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ON A THEOREM OF AX. 


0. Introduction. 

0.0. Let k be a finite field of characteristic p, having q =pa elements. 
We will be concerned with estimating the number of simultaneous zeroes of 
a collection of polynomials in several variables over k, when the number of 
variables is suitably large compared to the degrees of the polynomials. 

I n  order to formulate our result, i t  is convenient to introduce some 
notations. For any non-empty finite set S, let lc[S] denote the polynomial 
ring on variables indexed by S, and put AS=Spec (lc [S]) . Consider a family 
of non-constant polynomials fi  in k[S] indexed by a second non-empty finite 
set T, i. e., a mapping 

f :  T + =the set of non-constant elements of lc[X] 

We put di =degree (f*). 
To such a family of polynomials, or, as we shall say, to a triple (S, T, f )  

as above, we attach 

0.1. the closed subscheme V(S, T, f )  of AS defined by the annullation 
of the f4, i E T. 

0 2. the integer N(S, T, f), defined as the number of points of V(X, T, f )  
with values in lc. 

0.3. the integer (S, T, f ) ,  defined as the least non-negative integer 
which is 2 

The purpose of this paper is to prove 

THEOREM1.0. N ( 8 ,  T, f )  I0 modulo q ~ ( ~ ' ~ ' f ) .  

The idea of obtaining a p-adic congruence for N ( S , T , f )  is due to 
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By [3], the zeta fanction is a rational fanction, to which applies Fatou's 
theorem [5] : 

THEOREM2.1. I f  the power series around zero of functiona ~a t io~za l  
lies in  1+tZ[[t]], then every one of its zeroes and  poles is the reciprocal 
of an algebraic integer. 

We recall from [I] the following proposition 

PROPOSITIOK Let X be a scheme of finite type over k, and ,u a2.2. 
positive integer. The follozuing statements are equivalent: 

2.2.1. 	 The reciprocc~l of every zero and pole of Z(t ,  X/k) is of the form 
qfi (an algebraic irzteger). 

2.2.2. 	 For each i~lteger s 21; one lzas Card(X(k,) = 0 modulo qsfi. 

Thus 1 . 0  may be restated: 

THEOREM1.0 bk. The recip~ocnl of every zero and pole of 

Z( t ,  v ( s ,T , f ) / l c )  
is of the form 

qfi(SjT>f)(an algebraic integer). 

2.3. We now recall the connection of the zeta function to the I-aclic 
&ale cohomology. We denote by 2 the f scheme X,,'f deduced from X by 
extension of scalars, and, for each prime number I # p, we denote by Hic(.??, &I) 

the I-adic cohon~ology groups, mith compact supports. of S. These are finite- 
dimensional &[-vector spaces on which the galois group Gal ( f /k )  operates. 
Let 8 denote the inverse of the canonical generator (x+ xq) of Gal(K/k) ; 
one has the fundamental relation [6] 

Suppose now that X/lc is a projective and smooth conlplete intersection of 
dimension n. We denote by 

the primitive (in the sense of Hodge-Lefschetz theory, cf. [2]) subspace of 
Hcn(B,Qr)  (the subscript ('c " is now superfluous, as 8 / F  is proper). Using 



the known cohomological structure of projective smooth complete intersections, 
(2 .3 .1)  may be sinlplified to give 

11 

2.3.2 {Z(t,  XJlc) n (1-qit) }(-l)n+l =det ( 1  -t 3  ( Primn(B, Qr) ) 
i = O  

(Tliis shows, incidentally, that the proper values of 8 acting on Prinzn(,Z, Qr) 
are algebraic integers which are independent of the choice of the prime 
number If p. Needless to say, this independence of choice of Z in general 
is an open problem.) 

Combining 2.3.2 with 2 .1  and 2.2, we find 

PROPOSITION Let X c - + P "  a projective and smooth complete 2.4. be 
intersection of dimension n, Xuff 4A"+l its afine cone, and p an integer, 

0 5 p 5 n. The following statements are equivalent. 

2.4.1. Por every prime 1#p, every 
Prim"(%, Qr) is of the form 

proper value of 3 acting on 

qfi (an algebraic integer). 

