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FINITENESS THEOREMS
IN GEOMETRIC CLASSFIELD THEORY

by Nicholas M. Katz 1) and Serge Lang 1)

(with an appendix by Kenneth A. Ribet)

0. Introduction

The geometric classfield theory of the 1950's was the principal precursor of

the Grothendieck theory of the fundamental group developed in the early 1960's

(cf. SGA I, Exp. X, 1.10). The problem was to understand the abelian unramified

coverings of a variety X, or, as we would say today, to understand n 1 (X) ab
. When

X is "over" another variety S, the functoriality of nf gives a natural

homomorphism.

whose kernel Ker (X/S) measures the extent to which the abelian coverings of X

fail to "come from" abelian coverings of S.

In the language of the 1950'5, we can make the problem "explicit" in terms of

galois theory. Thus we consider the case when S = Spec (K), with K a field, and

X a smooth and geometrically connected variety over K. Let F denote the

function field of X, and denote by E/F the compositum, inside some fixed

algebraic closure of F, of all finite abelian extensions EJF which are unramified
over X in the sense that the normalization of X in E

{
is finite etale over X. Then

n l {X) ab is "just" the galois group Gal (E/F).

Each finite extension LJK of K gives rise to a constant-field extension F • L
t

over F which is abelian and unramified over X, so that if we denote by K ab the

maximal abelian extension of K, we have a diagram of fields and galois groups

l
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and a corresponding exact sequence

If we suppose further that X admits a K-rational point xO,x
0 ,

then we can "descend"
the extension E/(F • K ab

) to an extension Eo/FE

o /F by the following device : we define

E
o to be the union of those finite abelian extensions EJF which are unramified

over X, and such that the fibre over x 0 of the normalization X t oiX in E
t consists

of deg (EJF) distinct IC-rational points of X t . Then Eo/FE

o /F is a geometric

extension, i.e. Kis algebraically closed in E
Oi and Eis the compositum E o

• K ab
.

Thus we have a diagram of fields and galois groups



and a corresponding splitting of the above exact sequence

We will see that when K is a number field, i.e. a finite extension of Q, then the

group Ker (X/K) is finite, or in other words the extension E/(F • K ab
) (as well

as the extension Eo/FE

o /F when X has a K-rational point x0)x
0

) is finite.

Our main result is a fmiteness theorem for the kernel group Ker (X/S) for a

reasonably wide class of situations X/S which are sufficiently "of absolutely finite

type" (cf. Theorems 1 & 2 for precise statements). When in addition we have a

priori control of k 1
((Sab,)

ab
, [as provided by global classfield theory when Sis the

(spectrum of) the ring of integers in a number field], or a systematic way of

ignoring 7^ ((Sab)
ab

[e.g. if X/S has a section] we get "absolute" fmiteness theorems

(cf. Theorems 3, 4, 5 for precise statements). Following Deligne ([2], 1.3) and

Grothendieck, we also give an application of our result to the theory of /-adic

representations of fundamental groups of varieties over absolutely finitely
generated fields (cf. Theorem 6 for a precise statement). In fact, it was this

application, already exploited so spectacularly by Deligne in the case of varieties

over finite fields, which aroused [resp. rearoused] our interest in the questions
discussed here. For an application of these theorems to K-theory, we refer to

recent work of Spencer Bloch [1] and A. H. Parshin [12].
The idea behind our proof is to reduce first to the case of an open curve over a

field, by using Mike Artin's "good neighborhoods" and an elementary but useful

exact homotopy sequence (cf. Preliminaries, Lemma 2). We then reduce to the

case of an abelian variety over a field by using the theory of the generalized
Jacobian. A standard specialization argument then reduces us to the case of an

abelian variety over a finite field. In this case, we use Weil's form ([l2], thm. 36) of

the Lefschetz trace formula for abelian varieties to reduce our finiteness theorem
to the fact that the number of rational points on an abelian variety over a finite
field is finite and non-zero!

In explicating our results in the case of an abelian variety over a number field
(cf. Section 11, Remark 2), we were led to the conjecture that if A is an abelian

variety over a number field k, and if k (u) is the extension of k obtained by

adjoining to k all roots of unity, then the torsion subgroup of A in k (u) is finite.
We shall prove this conjecture when A has complex multiplication. In an

appendix, Ribet extends this result to a proof of the conjecture in general.



II. Preliminaries

Let S be a connected, locally noetherian scheme, and 5 a geometric point of S

(i.e., 5 is a point of S with values in an algebraically closed field). The fundamental

group n 1 (S, s) in the sense of SGA lisa profinite group which classifies the finite

etale coverings of S. Given two geometric points s t and s2s

2 each choice of

"chemin" c (s v s 2
) from s

x to s2s
2 determines an isomorphism

and formation of this isomorphism is compatible with composition of chemins. If

we fix s
x

and s2s

2 but vary the chemin, this isomorphism will (only) change by an

inner automorphism of, say, n x (S, s 2 ).

Therefore the abelianization ofn
1

(S, s) (in the category of profinite groups) is

canonically independant of the auxiliary choice of base point ; we will denote it

n 1
{SSab.)

ab
. This profinite abelian group classifies (fppf) torsors over S with

(variable) finite abelian structure group, i.e. for any finite abelian group G we

have a canonical isomorphism

(1.1)

The total space of the G-torsor T/S is connected if and only if its classifying map

n 1
{SSab)

ab - Gis surjective.
Given a morphism f : X -> S between connected locally noetherian schemes,

a geometric point x of X and its image 5 = f(x) in S, there is an induced

homomorphism

of fundamental groups. The induced homomorphism

is independent of the choice of geometric point x ; indeed for any finite abelian

group G the transposed map

is naturally identified with the map "inverse image of G-torsors"

We will denote by Ker (X/S) the kernel of the map of nf 's. Thus we have a

tautological exact sequence



(1.2)

When X/S has a section

there is a simple interpretation of Ker (X/S) ; it classifies those torsors on X with

finite abelian structure group whose inverse image via 8 is trivial on 5, i.e. whose

restriction to the section, viewed as a subscheme of X, is completely decomposed.

There is a natural product decomposition

(1.3)

corresponding to the expression of a G-torsor on X as the "sum" of a G-torsor on

X whose restriction to s is completely decomposed and the inverse image by / of

a G-torsor on S. In particular, given, a G-torsor T/X whose restriction to 8 is

completely decomposed, T is connected if and only if its classifying map
Ker (X/S) - G is surjective. In the absence of a section, there seems to be no

simple physical interpretation of Ker (X/S).

