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1 Introduction and statement of the main result

Let k be a finite field, p its characteristic, q its cardinality,

ψ : (k,+) → Z[ζp]× ⊂ C×

a nontrivial additive character of k, and

χ : k× → Z[ζq−1]× ⊂ C×

a nontrivial multiplicative character of k. We extend χ to k by defining χ(0) = 0.

We wish to consider character sums over An, n ≥ 1, of the following form. We are

given a polynomial f (x) := f (x1, . . . , xn) in k[x1, . . . ,Xn] of degree d ≥ 1, and we are given a

second polynomial g(X) := g(x1, . . . , xn) in k[x1, . . . , xn] of degree e ≥ 1. We are interested

in understanding when the sum

∑
x∈kn

ψ(f (x))χ(g(x))
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has “square root” cancellation, i.e. when we can exhibit an explicit constant C = C(n,d, e)

and prove the estimate

∣∣∣∣∣
∑
x∈kn

ψ(f (x))χ(g(x))

∣∣∣∣∣ ≤ C(#k)n/2.

In this paper, we will exhibit one particularly nice class of pairs (f , g) for which such

estimates hold. The general problem of understanding for which pairs (f , g) one has, or

should have, such estimates is far from being understood.

Let us first recall the notion of a “Deligne polynomial”. A polynomial f =

f (x1, . . . , xn) in n ≥ 1 variables over k of degree d ≥ 1 is called a Deligne polynomial

if its degree d is prime to p and if its highest degree term, fd, is a homogeneous form of

degree d in n variables which is nonzero, and whose vanishing, if n ≥ 2, defines a smooth

hypersurface in the projective space Pn−1.

For f = f (x1, . . . , xn) a Deligne polynomial of degree d, one has Deligne’s funda-

mental estimate [3, 8.4]

∣∣∣∣∣
∑
x∈kn

ψ(f (x))

∣∣∣∣∣ ≤ (d − 1)n(#k)n/2.

If g = g(x1, . . . , xn) is a Deligne polynomial of degree e, such that g = 0 defines a smooth

hypersurface in An, then one has the analogous estimate [6, Theorem. 1]

∣∣∣∣∣
∑
x∈kn

χ(g(x))

∣∣∣∣∣ ≤ (e − 1)n(#k)n/2.

Our main result is that if f and g above are suitably transverse, then we have a

good estimate for the mixed sum. To state the estimate, we define the constant

C(n,d, e) := (−1)n × coef. of Ln in
(1 + L)n+1

(1 + L)(1 + dL)(1 + eL)

= the value at (x, y) = (d, e) of
x(x − 1)n − y(y − 1)n

x − y

=
∑

a+b=n

(d − 1)a(e − 1)b
+

∑
a+b=n−1

(d − 1)a(e − 1)b.

Recall also that, given an integer w, a number α ∈ C is said to be pure of weight

w (relative to q) if it and all its Aut(C/Q)-conjugates have absolute value qw/2. Such an α

is necessarily algebraic over Q. A polynomial P(T) ∈ 1+TC[T] is said to be pure of weight
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w if all its reciprocal roots are pure of weight w; it is said to be mixed of weight ≤ w if

each of its reciprocal roots α is pure of some integer weight wα ≤ w.

Theorem 1.1. Suppose that f = f (x1, . . . , xn) and g = g(x1, . . . , xn) are Deligne polynomi-

als over k of degrees d and e, respectively. If n ≥ 2, suppose in addition that the smooth

hypersurfaces in Pn−1 defined by fd = 0 and by ge = 0 are transverse, i.e., their intersec-

tion is smooth of codimension 2 in Pn−1. Then we have the following results.

(1) We have the estimate

∣∣∣∣∣
∑
x∈kn

ψ(f (x))χ(g(x))

∣∣∣∣∣ ≤ C(n,d, e)(#k)n/2.

The associated L function is a polynomial P(T) (for n odd) or a reciprocal

polynomial 1/P(T)(for n even) of degree ≤ C(n,d, e), which is mixed of

weight ≤ n.

(2) If P(T) has degree = C(n,d, e), then P(T) is pure of weight n.

(3) If g = 0 defines a nonsingular hypersurface in An, then P(T) has degree

= C(n,d, e), and is pure of weight n. �

We are indebted to Steve Sperber for the observation that the ideas that go

into proving this theorem lead in a straightforward way to a theorem dealing with the

following more general situation. Instead of ( f , g), we give ourselves an integer r ≥ 1,

and r+1 Deligne polynomials (f , g1, . . . , gr) in n variables over k, of degrees (d, e1, . . . , er).

