,- - -,r}, we introduce two homogeneous triples:

3.0.1. (&,T,f), in which

& ={1, -, N4+1}

fl = Xya®fi(X1/Xwas, + 5 Xn/Xwas) -
3.0.2. (8,T,f”), in which

"={1,--,r4+1}

]c¢//= f'ila i=1>‘ c T
.XN+1, ’i=T—I—1.

Thus V(S’,T,f) is the affine cone of the projective closure of V(8,T,f),
and V(8°,T",f”) the part of V(S’,T,f) which is “at infinity.” It follows
that

(@—1)N(S,T,f) =N(8,T,f) — N (&, T, 1),
while clearly
w(8,T,f) Zn(S,T7)
w(8, T, 1) Z (S, T, 7).

3.1. Henceforth, we consider only homogeneous triples (8, 7,f). From
such a triple we deduce, for each non-empty subset 4 C S and each non-empty
subset B C T, a homogeneous triple noted (4,B,fs,8), whose definition is as
follows: denote by p(S,4) the homomorphism

o(S,4): E[S]—>Ek[4]
defined by
_Jzy if jed
P(SJA) (37])‘— 0 if not.

The mapping fa,z is defined to be the composition
(8,4)

B> Ty [ §] > B[ 4]

fA,B
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We remark that the formation of fsz is transitive, i.e. that if
$~44'CACS and 4B CBCT,

then the triple (4’,B’,fa,p) is the triple (4’,B’, (fa,B)a,). We record
for later use the elementary inequality

3.10. w(4, B, f.5) 4 Card(8) — Card(4) = (8, T, )

3.2. We now “calculate” N(S,T,f). Let us denote by V*(S,T,f)

the open subset of V(8,T,f) where the function []z; is invertible, and by
i€8

N*(S8,T,{) the number of points of V*(S,T,f) with values in k. Clearly
we have

3.2.1. NS, T,f) =14+ X N*(A,T,far).
¢~ACS

In order to calculate N*(A,T,fsr), we introduce a field K of charac-
teristic zero which contains the p’-th roots of unity, and we choose a non-
trivial additive character

X: kr— uy(K).
The orthogonality relations
_Jg y=0
Sxe—{f 120
imply the formula (in which a finite set appearing as an exponent “means”
its cardinality)
3.2.2. ¢"N*(4,T,far) = (EW [T+ 2 X(zp(8,4) (fi) (2))].
x € (k¥
In order to simplify 3. 2.2, we introduce, for each homogeneous triple (8, T, f),
a quantity x(S,T,f) € K, defined by

3.%2.3. x(S,T,f) = > x( 2 zifi(z)).

2, ze(k*)T
Expanding the product in 8.2.2 and substituting, via 3.2.3, into 3.2.1,
gives the formula

3.2.4. NS, T,f) —14 L= T 7 #Acs o X(4,B, f,5).

3.4. We now turn to Dwork [3] to further study x(8, T,f). Denote by:
3.4.1. {, a primitive p’-th root of unity in an algebraic closure of Q,.

3.4.2. K the unramified extension of ,(¢,) whose residue field is k.
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8.4.2. g the ring of integers of K.

3.4.4. 7€ Gal(K/Qp(&)) the Frobenius automorphism of K.
Let B be the category whose objects are pairs
3.4.5. (L, @)

where L is a K-Banach space, and « a completely continuous [9] endomor-
phism of L as Q,(&,)-Banach space, which is = linear (i.e. for b€ K and
n€ L, a(by) =+(b)a(y)), and whose morphisms are K-linear continuous
maps compatible with the given endomorphisms. Notice that the o/-th iterate
o® of o is a completely continuous endomorphism of L as a K-space, (recall
that o = degree(k/F,) = degree(K/Q,(&))), whose trace verifies

3.4.6. | trace () | = | « |2,

where | || denote the operator norm of @,(¢,)-linear endomorphisms of L.
Dwork [3] attaches to each homogeneous triple (8,7,f) an object
(LS, T,f), a(S,T,f)) of B, in such a way that

3.4.7. x(8,T,f) = (¢g—1)5T trace(a (8, T,f)9).

8.5. In order to complete the proof of 1.0, we will attach to each
homogeneous triple (S,7,f) a second object (D(S,T,f),y(S,T,f)) of B,
such that

3.5.1. 1v(8, T, )| < | pTasT |

3.5.2. there is a finite filtration of (L(S,T,f),«(S,T,f)) whose associated
graded object is
(K,w) @ pY (D(A: B, fa),v(4, B:fA,B))
¢~ACS, $#BCT
Admitting for a moment 3.5.1 and 3.5.2, let us conclude the proof of
1.0. By 38.5.2, we have, for every pair of non-empty subsets 4 and B of S
and T respectively,

3.5.3. trace(a(4, B, fa,8)%) =14 > trace(y(4’, B, fa',5)%).
¢£A’ C A, $B'CB

Substituting 3. 5.3 into 3. 4.7, and using 3, 2. 4 gives, after an elementary
calculation, the formula

N(8,T,1)
3.5.4.