There are two elementary functorialities. it is convenient to formulate

explicitly. Consider a commutative diagram of morphisms of connected, locally
noetherian schemes

Proceeding down to the left, we have an exact sequence

(1.4)

Proceeding across, we have an induced map

(1.5)

which sits in a commutative diagram



Let X be a geometrically connected noetherian scheme over a field X, (i.e.

X (g) X is connected, where X denotes an algebraic closure of X). Let x be a

geometric point of X ® X, x its image in X, and s its image in Spec (X) = S.

The fundamental exact sequence (SGA I, IX, 6.1)

(1.6)

yields, upon abelianization, an exact sequence

(1.7)

The exact sequence (1.6) allows us to define an action "modulo inner

automorphism" of n 1 (S, s) on n 1 (X (g) X, x) (given an element aenl (S, s),

choose aenl (X, x) lying over it and conjugate n 1 (X <g) X, x) by this a). The

induced action of tt, (5, 5) on tt, (X (g) K) ab is therefore well-defined. (This same

action is well-defined, and trivial, on 71
x (X) ab

.)

Therefore the map 7r
x (X (g) K) ab

->• n 1 (X) ab factors through the coinvariants

of the action of 7^ (S, s) on nI(X (g) K) ab
: we have an exact sequence

(1.8)

If we identify 7^ (S, s) for S = Spec (K) with the galois group Gal (X/K), (which

we may do canonically (only) up to an inner automorphism), then this last exact

sequence may be rewritten

(1.9)

Consider the special case in which X has a K-rational point x0;x
0 ; if we choose

for x the geometric point "x 0 viewed as having values in the overfield K of X"

then the morphism x0:x
0

: Spec (K) -+ X which "is" x 0x
0 gives a splitting of the exact

sequence (1.6)

(1.10)

so that we have a semi-direct product decomposition

(1.11)



"Physically", the action of Gal (K/K) on n t (X ®K9 x) is simply induced by the

action of Gal (K/K) on the coefficients of the defining equations of finite etale

coverings of X <g) K ; this action is well defined on 7^ {X ®K,x) precisely

because xisaK -valued point which is fixed by Gal {K/K) ; if x were not fixed, an

element a e Gal would "only" define an isomorphism

The semi-direct product decomposition (1.11) yields, upon abelianization, a

product decomposition

(1.12)

in other words, the existence of a X-rational point on X assures that the right

exact sequence (1.9) is actually a split short exact sequence

For ease of later reference, we explicitly formulate the following lemma.

Lemma 1. Let X be a geometrically connected noetherian scheme over a

field K. Then Ker (X/K) is the image of nl(X®'Kn

1 (X®'K) ab in n^Xf*. The

natural surjective homomorphism

factors through a surjection

(1.14)

which is an isomorphism if X has a K-rational point. Given any algebraic
extension L/K 9

the natural map

(1.15)

is surjective.

Proof. The only new assertion is the surjectivity of (1.15), and this follows
immediately from the surjectivity of the indicated maps in the commutative
diagram



Now consider a normal, connected locally noetherian scheme S with generic

point T] and function field K. We fix an algebraic closure K of K, and denote by fj

the corresponding geometric point of S. The fundamental group n 1 (S, fj) is then

a quotient of the Galois group Gal (K/K) ; the functor "fibre over r|"

{connected finite etale coverings of S} - {finite separable extensions L/K}

is fully faithful, with image those finite separable extensions L/K for which the

normalization of S in L is finite etale over S.

Lemma 2. Let S be normal, connected and locally noetherian, with generic

point r\ and function field K. Let f : X-S be a smooth surjective

morphism of finite type, whose geometric generic fibre X^ is connected. Then

(1) X is normal and connected.

(2) For any geometric point x in X^ with image x in X and s in S, the

sequence

is exact.

(3) Ker (X/S) is the image of n 1 {X^ ab in n 1 (X) ab
.

(4) The natural map

is surjective.

Proof (1) Because Xis smooth over a normal scheme, it is itself normal

(SGAI, Exp 11, 3.1). To see that X is connected, we argue as follows. The map /,
being flat (because smooth) and of finite type over a locally noetherian scheme, is

open (SGAI, Exp IV, 6.6). Therefore any nonvoid open set U cz X meets X^

(because / (U) is open and non-empty in S, so contains r|). But X^ is connected

(because X^ is !) and therefore the intersection of any two-non-empty open sets in

X meets X^.



(2) Because X is normal and connected, it has a generic point £ and a

function field F, and its function field F is, none other than the function field of X
n

(itself normal (because smooth over K) and connected). Therefore the natural

map

must be surjective, because it sits in the commutative diagram

Comparing our putative exact sequence with its analogue for X^/K, we have a

commutative diagram

whose top row is exact. Therefore (3 is surjective, and p ° a = 0. To show the

exactness, given the surjectivity of (3, we must show (cf. SGA I, Exp V, 6.6) that

any connected etale covering Y of X which admits a section over X^ is

isomorphic to the inverse image of a connected etale covering of S. Given such Y,

its restriction Y
n

to X^ is still connected ; so the existence of a section over X^ and

the exactness of (1.6) imply that 7n7

n
is the normalization of Xl]X

1]
in a constant-field

extension F • L, where L is a finite separable extension of K. Therefore the

function field of Y is F • L, whence Y is the normalization of X in F • L. Let S'

denote the normalization of S in L. Then S
f

is finite over S. We will show that S' is

finite etale over S, and that Y is the inverse image over X of this covering. By (1)

applied to X x S
f

/S', the scheme X x S' is normal and connected, and finite
s s

over X. Therefore X x S' is just the normalization of Xin its function field, i.e. in
s

F - L. Therefore Y = X x 5". It remains only to see that S'/S is finite etale. But
s

this follows by fpqc descent from that fact that Y = X x S' is finite etale over X.
s

(3) This follows immediately from the exact sequence established in (2), by

abelianization.



(4) This follows immediately from (3), and the commutativity of the diagram
of maps induced by the obvious inclusions

Lemma 3. Let X be a smooth geometrically connected variety of finite

type over a field K, and let U cz X be any non-empty open set. Then the

natural map

is surjective.