If n ≥ 2, we assume that the r + 1 smooth hypersurfaces in Pn−1 defined by the vanishing

of their highest degree forms are transverse, in the sense that for any integer j with

r + 1 ≥ j ≥ 1, the intersection of any j of them is smooth of codimension j in Pn−1 if

j ≤ n − 1, and is empty if j ≥ n. Then we get the following result.

Theorem 1.2. For any r- tuple of nontrivial multiplicative characters (χ1, . . . ,χr), we

have the bound

∣∣∣∣∣
∑
x∈kn

ψ(f (x))
∏

i
χi(gi(x))

∣∣∣∣∣ ≤ C(n,d, e1, . . . , er)(#k)n/2,

where C(n,d, e1, . . . , er) is defined as

C(n,d, e1, . . . , er) := (−1)n × coef. of Ln in
(1 + L)n+1

(1 + L)(1 + dL)
∏

i(1 + eiL)
. �

We will discuss the proof of this more general result in the appendix.
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2 Statement of a second version of the main result

In this section, we give a generalization in the spirit of [9, 5.1.1] and [6, Theorems 3,4]. Let

X/k be a projective, smooth, and geometrically connected k-scheme of dimension n ≥ 1,

given with a projective embedding X ↪→ PN
k := P. We fix integers d ≥ 1 and e ≥ 1, both

prime to p. We are given a linear form

Z ∈ H0(P,OP(1)),

a degree d form

F ∈ H0(P,OP(d)),

and a degree e form

G ∈ H0(P,OP(e)),

all on the ambient projective space P. Assume that the following four transversality

hypotheses hold.

(1) X ∩ Z is lisse of codimension 1 in X.

(2) X ∩ Z ∩ F is lisse of codimension 1 in X ∩ Z (:= empty, if n = 1).

(3) X ∩ Z ∩ G is lisse of codimension 1 in X ∩ Z (:= empty, if n = 1).

(4) X ∩ Z ∩ F ∩ G is lisse of codimension 2 in X ∩ Z (:= empty, if n ≤ 2).

To this data, we attach the smooth affine k-scheme

V := X − X ∩ Z = X[1/Z],

and the functions

f := F/Zd
: V → A1

k

and

g := G/Ze
: V → A1

k.

We denote by c(X) the total Chern class of X, and by L the class of OX(1). We define

the constant C(X,d, e) by

C(X,d, e) := (−1)n
∫

X

c(X)
(1 + L)(1 + dL)(1 + eL)

.
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Thus when X is Pn with the identity embedding of itself into P = Pn, C(X,d, e) is the

constant C(n,d, e) of the first section. When X is a complete intersection in Pn+r of

multidegree (a1, . . . ,ar), then

C(X,d, e) := (−1)n
∫

Pn+r

a1 . . . arLr(1 + L)n+r+1

(1 + L)(1 + dL)(1 + eL)
∏

i(1 + aiL)

= coef. of Ln in
a1 . . . ar(1 + L)n+r+1

(1 + L)(1 + dL)(1 + eL)
∏

i(1 + aiL)

Theorem 2.1. Suppose that (X, Z, F,G) are as above. Then we have the following results.

(1) We have the estimate

∣∣∣∣∣∣
∑

x∈V(k)

ψ(f (x))χ(g(x))

∣∣∣∣∣∣ ≤ C(X,d, e)(#k)n/2.

The associated L function is a polynomial P(T) (for n odd) or a reciprocal

polynomial 1/P(T)(for n even) of degree ≤ C(X,d, e), which is mixed of

weight ≤ n.

(2) If P(T) has degree = C(X,d, e), then P(T) is pure of weight n.

(3) If X ∩ G is smooth of codimension 1 in X, or equivalently if g = 0 is smooth

of codimension 1 in V, then P(T) has degree = C(X,d, e), and is pure of

weight n. �

Thus when X is Pn with the identity embedding of itself into P = Pn, this theorem

is just Theorem 1.1.

3 Proof of Theorem 2.1; the strategy

As is customary in such questions, we choose a prime number � �= p and choose an

embedding of Q(ζp, ζq−1) into Q�, so that we can view all our characters, both additive

and multiplicative, as having values in Q
×
� , and so that we can apply �-adic cohomology.