2.4.3. For every integer s 2 1, 

Card ( X  ( k 8 )1 =--
1-

1 

qS 
modulo qSfi 

2.4.4. Por every integer s 2 1, 

Card (Xuff (16,) ) -0 modulo qSfi. 

Consider now a triple (8,  T, f )  as in 0.0, which is homogeneous, in the 
sense that each of the polynomials fi, i E  T, is homogeneous. Putting P ( S )  
=Proj (k[S]),  we denote by X(S ,  T, f )  the closed subscheme of P ( S )  
defined by the annullation of the f%, i E T. Combining 1.0  and 2.4, we find 

PROPOSITION Let (8,  T, f )  be a homogeneous triple such that2.5. 
X(S ,  T, f )  is a smooth complete ihtersection of dimension, 

n =Card ( S )  -Card (T) -1. 

Then, for every prime 1# p, every proper value of 8 acting on 

Primn(2(S, T, f ) ,Qr) 

is of the form 
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q~(S1T.f) (an algebraic integer). 

2. 5. We now explain the connection with Hodge cohomology. As before, 
let XJk be a projective and smooth complete intersection of dimension n. 
For each pair of positive integers (p, q) with p +q =n) we define integers 

These integers depend only on the dimension of X and on its multidegree [2]. 
We also define integers 

hop2q ( X )  =hp,q ( X )  -ap,*, 8=Eronecker's 6 ; 

these are the dimensions of the primitive parts of the spaces H ~ ( X , W X / T ~ ) .  
We now define the ('primitive Kodge co-level" of 2,v(X) ,  to be the least 
integer a such that ho"sn-a(X) f 0 ;  if hoajn-a(X) = O  for every a, we put 
v(X) =oo. Deligne [2] has proven : 

PROPOSITION Let (S, T,f )  be as in 2.5, and suppose that supiE~(di) 2.7. 
2 2 (so that X ( 8 ,  T, f )  is not a linear subspace of P ( S )). Then 

Combining 2.5 and 2.7 gives 

THEOREN 2. 8. Let X/k be a projective and smooth complete intersection 
of dimension n. Then every proper value of 8 acting on Primn(8, Qr) is of 
the form 

qvcX) (an algebraic integer) 

The theorem is vacuous in case X is a linear subspace of projective space, 
as Primn(8, Qr) is then reduced to zero.) 

We conclude this section by formulating a conjecture generalizing 2.8, 
whose truth in the case of hypersurfaces (of degree prime to p )  is due to 
Dwork [4, p. 2861. Recall that the p-Newton polygon of an element 
2 a+t% Z[t] is the convex closure in R X R of the points (i,or$(a+)),
{ZO 


CONJECTURE2.9. Let X/k be a projective and smooth complete inter- 
section of dimension n. Then the Newton polygon of 

det(1-tS I Primn(27,Qr)) 

is contained in (i. e. in the (x, 9)-plane i t  lies above) the Newton polygon of 
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3. The proof of 1.0. 

3.0. We begin by noting -that i t  suffices to prove 1.0  for homgeneous 
triples. Indeed, given a triple (8,T, f), in which, to fix ideas, S = (1,. . . ,N )  
and T = (1, .,r ) ,  we introduce two homogeneous triples : 

3.0.1. (8" T, f'), in which 

3.0.2. (X', T', f"), in which 

Thus V(S', T, f') is the affine cone of the projective closure of V(S, T, f ) ,  
and V (S: T', f " )  the part of V(X', T, f') which is "at infinity." It follows 
that 

while clearly 

p(SJ, T,Y) Z P ( S , T , ~ )  

p(X', T',Y) 2 p(S ,T , f ) .  