Proof The variety X (g) Kis normal and connected, as is the non-empty

open U (g) K in it. Therefore the natural map n 1 (U (g) K) - n t (X ®X) is

surjective (because both source and target are quotients of the galois group of

their common function field). The result now follows from the indicated

surjectivities in the commutative diagram

II. The Main theorem

Recall that a field K is said to be absolutely finitely generated if it is a finitely
generated extension of its prime field, i.e. of Q or of F

p .

Theorem 1. Let S be a normal, connected, locally noetherian scheme,

whose function field K is an absolutely finitely generated field. Let f: X

-» S be a smooth surjective morphism of finite type, whose geometric generic

fibre is connected. Then the group Ker (X/S) is finite if K has characteristic

zero, and it is the product of a finite group with a pro-p group in case K has

characteristic p.



Proof. We will first reduce to the case in which X/S is an elementary

fibration in the sense of M. Artin (SGA 4, Exp XI, 3.1), i.e. the complement, in a

proper and smooth curve C/S with geometrically connected fibres, of a divisor

D a C which is finite etale over S. By lemma 2, part (4), Ker (X/S) is a quotient of

Ker (X
n /K\ so we are reduced to the case S= Spec (K). If Lisa finite extension

of K, then Ker (X/K) is a quotient of Ker (X ® L/L) (by lemma 1), so we may

further reduce to the case when X/K has a K-rational point, say xO.x
0 . Thanks to

M. Artin's theory of good neighborhoods (SGA 4, Exp XI, 3.3), at the expense

of once again passing to a finite extension field L of K, we can find a Zariski

open neighborhood U of x 0
in X ® L which sits atop a finite tower

K

(2.1)

in which each morphism /• is an elementary fibration. By lemma 1 again, it

suffices to prove the theorem for X ® L/L, and for this it suffices, by lemma 3, tc

prove it for a good neighborhood U/L. By the exact sequence (1.4), it suffices to

prove the theorem for each step U i /U i +1 individually.
This completes the reduction to the case of an elementary fibration. By

lemma 2, part (4) we may further reduce to the case S = Spec (K). Again passing
to a finite extension L/K, which is allowable by lemma 1, we may assume that our

elementary fibration X/K(= (C-D)/K) has a K-rational point x 0 and that the

divisor D of points at infinity consists of a finite set of distinct K rational points oi

C. We must show that the prime-to-p-part (p = char (K)) of the group of Galois
coinvariants

is finite



For this, we must recall the explicit description of the prime-to-p part of

n 1 (X (g) K) ab
as the Tate module of a generalized Jacobian. Let J denote the

Jacobian PicQ K > an d let JD denote the generalized Jacobian of C/K with respect
to the modulus D. Thus JDJ

D
is a smooth commutative group-scheme over K which

represents the functor on {schemes/X}

the group of VF-isomorphism classes of pairs (j£f, e) consisting
of an invertible sheaf if on C x W which is fibre-by-fibre of

W > k

degree zero, together with a trivialization e of the restriction
of $£ to D x W.

(2.2)

"Forgetting e" defines a natural map JDJ

D -+ J, which makes JDJ

D an extension of J

by a =0= (D) ~ 1 dimensional split torus :

(2.3)

Kummer theory (cf. SGA 4, Exp. XVIII, 1.6 for a "modern" account)

furnishes a canonical isomorphism between the prime-to-p part of n 1 (X 0 K) ah

and the prime-to-p Tate module of J
D ; for any finite abelian group G killed by an

integer N prime to the characteristic p of X, it gives a canonical isomorphism

(2.4)

where (J D (K)) N
is the "abstract" subgroup of points of order NinJD (K). In

terms of the prime-to-p Tate module

(2.5)

we can rewrite this

(2.6)

whence finally a canonical isomorphism

(2.7)

Thus we are reduced to showing the finiteness of the group



The exact sequence (2.3]

gives an exact sequence of K -valued points

Applying the snake lemma to the endomorphism "multiplication by N" of this

exact sequence, and passing to the inverse limit over JV's prime to p, we get a short

exact sequence of prime-to-p Tate modules

(2.8)

Because formation of Gal (K/K)-coinvariants is right-exact, we are reduced to

showing separately the finiteness of the groups

In fact, these groups are finite even if we replace T
not pby the entire Tate

module T= T
p

x Tnotp .

Theorem 1 (bis). Let K be an absolutely finitely generated field, and

A/K an abelian variety. The groups

are finite.

Proof We will reduce to the case when Kis finite. Because Kis absolutely
finitely generated, it is standard that we can find an integrally closed sub-ring R

of K, with fraction K, which is finitely generated as a Z-algebra, together with an

abelian scheme A over R whose generic fibre A ® K is A. If K has characteristic
R

p > 0, we may further suppose that geometric fibres of A/R have constant p-rank
(if g = dim A/R, simply localize on R until the rank of the g'th iterate of the p
linearHasse-Witt operation on H 1

(A, (9
A

) is constant).

Suppose first that K has characteristic p > 0. Then the Gal (K/K)
representations T (G

m (Kj) and T(A (K)) are unramified over Spec (R\ i.e. they

are actually representations of the fundamental group n 1 (Spec (R\ f\), viewed

as a quotient of Gal (K/K).



Let p be a maximal ideal of R, i.e. a closed point of Spec (R\ Fp its residue

field, F
p an algebraic closure of Fp, and p the corresponding geometric point of

Spec (R) (namely R- R/p = F c> F ). Pick a "chemin" from p to the

geometric generic point f| (which is R c+ K c> K), i.e. letting R denote the

integral closure of RinK, pick a homomorphism R -> F
p

which extends p. Then

we get isomorphisms of Z-modules

which is Gal (Fp/Fp) equi variant when we make Gal (Fp/Fp) operate on

T (A (K)) via the composite

Passing to coinvariants now yields a diagram

in which the vertical arrow is trivially surjective (because Gal (Fp/Fp) operates

through its image in n 1 (Spec (R), f\)). Similarly for G
m .

When K is of characteristic zero, and A/K has been "spread out" to an

abelian scheme A/R, we argue as follows. Fix a closed point p of Spec (R). For

each prime / # p = char (Fp), the /-adic Tate module T
t

(A (K)) is unramified

over Spec (R [1//]) and the above specialization argument gives a surjection, for

each / 7^ p,



Therefore the prime-to-p part of the order of (T (A (K))) Gal ( * /J0 divides the order

of(T(A(F ))) Gal(F/F ,

Now choose a second closed point X of Spec (R), with residue characteristic
/ jk p. [This is possible because, K being a characteristic zero, Spec (jR)

necessarily dominates Spec (Z), and hence by Chevalley's theorem all but finitely

many primes occur as residue characteristics of closed points of Spec (jR)]. Then

the p-part (and indeed the prime to-/ part) of the order of (T (A (K))) Gal(^ /K)

divides the order of (T (A (F J)) Gal ih/¥x) . Similarly for G
m .