On the smooth, geometrically connected, affine variety V[1/g] of dimension n, we

have the lisse, rank one, Artin-Schreier sheaf Lψ(f ), the lisse, rank one, Kummer sheaf

Lχ(g), and their lisse, rank one, tensor product Lψ(f ) ⊗ Lχ(g), cf. [2, 1.4.2, 1.4.3]. Each of

these lisse sheaves is pure of weight 0. By the Lefschetz Trace Formula [5], we have

∑
x∈V(k)

ψ(f (x))χ(g(x)) =
∑

i

(−1)iTrace(Frobk|H
i
c(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)).
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By Deligne’s Weil II result [4, 3.3.4], the (reversed characteristic polynomial of Frobk on

the) cohomology group Hi
c above is mixed of weight ≤ i. By the dual of the Lefschetz

affine theorem, Hi
c vanishes for i < n, cf. [11, Exposé XVIII, Theorem 3.2.5 and Exposé

XIV, Corollary 3.2].

Let us admit temporarily the following theorem, and explain how it implies

Theorem 2.1.

Theorem 3.1. Suppose that (X, Z, F,G) are as in Theorem 2.1. Then we have the following

results.

(1) Hi
c := Hi

c(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)) vanishes for i �= n.

(2) If X ∩ G is smooth of codimension 1 in X, or equivalently if g = 0 is smooth

of codimension 1 in V, then we have the following results.

(2a) Hn
c has dimension C(X,d, e), and is pure of weight n.

(2b) The “forget supports” map is an isomorphism

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)) ∼= Hn(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)). �

Using this, we prove Theorem 2.1 as follows. Over the affine space

A := H0(P,OP(1)) × H0(P,OP(d)) × H0(P,OP(e)),

we have the product X × A, the closed subscheme of this product consisting of points

(x ∈ X, Z, F,G) where L(x)G(x) = 0, and its open complement V[1/g]univ, consisting of

points (x ∈ X, Z, F,G) where L(x)G(x) is invertible. We view V[1/g]univ as fibered over

A, say

πuniv : V[1/g]univ → A.

The triples (Z, F,G) ∈ A which satisfy our four transversality conditions with respect to

X form a dense open set U ⊂ A. Over this open set U ⊂ A, the pullback V[1/g] of V[1/g]univ

is an affine smooth U-scheme, say

π : V[1/g] → U.

with geometrically connected fibres of dimension n, whose fiber over a point (Z, F,G) is

V[1/g] = X[1/LG].
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On V[1/g], we have the lisse sheaf Lψ(f ) ⊗ Lχ(g). The sheaf

N := Rnπ!(Lψ(f ) ⊗ Lχ(g))

is then a sheaf of perverse origin on U, cf. [8, Introduction and Corollary 5]. For a sheaf

of perverse origin, one knows [8, Propositions 11, 12] that the stalk at any point has rank

at most the generic rank, and that the open set Ulisse where the sheaf is lisse consists

precisely of the points Umax where the stalk has this maximum rank.

The stalk of N at a k-valued point (Z, F,G) ∈ U(k) is the cohomology group

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)).

The supplementary condition on (Z, F,G) that X ∩ G be smooth of codimension 1

in X defines a dense open set U1 ⊂ U. By the second part of Theorem 3.1, the stalk of N

at any point of U1 has rank C(X,d, e), and this stalk is pure of weight n. [Let us note in

passing that this proves part (3) of Theorem 2.1.]

Therefore the generic rank of N must be C(X,d, e). So for any k-valued point

(Z, F,G) ∈ U(k), we have

dimHn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)) ≤ C(X,d, e).

As this group is mixed of weight ≤ n, and all other Hi
c vanish, we have

∑
x∈V(k)

ψ(f (x))χ(g(x)) = (−1)nTrace(Frobk|H
n
c ),

so we get the estimate

∣∣∣∣∣∣
∑

x∈V(k)

ψ(f (x))χ(g(x))

∣∣∣∣∣∣ ≤ C(X,d, e)(#k)n/2.

This proves part (1) of Theorem 2.1.

On the dense open set U1, N is punctually pure of weight n, and has constant

rank C(X,d, e). Thus we have the inclusion U1 ⊂ Ulisse = Umax. Now the sheaf N is mixed,

by [4, 3.3.3], so its restriction to Ulisse is a lisse sheaf which is mixed. Such a sheaf on a

lisse k-scheme is a successive extension of pure lisse sheaves, by [4, 3.4.1], so the weights

that occur, and their multiplicities, can be read by looking at any single point in Ulisse(k).

Taking a point in U1(k), we conclude that N|Umax is pure of weight n. This proves the

second assertion of Theorem 2.1.
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4 Proof of part (1) of Theorem 3.1

Let us recall the situation. We have X/k a projective, smooth, and geometrically con-

nected k-scheme of dimension n ≥ 1, given with a projective embedding X ↪→ PN
k := P.

And we have homogeneous forms (Z, F,G) of prime-to-p degrees 1,d, e, respectively, in

the ambient P, subject to various transversality conditions. We must show that

Hi
c := Hi

c(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

vanishes for i �= n. As already noted earlier, Hi
c vanishes for i < n by the dual of the

Lefschetz affine theorem. So it remains to show that Hi
c vanishes for i > n.