3.1. Etenceforth, we consider only homogeneous triples (8,  T, f )  . From 
such a triple we deduce, for each non-empty subset A C S and each non-empty 
subset B C T, a homogeneous triple noted (A, B, fa,B), whose definition is as 
follows : denote by p (S, A)  the homomorphism 

defined by 

The mapping f,qis defined to be the composition 
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We remark that the formation of fA,B is transitive, i. e. that if 

+#A X A C X  and +#B ' C B C T ,  

then the triple (A', B', fA,,B,) is the triple We record (A', B', (~A,B)A, ,B, ) .  
for later use the elementary inequality 

3.2. We now "calculate" N(X, T, f ) .  Let us denote by V*(X, T, f )  
the open subset of V(S, T, f )  where the function H z i  is invertible, and by 

i a S  

N*(S, T, f )  the number of points of V:"(X, T, f )  with values in k. Clearly 
we have 

I n  order to calculate NYA,  T, fd,T),  we introduce a field K of charac-
teristic zero which contains the p'-th roots of unity, and we choose a non- 
trivial additive character 

The orthogonality relations 

imply the formula (in which a finite set appearing as an exponent "means" 
its cardinality) 

3 2 2 qTfl"(A, T, ~ A , T )  2= [I+ 2 x(2iP(X, A) (fi) (%))I.
x € ( k * ) * i e T  z ~ a k *  

I n  order to simplify 3.2.2, we introduce, for each homogeneous triple (X, T, f), 
a quantity x (8, T, f )  E 61, defined by 

Expanding the product in 3.2.2 and substituting, via 3.2.3, into 3. 2.1, 
gives the formula 

3.4. We now turn to Dwork [3] to further study x(S, T, f). Denote by: 

3.4.1. [, a primitive p t t h  root of unity in an algebraic closure of Q,. 

3.4.2. E the unramified extension of Q,([,) whose residue field is k. 
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3.4.2. 	 QK the ring of integers of E .  

3.4.4. 	 T E Gal (K/Q, (l,) ) the Frobenius automorphism of K.  

Let 23 be the category whose objects are pairs 

where L is a K-Banach space, and a a completely continuous [9] endornor-
phism of L as Q, (&) -Banach space, which is 7-l linear (i. e. for b E E and 
7 E L, a (b7) =T-I(b) a (7) ), and whose morphisms are K-linear continuous 
maps compatible with the given endomorphisms. Notice that the a'-th iterate 
@ of a is a completely continuous endomorphism of L as a E-space, (recall 
that a =degree (k /F, )  =degree (K/Q, (l,) ) ), whose trace verifies 

where 11 1 1  denote the operator norm of Q, (p,) -linear endomorphisnls of L. 
Dwork [3] attaches to each homogeneous triple (8, T, f )  an object 

(L  (X, T, f ) ,  a (8, T, f )  ) of 23, in such a way that 

3.4.7. x(X, T, f )  = (q- l )S+T trace(a(8, T, f ) ~ ) .  

3.5. I n  order to complete the proof of 1.0, we will attach to each 
hoinogeneous triple (8, T, f )  a second object (D(X, T, f ) ,  (X, T, f )  ) of 23, 
such that 

3.5.2. 	 there is a finite filtration of (L  (8, T, f ) ,  a (8,T, f )  ) whose associated 
graded object is 

Admitting for a moment 3.5.1 and 3.5.2, let us conclude the proof of 
1.0. By 3.5.2, we have, for every pair of non-empty subsets A and B of S 
and T respectively, 

3.5.3. trace (a (A, B, fa,^)") =1j- trace (r(A', B', ~ A , , B , ) ~ ) .  
@ + A ' c A ,  	 @#B'gB-

Substituting 3.5.3 into 3.4.7, and using 3.2.4 gives, after an elementary 
calculation, the formula 

=qS+ 2 (q -1 )  AtBqS-A-B trace ( y  (A, B, f . 4 , ~ ) ~ )  
@#A SS. dZB2.T 
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We conclude the proof of 1.0 by noting the inequality 

3.5.5. I I I q F ( S , T j f ) IqS-A-B trace ( y ( A ,B, f ~ , ~ ) a )5 

which follows immediately from 3.4.6, 3.5.1, and 3.1.0. 

3.6. We must now implement the program of 3.5, which will require 
going back to the definition of ( L(8,T , f ) ,  a (8,T , f )  ) . To fix ideas, we 
suppose S= (1 , .  . . ,N ) ,  T = (1 , .  . . ,r) .  

3.6.0. Let P be a prime element of DK (SO that or& ( P )  = l / p  -1 )  
which is a zero of the power series in t 

x p-ntpn 
n z o  


(there are p -1possible choices of such a =--we fix one). 