Thus we have reduced theorem 1 (bis) to the case of finite fields, where it is

"classical". Explicitely, the result is

Theorem 1 (ter). Let k be a finite field, q = #/c, and A an abelian

variety over k. Then we have the explicit formulas

Proof Let Fe Gal (k/k) denote the arithmetic Frobenius automorphism of

k/k (i.e. F (x) = x q
) which is a topological generator of Gal (k/k). In any

Gal (/c//c)-module T, the coinvariants are simply the cokernel of 1 — F :

In the case T = T (G m (/c)), Tisa free module of rank one over Y\ Z, on which
/ 1 p

F operates as multiplication by q, whence the asserted result. In the case T

= T(A (k)), we have T= \\t l (A (/c)), the product extended to all primes I
i

Each module 7] (A (k)) is a free Z r module of finite rank (2 dim A for / p, the

"p-rank" of A for / = p). Because #A (k) is non-zero, it is enough to prove that,
for each /, we have an equality of /-adic ordinals :

By the theory of elementary divisors, we have

Now for / p, we have Weil's celebrated equality ([l6], thm. 36)



For / = p, we have (cf. [13]) only the weaker, but adequate

QED

Remarks. (1) Given an abelian variety A over any field K, Kummer theory
and duality lead to a canonical isomorphism

Because abelian varities have rational points (e.g. their origins) we have

canonically

From this point of view, Theorem 1 (bis) is simply the abelian variety case of

Theorem 1 with the added information that even the p-part is finite.

Now consider the special case when K = k is a finite field. Then Theorem
1 (ter) gives us

In fact, there is a canonical isomorphism of groups

To see this recall the interpretation of Ker (A/k) as the inverse limit of the galois

groups of connected finite etale A-schemes E/A which are galois over A with

abelian galois group, and completely decomposed over the origin (cf. 1.3). The

Lang isogeny

(F the Frobenius endomorphism of A/k)

is precisely such a covering, with structural group A (k). Therefore we have a

surjective homomorphism

which is the required isomorphism (since source and target have the same

cardinality !).

(2) The G
m case of Theorem 1 (bis) could have been handled directly by

remarking that for any field K, the cardinality (as a supernatural number) of the

group of coin variants (T (G m (K))) Gal (^ /K)
is equal to the number of roots of unity

in the field K. But how, in fact, do we know that this number is finite for an



absolutely finitely generated field ? The proof by specialization is pretty much the

simplest one ! Another approach, after "fattening" K into its finitely generated

sub-ring R, is to prove the stronger assertion, in Mordell-Weil style, that the

group G
m (R) =Rx of units in such an absolutely finitely ring is a finitely

generated abelian group.

(3) In the case of an abelian variety A over an absolutely finitely generated

field K, the multiplicative upper bounds we get for # T(A {K)) Gal (k /K)

(essentially # A (k) whenever we specialize to a finite field k, with the proviso that

we must ignore the p-parts when it's a mixed-characteristic specialization) are

exactly the same bounds usually used to control the size of the torsion subgroup
of A (K). There is a simple galois-theoretic interpretation of the group

(T (A (&))) G ai(K/K)' or at l east i* s prime-to-p part, in terms of "twisted-rational"
torsion points, which is perhaps worth pointing out. Thus let A v denote the dual

abelian variety to A, p the characteristic of K, Tors notp
A v (K) the Gal {K/K)

moduleof all torsion points of order prime-to-p on Av and

the Gal (K/K)-modu\e obtained from this one by tensoring with the inverse of

the cyclotomic character % of Gal (K/K). Alternately, we could describe this last

module as the Gal (X/X)-module

The e^-pairings define a Gal (X/X)-equivariant pairing

which makes the compact abelian group Tnot p
and the discrete abelian group

(Tors notp
) (— 1) the Pontryagin duals of each other. Thus we obtain a perfect

pairing

The groupJ(Tors notp^ v (K)) (- 1))™(*/ is none other than the group
(Tors notp

A v (K)) x of all prime-to-p (p = char (K)) torsion points in A v (K)

which transform under Gal (K/K) by the cyclotomic character %• Thus we

obtain

Scholie. Over any field K of characteristic zero, the Pontryagin dual of

Kqt(A/K) is the group (Tors A v (K)) x
.



(4) The same reasoning as in (3) above, if carried "scheme-theoretically",
leads to a concrete interpretation of the Pontryagin dual of the entire group

T(A (K)) Gal(R/K) "in terms of" u-type subgroupschemes" of A v
;

Scholie. Over any field X, the Pontryagin dual of the compact group

T(A (K)) Gal {R/K) is the discrete group

where Horn is taken in the category of K-groupschemes, and the transition

"M"
maps are those induced by [i NM > [i N .

Still by Theorem 1 (bis), this group is finite for an absolutely finitely
generated field K.

For any given curve X over, say, Q, it is an interesting problem to compute
the maximal u-type subgroup of its Jacobian. For example, let p be an odd prime,

and consider the modular curves X o (p) and X 1 (p). Then X
1 (p) is a ramified

covering of X o (p), cyclic of degree (p— l)/2, which is completely split over the

rational cusp at infinity. Let

The unique intermediate covering of X o (p) of degree Nis unramified ; it is called

the Shimura covering. According to Mazur [20], the corresponding \i N inside

J
o (p) is the maximal u-type subgroup of J

o (p) over Q. Therefore we have

with the Shimura covering as the maximal abelian unramified geometric

covering of X o (p) defined over Q in which the rational cusp at infinity splits

completely.
On the other hand, we may extend X o (p) to a normal scheme X

o (p) over Z.

At the prime p, the covering X 1 (p) (and hence also the Shimura covering)

becomes completely ramified over one of the two components of X
o (p) ® F

p .