J——) —1 A+B S_A-Bt A, B’ e
! —i;#A gS:Etb#Bg.’[’(q )4 race (y ( fa,8)%)
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We conclude the proof of 1.0 by noting the inequality
3.5.5. | ¢%4-Btrace(y (4, B, f4,8)%) | = | ¢#ST:D |
which follows immediately from 3.4.6, 3.5.1, and 3.1.0.

3.6. We must now implement the program of 3.5, which will require
going back to the definition of (L(S,T,f),«(S,T,f)). To fix ideas, we
suppose 8= {1,- - -,N}, T'={1,- - -,r}.

3.6.0. Let = be a prime element of Ox (so that ord,(w) =1/p—1)

which is a zero of the power series in ¢

> pet

n=0

(there are p—1 possible choices of such a =~—we fix one).

3.6.1. Rather than directly define L(S,T,f), we first define the Ox-
module L(8,T,f) consisting of the elements  of L(S,T,f) having | 4| =1.

L(8,T,f) is that subring of Og[[#Zy,* * -, 7Zp, X1, + +,X~]] consisting
of those series

3.6.2. S Ay yxlVIZUXY

for each term of which

AU,VG Or
V= i,
3.6.3. 20— 2 uds
|[U| =3 w
ieT

L(S,T,f) is obtained by putting
3.6.4. L(8,T,f) =L(S,T,f) Qg K

and endowing it with the unique structure of K-Banach space for which
L(S,T,f) consists precisely of the elements » of L(S,T,f) having | | =1.
We note that multiplication of power series makes L(S,T,f) into a Banach
algebra.

-

3.6.5. For each integer v==0, we define L®(S,T,f) to be the free
Ox-module having as basis all monomials
wZUXV
verifying

€8 ieT

= 2 U

{eT

{2”’L=2uid~i
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We note for later use the decomposition (of Ox-modules)
3.6.6. L(S,T,f)=T1I L®(S,T,f).
y=0
We now turn to defining «(S,7,f), beginning with some preliminary defi-
nitions.

3.6.7. Let Fy,- - -, F, € Og[X4,* - -, Xx] be the unique homogeneous
polynomials of degrees ds,* - -+, d,, whose non-zero coefficients are all ¢—1-st
roots of unity, and which reduce modulo (#) to fi,- - *,fr€ B[Xy,- - -, Xn].
We write each F; as a sum of monomials

Fi=3A4y®X7,
We denote by F(¢) the Artin-Hasse exponential series
3.6.8. E(t) =exp( X p™*")
n=0

which, as is well known, lies in Z,[[t]]. (The element « of 3.6.0 was chosen
so that E (=) is a primitive p-th root of unity.) We define
H(S,T,f) € L(S,T, /)
by setting
3.6.9. H(S,T,f) =11 T1E(zAv9ZX7).
=1V .

We next define a completely continuous endomorphism, ¢, of L(S,T,f)
by

3.6.10. l[/( EAU’erlUlZUXV) = ZApU,pV x?lUIZUXYV,
Notice that
3.6.11. y(L(S,T,f) C II p? L™ (S, T, f).

v=0

Finally we introduce a r~*-linear automorphism, noted =2, of L(S,T,f),
by setting

3.6.12. (S Ay alVIZVXV) = 3+ (Ay,y=lVI) ZUXV.
We can now define a(S,T,f):

3.6.13. (S, T,f) =r2oyoH (S, T,f)
i.e. for 5€ L(S,T,%), '

“(S’T’f) (77) =T_1(‘/’(77'H(S:T)f)))'
Note that, as H(S,T,f) € L(S8,T,f), 8.6.11 gives
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3.6.14. a(8,T,f) (L(S,T,f)) € 11 pLO(S, T, f).
y=0
3.7. We can now define (D(S,T,f),y(S,T,f)).
3.7.0. Just as in 3.6.1, we first define the Og-module D (S, T,f) ; it is
the ideal of the ring L(S,T,f) consisting of those series
S AgyIVIZUXY
in which
3.7%.1. Apy=0 unless u;=1, 1=1,- - -,r and »,=1, 1=1,- - -, N.

Then we put D(S,T,f) =D(S,T,f) ®ox K, norming it so that D(S,T,f)
consists precisely of the elements n of D(S,T,f) having |4 | =1.

3.7.2. Viewed as a subspace of L(S,T,f), D(S,T,f) is stable under
a(8,T,f) ; we define y (S, T, f) to be the restriction of «(S, T, f) to D(S, T, ).

