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Abstract

We determine the exact shape of the G2 equidistribution law for the one parameter family of

exponential sums over F�p ; X
x mod p; xa0

w2ðxÞ expð2piðx7 þ txÞ=pÞ:

Here w2ðxÞ denotes the quadratic character ðx=pÞ; t in Fp is the parameter, and p is any prime

other than 2 or 7. This answers a question raised in Keating et al. (J. Phys. A Math. Gen. 36

(2003) 2943, footnote 3) and in Serre (pers. commun., March 7, 2002). We also analyze the

analogous families when 7 is replaced by any odd integer nX3:
r 2003 Elsevier Inc. All rights reserved.
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0. Introduction

The present work grew out of independent email exchanges with Rudnick and
with Serre about the exact shape of the G2 equidistribution law for the sums in the
abstract, and for their natural generalization to finite extensions of Fp: One knew

that in any characteristic p415; after dividing these sums by a suitable normalizing
factor, they were distributed like the traces of random elements of the compact form
UG2 of the exceptional group G2: The initial problem was to determine precisely this
normalizing factor. We carry out this determination (in Sections 1 and 2) using a
method which goes back to Davenport and Hasse [Dav-Has], and which ultimately
comes down to exploiting the exact shape of the relations between elementary
symmetric functions and Newton symmetric functions. The same method works to
determine the correct normalizing factor for the analogous sums, when 7 is replaced
by any odd integer.
For a fixed odd n; the ‘‘geometric monodromy group’’ Ggeom attached to this

family of sums is the same in all large characteristics p: this ‘‘stable value’’ is G2 for
n ¼ 7; and SOðnÞ for other odd n; see Sections 3 and 4. In Section 4, we analyze the
n ¼ 7 case in all characteristics p where the sums ‘‘make sense’’, i.e., for any p other
than 2 or 7. We show that Ggeom is G2 except in characteristics 3 and 13, where we

show it is a finite group, and determine which finite group it is.
In Section 5, we give the G2 equidistribution consequences of our results in the

n ¼ 7 case. In Section 6, we give the SOðnÞ equidistribution consequences of our
results in the na7 case. In the final Section 7, we take the ‘‘large n limit’’ of the
results of Section 6, and give applications to the Katz–Sarnak measures nð�; cÞ:
It is a pleasure to thank Rudnick and Serre for stimulating the work reported on

here. It is also a pleasure to thank Chris Hall for computer computations over the

fields of 315 and 316 elements which play an essential role in the analysis of the n ¼ 7
case in characteristic 3.

1. Determinant calculations

(1.1). We work over a finite field k ¼ Fq of odd characteristic p: We fix a prime

number cap; an algebraic closure %Qc of Qc; and a field embedding i of %Qc into C:
We denote by c a nontrivial additive character c of k; and by w2 the quadratic

character of k�; both with values in %Q�
c : For any finite extension field E=k; we

denote by cE (resp. wE) the additive (resp. multiplicative) character of k (resp. k�)
defined by composition with the trace (resp. norm) of E=k:

(1.2). For any a in k�; we denote by ca the additive character cðaxÞ: We define the
Gauss sum

Gðc; w2Þ :¼
X

x in k�

w2ðxÞcðxÞ: ð1:2:1Þ
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We have the well-known identities

Gðca; w2Þ ¼ w2ðaÞGðc; w2Þ; ð1:2:2Þ

Gðc; w2Þ2 ¼ w2ð�1Þð#kÞ: ð1:2:3Þ

For E=k a finite extension, the Gauss sums for E and k are related by

�GðcE ; w2;EÞ ¼ ð�Gðc; w2ÞÞdegðE=kÞ: ð1:2:4Þ

(1.3). For each odd integer n ¼ 2d þ 1 prime to p; there is on A1=k a geometrically

irreducible lisse %Qc-sheaf of rank n which is pure of weight one,

Fn :¼ NFTcðLw2ðxÞ#LcðxnÞÞ; ð1:3:1Þ

cf. [Ka-ESDE, 7.8.2.1], whose trace function is given as follows. For E=k a finite

extension, and for t in E ¼ A1ðEÞ; we have

TraceðFrobE;t jFnÞ ¼ �
X

x in E�

w2;EðxÞcEðxn þ txÞ: ð1:3:2Þ

In fact, the stalk at t in E ¼ A1ðEÞ of Fn is the cohomology group

H1
c ðGm#E

%k;Lw2;EðxÞ#LcðxnþtxÞÞ:

Let us define the sign eðnÞ ¼ 71 in k by

eðnÞ :¼ ð�1Þd ð1:3:3Þ

Denote by An the c-adic unit in %Qc defined by

An :¼ �GðceðnÞn; w2Þ; ð1:3:4Þ

and form the constant twist Gn of Fn defined by

Gn :¼ Fn#ðAnÞ�deg: ð1:3:5Þ

This is a lisse, rank n; Qc-sheaf on A1=k which is now pure of weight zero. Its trace

function is given as follows. For E=k a finite extension, and for t in E ¼ A1ðEÞ; we
have

TraceðFrobE;t jGnÞ ¼
X

x in E�

w2;EðxÞcEðxn þ txÞ
 !

=GðceðnÞn;E ; w2;EÞ: ð1:3:6Þ

We see easily (by x/� x) that the trace function of Gn on Frobenii is R-valued

(via i). As Gn is pure of weight 0, its %Qc-dual G
3
n as lisse sheaf on A1=k has the
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complex conjugate trace function on Frobenii. Therefore Gn is self-dual, because it is
absolutely irreducible, and has the same trace function (on Frobenii, and hence on

all elements of p1ðA1=kÞ) as its dual. As Gn has odd rank n; the autoduality must be
orthogonal. So the n-dimensional representation

rn : p1ðA1=kÞ-GLðn; %QcÞ ð1:3:7Þ

corresponding to the lisse sheaf Gn factors through the orthogonal group Oðn; %QcÞ:

rn : p1ðA1=kÞ-Oðn; %QcÞ: ð1:3:8Þ

(1.4) Theorem. The representation rn lands in SOðn; %QcÞ; i.e., for every finite extension

E/k and for every t in E ¼ A1ðEÞ; we have

detðFrobE;t jGnÞ ¼ 1:

(1.5). This theorem is a special case of the following more general result.
Denote by Pn;odd odd the space of monic polynomials of degree n which are odd.