Therefore

so that Spec (Z) being simply connected, we have



(5) Consider the case when X is a finitely generated extension of an

algebraically closed constant field K o ,
and suppose that A/K is an abelian variety

over K which has no fixed part relative to K o . Because K o ,
and hence K, contains

all roots of unity, the cyclotomic of character of Gal (K/K) is trivial. Therefore

the Pontryagin dual of T
notp (A (K)) Gal(^ K)

is simply the group of K-rational

torsion points of prime-to-p order on Av. By the Mor dell-Weil theorem in the

function field case (cf. [4], V, thm. 2) the group A (K) of all K-rational points on A

is finitely generated so in particular its torsion subgroup is finite. Therefore the

group Tnot (A (X)) Ga , ( K fK)
is also finite in this "geometric" case.

Whether or not the p-part (Tp (A(K)) Gal(R/K) is also finite under these

assumptions is unknown in general. When A/K is a non-constant elliptic curve,
this fmiteness can be established by considering the ramification properties of the

"K-di visible group" of A near a supersingular point on the moduli scheme.

However, the general case would seem to require new ideas.

(6) Theorem 1 (bis) implies the finiteness of the group (Tors Av (K)) x when

K is a finitely generated extension of Q, e.g. a number field. Let K (u) be the field
obtained by adjoining to K all roots of unity. We clearly have the inclusion

This leads to the conjecture:

For any abelian variety A over a number field K, the group

Tors A(K (u)) of K ([i)-rational torsion points on A is finite.

When A is an elliptic curve without complex multiplication, this is an immediate

consequence of Serre's theorem that the Galois group of the torsion points is

open in f] GL 2 (Z p
).

For an arbitrary abelian variety, Imai [Im] shows that the group of torsion
points in K (u p00

) is finite for a fixed prime p. We shall prove below that the

conjecture is true when A admits complex multiplication. This was extended to a

proof of the conjecture in general by Ribet, cf. the appendix.
First we need a lemma.

Lemma. Let k be a number field. There exists a positive integer m such

that, if F is any finite extension of k ramified at only one prime number p,

and contained in some cyclotomic field, then



Proof. There exists a finite set of primes S such that

where Gl«G
l « Zf, and G

s contains a subgroup

where H l
is open in Z*. Without loss of generality, we may assume that S

contains p and all primes which ramify in k. If / <£ S, then the inertia group at /

contains G
t (embedded as a component of the product). If / e S, then the inertia

group at / contains a subgroup H\ open in if,. Consequently the subgroup of the

Galois group generated by all the inertia groups at primes / # p contains

This proves the lemma.

Now let A be an abelian variety defined over a number field /c, and with

complex multiplication. Suppose that A tor (k (u)) is infinite, so contains points of

arbitrarily high order. We consider separately the two cases when there is a point
of prime order p rational over k (u) for arbitrarily large p, or when for some fixed

/?, there is a point of order p
n with large n.

After extending k by a finite extension if necessary, we may assume without
loss of generality that A has good reduction at every prime of L Let k' = k (|ij
where m is chosen as in the lemma. Let x be a point on A of order a power of the

prime p. Then k (x) is ramified only at p, and it follows that

Let K be the field of complex multiplication, which we may also assume

contained in k'. Furthermore, after an isogeny of A if necessary, we may assume

that the ring of algebraic integers in K acts on A via an embedding

Let

be the prime ideal decomposition of pinK, and let p 1 = p, say.

Suppose that x has order p, and that p is large, so p is unramified in k'. By

projection on the p-component, we may assume that x is a point of order p, that

is i(p) x=o.lfr 2, and is a prime ideal of k! dividing one of p2,...,p 2 , ..., p r ,
then



ty' is unramified in k (x). But since pis unramified in fc', then k' (\i pa
>) is totally

ramified above every prime dividing pin k'. Therefore r = 1 and p remains prime
in k.

In that case, k' (x) = k! (A
p

) and A
p

is a cyclic module over o K , or also a

vector space of dimension 1 over oK/po

K /po K . Furthermore, Gal (k
f

(A
p

)/k
f

) can be

identified with a subgroup of (o K /po K )*, which has order Np — 1, and in

particular is prime to p. By a theorem of Ribet [Ri], we have

where the sign » means that the left hand side is greater than some positive

constant times the right hand side. However, the prime-to-p part of

Gal (k (jipoo)A) has order «p. This contradiction proves the theorem in the

present case.

Consider finally the case when there is a point x n
of order p

n with p fixed but n

arbitrarily large. Without loss of generality, we may assume that u
p

is contained
in k'. We shall prove again that r — 1. For some prime p = P! dividing p in K,

the point x
n

will have a p-component of large p-power order, and hence without
loss of generality, we may assume that all the points x n

lie in A [poo]p
00

] (the union of

all the kernels of i(p v
) for v- oo). In particular, the degrees [k (x n

) : k'~] contain

arbitrarily large powers of p, whence the fields k' {x n
) contain arbitrarily large

extensions k' (u
p

v ). If r 2 and Ss' is any prime ideal of k dividing some prime
p2,...,p 2 , ..., p r ,

then ty' is unramified in k' (x
n

). But the ramification indices at all primes

dividing p in k tend to infinity as n tends to infinity. Hence again r = 1.

Now suppose that x n
has order p", meaning that p" is the kernel of the map

We shall prove that k! (x
n

) = k! (A [p"]). We have an isomorphism

On the other hand, A [p n
] is cyclic module over o/p n

, generated by an element z,

so that x
n = i (a) z for some a. Then a must be a unit in the local ring of oatp,

whence in fact

This proves that k! (x n
) = k' (A [p n ]).

Using arbitrarily large n, we conclude, that k! (A [p00])p
00 ]) is contained in

k! (u pQO
). But according to Kubota [Ku], the Galois group Gal (k (A [p°°])/fc') is

a Lie group of dimension ;> 2. Since the Galois group of the p-primary roots of

unity is a Lie group of dimension 1, we have a contradiction, which concludes the

proof.



III. A VARIANT

Let us agree to call a scheme S accessible if there exists an absolutely finitely
generated field K for which the set S (K) of K-valued points of S is non-empty.
Thus for example, if K is an absolutely finitely generated field, then for any sub

ringR a X, Spec (R) is accessible (by the K-valued point R c+ K); also any

subring R f of the power-series ring K [j_X 19 ..., ...]] over K in any number of

variables has Spec (R
f

) accessible

On the other hand, the spectrum of a field F is accessible if and only
if F is absolutely finitely generated.

Theorem 2. Let S be a connected, locally noetherian scheme which is

accessible. Let X/S be a proper and smooth S-scheme with geometrically
connected fibres. Then the group Ker (X/S) is finite.