3.6.1. Rather than directly define L ( S ,  T ,  f ) ,  we first define the DK- 
module L ( S ,  T ,  f )  consisting of the elements 7 of L ( S ,  T ,  f )  having 1 1  7 Ij 5 1. 

L ( X ,  T , f )  is that subring of DK [[TZ,, . . .,PZ,, X I ,  . . . ,X N ]] consisting 
of those series 

for each term of which 

L ( S ,  T ,  f )  is obtained by putting 

and endowing it with the unique structure of K-Banach space for which 
L ( S ,  T ,  f )  consists precisely of the elements 7 of L (8,T , f )  having 1 1  711 5 1. 
We note that multiplication of power series makes L ( X ,  T ,  f )  into a Banach 
algebra. 

3.6.5. For each integer v 2 0, we define L@)( S ,  T ,  f )  to be the free 
DK-module having as basis all monomials 

verifying 
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We note for later use the decomposition (of Dk-modules) 

We now turn to defining a(#, T, f ) ,  beginning with some preliminary defi- 
nitions. 

3.6.7. Let PI,. . . ,P, E D R [ X ~ ,. . . ,XN] be the unique homogeneous 
polynomials of degrees dl,. . ., d,, whose non-zero coefficients are all q-l-st 
roots of unity, and which reduce modulo ( a )  to fl, . . . ,f, E k [XI, . . . ,XN]. 
We write each Pi as a sum of monomials 

We denote by E ( t )  the Artin-Easse exponential series 

3.6.8. E ( t )=exp ( x P - ~ ~ P " )  
n 2 0  

which, as is well linown, lies in Zp[[t]]. (The element a of 3.6.0 was chosen 
so that E ( T )  is a primitive p-th root of unity.) We define 

H ( S , T , f )  E L(fl ,T,f )  
by setting 

3.6.9.  H (S, T, f )  =fJ, E (iiAu("ZJV) 
i=1 V 

We next define a completely continuous endomorphism, $, of L ( S ,  T, f )  

by 

3.6.10. $( Au,v alUIZUXV) = ApV,pVa~lUIZUXV. 

Notice that 

Finally we introduce a T-l-linear automorphism, noted 7-l, of L (S,T, f ) ,  
by setting 

3. 6.12. T-l ( x A ~ , v  =aI"IZUXV) x r - I  (AU,v aIUI) ZUXV. 

We can now define a (8,  T, f )  : 

i.e. for T E  L ( S , T , f ) ,  

Note that, as H ( S ,  T, f )  E E(S,  T, f ) ,  3.6.11 g i ~ e s  
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3.7. We can now define (D(S ,T , f ) ,y (S ,T , f ) ) .  

3.7.0. Jus t  as in 3.6.1, we first define the $9~-module D(S, T, f )  ;it is 
the ideal of the ring L(S,  T,f )  consisting of those series 

Av,vl'lZuXv 

in which 

3.7.1. Av,v=O 	 unless ~$21, . . ,r and ~$21, . . , Ni=l; 	 i=l; 

Then we put D (8,T,f )  =D (8, T, f )  @D, hl, norming i t  so that D (8, T, f )  
consists precisely of the elements 7 of D (S, T, f )  having 11 7 1 1  5 1. 

3.7.8. Viewed as a subspace of L(S ,  T, f ) ,  D(S, T, f )  is stable under 
a(#, T, f )  ;we define (S, T, f j to be the restriction of a(#, T, f )  to D(S, T, f). 

For each integer v 2 0, we put 

3.7.3. D'") (8,  x, f )  =D (8, T, f )  n L ( v )(S, T, f )  ; 

we have the decomposition (of bg-modules) 

3.7.4. 	 D ( S , T , f )  =rI D("(S,T,f).
vzo 


From 3.6.14 we find 

3.8. We can now prove 

3. 5.1. iI Y (8,T, f )  il 5 1 P ~ 1 .  + ~ ~ ~ 

Indeed, by 3.7.5, it suffices to prove 

LEMMA3.8.0. I f  v < Card(T) +p(S, T, f ) ,  then 

D'" (8,  T, f )  =0. 