Thus for any k-algebra R; a point f in Pn;oddðRÞ is a polynomial f ðXÞ in R½X 	 of the
form

f ðX Þ ¼ X n þ
X

i¼1 to d

a2i�1X
2i�1:

Thus Pn;odd is a d-dimensional affine space Ad ; with coordinates the coefficients

a2i�1: The lisse sheaf Fn is the restriction, to the A1 in Pn;odd of polynomials of the

form xn þ tx; of a lisse sheaf Fn;odd on Pn;odd=k; whose trace function is given as

follows. For E=k a finite extension, and for f in Pn;oddðEÞ; we have

TraceðFrobE; f jFn;oddÞ ¼ �
X

x in E�

w2;EðxÞcEð f ðxÞÞ: ð1:5:1Þ

In fact, the stalk at f in Pn;oddðEÞ of Fn;odd is the cohomology group

H1
c ðGm#E

%k;Lw2;EðxÞ#Lcðf ðxÞÞÞ:

(1.6). We form the constant twist Gn;odd of Fn;odd defined by

Gn;odd :¼ Fn;odd#ðAnÞ�deg: ð1:6:1Þ

This is a lisse, rank n; %Qc-sheaf on Pn;odd=k which is now pure of weight zero. Its

trace function is given as follows. For E=k a finite extension, and for f in Pn;oddðEÞ;
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we have

TraceðFrobE; f jGn;oddÞ ¼
X

x in E�

w2;EðxÞcEðf ðxÞÞ
 !,

GðceðnÞn;E ; w2;EÞ: ð1:6:2Þ

Exactly as above, Gn;odd has real trace function on Frobenii, so is orthogonally self-

dual. The corresponding representation rn;odd lands in Oðn; %QcÞ:

rn;odd : p1ðPn;odd=kÞ-Oðn; %QcÞ: ð1:6:3Þ

(1.7) Theorem. The representation rn;odd lands in SOðn; %Qc), i.e., for every finite

extension E/k and for every f in Pn;oddðEÞ; we have

detðFrobE; f jGn;oddÞ ¼ 1:

2. Proof of Theorem 1.7

(2.1). We first observe that detðrn;oddÞ is geometrically trivial, i.e., its restriction to

p1 geomðPn;odd=kÞ ¼ p1ðAd#k
%kÞ is trivial. Indeed, this restriction is a homorphism

from p1ðAd#k
%kÞ to f71g ¼ m2; i.e., an element of H1ðAd#k

%k; m2Þ; and this last
group vanishes, because charðkÞ is odd. Therefore detðrn;oddÞ is a homomorphism

detðrn;oddÞ : p1ðPn;odd=kÞ-f71g ð2:1:1Þ

which is geometrically constant, so necessarily of the form Bdeg for some choice of B

in f71g: For this B; we have

detðFrobE; f jGn;oddÞ ¼ ðBÞdegðE=kÞ: ð2:1:2Þ

(2.2). We must show that B ¼ 1: For this, it suffices to compute at a single k-valued
point f : We take the point f :¼ xn:
We have

detð1� AnT Frobk;f jGn;oddÞ ¼ detð1� T Frobk j H1
c ðGm#k

%k;Lw2ðxÞ#LcðxnÞÞ

¼LðGm=k;Lw2ðxÞ#LcðxnÞ;TÞ; ð2:2:1Þ

the abelian L-function on Gm=k with coefficients in Lw2ðxÞ#LcðxnÞ: The additive

expression of this L-function as a sum over all effective divisors of Gm=k; i.e. over all
monic polynomials hðXÞ in k½X 	 with hð0Þa0; is

1þ
X
rX1

crT
r;
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where cr is the sum

cr ¼
X

monic h of degree r with hð0Þa0

w2
Y

roots a of h

a

 !
c

X
roots a of h

an

 !
: ð2:2:1Þ

But this L-function is a polynomial of degree n: Comparing coefficients of Tn; we find

detð�AnFrobk; f jGn;oddÞ

¼ detð�Frobk j H1
c ðGm#k

%k;Lw2ðxÞ#Lcðf ðxÞÞÞ

¼ cn; ð2:2:2Þ

which we rewrite in the equivalent form

detðFrobk; f jGn;oddÞ ¼ cn=ð�AnÞn: ð2:2:3Þ

(2.3). We now compute cn as an n-variable character sum. Write a monic h of degree
n as

hðX Þ ¼ X n þ
X

i¼1 to n

ð�1Þi
siX

n�i: ð2:3:1Þ

Then Y
roots a of h

a ¼ sn; ð2:3:2Þ

X
roots a of h

an ¼ Nn; ð2:3:3Þ

where the Nn is the nth Newton symmetric function. We know that Nn is an isobaric
polynomial of weight n in s1;y; sn:

Nn ¼ Nnðs1;y; snÞ:

So the coefficient cn is given by the n-variable character sum

cn ¼
X

s1;y;sn in k;sna0

w2ðsnÞcðNnðs1;y; snÞÞ: ð2:3:4Þ

It remains only to establish the identity

cn ¼ ð�AnÞn; ð2:3:5Þ

i.e.,

cn ¼ GðceðnÞn; w2Þ
n: ð2:3:6Þ
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Recall that GðceðnÞn; w2Þ
2 ¼ w2ð�1Þq; and n ¼ 2d þ 1; so we have

GðceðnÞn; w2Þ
n ¼ðGðceðnÞn; w2Þ

2ÞdGðceðnÞn; w2Þ

¼ w2ðð�1Þ
dÞqdGðceðnÞn; w2Þ

¼ qdGðcn; w2Þ; ð2:3:7Þ

the last identity because eðnÞ is ð�1Þd : Thus we must show that

X
s1;y;sn in k;sna0

w2ðsnÞcðNnðs1;y; snÞÞ ¼ qdGðcn; w2Þ: ð2:3:8Þ

The proof of this depends on the following lemma.

(2.4) Lemma. For n ¼ 2d þ 1X3; we have the identity

Nnðs1;y; snÞ

¼ ð�1Þnþ1
nsn þ ð�1Þn

n
X

i¼1 to d

sisn�i þ Rnðs1;y; snÞ;

where every monomial in Rnðs1;y; snÞ is isobaric of weight n and has usual degree X3:

Proof. Applying ðTd=dTÞ3log to the identity

Y
i¼1 to n

ð1� XiTÞ ¼ 1þ
X

i¼1 to n

ð�1Þi
siT

i; ð2:4:1Þ

we find

�
X
nX1

NnTn ¼
X

i¼1 to n

ð�1Þi
isiT

i

 !,
1þ

X
i¼1 to n

ð�1Þi
siT

i

 !
: ð2:4:2Þ

Cross-multiply and equate coefficients of like powers of T to obtain the identity, for
each i ¼ 1 to n;

ð�1Þiþ1
isi ¼ Ni þ

X
a¼1 to i�1

ð�1Þa
saNi�a: ð2:4:3Þ

Because Ni is isobaric of weight i; Ni involves only s1;y; si; and the involvement of
si is of the form

Ni ¼ ð�1Þiþ1
isi þ Piðs1;y; si�1Þ; ð2:4:4Þ
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where every monomial in Piðs1;y; si�1Þ is isobaric of weight i and has usual degree
X2: [Indeed, Piðs1;y; si�1Þ is given explicitly as

Piðs1;y; si�1Þ ¼ �
X

a¼1 to i�1
ð�1Þa

saNi�a; ð2:4:5Þ

but we will not use this more explicit information.] Take the formula (2.4.3) above
for i ¼ n;