Proof. We begin by reducing to the case when Sisa finitely generated
field. In view of the accessibility of 5, this reduction results from the following
simple lemma applied with T = Spec (K).

Lemma 4. Let X/S be proper and smooth with geometrically connected

fibres over a connected locally noetherian scheme S. Given a connected locally

noetherian S-scheme T, denote by XT/TX

T /T the inverse image of X/S on T,

i.e. form the cartesian diagram



The natural map (cf. 1.5)

is surjective.

Proof. Let tbea geometric point of %s the image geometric point of S, and

xa geometric point on the fibre X
s .

The homotopy exact sequences (SGA I,

Exp X, 1.4) for X/S and XT/TX

T /T sit in a commutative diagram

Passing to the abelianizations yields the commutative diagram with exact rows

whence we find

QED

Thus we are reduced to proving the finiteness of Ker (X/K) when K is an

absolutely finitely generated field, and X/K is proper, smooth, and geometrically
connected. We have already proven this finiteness theorem when X/K is an

abelian variety (cf. Remark (1) above). We will reduce to this case by making use

of the theory of the Picard and Albanese varieties.

At the expense of replacing K by a finite extension, we may assume that X has

a X-rational point xO.x
0 . The Picard scheme Pic x/K

is then a commutative group
schemelocally of finite type over K, which represents the functor on

{Schemes/*}

the group of W^-isomorphism classes of pairs (J2?
,

e) consisting
of an invertible sheaf S£ on X x W together with a

W -* K

trivialization sof the restriction Jz? to {xo}x
0 } xW

K



The subgroup-scheme Pic x/K ofPic XjK classifies those (if, e) whose underlying if
becomes x-equivariant to zero when restricted to every geometric fibre of

X x W/W Ci.e. for each geometric point w of W, some multiple of if | X x w

is algebraically equivalent to zero). The identity component Pic x/K of Pic x/K

classifies those (J^, e) whose becomes algebraically equivalent to zero on each

geometric fibre Xx W/W. The Picard variety Pic x )
rr

K
ed is an abelian variety over

X, and it sits in an/p.p/ short exact sequence of commutative group schemes

(3.1)

in which the cokernel C is a finite flat group-scheme over K. This cokernel C

should be thought of as the "scheme theoretic" torsion in the Neron-Severi

group.
We denote by Alb x/X the Albanese variety of X/K, defined to be the dual

abelian variety to the Picard variety Pic x ) r^
d

.
We now recall the expression of

7i x (X ® K) ab in terms of the Tate module of the Albanese, and a finite "error
term" involving the Cartier dual C v of C.

Lemma 5. Let K be a field, and X/K a proper, smooth and geometrically
connected K-scheme which admits a K-rational point. Then there is a canonical

short exact sequence of Gal (K/K)-modules

(3.2)

Proof By Kummer and Artin-Schreier theory, we have for each integer

N 1a canonical isomorphism

in which the last Horn is in the sense of K -group-schemes. Applying the functor

X h-> Horn (u^, X) to the short exact sequence

gives a short exact sequence

(3.3)



(the final zero because over an algebraically closed field, the group Ext (\i N ,
A)

vanishes for any abelian variety A, cf. the remark at the end of this section). We

now "decode" its two end terms, using Cartier-Nishi duality for the first, and

Cartier duality for the last.

The first is

The last is

"Substituting" into the exact sequence (3.2), we find a canonical short exact

sequence

(3.4)

Passing to the direct limit as N grows multiplicatively, we obtain a canonical
short exact sequence

(3.5)

Taking its Pontryagin dual, we find the required exact sequence (3.2). QED

To complete the reduction of Theorem 2 to the case of abelian varieties, we

simply notice that the exact sequence of lemma 5 yields, upon passage to

coinvariants, an exact sequence



(3.6)

whose first term, being a quotient of the finite group C v (K), is finite. QED

Remark. In the course of the proof of Lemma 5, we appealed to the "well
known"vanishing of Ext 1

([i N , A) over an algebraically closed field, for an

abelian variety A and any integer N > 1. Here is a simple proof. It is enough to

prove this vanishing when N is either prime to the characteristic p ofK, or, in case

p > 0, when N = p.

Suppose first N prime to p. Because the ground-field is algebraically closed,

we have \x N ~ Z/NZ, so it is equivalent to prove the vanishing of

Ext 1

(Z/NZ, A). We will prove that this group vanishes for every integer N > 1.

Consider such an extension :

Pass to K -valued points

and consider the endomorphism "multiplication by N". Because the group A (K)
is AT-divisible, the snake lemma gives an exact sequence

But a point in E (K) N which maps onto "1" e Z/NZ is precisely a splitting of our

extension.

Next consider the case N — p = char (K). We give a proof due to Barry

Mazur. Using the f.p.p.f. exact sequence

to compute Ext (u p ,
— ), we obtain a short exact sequence

To prove that Ext 1

(\i
p , A) = 0, we will show that the groups Horn (\i

p , A) and

Ext 1

([i
p ,

A
p

) are both finite, of the same order. Trivially, we have Horn (ji
p , A)

= Horn (|i
p ,

A
p

). Because we are over an algebraically closed field, and A
p

is

killed by p, its toroidal biconnected-etale decomposition looks like

Only the \i p's in A
p can "interact" with u

p .
Thus we are reduced to showing that

Horn (|i
p , ([ip)

a
) and Ext 1

(ja
p , (|i

p
)

a
) are both finite of the same cardinality p

a
.



By Cartier duality, it is equivalent to show that both Horn (Z/pZ, Z/pZ) and

Ext 1

(Z/pZ, Z/pZ) have order p, and this is obvious (resolve the "first" Z/pZ by

For another proof in this case, cf. Oort, [10], 85.

IV. Absolute Finiteness theorems

Theorem 3. Let (9 be the ring of integers in a finite extension K of Q.

Let X be a smooth (9 scheme of finite type whose geometric generic fibre

X <S> K is connected, and which maps surjectively to Spec ((9) (i.e. for every
(9

prime p of (9, the fibre over p, X (g) (0/p), is non empty). Then the group
(9

n 1 (X) ab is finite.