We first treat the case where χe is trivial. In this case, we argue as follows.

Consider the finite flat covering Ve := V[g1/e] of V gotten by taking the eth root of g, say

ρ : Ve → V.

Concretely, Ve is the closed subscheme of V × A1, with coordinate t on A1, of equation

te = g. The direct image sheaf ρ�Q� on V has a direct sum decomposition, as the direct

sum of the constant sheaf on V with various Kummer sheaves on V[1/g], extended by

zero. More precisely, denote by

j : V[1/g] ⊂ V

the inclusion. We have a direct sum decomposition on V

ρ�Q� = Q�

⊕
⊕Λetriv,Λ nontriv j!LΛ(g).

By the projection formula, we see that for each i,

Hi
c(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

is a direct summand of

Hi
c(Ve ⊗k k, ρ�Lψ(f )) = Hi

c(V ⊗k k, ρ�ρ
�Lψ(f )) = Hi

c(V ⊗k k,Lψ(f ) ⊗ ρ�Q�)

= Hi
c(V ⊗k k,Lψ(f ))

⊕
⊕Λetriv,Λ nontriv Hi

c(V[1/g] ⊗k k,Lψ(f ) ⊗ LΛ(g)).

[We note for later use that this same projection formula argument shows that for each i,

the ordinary cohomology group

Hi(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))
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is a direct summand of the ordinary cohomology group

Hi(Ve ⊗k k, ρ�Lψ(f )).]

So it suffices to show that the cohomology groups

Hi
c(Ve ⊗k k, ρ�Lψ(f ))

vanish for i > n. We will see that this results from the “nonsingular” case (ε = δ = −1)

of [7, Theorem 4]. For this, we argue as follows. We began with X ⊂ P. To fix ideas,

think of this ambient P = PN as having homogeneous coordinates (X0, . . . ,XN). In the

projective space PN+1, with homogeneous coordinates (T,X0, . . . ,XN), we consider the

closed subscheme Xe defined by the equations which defined X, together with the new

equation

Te
− G = 0.

Then (X0, . . . ,XN) define a map from Xe to X, which makes Xe a finite flat covering of X of

degree e. [A more intrinsic way to view Xe is as follows. On X, we have the invertible OX-

module M := OX(1), and the global section m := G of M⊗e. Then Xe represents the functor

on X-schemes which attaches to an X-scheme π : Y → X the set

{z ∈ H0(Y,π�M)| ze
= π�m in H0(Y,π�M⊗e).]

Inside Xe, Ve is the open set Xe −Xe∩Z = Xe[1/Z], and ρ�Lψ(f ) on Ve is just Lψ(f ), for

f the “same” function F/Zd, but now viewed on Ve = Xe[1/Z]. A rereading of [7, Lemma 10

made cohomological, Corollary 14(1), and the first paragraph of the proof of Theorem 16],

shows that the asserted vanishing of the cohomology groups

Hi
c(Ve ⊗k k, ρ�Lψ(f ))

for i > n is proven (though not explicitly stated!) in [7], provided that the following three

conditions hold.

(1) Xe is Cohen-Macaulay and equidimensional of dimension n.

(2) Xe ∩ Z is smooth of dimension n − 1.

(3) Xe ∩ Z ∩ F is smooth of dimension n − 2 (:= empty, if n = 1).
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To see that these three conditions hold, we argue as follows. To show Xe is Cohen-

Macaulay and equidimensional of dimension n,we argue as follows. The scheme Xe is the

finite flat covering of X defined by taking the eth root of G. The open set Xe[1/G] ⊂ X is

finite etale over X[1/G], so is itself smooth. And over an open neighborhood U of a point

x ∈ X where G(x) = 0, the covering Xe is a hypersurface in the smooth scheme U × A1,

so is Cohen-Macaulay, cf. [1, Chapter III, Corollary 4.5]. To see that Xe ∩ Z is smooth of

dimension n − 1, view it as the covering of X ∩ Z defined by taking the eth root of G. By

hypothesis G = 0 defines a smooth hypersurface in the smooth scheme X∩Z of dimension

n − 1, and e is prime to p, so the total space Xe ∩ Z of this covering is itself smooth.

Similarly, Xe ∩ Z∩ F is the covering of X ∩ Z∩ F defined by taking the eth root of G, and we

argue as above, now using the assumed smoothness of both X ∩Z∩F and of X ∩Z∩F ∩G.

This concludes the proof of the first part of Theorem 3.1, in the case when χe is trivial.