ð�1Þnþ1
nsn ¼ Nn þ

X
a¼1 to n�1

ð�1Þa
saNn�a; ð2:4:6Þ

and substitute for Ni ¼ ð�1Þiþ1
isi þ Piðs1;y; si�1Þ: We obtain

Nn ¼ð�1Þnþ1
nsn �

X
a¼1 to n�1

ð�1Þa
saNn�a

¼ð�1Þnþ1
nsn �

X
a¼1 to n�1

ð�1Þa
sað�1Þn�aþ1ðn � aÞsn�a

�
X

a¼1 to n�1
ð�1Þa

saPn�aðs1;y; sn�a�1Þ: ð2:4:7Þ

The final term will be our Rnðs1;y; snÞ: In the sum

�
X

a¼1 to n�1
ð�1Þa

sað�1Þn�aþ1ðn � aÞsn�a;

every term sisn�i with 1pipd occurs twice, first with coefficient ð�1Þnðn � iÞ; and
then again with coefficient ð�1ÞnðiÞ: &

(2.5) Corollary. For n ¼ 2d þ 1X3; if we write Nnðs1;y; snÞ as a polynomial in

sdþ1;y; sn; with coefficients in Z½s1;y; sd 	; we have

Nnðs1;y; snÞ ¼ ð�1Þnþ1
nsn

þ ð�1Þn
n
X

i¼1 to d

sn�iðsi þ Qiðs1;y; si�1ÞÞ þ Pnðs1;y; sdÞ;

where each Qiðs1;y; si�1Þ is isobaric of weight i; and every monomial in it has usual

degree at least two, and where Pnðs1;y; sdÞ is isobaric of weight n; and every monomial

in it has usual degree at least three.

Proof. From the isobaricity of Rn; we see that each of sn; sn�1;y; sdþ1; occurs at
most linearly. If one of these, say sn�i; ipd; occurs, its coefficient Qi in Rn is isobaric
of weight i; and every monomial in Qi has usual degree at least two, so only involves
those variables sa with index 1papi � 1: Those monomials in Rn which involve
none of sn; sn�1;y; sdþ1 comprise Pn: &
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(2.6). With this corollary established, it is a simple matter to compute cn: We have

cn ¼
X

s1;y;sn in k; sna0

w2ðsnÞcðNnðs1;y; snÞÞ

¼
X

s1;y;sn in k; sna0

�w2ðsnÞcðð�1Þnþ1
nsn þ ð�1Þn

n
X

i¼1 to d

sn�iðsi þ Qiðs1;y; si�1ÞÞ þ Pnðs1;y; sdÞÞ

¼
X

sn in kx

w2ðsnÞcðð�1Þnþ1
nsnÞ

 ! X
s1;y;sn�1 in k

cðPnðs1;y; sdÞÞ

� c ð�1Þn
n
X

i¼1 to d

sn�iðsi þ Qiðs1;y; si�1ÞÞ
 !

: ð2:6:1Þ

Remember that n ¼ 2d þ 1 is odd, so the first sum is just Gðcn; w2Þ: We claim the

second sum is qd : Write it as

X
s1;y;sd in k

cðPnðs1;y; sdÞÞ

�
X

sdþ1;y;sn�1 in k

c�n

X
i¼1 to d

sn�iðsi þ Qiðs1;y; si�1ÞÞ
 !

: ð2:6:2Þ

The inner sum is of the form

X
sdþ1;y;sn�1 in k

cða linear form in sn�1;y; sdþ1Þ; ð2:6:3Þ

so it vanishes unless all the coefficients of the linear form vanish, in which case it is

qd : But the coefficients are

s1; s2 þ Q2ðs1Þ;y; si þ Qiðs1;y; si�1Þ;y; sd þ Qdðs1;y; sd�1Þ: ð2:6:4Þ

If they all vanish, then we see successively that s1 ¼ 0; s2 ¼ 0;y; sd ¼ 0: So the inner

sum is nonzero precisely once, for s1 ¼ ? ¼ sd ¼ 0; in which case it is qd : Thus the

second sum is qdcðPnð0;y; 0ÞÞ: Now Pn has no constant term, every monomial in it
being of usual degree at least three, so Pnð0;y; 0Þ ¼ 0; and so

qdcðPnð0;y; 0ÞÞ ¼ qdcð0Þ ¼ qd : ð2:6:5Þ

This concludes the proof of Theorem (1.7), and with it, Theorem (1.4). &
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3. Monodromy of Gn for general odd n

(3.1). In [Ka-ESDE, 7.1.1], we defined, for each integer bX1; nonzero integers N1ðbÞ
and N2ðbÞ; and showed that if a prime p does not divide 2N1ðbÞN2ðbÞ; then the

relations in %Fp of the form

a� b ¼ g� d

among elements a; b; g; d of mbð %FpÞ,f0g are, in a precise sense, ‘‘the same’’ as in

characteristic zero.

(3.2) Theorem. Fix an odd integer nX3; na7: For any prime p such that

p42n þ 1;

and

p does not divide 2nN1ðn � 1ÞN2ðn � 1Þ;

for any finite field k of characteristic p, for any prime cap; and for any choice of

nontrivial additive character c of k; the group Ggeom for the lisse %Qc-sheaf Gn (or

equivalently for the lisse sheaf Fn) on A1=k is SOðnÞ:

Proof. The description of Fn as a Fourier Transform, together with Laumon’s
Stationary Phase, [Lau-TF] or [Ka-ESDE, 7.4.1, 7.5], shows that the IðNÞ-
representation attached to Fn is the direct sum

Lw2" ða totally wild representation of dim n � 1; all breaks n=ðn � 1ÞÞ:

Because p42n þ 1; andFn is lisse of rank n and geometrically irreducible onA1; it is
Lie-irreducible [Ka-MG, Proposition 5]. We now apply [Ka-ESDE, 7.2.7], with a=b

there taken to be n=ðn � 1Þ: Since we have an a priori inclusion of Ggeom in SOðnÞ; the
only possibility among the choices offered there for ðGgeomÞ0;der is SOðnÞ itself. &

(3.3). For any given odd nX3; we do not know the exact list of the exceptional
primes, those p prime to 2n for which Ggeom for Fn is smaller than SOðnÞ: However,
there is a general principle that it quite useful in thinking about such questions.