Proof. 	 We must show that if ZUXVED(S,  T, f ) ,  then 


2 u t 2  Card(T) +/r.(S,T,f) .  

( E T  


As ZUXV E D (S, T, f ),we have 
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Thus we find 

I 5 2 di +supi€T(di) [ 2 ~ 4 - Card(T)]
i t T  i t T  

whence 

2 %>= Card(T) + Card(S) -
i t T  

dg 
. Q.E.D.

i s T  
supi < T (di) 

3.9. To establish 3 . 5 . 2  and finish the proof of 1.0, we first note the 
direct sum decomposition of L (8, T, f )  : 

according to which of the exponents of a monomial ZUXV is strictly positive. 

We next choose a total ordering < on the set of all pairs (A, B) where 
A (resp. B )  is a non-empty subset of S (resp. T )  which satisfies the following 
property : 

3.9.1. if A C.A' and B B', then (A, B)  (A', B') 


(such orderings do exist!). The desired filtration P of L(S,  T, f )  is given 

by the subspaces (using the isomorphism 3.9.0) 

PAgB(L(S, T, f ) )  = 2 D(A" B', ~A, ,B, ) .  
(A',B9)S(A,B) 

One checks immediately that each of these subspaces is stable under a(#, T, f )  
The desired filtration of (L(8, T, f )  ,a (S, T, f )  ) is by the subobjects 

The desired decomposition 3 . 5 . 2  of the associated graded object now follows 
directly from the definitions. TBis completes the proof of 1.0. 

4. We will now prove that 1 .0 is "best possible" in the following sense : 

PROPOSITIONGiven non-empty finite sets S and T, and a mapping 4.0. 

there exists a homogeneous triple (8, T,f )  such thnt 
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4.0.1. 	 degree (fi) =di for i f T 

4.0.2. 	 N(S, T, f )  = q f i ( S I T s f )  (an integer prime to p) . 
Proof. We first consider the case y (8, T, f )  =0, i. e. 

We will construct an f as above so that 

4.0.4. N(S,  T, f )  =1. 


To do this, choose a covering of S by non-empty subsets {S*}(<T, chosen so 

as to have 

Card (Xi) 5 di. 

For each i E T, we let 
ti((), j E Xi 

be Card($) linearly independent (over k) elements of kdi, the extension of 
k of degree di. We now use the norm from kd4 to define f i :  

Clearly if x is a point of AS with values in k, 

f$(x)= O  c++xj=0 for every j E  Xi 

and, as the Xi cover S, 4.0.4 follows. 

We now consider the case y(S, T, f )  > 0, i. e. 

4.0.5. 	 Card(S) 2 2 di. 
i e T 

To fix ideas, suppose T = (1,. . . ,r}, and dl 5 d, 5 . . .5&. Let 

T'={l, .  . . , r -1 )  
T" ={r} 

and let S=S' U S" be a partition of S into two disjoint subsets, chosen so 
that 

Card(S') = I: di 
i E T'4.0. 7. 	

Card(St') =Card(#) -I:4. 
i E T' 

We apply the previous technique to the situation X', T',dl,. ., d,,, to 
obtain homogeneous polynomials f,', . . . ,f,,' E k[S'],  degree ( f l )  =dd, and 
such that 
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4.0.8. 	 N(S" T', f')=1. 

We next consider the situation S", T", d,. Ax [ I ]  exihibits a homo-
geneous polynomial f"' € Ic [S"] of degree d, such that 

4.0.9 	 N (&'", T", f") =q f i ( S " ~ l ' " ~ f " )  (an integer prime to p )  . 
Denoting by 

ps,,, : [S'] - Ic [ S ]  

ps,,,, : Ic[S,"]-,k [ S ]  

the canonical inclusions, the desired f is 

Indeed 

so that 

4.0.12 i v ( S ,T , f )  = N ( S ' ,  T', f') .hT(S"',T " , y )  

=N (S",T", f") by 4.0. 9. 

The conclusion now follows froin 4.0.9, since by construction we have 

4.0.13. 	 P(#", TY', f")= P ( S ,  T , f ) .  Q. E. D. 
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