We now explain how to reduce the general case to this one. The asserted vanish-

ing of the cohomology groups is a geometric statement, so we may extend scalars at will

from the original finite field k to any finite extension. Our first task is to show that after

such an extension, we can find a particularly nice coordinate system (Y0, . . . ,YN) in the

ambient P, which is suitably transverse to the situation (X, Z, F,G). We will inductively

find these homogeneous coordinates, or rather the hyperplanes they define. We start by

defining

Y0 := Z.

We wish to find a coordinate system (Z = Y0,Y1, . . . ,YN) in P such that the following

conditions hold.

(1) X is transverse to the coordinate system (Y0, . . . ,YN), in the sense that for

any subset I ⊂ {0, 1, . . . ,N}, the intersection X
⋂
∩i∈IYi is smooth of

dimension dimX − #I (:=empty if #I > dimX).

(2) If X∩G is smooth, then it is transverse to the coordinate system (Y0, . . . ,YN).

(3) Each of X ∩Z, X ∩Z∩F, X ∩Z∩G, and X ∩Z∩F ∩G, viewed as a closed smooth

subscheme of P ∩ Z, is transverse to the coordinate system (Y1, . . . ,YN).

It is standard that, over k, given any finite list of smooth, equidimensional

subschemes Wi ⊂ P, we can find a hyperplane Y1 = 0 in P which is transverse to each

Wi, in the sense that Wi ∩ Y1 is smooth of codimension 1 in Wi (:= empty, if dim(Wi) = 0).

We apply this with the list taken to be Z, X, X ∩ Z, X ∩ Z ∩ F, X ∩ Z ∩ G, X ∩ Z ∩ F ∩ G,

and, in the second part of Theorem 3.1, X ∩ G itself. This produces the desired Y1. To

define Y2, we consider this list of Wi’s, augmented by adding their intersections, when
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nonempty, with Y1. We then continue, at each step keeping the terms on our previous

list of smooth subschemes of P and adding on their intersections, when nonempty, with

the previously obtained hyperplane. In this way, we get the desired coordinate system

(Z = Y0,Y1, . . . ,YN) in the ambient P, defined over some finite extension of k, which is

suitably transverse to our original situation. Thus it suffices to treat the case where

our original coordinate system (X0, . . . ,XN) has Z = X0 and is suitably transverse to

(X, Z, F,G) as above.

Pick a prime-to-p integer r such that χr is trivial (e.g., one might take r to be

#k − 1). Consider the “rth power map”

[r] : P → P, (X0, . . . ,XN) 
→ (Xr
0, . . . ,X

r
N).

It is finite and flat of degree rN , and finite etale over the dense open set where all Yi are

invertible.

Lemma 4.1. We have the following results.

(1) Suppose we are given a closed subscheme W ⊂ P which is smooth and

equidimensional, and which is transverse to the coordinate system

(X0, . . . ,XN), in the sense that for any subset I ⊂ {0, 1, . . . ,N}, the inter-

section W
⋂
∩i∈IXi is smooth of dimension dimW − #I (:=empty if #I >

dimW). Then its inverse image Wr in the covering [r] : P → P, is smooth.

(2) For any closed subscheme W ⊂ P, the intersection Wr∩Z is the inverse image

of W ∩ Z ⊂ P ∩ Z under the “rth power map”

[r : Z] : P ∩ Z → P ∩ Z, (X1, . . . ,XN) 
→ (Xr
1, . . . ,X

r
N).

(2) For any closed subscheme W ⊂ P such that W∩Z is smooth, Wr∩Z is smooth.

�

Proof. (1) Since k is perfect, it suffices to show that Wr is a regular scheme. Over a k-

valued point w of W where all the Xi are invertible, our covering is finite étale. Over a

k-valued point w of W where precisely the Xi, i ∈ I vanish, with #I ≥ 1, pick some index

j with Xj invertible at w, and consider the functions xi := Xi/Xj. By the transversality

hypothesis, these xi are part of a system of parameters at w. Our covering over an open

neighborhood of w is an etale covering of degree rN−#I of the finite flat covering obtained

by extracting the rth roots of the xi. In this finite flat covering, there is a unique point

over w, whose local ring is visibly regular. Thus Wr is a regular scheme.
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(2) This is a tautology.

(3) By (2), this results from (1) applied to W ∩ Z ⊂ P ∩ Z and the map

[r : Z] : P ∩ Z → P ∩ Z, (X1, . . . ,XN) 
→ (Xr
1, . . . ,X

r
N). �

We now consider the pullback of our situation (X, Z, F,G) by the map [r] : P → P.