(3.4) Lemma. Fix an odd integer nX3; a characteristic p prime to 2n; and a prime

cap: The group Ggeom for Fn is independent of the auxiliary choice of ðk;cÞ used to

define Fn:

Proof. Given two data ðk;cÞ to ðk1;c1Þ; denote by Fnðk;cÞ and Fnðk1;c1Þ the
versions of Fn they give rise to. To compare them, we pass to a common finite
extension E of both k and k1: There the two nontrivial additive characters cE and
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c1;E are E�-proportional: there exists a in E� such that for x in E we have

c1;EðxÞ ¼ cEðaxÞ:

Passing to a further finite extension if necessary, we may assume that a ¼ b2n for
some b in E�: Then we see that for any finite extension E1 of E; and any t in E1; we
have

TraceðFrobE1;t jFnðk1;c1ÞÞ

¼ �
X

x in E�
1

w2;E1
ðxÞcE1

ðb2nðxn þ txÞÞ

¼ �
X

x in E�
1

w2;E1
ðb�2xÞcE1

ðb2nððb�2xÞn þ tb�2xÞÞ

¼ �
X

x in E�
1

w2;E1
ðxÞcE1

ðxn þ tb2n�2xÞÞ

¼ TraceðFrobE1;tb
2n�2 jFnðk;cÞÞ:

This means that after pullback to A1=E; the sheaves

Fnðk1;c1Þ and ½t/b2n�2t	�Fnðk;cÞ

have the same trace function. As both are geometrically and hence arithmetically
irreducible, by Chebotarev, they are isomorphic:

Fnðk1;c1ÞD½t/b2n�2t	�Fnðk;cÞ on A1=E:

In particular, they are geometrically isomorphic. Now

½t/b2n�2t	�Fnðk;cÞ

is the pullback of Fnðk;cÞ by an automorphism, so has the same Ggeom as Fnðk;cÞ:
Thus Fnðk1;c1Þ and Fnðk;cÞ have the same Ggeom:

(3.5) Lemma. Suppose k is a finite field of characteristic p; C=k a smooth,

geometrically connected affine curve, c a prime invertible in k; and F a lisse %Qc-
sheaf on C which is geometrically irreducible, and whose rank n is a prime number.

Then either F is Lie-irreducible, or F has finite Ggeom: If in addition C is A1 and p4n;

then either F is Lie-irreducible or Ggeom is a finite primitive irreducible subgroup of

GLðn; %QcÞ:

Proof. If F is not Lie-irreducible, then [Ka-MG, Proposition 1] geometrically it is

either induced, i.e. of the form p�H for some finite etale covering p :Z-C= %k of
degree d41; djn; and some lisseH on Z of rank n=d; or it is a tensor productA#B
with B Lie-irreducible of rank r a proper divisor r of n; and with A of rank n=r
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having finite Ggeom: Since n is prime, in the induced case F is p�L for some L of

rank one, and in the tensor product case F is A#L with L of rank one and A
having finite Ggeom: In either case, the pullback ofF to a finite etale connected galois

covering of C= %k is the direct sum of n lisse sheaves, each of rank one. Therefore

ðGgeomÞ0 for F lies in a torus, so is a torus. But by Grothendieck’s theorem [De-

WeilII, 1.3.9], ðGgeomÞ0 for F is semisimple. Therefore ðGgeomÞ0 for F is trivial, i.e.

Ggeom for F is finite. If C is A1 and p4n; the induced case is impossible, because

A1= %k has no connected finite etale coverings of degree op: &

(3.6). We now return to the sheaves Fn: When n is prime, we have the following
result.

(3.7) Theorem. Fix an odd integer nX3; na7; and suppose that n is prime. Then for

any prime pX2n þ 1; for any finite field k of characteristic p; for any prime cap; and

for any choice of nontrivial additive character c of k; the group Ggeom for the lisse %Qc-

sheaf Gn (or equivalently for the lisse sheaf Fn) on A1=k is SOðnÞ:

Proof. We first treat the case p42n þ 1: Because p42n þ 1; and detðFnÞ is
geometrically trivial, Fn is Lie-irreducible, and Ggeom is connected [Ka-MG,

Proposition 5]. Thus Ggeom is an irreducible connected subgroup of SOðnÞ: Because n

is an odd prime other than 7, it results from Gabber’s theorem on prime-dimensional
representations [Ka-ESDE, 1.6] that Ggeom is either SOðnÞ or the faithful image

PSLð2Þ of SLð2Þ in Symn�1ðstd2Þ: If n ¼ 3; these two cases coincide. If nX5; the
second case cannot occur. Indeed, Fn has an N-break n=ðn � 1Þ; so by [Ka-GKM,
1.9], every faithful representation of its Ggeom has dimension Xn � 1; compare [Ka-

ESDE, proof of 9.1.1]. But PSLð2ÞDSOð3Þ has a faithful three-dimensional
representation.
It remains to treat the case p ¼ 2n þ 1: If Fn is Lie-irreducible, then the argument

above applies.
Since n is prime, if Fn is not Lie-irreducible, then by Lemma (3.5) above, it has

finite Ggeom: We must show that Ggeom for Fn is not finite, if p ¼ 2n þ 1: The key

point is not the exact value of p; but rather that we have the congruence

p  1 mod 2n:

If Ggeom is finite, then a power of every FrobE;t jFn is scalar, cf. [Ka-ESDE,

8.14.3.1]. In particular, a power of Frobk;0 jFn is scalar, and hence in particular has

equal eigenvalues.
To conclude the proof, we will now show that if p  1 mod 2n; then no power of

Frobk;0 jFn has equal eigenvalues. We argue by contradiction. Since p  1 mod 2n;
and n is an odd prime, already Fp and hence k contains all the 2nth roots of unity.

Enlarging k if necessary, we may assume that Frobk;0 jFn itself has all equal

eigenvalues. Denote by fL1;y;Lng all the multiplicative characters of k� of order
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dividing n: We have

TraceðFrobk;0 jFnÞ

¼ �
X

xa0 in k

w2ðxÞcðxnÞ

¼ �
X

xa0 in k

w2ðxnÞcðxnÞ

¼ �
X

ua0 in k

w2ðuÞcðuÞ ðnumber of nth roots of u in kÞ

¼ �
X

ua0 in k

w2ðuÞcðuÞ
X

i¼1 to n

LiðuÞ

¼
X

i¼1 to n

� Gðc; w2LiÞ:

These same identities, but over all finite extensions of k; show that the eigenvalues of
Frobk;0 jFn are precisely the ðð�1Þ�Þ Gauss sums

�Gðc; w2LiÞ;

for all the characters Li of order dividing n: So it suffices to show that these n Gauss
sums are all distinct. The key point is that the characters w2Li are all distinct, all
nontrivial, and they all have order dividing p � 1: That they are all distinct results
from the fact that the p � 2 Gauss sums formed with all the nontrivial characters of
order dividing p � 1 are all distinct. This follows from (the most elementary case of)
Stickelberger’s theorem. These sums all lie in Z½zp; zp�1	; and for any p-adic place P

of Qðzp; zp�1Þ; these Gauss sums have all distinct P-adic valuations. If we normalize

ordP by ordPð#kÞ ¼ 1; the p � 2 sums in question have as ordP’s the p � 2 fractions
a=ðp � 1Þ; for a ¼ 1 to p � 2; in some order. &

(3.8). For n ¼ 3; this result is sharp.

(3.9) Lemma. In characteristic p ¼ 5; F3; or equivalently G3; has finite Ggeom ¼ A5;

where A5 is viewed as lying in SOð3Þ by one of its two irreducible three-dimensional

representations.