Proof. This follows immediately from Theorem 1 and global classfield

theory, according to which 7U
X (Spec ((9))

ah
,

the galois group of the maximal
unramified abelian extension of K, is finite. QED

Theorem 4. Let (9 be the ring of integers in a finite extension K of

Q, p1?...,p

1? ..., p n
a finite set of primes of (9, N=px ... p n

the product of their

residue characteristics, and (9 [I/Pi ... pj the ring of "integers outside
p15...,p l5 ..., p n

" in K. Let X be a smooth (9 [1/Px ... p n ~]-scheme of finite type,

whose geometric generic fibre X (g) K is connected, and which maps surjectively
0

to Spec(s [I/pi ... pj) (i.e. for every prime p£ {p1?...,p
1? ..., p n

}, the fibre

is non-empty). Then the group n t (X) ab is the product of a finite group and a pro
N group.

Proof. Again an immediate consequence of Theorem 1 and global classfielc

theory, according to which n 1 (Spec {(9 [1/pi ... pj)) flb
,

the galois group of the

maximal abelian, unramified outside {p19...,p

l9 ..., p,,} -extension of K is finite time*

pro-N. QED



Theorem 5. Let S be a normal, connected noetherian scheme, whose

function field K is absolutely finitely generated. Let f: X - S be a smooth

surjective morphism of finite type whose geometric generic fibre is connected, and
e

which admits a cross-section X -> S. Then there are only finitely many connected

finite etale X-schemes Y/X which are galois over X with abelian galois

group of order prime to char (K) and which are completely decomposed over the

marked section. If in addition we suppose X/S proper, we can drop the proviso

"of order prime to char (K)".

Proof This is just the concatenation of Theorems 1 and 2 with the physical

interpretation (1.3) of the group Ker (X/S) in the presence of a section. QED

V. Application to l-adic representations

Let / be a prime number, Q t an algebraic closure of Q,. By an /-adic

representation p of a topological group n, we mean a finite-dimensional
continuous representation

whose image lies in GL (n, E
x

) for some finite extension E
x

of Q z .

Theorem 6. (cf. Grothendieck, via [2], 1.3). Let K be an absolutely

finitely generated field, X/K a smooth, geometrically connected K-scheme of

finite type, x a geometric point of X ® K, x the image geometric point of x

in X. Let I be a prime number, and p an l-adic representation of nI(X,n

l (X, x);

Let G be the Zariski closure of the image '

p (7^ (X (8) K, x)) of the geometric

fundamental group nl(Xi^K,n

1 (Xi^K, x) in GL (n, Q,) and G° its identity

component. Suppose that either I is different from the characteristic p of K,

or that X/K is proper. Then :

(1) the radical of G° is unipotent, or equivalently :

(2) if the restriction of p to the geometric fundamental group n 1 (X ® K, x) is

completely reducible, then the algebraic group G° is semi-simple.



Proof. By Theorem 1, for / p, or by Theorem 2if/=p and X/X is

proper, we know that the /-part of Ker (X/K) is finite i.e. (cf. Lemma 1) the image

of n 1 (X ®X, 3c) in %l%

l (X) ab is the product of a finite group and a group of order

prime to /. Given this fact, the proof proceeds exactly as in (Deligne [2], 1.3).

QED

Remarks. (1) This theorem is the group-theoretic version of

Grothendieck's local monodromy theorem (cf. Serre-Tate ([ls], Appendix) for a

precise statement, as well as the proof) with X/K "replacing" the spectrum of the

fraction field £ of a henselian discrete valuation ring with residue field K, and

with n 1 {X (g) K) "replacing" the inertia subgroup / of Gal (E/E). The "extra"

feature of the "local" case is that the quotient of / by a normal pro-p subgroup is

abelian. Therefore any /-adic representation p of /, with / # p, becomes abelian

when restricted to a suitable open subgroup of /, and hence the associated

algebraic group G° is automatically abelian. In particular, the radical of G° is G°

itself.

(2) If X/K is itself an abelian variety A/K, then k 1 (A <g) K, x) is abelian.

Therefore if /is any prime, and p any /-adic representation of n 1 (A (g) X, x), the

associated algebraic groups G and G° will be abelian ; hence if pis the restriction

to n i (A®K, x) of an /-adic representation of n 1 (A, x\ then G° is unipotent, i.e.

the restriction of ptoan open subgroup of n 1 (A ® X, x) is unipotent (compare

Oort [11], 2).

(3) Can one give an example of X/K proper smooth and geometrically
connected over an absolutely finitely generated field K of characteristic p > 0

whose fundamental group n 1 (X, x) admits an p-adic

representation with n 2 (resp. n 3) for which the associated algebraic group
G° is SL (n) (resp. SO (n)) ? Can we find an abelian scheme A over such an X, all of

whose fibres have the same p-rank n 2, for which the associated p-adic
representation of n 1 {X, x)hasG° = SL (n)?(cf. Oort [11] for the case of p-rank
zero).
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APPENDIX :

TORSION POINTS OF ABELIAN VARIETIES
IN CYCLOTOMIC EXTENSIONS

by Kenneth A. Ribet 1)

Let k be a number field, and let k be an algebraic closure for k. For each prime

p, let K
p

be the subfield of k obtained by adjoining to k all p-power roots of unity

in ~k. Let Kbe the compositum of all of the K
p ,

i.e., the field obtained by adjoining

to k all roots of unity in k.

Suppose that A is an abelian variety over k. Mazur has raised the question of

whether the groups A (K
p

) are finitely generated [4]. In this connection, H. Imai

[1] and J.-P. Serre [5] proved (independently) that the torsion subgroup of

A (K
p

) is finite for each p. The aim of this appendix is to prove that more precisely

one has the following theorem, cf. [3], §11, Remark 3.

Theorem 1. The torsion subgroup A (K\ ors of A (K) is finite.

Let G be the Galois group Gal (k/k) and let H be its subgroup Gal (k/K). For

each positive integer n, let A [n] be the kernel of multiplication by n in A (k). For

each prime p, let V
p

be the Q
p
-adic Tate module attached to A. If M is one of

these modules, we denote by MHM
H the set of elements of M left fixed by H. Since

His normal in G, MHM
H is stable under the action of GonM.

Because of the structure of the torsion subgroup of A (k), one sees easily that

Theorem 1 is equivalent to the conjunction of the following two statements:

Theorem 2. For all but finitely many primes p, we have A [p] H =0.

Theorem 3. For each prime p, we have V
p

= 0.

Indeed, Theorem 2 asserts the vanishing of the p-primary part of A (K\ on ,

while Theorem 3 asserts the finiteness of this p-primary part.

*) Partially supported by National Science Foundation contract number MCS 80
02317.