We obtain (Xr, Zr = Zr, Fr,Gr). Here Fr(Xi) := F(Xr
i ), Gr(Xi) := G(Xr

i ). We have Zr = Zr

because by construction we have Z = X0. We put Vr := Xr[1/Zr] = Xr[1/Z], fr := Fr/Zrd, and

gr := Gr/Zre. We have a finite flat map

[r]V[1/g] : Vr[1/gr] → V[1/g]

of degree rN . By the projection formula, for each i the cohomology group

Hi
c(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

is a direct summand of the cohomology group

Hi
c(Vr[1/gr] ⊗k k,Lψ(fr) ⊗ Lχ(gr)).

[We remark for later use that this same projection formula argument shows that for each

i the ordinary cohomology group

Hi(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

is a direct summand of the ordinary cohomology group

Hi(Vr[1/gr] ⊗k k,Lψ(fr) ⊗ Lχ(gr)).]

We claim that the data (Xr, Z, Fr,Gr) satisfies all the transversality conditions

of section 2, but now with degrees (d, e) replaced by degrees (dr, er). First of all, Xr

is geometrically connected, because at any of the finitely many points where exactly n

of the Xi intersect X, the covering [r]X : Xr → X is fully ramified. But if Xr were not

geometrically connected, each of its connected components would map onto X.

The transversality hypotheses of section 2 are that X ∩ Z, X ∩ Z ∩ F, X ∩ Z ∩ G,

and X ∩ Z ∩ F ∩ G, are all smooth of the correct dimension (:=empty, if that dimension

is negative). Their inverse images under [r] : P → P are the schemes Xr ∩ Z, Xr ∩ Z ∩ Fr,
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Xr ∩ Z ∩ Gr, and Xr ∩ Z ∩ Fr ∩ Gr. That these inverse images (and also Xr ∩ Gr, if X ∩ G is

assumed smooth) are all smooth of the correct dimension (:=empty, if that dimension is

negative) results from Lemma 4.1.

But in this situation, χer is trivial, so the cohomology groups

Hi
c(Vr[1/gr] ⊗k k,Lψ(fr) ⊗ Lχ(gr))

vanish for i �= n. And hence their direct summands

Hi
c(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

vanish for i �= n. This concludes the proof of part (1) of Theorem 3.1.

5 Proof of part (2) of Theorem 3.1

Let us recall the situation. We start with (X, Z, F,G), but now we assume that X ∩ Z,

X ∩ Z ∩ F, X ∩ Z ∩ G, X ∩ Z ∩ F ∩ G, and in addition X ∩ G, are all smooth of the correct

dimension (:=empty, if that dimension is negative). We first show that

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

is pure of weight n.

We first explain how to reduce to the case when χe is trivial. Exactly as in the

previous section,we pick a prime-to-p integer r so that χr is trivial, extend scalars so that

(Z = X0,X1, . . . ,XN) is a suitably transverse coordinate system, and pass to the situation

(Xr, Z, Fr,Gr), for which all of these smoothness assumptions still hold. Our cohomology

group

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

is a direct factor of

Hn
c (Vr[1/gr] ⊗k k,Lψ(fr) ⊗ Lχ(gr)).

So we are reduced to proving that Hn
c (Vr[1/gr] ⊗k k,Lψ(fr) ⊗ Lχ(gr)) is pure of weight n.

So it suffices to considering the situation (X, Z, F,G) of the paragraph above,

but under the additional hypothesis that χe is trivial. In this case, we return to the
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considerations of the first part of section 4, where we introduced the covering Ve defined

by taking the eth root of g, and saw that our cohomology group

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

was a direct factor of

Hn
c (Ve ⊗k k,Lψ(f )).

In this situation, the key observation is that Xe is in fact smooth. Indeed, it is the covering

of X defined by extracting the eth root of G. But e is prime to p, X is smooth, and X ∩ G is

smooth, so it follows that Xe is regular, and hence smooth. It is geometrically connected,

because it is fully ramified over X at any point of X ∩ G. We have already seen in the first

part of section 4 that Xe ∩ Z and Xe ∩ Z ∩ F are both smooth of the correct dimension. So

the purity of

Hn
c (Ve ⊗k k,Lψ(f ))

now results from [9, 5.1.1(2)].

To conclude the proof of part (2a) of Theorem 3.1, it remains to compute the

dimension of

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)).

Since this is the only nonvanishing cohomology group, its dimension is equal to (−1)n×
the Euler characteristic

χc(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)).

By standard arguments of reducing the L function mod various primes λ of Z[ζp, ζ#k−1] of

residue characteristic �= p which divide the order of χ and considering the degree of the

resulting mod λ L-function, we see that this Euler characteristic is independent of the

particular choice of χ, and is the same with χ replaced by the trivial character:

χc(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)) = χc(V[1/g] ⊗k k,Lψ(f )).