Proof. By Lemma (3.4) above, we may choose k to the prime field F5; and c to be
(the image under i of) the C-valued additive character x/expð2pix=5Þ: We know a
priori that Ggeom is a irreducible subgroup of SOð3Þ; so it is either SOð3Þ itself, or it is
one of A4; S4; or A5:
We first show that Ggeom is not SOð3Þ: We argue by contradiction. Recall that

SOð3Þ has a unique irreducible representation L2mþ1 of each odd dimension 2m þ 1:

Since G3 has p1ðA1=F5Þ landing in SOð3Þ; we can form the lisse sheaf L2mþ1ðG3Þ on
A1=F5: Each sheaf L2mþ1ðG3Þ is pure of weight zero and self-dual. If Ggeom is SOð3Þ;
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then each is geometrically irreducible, and so we will have

H2
c ðA1# %F5; ðL2mþ1ðG3ÞÞ#2Þ

DHc
2ðA1# %F5; EndðL2mþ1ðG3ÞÞÞ ¼ %Qcð�1Þ:

So for any finite extension E=F5; the Lefschetz trace formula will giveX
t in E

ðTraceðFrobE;t jL2mþ1 ðG3ÞÞÞ2

¼ #E � TraceðFrobE j Hc
1ðA1# %F5; ðL2mþ1ðG3ÞÞ#2ÞÞ:

By Deligne [De-WeilII, 3.3.1], Hc
1ðA1# %F5; ðL2mþ1 ðG3ÞÞ#2Þ is mixed of weight p1;

and hence we have the estimate

#E �
X

t in E

ðTraceðFrobE;t jL2mþ1 ðG3ÞÞÞ2
�����

�����
pdim Hc

1ðA1# %F5; ðL2mþ1 ðG3ÞÞ#2Þð#EÞ1=2:

Dividing through by #E; we rewrite this in the form

1� ð1=#EÞ
X

t in E

ðTraceðFrobE;t jL2mþ1 ðG3ÞÞÞ2
�����

�����
pdim Hc

1ðA1# %F5; ðL2mþ1 ðG3ÞÞ#2Þ=ð#EÞ1=2:

We next note that

dim Hc
1ðA1# %F5; ðL2mþ1ðG3ÞÞ#2Þp1þ 2m2 þ 2m:

To show this, we argue as follows. Because Ggeom is SOð3Þ;
dim Hc

2ðA1# %F5; ðL2mþ1 ðG3ÞÞ#2Þ ¼ 1; so

1� dim Hc
1ðA1# %F5; ðL2mþ1 ðG3ÞÞ#2Þ

¼ wððA1# %F5; ðL2mþ1ðG3ÞÞ#2Þ

¼ rankððL2mþ1 ðG3ÞÞ#2Þ � SwanNðL2mþ1 ðG3ÞÞ#2Þ

¼ ð2m þ 1Þ2 � SwanNðL2mþ1 ðG3ÞÞ#2Þ:

Now G3 has highest N-slope 3=2; so ðL2mþ1 ðG3ÞÞ#2Þ has highest N-slope p3=2;
and so

SwanNðL2mþ1 ðG3ÞÞ#2Þpð3=2ÞrankðL2mþ1 ðG3ÞÞ#2Þ

pð3=2Þð2m þ 1Þ2:
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Thus we have

ð2m þ 1Þ2XwððA1# %F5; ðL2mþ1 ðG3ÞÞ#2ÞXð2m þ 1Þ2 � ð3=2Þð2m þ 1Þ2:

On the other hand, we have

1� dim Hc
1ðA1# %F5; ðL2mþ1 ðG3ÞÞ#2Þ ¼ wððA1# %F5; ðL2mþ1 ðG3ÞÞ#2Þ;

so we have

1XwððA1# %F5; ðL2mþ1ðG3ÞÞ#2Þ:

Thus we have

1XwððA1# %F5; ðL2mþ1ðG3ÞÞ#2ÞX� ð1=2Þð2m þ 1Þ2;

and so

1X1� dimHc
1ðA1# %F5; ðL2mþ1ðG3ÞÞ#2ÞX� ð1=2Þð2m þ 1Þ2;

so finally

dim Hc
1ðA1# %F5; ðL2mþ1ðG3ÞÞ#2Þp1þ ð1=2Þð2m þ 1Þ2

p1þ 2m2 þ 2m þ 1=2:

Since dimensions are integers, we have

dim Hc
1ðA1# %F5; ðL2mþ1ðG3ÞÞ#2Þp1þ 2m2 þ 2m;

as asserted. Thus if Ggeom is SOð3Þ; we have the estimate, for every mX1; and every

finite extension E=F5;

1� ð1=#EÞ
X

t in E

ðTraceðFrobE;t jL2mþ1 ðG3ÞÞÞ2
�����

�����
pð1þ 2m2 þ 2mÞ=ð#EÞ1=2:

We now take m ¼ 3: Then a machine calculation over E the field of 55 ¼ 3125
elements gives

ð1=#EÞ
X

t in E

ðTraceðFrobE;t jL7 ðG3ÞÞÞ2 ¼ 1:99872;

which is not within

ð1þ 2m2 þ 2mÞ=ð#EÞ1=2 ¼ 25=Sqrtð55Þ ¼ 0:447214

of 1. Therefore Ggeom for G3 is not SOð3Þ:
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The only other possibilities for Ggeom; i.e., the only finite irreducible subgroups of

SOð3Þ; are A4; S4; and A5: Denote by Garith the Zariski closure of rðp1ðA1=kÞÞ in
SOð3Þ; for r the representation corresponding to G3: Then Garith is finite as well, cf.
[Ka-ESDE, 8.14.3.1], and it contains Ggeom as a normal irreducible subgroup. So

Garith is itself one of A4; S4; or A5: But all the irreducible three-dimensional
representations of A4 and S4 have trace functions which take values in the set
f3; 1; 0;�1g: On the other hand, the traces of Garith are all the numbers

TraceðFrobE;t jG3Þ ¼ ð�1=Gðc; w2ÞÞ
degðE=FpÞ � �

X
t in E

w2;EðxÞcEðx3 þ txÞ
 !