For each integer v=0, we put
3.7.8. D (S, T,f) =D(S,T,f) N LS, T,f);
we have the decomposition (of Ox-modules)
3.7.4. D(S,T,f) =”1;IOD(")(S, T,7).
From 3.6.14 we find B
3.%7.5. v(S,T,f)(D(S,T,f)) C ”1;[0 "D (S, T, f).
3.8. We can now prove
3.5.1. Iy (S, T,f) | = | pTS&TD |
Indeed, by 8.7.5, it suffices to prove
LeMmaA 8.8.0. If v < Card(T) + n(S,T,f), then
D (S, T,f) =0.
Proof. We must show that if ZUXVe D(8,T,f), then
3wz Card(T) + (S, T, ).
As ZUX7 € D(8, T, f), we have | -

’Lt/i,;l, 1€T
vu=1, 1€ 8
D vi= X wids

ieS 1eT
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Thus we find
Card(8) = X vi= X wids
ie8 ieT
=2 di+ X (wm—1)d;
ieT ieT
§.€2Td¢+supier(d¢) EZT (wi—1)
b = 3 di+ supier(di) [HZTui—Oard(T)]

whence
Card(9) —-Efd‘

Supie’."(d'i)
3.9. To establish 3.5.2 and finish the proof of 1.0, we first note the
direct sum decomposition of L(S,T,f):

3.9.0. L(8,T,fy==K+4 ¥  D(A,B,fapn)
644 CSOABCT

S = Card (T) +

ieT

Q.E.D.

according to which of the exponents of a monomial ZUXV ig strictly positive.

We next choose a total ordering < on the set of all pairs (4,B) where
A (resp. B) is a non-empty subset of § (rvesp. 1) which satisfies the following

property:
3.9.1. if AC A’ and BC B/, then (4,B) = (4',B’)

(such orderings do exist!). The desired filtration ¥ of L(S,T,f) is given
by the subspaces (using the isomorphism 3.9.0)

3.9.2. FAB(L(S,T,f))= S DA, B, fuz).
(4’,B")=(4,B)

One checks immediately that each of these subspaces is stable under «(8, T, f)
The desired filtration of (L(S,T,f),«(S,T,f)) is by the subobjects

(FA'B(L(S,T,f)),a(S,T,f)lFA*B(L(S,T,f))).

The desired decomposition 3.5.2 of the associated graded object now follows
directly from the definitions. THhis completes the proof of 1.0.

4. We will now prove that 1.0 is “best possible ” in the following sense:
ProrosiTION 4.0. Given non-empty finite sets 8 and T, and a mapping

ad: T—>Z,,,

there exists a homogeneous triple (S,T,f) such that
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4.0.1. degree(f;) =d; for 1€ T
4.0.2. N(S,T,f) = q~8T:D (an integer prime to p).
Proof. We first consider the case u(S,T,f) =0, i.e.
4.0.3. Card(S) = X di.
ieT

We will construct an f as above so that
4.0.4. N(S,T,f) =1.

To do this, choose a covering of S by non-empty subsets {S;}ser, chosen so
as to have

Card(S;) = d..

For each 1€ T, we let
£, jes

be Card(S;) linearly independent (over k) elements of %4, the extension of
k of degree d;. We now use the norm from kg4, to define f;:

f¢=de‘/k(j€ES‘$j”)Xj)-
Clearly if z is a point of 4% with values in £,
fi(x) =0 &> ;=0 for every j€ S,
and, as the S; cover S, 4.0.4 follows.

We now consider the case u(S,T,f) >0, i.e.

4.0.5. Card(S) = X d..
ieT
To fix ideas, suppose T'={1,- - -,7r}, and i =d. =- - ‘= d,. Let
T"={1, - -,r—1}
4.0.6. {T,,= o

and let §=8"U §” be a partition of § into two disjoint subsets, chosen so
that

Card(8) — 3 d;
4.0.7. o AN
ard (8”) —Card(8) — ZT .
ieT’

We apply the previous technique to the situation §,7",d,,: * -, dn,, to

obtain homogeneous polynomials fy’,- - -, fry’ € K[8’], degree (f{) =d;, and
such that
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4.0.8. N(&,T,f) =1.

We next consider the situation S”,7”,d,. Ax [1] exihibits a homo-
geneous polynomial f” € k[8”] of degree d, such that

4.0.9 N (87, 7 L f7) = g8 T 1) (an integer prime to p).
Denoting by
Bs.s: k[S'] = k[S]
Byns: k[8”]— K[S]

the canonical inclusions, the desired f is

4.0.10. i — gzz(gf;)),’ ii== 1; - ,r—1
Indeed

4.0.11 V(8 T, /) = V(8T f)aV (8", T7,7"),
so that

4.0.1% N(8,T,f) =N(8,T,f) - N (8, T7f")

=N(8",T”,f’) by 4.0.9.
The conclusion now follows from 4.0.9, since by construction we have

4.0.13. w(87, T, ) = u(8, T, 7). Q.E.D.
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