On the other hand, we have

χc(V[1/g] ⊗k k,Lψ(f )) = χc(V ⊗k k,Lψ(f )) − χc(V ∩ (g = 0) ⊗k k,Lψ(f )).
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Now χc(V ⊗k k,Lψ(f )) is the additive character euler characteristic attached to the

situation (X, L, F), with f = F/Zd on V = X[1/L]. Similarly, χc(V ∩ (g = 0) ⊗k k,Lψ(f ))

is the additive character euler characteristic attached to the situation (X ∩ G, L, F), with

f = F/Zd on V ∩ (g = 0) = (X ∩ G)[1/L]. So from [9, 5.1.1 and Remarque on page 166], we

have the formulas

χc(V ⊗k k,Lψ(f )) =

∫
X

c(X)
(1 + L)(1 + dL)

,

χc(V ∩ (g = 0) ⊗k k,Lψ(f )) =

∫
X∩G

c(X ∩ G)
(1 + L)(1 + dL)

=

∫
X

eLc(X)
(1 + L)(1 + dL)(1 + eL)

.

Subtracting, we find

χc(V[1/g] ⊗k k,Lψ(f )) =

∫
X

c(X)
(1 + L)(1 + dL)(1 + eL)

:= (−1)nC(X,d, e),

as required.

It remains to prove part (2b) of Theorem 3.1, that the “forget supports” map is an

isomorphism

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)) ∼= Hn(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)).

The right hand group Hn(V[1/g]⊗k k,Lψ(f )⊗Lχ(g)) is, up to a Tate twist, the Poincaré dual

of Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)), so (by part (2a) of Theorem 3.1, applied with ψ and χ) it

has the same dimension, (−1)nC(X,d, e), as the left hand group. Therefore it suffices to

show that the “forget supports” map is injective:

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)) ↪→ Hn(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g)).

For this we first reduce to the case when χe is trivial, by passing to the covering

Vr and looking at the commutative diagram

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

forget
−→ Hn(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

∩ ∩

Hn
c (Vr[1/gr] ⊗k k,Lψ(fr) ⊗ Lχ(gr))

forget
−→ Hn(Vr[1/gr] ⊗k k,Lψ(fr) ⊗ Lχ(gr)).
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So it suffices to treat the case when χe is trivial. In this case, we pass to the

covering Ve, and look at the commutative diagram

Hn
c (V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

forget
−→ Hn(V[1/g] ⊗k k,Lψ(f ) ⊗ Lχ(g))

∩ ∩

Hn
c (Ve ⊗k k,Lψ(f ))

forget
−→ Hn(Ve ⊗k k,Lψ(f )).

This bottommost “forget supports” map is in fact bijective, by [9, 5.1.1, part (0)].

6 Appendix: the case of r ≥ 1 g’s

We begin by stating the generalization of Theorem 1.2 analogous to Theorem 2.1. As

in that theorem, X/k is a projective, smooth, and geometrically connected k-scheme of

dimension n ≥ 1, given with a projective embedding X ↪→ PN
k := P. We fix integers d ≥ 1

and e1, . . . , er ≥ 1, all prime to p. We are given a linear form

Z ∈ H0(P,OP(1)),

a degree d form

F ∈ H0(P,OP(d)),

and, for i = 1, . . . , r, a degree ei form

Gi ∈ H0(P,OP(ei)),

all on the ambient projective space P. We assume that the following transversality

hypotheses hold.

(1) X ∩ Z is lisse of codimension 1 in X.

(2) X ∩ Z ∩ F is lisse of codimension 1 in X ∩ Z (:= empty, if n = 1).

(3) For any nonempty subset I ⊂ {1, . . . , r}, X ∩Z∩∩i∈IGi is lisse of codimension

#I in X ∩ Z (:= empty, if #I ≥ n).

(4) For any nonempty subset I ⊂ {1, . . . , r}, X ∩ Z ∩ F ∩ ∩i∈IGi is lisse of

codimension 1 + #I in X ∩ Z (:= empty, if 1 + #I ≥ n).

To this data, we attach the smooth affine k-scheme

V := X − X ∩ Z = X[1/Z],
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and the functions

f := F/Zd
: V → A1

k

and

gi := Gi/Zei : V → A1
k.

We denote by c(X) the total Chern class of X, and by L the class of OX(1). We define

the constant C(X,d, e1, . . . , er) by

C(X,d, e1, . . . , er) := (−1)n
∫

X

c(X)
(1 + L)(1 + dL)

∏
i(1 + eiL)

.