:

Taking for E the prime field F5; and t ¼ 1; we get 1:61803y as a trace, and hence
Garith can only be A5: Since A5 is simple, and Ggeom is an irreducible normal subgroup

of it, we have Ggeom ¼ A5: &

(3.10). For general odd n; we have uniform results not for Fn but for its several
parameter version Fn;odd:

(3.11) Theorem. Fix p45: Then for any odd nX3 prime to p; for any finite field k of

characteristic p; for any prime cap; and for any choice of nontrivial additive character

c of k; the group Ggeom for the lisse %Qc-sheaf Gn;odd (or equivalently for the lisse sheaf

Fn;odd) on Pn;odd=k is SOðnÞ:

Proof. For n ¼ 3; F3;odd is just F3; and the theorem is a special case of Theorem

(3.7). We will handle the case nX5 by a degeneration argument, which in fact proves
a stronger result. Inside the space Pn;odd of monic odd polynomials of degree n; let us
denote by Pn;odd;p3 the closed subscheme whose R-valued points are all polynomials

of the form

xn þ bx3 þ cx;

with b; c in R: We denote by Fn;odd;p3 (respectively Gn;odd;p3) the restriction of

Fn;odd (respectively Gn;oddÞ to this closed subspace. We know that Ggeom for Fn;odd

lies in SOðnÞ: Since Ggeom for a pullback is a subgroup, it suffices to prove that Ggeom

for Fn;odd;p3 is SOðnÞ: &

(3.12) Theorem. Fix p45: Then for any odd nX5 prime to p; for any finite field k of

characteristic p; for any prime cap; and for any choice of nontrivial additive character

c of k; the group Ggeom for the lisse %Qc-sheaf Gn;odd;p3 (or equivalently for the lisse

sheaf Fn;odd;p3) on Pn;odd=k is SOðnÞ:

Proof. Exactly as in [Ka-LFM, pp. 115–119], we show that the fourth moment M4

of Ggeom for the lisse sheafFn;odd;p3 is 3. Since Ggeom is a priori a subgroup of SOðnÞ;
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it follows from Larsen’s Alternative [Ka-LFM, p. 113] that Ggeom is either SOðnÞ; or
is finite.
It remains to show that Ggeom for Fn;odd;p3 is not finite. Consider the following

geometric situation. Over A3=k; with coordinates a; b; c consider the product space

Gm �A3; with coordinates x; a; b; c; endowed with the lisse sheaf

K :¼ Lw2ðxÞLcða2nxnþbx3þcxÞ:

Via the projection

Gm �A3

kpr2

A3;

we form the sheaf

M :¼ R1ðpr2Þ!K

on the base A3=k: As explained in [Ka-SMD], M is a sheaf of perverse origin on

A3=k: The restriction of M to the A1 of polynomials x3 þ tx; i.e., the points ð0; 1; tÞ
inA3; is just the sheafF3: The restriction ofM to the open setA3½1=a	 is isomorphic
to a pullback of the sheaf Fn;odd;p3: [First pull back by the map

A3½1=a	-Pn;odd;p3:

ða; b; cÞ-xn þ ðb=a6Þx3 þ ðc=a2Þx;

then do the A3½1=a	-automorphism of Gm �A3½1=a	

ðx; a; b; cÞ-ða2x; a; b; cÞ:	

So if Fn;odd;p3 has finite Ggeom; then MjA3½1=a	 has finite Ggeom: This implies, by

[Ka-SMD], thatMj (the A1 of ð0; 1; tÞ) has finite Ggeom: ButMj (the A1 of ð0; 1; tÞ) is
F3; whose Ggeom is not finite, being SOð3Þ: Therefore Fn;odd;p3 does not have finite

Ggeom: &

4. Monodromy of G7: the group G2 and its finite subgroups

(4.1). Recall that G2 is the automorphism group of Cayley’s and Graves’ octonions,
cf. [Spr, 17.4], [Adams, 15.16]. By looking its action on the ‘‘purely imaginary’’
octonions, we obtain G2 as a closed subgroup of SOð7Þ: Let us denote by UG2 a
maximal compact subgroup of the complex Lie group G2ðCÞ: The following lemma is
well known, we include it for ease of reference.
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(4.2) Lemma. Two elements of UG2 are conjugate in UG2 if and only if they have the

same characteristic polynomial in the given seven-dimensional representation.

Proof. Use the fact that the two fundamental representations o1 and o2 of G2 are
the given seven-dimensional one std7; and the adjoint representation LieðG2Þ: We
have

std7"LieðG2ÞDL2ðstd7Þ:

Fix an element g in UG2: Given its characteristic polynomial on std7; we know its

characteristic polynomial also on L2ðstd7Þ; and so by long division on LieðG2Þ as
well. Once we know the characteristic polynomial of g in both fundamental
representations, we know it in all irreducible representations. So we know the trace
of g in all irreducible representations. By Peter–Weyl the conjugacy class of g is
determined by all these traces. &

(4.3). Also standard is the following lemma.

(4.4) Lemma. The normalizer of G2 in SOð7Þ is G2:

Proof. Every automorphism of G2 is inner, because its Dynkin diagram
has no automorphisms. So if g in SOð7Þ normalizes G2; there exists h in G2 such

conjugation by h has the same effect as conjugation by g; i.e., hg�1 is an element of
SOð7Þ which commutes with G2: But G2 acts irreducibly in its seven-dimensional

representation, so hg�1 must be a scalar. The only scalar in SOð7Þ is 1. Hence g ¼ h

lies in G2: &

(4.5). Another useful fact is this.

(4.6) Lemma. Over C; let G be a Zariski closed irreducible subgroup of SOð7Þ: Then G

lies in (some SOð7Þ-conjugate of ) G2 inside SOð7Þ if and only if L3ðstd7Þ contains a

nonzero G-invariant vector, in which case the space of G-invariants in L3ðstd7Þ has

dimension one.

Proof. As pointed out by [Co-Wa, p. 449], this follows from the classification of
trilinear forms in seven variables [Sch]. For a later treatment, see [Asch, Theorem 5,
parts (2) and (5) on p. 196]. &

(4.7). We now turn our attention to the lisse sheaf G7: Let p be a prime other than 2
or 7. For any finite field k of characteristic p; for any prime cap; and for any choice

of nontrivial additive character c of k; we have the lisse sheavesF7 and G7 onA1=k:
We denote by

r : p1ðA1=kÞ-SOð7; %QcÞ
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the representation which ‘‘is’’ G7; and by Garith the Zariski closure of its image.
Recall that Ggeom is the normal subgroup of Garith defined as the Zariski closure of

the image by r of pgeom1 ðA1=kÞ:

(4.8) G2 Inclusion Theorem. Let p be a prime other than 2 or 7. For any finite field k of

characteristic p; for any prime cap; and for any choice of nontrivial additive character

c of k; the group Garith for the lisse %Qc-sheaf G7 on A1=k lies in G2:

Proof. We know (1.3) that G7 is geometrically irreducible, i.e., that Ggeom and hence

a fortiori Garith is an irreducible subgroup of SOð7Þ: So by the previous lemma, it

suffices to show that L3ðG7Þ as a representation of Garith has a nonzero space of

invariants. It is proven in [Ka-ESDE, pp. 321–324] that ðG7Þ#3 has a one-
dimensional space of invariants under Ggeom:We will refine the argument given there

to show that this one-dimensional space lies in L3ðG7Þ; and that Garith acts trivially
on this space. Since we know that Ggeom is semisimple, it is equivalent to show that

the space of Ggeom co-invariants in L3ðG7Þ is one-dimensional, and that Frobk acts

trivially on it, i.e., we must show

dim H2
c ðA1#k

%k;L3ðG7ÞÞð�1Þ ¼ 1;