In proving these statements, we visibly have the right to replace k by a finite

extension of k. Therefore, using ([SGA 71], IX, 3.6) we can (and will) assume that

A/k is semistable. Next, consider the largest subextension k! of K/k which is

unramified at all finite places of k.

Lemma. For each prime p, let L
p

be the largest extension of k in K

which is unramified at all places of k except for primes dividing p and the

infinite places of k. Then l^ is the compositum k'K
p .

Proof Let Abe the Galois group Gal (K/k), viewed as a subgroup of Z*.
We consider Z* as the direct product of its two subgroups Z* and \\ %* Let /

ifp
(resp. J) be the subgroup of A generated by the inertia groups of A for primes of k

which divide p (resp. which do not divide p). Then / is a subgroup of Z*, while J is

a subgroup of \\ Zf . The product / x Jis the subgroup of A generated by all
ifp

inertia groups of A. We have J= Gal (k/L p
), IxJ= Gal (k/k'), and

Gal (k/K
p

) =A n(l\ Zf). Now Gal (k/k'K p
) is the intersection of the two

ifp
Galois groups Gal (k/k') and Gal (k/K p

). Putting these facts together, we

prove the desired assertion.

We now replace k by its finite extension k'. With this replacement made, K
p

becomes equal to L
p

. Furthermore, for odd primes p, the largest extension of kin

K which is unramified outside p and infinity and which has degree prime to p is

the field obtained by adjoining to k the p-th roots of unity in k.

Proof of Theorem 2. We shall consider only primes p which are odd,

unramified in k, and such that A has good reduction at at least one prime of k

dividing p. Let p be such a prime and v a prime of k over p at which A has good

reduction. Suppose that the G-module A [p] H is non-zero, and let Wbea simple

G-submodule of this module. The algebra En& G W is a finite field F, and the

action of G on W is given by a character

since the action of GonA [p~\
H is abelian. (Here the point is simply that G/H is an

abelian group.) In particular, the image of G in Aut (A [p]) has order prime to p.

On the other hand, the character <|> is unramified at primes of k not dividing p

because A/k is semistable. By the discussion following the lemma, we know that

(j) factors through the quotient Gal (k ([i
p
)/k) of G ; here, \l p

denotes the group of

p-ih. roots of unity. In particular, (j) must have order dividing p — 1, so that its



values lie in the prime field ¥
p . Since W was chosen to be simple, its dimension

over ¥
p

must be 1 ; i.e., W is a group of order p.

Let x 'G -> F* be the mod p cyclotomic character, i.e., the character giving

the action of Gon \i p . Since <|> factors through Gal (k (ji p
)//c), we may write <\> in

the form y
n

,
where nisan integer mod (p - 1). We claim that n can only be oorl.

To verify this claim, it is enough to check that it is true after we replace G by

an inertia group / in G for the prime v, since % is totally ramified at v. We remark

that W is the /-module associated to a finite flat commutative group scheme iV

over the ring of integers of the completion of k at v, since v is such that A has good

reduction at v. Because IV has order p, the classification of Tate-Oort ([B],

especially pp. 15-16) applies to IV. Because v is absolutely unramified, the

classification shows immediately that iV is either etale or the dual of an etale

group. In the former case, / acts trivially on W ; in the latter case, / acts on W via

X- This completes the verification of the claim.

Thus, if Theorem 2 is false, there are infinitely many primes p for which A [p]
contains a G-submodule isomorphic to either Z/pZ or to \i p . Of course, the

former case can occur only a finite number of times, since A (k) is finite. One way
to rule out the latter case is to argue that whenever \i p

is a submodule of A [p], the

group Z/pZ is a quotient of the dual of A [p], which is the kernel of

multiplication by p on the abelian variety Av dual to A. In other words, if \i p

occurs as a submodule of A [p], then there is an abelian variety isogenous to A v

(and therefore in fact to A) which has a rational point of order p over k. Therefore

p is a divisor of the order of a finite group that may be specified in advance, viz.

the group of rational points of any reduction of A at a good unramified prime of k

of residue characteristic different from 2. (See the appendix to Katz's recent paper
[2] for a discussion of thi r point.)

Proof of Theorem 3. Suppose that pisa prime such that V
p

is non-zero. We

again choose W to be an irreducible G-submodule (i.e., Q
p [G] -submodule) of

V". Because the action of G on W is abelian, and because W is simple, each

element of G acts semisimply on W. Since A/k is semistable, it follows that the

homomorphism

giving the action of G on W is unramified at all primes of k not dividing p.

Therefore, p factors through Gal (K
p
/k) in view of the lemma and the subsequent

replacement k -> Id. In other words, starting from the hypothesis that the p
torsionsubgroup of A (K) is infinite, we have deduced that the p-torsion
subgroup of A {K p

) is infinite.



Of course, this situation is ruled out by the theorem of Imai and Serre

mentioned above. Nevertheless, we will sketch for the reader's convenience an

argument which leads to a contradiction. Let v be a place of k dividing p, and let

D c= G be a decomposition group for v. By ([SGA 71], IX, Prop. 5.6), the D
moduleV

p
is an extension of D-modules attached to p-divisible groups over the

integer ring of the completion of k at v. Because of Tate's theory [7], the

semisimplification VV
s * of the D-module V

p
has a Hodge-Tate decomposition.

(Here we should remark that submodules and quotients of Hodge-Tate modules

are again Hodge-Tate.) Since W is semisimple as a D-module (because

semisimple and abelian as a G-module), W may be viewed as a submodule of VV
s

p

s
.

Therefore, W is a Hodge-Tate module.

By ([6], 111, Appendix), we know that p is a locally algebraic abelian

representation of G. Using this information, plus the fact that p factors through
Gal (KJk\ we find that there is an open subgroup G

o of G with the following

property: the restriction of p to G
o

is the direct sum of 1 -dimensional

representations, each described by an integral power %"
p

of the standard

cyclotomic character x P

' G- Z*. After replacing kbya finite extension, we may

assume that G
o

is G. Take a prime wofk which is prime to p and such that A has

good reduction at w. Let g e G be a Frobenius element for w. The eigenvalues of

p (g) will be integral powers of %p%

p
(g\ i.e., of the norm Nw of w. However, by a well

known theorem of Weil, these eigenvalues all have archimedian absolute values

equal to (Nw) 1/2
.

This contradiction completes the proof of Theorem 3.
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