Thus when X is Pn with the identity embedding of itself into P = Pn, C(X,d, e1, . . . , er) is

the constant C(n,d, e1, . . . , er) of Theorem 1.2.

We have the following generalization of Theorem 2.1.

Theorem 6.1. Suppose that (X, Z, F,G1, . . . ,Gr) are as above. Then we have the following

results.

(1) We have the estimate

∣∣∣∣∣∣
∑

x∈V(k)

ψ(f (x))
∏

i
χi(gi(x))

∣∣∣∣∣∣ ≤ C(X,d, e1, . . . , er)(#k)n/2.

The associated L function is a polynomial P(T) (for n odd) or a reciprocal

polynomial 1/P(T)(for n even) of degree ≤ C(X,d, e1, . . . , er), which is

mixed of weight ≤ n.

(2) If P(T) has degree = C(X,d, e1, . . . , er), then P(T) is pure of weight n.

(3) If, for any nonempty subset I ⊂ {1, . . . , r}, X ∩ ∩i∈IGi is lisse of codimension

#I in X (:= empty, if #I > n), then P(T) has degree = C(X,d, e1, . . . , er), and

is pure of weight n. �

Exactly as in Section 3, Theorem 6.1 follows from the following generalization of

Theorem 3.1.

Theorem 6.2. Suppose that (X, Z, F,G1, . . . ,Gr) are as in Theorem 6.1. Then we have the

following results.

(1) Hi
c := Hi

c(V[1/
∏

i gi] ⊗k k,Lψ(f ) ⊗ (⊗iLχi(gi))) vanishes for i �= n.
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(2) If, for any nonempty subset I ⊂ {1, . . . , r}, X ∩ ∩i∈IGi is lisse of codimension

#I in X (:= empty, if #I > n), then we have the following results.

(2a) Hn
c has dimension C(X,d, e1, . . . , er), and is pure of weight n.

(2b) The “forget supports” map is an isomorphism

Hn
c (V[1/

∏
i

gi] ⊗k k,Lψ(f ) ⊗ (⊗iLχi(gi)))

∼= Hn(V[1/
∏

i
gi] ⊗k k,Lψ(f ) ⊗ (⊗iLχi(gi))).

�

To prove the first part of Theorem 6.2, it suffices, exactly as in section 4, to prove

the vanishing of Hi
c for i > n. We first reduce to the case when all χei

i are trivial. Extending

scalars, we can find a coordinate system (Z = Y0,Y1, . . . ,YN) in the ambient P which is

transversal to X, to each X ∩∩i∈IGi which is smooth, to X ∩Z, X ∩Z∩F, to every nonempty

X ∩ Z ∩ ∩i∈IGi, and to every nonempty X ∩ Z ∩ F ∩ ∩i∈IGi. So it suffices to treat the case

when the original coordinate system (Z = X0,X1, . . . ,XN) has all these transversality

properties. Then with q := #k, we consider the “q − 1’th power mapping”

[q − 1] : P → P, (X0, . . . ,XN) 
→ (Xq−1
0 , . . . ,Xq−1

N ).

It is finite and flat of degree (q − 1)N , and finite etale over the dense open set where

all Xi are invertible. Exactly as in section 4, it suffices to treat the pullback situation

(Xq−1, Z, Fq−1,G1,q−1, . . . ,Gr,q−1) by this map. This completes the reduction to the case

when all χei
i are trivial.

When all the χei
i are trivial, we pass to the covering Xe1,...,er of X defined by

extracting, for each i = 1, . . . , r, the eith root of Gi. On this covering, we have the pullbacks

Z and F of their namesakes on X. Exactly as in section 4, the “nonsingular” case (ε = δ =

−1) of [7, Theorem 4], applied now to the data (Xe1,...,er , Z, F), gives the vanishing of Hi
c for

i > n.

To prove the second part of Theorem 6.2, we observe that under the addi-

tional transversality hypotheses, the covering Xe1,...,er of the previous paragraph is itself

smooth, so the purity of Hn
c again results from [9, 5.1.1(2)]. Exactly as in section 5, the

dimension of Hn
c is (−1)n× the Euler characteristic

χc(V[1/
∏

i
gi] ⊗k k,Lψ(f ) ⊗⊗i(Lχi(gi))) = χc(V[1/

∏
i

gi] ⊗k k,Lψ(f )).
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The asserted formula for this Euler formula now follows by inclusion-exclusion from the

formulas of [9, 5.1.1 and Remarque on page 166]. This proves part (2a). The proof of part

(2b) is entirely analogous to the proof of part (2b) of Theorem 3.1 given in Section 5.
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