Frobk acts as 1 on H2
c ðA1#k

%k;L3ðG7ÞÞð�1Þ:

Let us first explain the idea. We already know from [Ka-ESDE, pp. 321–324] that

dim H2
c ðA1#k

%k; ðG7Þ#3Þð�1Þ ¼ 1:

Therefore since L3ðG7Þ is a direct summand of ðG7Þ#3; we have the inequality

dim H2
c ðA1#k

%k;L3ðG7ÞÞð�1Þp1:

By the Lefschetz trace formula, we have, for every finite extension E=k;

TraceðFrobE j H2
c ðA1#k

%k;L3ðG7ÞÞð�1ÞÞ

¼ TraceðFrobE j H1
c ðA1#k

%k;L3ðG7ÞÞð�1ÞÞ

þ ð1=#EÞ
X

t in E

TraceðFrobE;t jL3ðG7ÞÞ:

By Deligne [De-WeilII, 3.3.1], H1
c ðA1#k

%k;L3ðG7ÞÞð�1Þ is mixed of weight p� 1;

so we have

jTraceðFrobE j H1
c ðA1#k

%k;L3ðG7ÞÞð�1ÞÞjpdimðH1
c Þ=Sqrtð#EÞ:
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Thus for variable finite extensions E=k; we have

TraceðFrobE j H2
c ðA1#k

%k;L3ðG7ÞÞð�1ÞÞ

¼ ð1=#EÞ
X

t in E

TraceðFrobE;t jL3ðG7ÞÞ þ Oð1=Sqrtð#EÞÞ:

We will show that for variable finite extensions E=k; we have

ð1=#EÞ
X

t in E

TraceðFrobE;t jL3ðG7ÞÞ ¼ 1þ Oð1=Sqrtð#EÞÞ:

Let us temporarily admit this. Then we have

TraceðFrobE j H2
c ðA1#k

%k;L3ðG7ÞÞð�1ÞÞ ¼ 1þ Oð1=Sqrtð#EÞÞ:

From this we first conclude that H2
c ðA1#k

%k;L3ðG7ÞÞð�1Þa0: Since it has dimension
at most one, we must have

dim H2
c ðA1#k

%k;L3ðG7ÞÞð�1Þ ¼ 1:

Denote by A the scalar by which Frobk acts on this one-dimensional space. For
variable integers nX1; we have

An ¼ 1þ Oð1=Sqrtð#kÞnÞ:

Writing A as Anþ1=An for large n; we conclude that A ¼ 1; as required.
We now turn to proving that

ð1=#EÞ
X

t in E

TraceðFrobE;t jL3ðG7ÞÞ ¼ 1þ Oð1=Sqrtð#EÞÞ:

The third standard symmetric function S3 is given in Newton symmetric functions Ni

by

6S3 ¼ ðN1Þ3 þ 2N3 � 3N1N2:

Thus for each t in E we have the identity

6 TraceðFrobE;t jL3ðG7ÞÞ

¼ ðTraceðFrobE;t jG7ÞÞ3 þ 2 TraceððFrobE;tÞ3 jG7Þ

� 3 TraceðFrobE;t jG7ÞTraceððFrobE;tÞ2 jG7Þ:

If we denote by En=E the extension of E of degree n; then

TraceððFrobE;tÞn jG7Þ ¼ TraceðFrobEn;t jG7Þ:
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So we have the identity

6 TraceðFrobE;t jL3ðG7ÞÞ

¼ ðTraceðFrobE;t jG7ÞÞ3 þ 2 TraceðFrobE3;t jG7Þ

� 3 TraceðFrobE;t jG7Þ TraceðFrobE2;t jG7Þ:

So it suffices to show the following three statements:

(1) ð1=#EÞ
P

t in E ðTraceðFrobE;t jG7ÞÞ3 ¼ 1þ Oð1=Sqrtð#EÞÞ;
(2) ð1=#EÞ

P
t in E TraceðFrobE3;t jG7Þ ¼ 1þ Oð1=Sqrtð#EÞÞ;

(3) ð1=#EÞ
P

t in E TraceðFrobE;t jG7Þ TraceðFrobE2;t jG7Þ ¼ �1þ Oð1=Sqrtð#EÞÞ:

With the finite extension E=k fixed, let us write

A :¼ �Gðc�7;E ; w2;EÞ

for the quantity ‘‘A7’’ of 1.3.4, relative to the field E: Then for any t in E; and any
integer nX1; we have

TraceðFrobEn;t G7Þ

¼ ð1=AnÞ �
X

x in En

cEðTraceEn=Eðx7 þ txÞÞw2;EðNormEn=EðxÞÞ
 !

;

with the convention that w2;Eð0Þ ¼ 0:

Thus the sum in (1) is

ð1=#EÞð�1=AÞ3
X

t in E

X
x;y;z in E

cEðx7 þ y7 þ z7 þ tðx þ y þ zÞÞw2;EðxyzÞ:

The sum in (2) is

ð1=#EÞð�1=A3Þ
X

t in E

X
x in E3

cEðTraceE3=Eðx7 þ txÞÞw2;EðNormE3=EðxÞÞ:

The sum in (3) is

ð1=#EÞð�1=AÞð�1=A2Þ
X

t in E

X
x in E; y in E2

cEðx7 þ tx þ TraceE2=Eðy7 þ tyÞÞw2;EðxNormE2=EðyÞÞ:

In each of the three sums, we interchange the order of summation. Because the
quantity t runs over the ground field E; and TraceEn=E is E-linear, we can use the

usual orthogonality relations for the nontrivial additive character cE of E: We find

ARTICLE IN PRESS
N.M. Katz / Finite Fields and Their Applications 10 (2004) 221–269 241



that the sum in (1) is

ð�1=AÞ3
X

x;y;z in E; xþyþz¼0
cEðx7 þ y7 þ z7Þw2;EðxyzÞ:

The sum in (2) is

ð�1=A3Þ
X

x in E3;TraceE3=EðxÞ¼0
cEðTraceE3=Eðx7ÞÞw2;EðNormE3=EðxÞÞ:

The sum in (3) is

ð�1=AÞð�1=A2Þ
X

x in E; y in E2; xþTraceE2=EðyÞ¼0
cEðx7 þ TraceE2=Eðy7ÞÞw2;EðxNormE2=EðyÞÞ:

Thus what we must show is that (for (1))

X
x;y;z in E; xþyþz¼0

cEðx7 þ y7 þ z7Þw2;EðxyzÞ ¼ ð�AÞ3 þ Oð#EÞ;

(for (2))

X
x in E3;TraceE3=EðxÞ¼0

cEðTraceE3=Eðx7ÞÞw2;EðNormE3=EðxÞÞ

¼ ð�AÞ3 þ Oð#EÞ;

(for (3))

X
x in E; y in E2; xþTraceE2=EðyÞ¼0

cEðx7 þ TraceE2=Eðy7ÞÞw2;EðxNormE2=EðyÞÞ

¼ ð�AÞ3 þ Oð#EÞ:

The common feature of these last sums is that, in each, we have one of the three
finite etale three-dimensional E-algebras B=E; and the sum is

X
x in B; TraceB=EðxÞ¼0

cEðTraceB=Eðx7ÞÞw2;EðNormB=EðxÞÞ:

Indeed, in the first case B is E � E � E; in the second case it is E3; and in the third
case it is E � E2: Denote by Btr¼0 the set of elements in B whose trace to E vanishes.
We must show that

X
x in Btr¼0

cEðTraceB=Eðx7ÞÞw2;EðNormB=EðxÞÞ ¼ ð�AÞ3 þ Oð#EÞ:
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Denote by s1; s2; s3 the polynomial functions on B which are the trace functions
of the exterior powers of the left regular representation of B on itself. Thus for x

in B we have

detðT �RegðxÞjBÞ ¼ T3 � s1ðxÞT2 þ s2ðxÞT � s3ðxÞ:

In particular, we have

s1ðxÞ ¼ TraceB=EðxÞ; s3ðxÞ ¼ NormB=EðxÞ:

(4.9) Key Lemma. Let E be a field, B=E a finite etale E-algebra of dimension three.

(1) For x in B; we have the identity

s1ðx7Þ � s1ðxÞ7 ¼ �7ðs1ðxÞs2ðxÞ � s3ðxÞÞððs1ðxÞ2 � s2ðxÞÞ2 þ s1ðxÞs3ðxÞÞ:

(2) For x in B with TraceB=EðxÞ ¼ 0; we have the identity

TraceB=Eðx7Þ ¼ 7 NormB=EðxÞs2ðxÞ2 ¼ 7s3ðxÞs2ðxÞ2:

Proof of Key Lemma. Assertion (2) is the special case of (1) when s1ðxÞ ¼ 0: To
prove assertion (1), we may extend scalars from E to its algebraic closure, and so
reduce to the case where B is E � E � E: For an element ðx; y; zÞ in E � E � E; with
elementary symmetric functions si; i ¼ 1 to 3, we must show that

x7 þ y7 þ z7 � ðx þ y þ zÞ7 ¼ �7ðs1s2 � s3Þððs21 � s2Þ2 þ s1s3Þ:

In terms of the characteristic polynomial

PðTÞ :¼ T3 � s1T
2 þ s2T � s3 ¼ ðT � xÞðT � yÞðT � zÞ;

we have

s1s2 � s3 ¼ Pðs1Þ ¼ ðs1 � xÞðs1 � yÞðs1 � zÞ ¼ ðy þ zÞðx þ zÞðx þ yÞ:

So the asserted identity is the following polynomial identity

x7 þ y7 þ z7 � ðx þ y þ zÞ7

¼ �7ðy þ zÞðx þ zÞðx þ yÞððx2 þ y2 þ z2 þ xy þ xz þ yzÞ2 þ ðx þ y þ zÞxyzÞ;

whose unenlightening verification we leave to the reader. &

View B as the E-points of the affine B-scheme B; whose R-valued points, for any

E-algebra R; are given byBðRÞ :¼ B#ER: As an E-scheme,B is noncanonicallyA3:

ARTICLE IN PRESS
N.M. Katz / Finite Fields and Their Applications 10 (2004) 221–269 243



Denote by Btr¼0CB the E-subspace of elements of trace zero, and Btr¼0 the
corresponding closed subscheme of B: for any E-algebra R;

Btr¼0ðRÞ ¼ Btr¼0#ER ¼ KerðTraceB#E
R=R : B#ER-RÞ:

Thus Btr¼0 is noncanonically A2 as an E-scheme.

(4.10) Lemma. Over the algebraic closure %E of E; the polynomial function on Btr¼0

given by s2ðxÞ2s3ðxÞ is homogeneous of degree seven, and not a seventh power.

Proof. Immediate reduction to the case E ¼ %E; when B is E � E � E; with
coordinates ðx; y; zÞ: Then Btr¼0 is the subspace x þ y þ z ¼ 0; which we endow

with coordinates x and y: Then s22s3 is the function

ðxy þ xð�y � xÞ þ yð�x � yÞÞ2xyð�x � yÞ ¼ �ðx2 þ xy þ y2Þ2xyðx þ yÞ:

This polynomial is visibly not a seventh power in the UFD E½x; y	; since it is divisible
just once by the irreducible polynomial x: &

(4.11) Uniformity Lemma. Given integers nX1 and dX1; there exists a constant

Cðn; dÞ such that for any algebraically closed field k; for any prime c invertible in k,

and for any polynomial f in n variables of degree pd over k; we have dimHn�1
c ðð f ¼ 0

in An), %QcÞpCðn; dÞ:

Proof. This is a special case of [Ka-Betti, Theorem 1 on p. 31 and Corollary,
p. 34]. &

We can now complete the proof of the theorem. We must show thatX
x in Btr¼0

cEðTraceB=Eðx7ÞÞw2;EðNormB=EðxÞÞ ¼ ð�AÞ3 þ Oð#EÞ:

In view of the identity above, the sum in question isX
x in Btr¼0

cEð7s3ðxÞs2ðxÞ2Þw2;Eðs3ðxÞÞ:

If x has s2ðxÞ nonzero, we can put s2ðxÞ2 inside the w2;E ; so the sum is

X
x in Btr¼0

cEð7s3ðxÞs2ðxÞ2Þw2;Eðs3ðxÞs2ðxÞ2Þ þ
X

x in Btr¼0; s2ðxÞ¼0
w2;Eðs3ðxÞÞ:

The second sum is trivially Oð#EÞ: Indeed, each summand in it is either 0 or 71;
and there are at most 27#E summands, one for each element x of B which has

s1ðxÞ ¼ s2ðxÞ ¼ 0: Such elements are solutions in B of an equation x3 ¼ a for some a
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(namely s3ðxÞ) in E: Fix a in E: As B is a product of at most 3 fields, in each of which

x3 ¼ a has at most three solutions, the equation x3 ¼ a has at most 27 solutions in B:
So we must show thatX

x in Btr¼0

cEð7s3ðxÞs2ðxÞ2Þw2;Eðs3ðxÞs2ðxÞ
2Þ ¼ ð�AÞ3 þ Oð#EÞ:

For this, we argue as follows. Consider the function

f :¼ s3s
2
2 :Btr¼0-A1:

Then X
x in Btr¼0

cEð7s3ðxÞs2ðxÞ2Þw2;Eðs3ðxÞs2ðxÞ2Þ

¼
X

a in E�

cEð7aÞw2;EðaÞ#fx in Btr¼0 with f ðxÞ ¼ ag:

Because f is homogeneous of degree seven, and not a seventh power, for each aa0

in %E; f ¼ a is a smooth, geometrically irreducible curve. So we have

R2f! %Qc jGmD %Qcð�1Þ; and R1f! %Qc jGm becomes constant after pullback by the

seventh power map [7]: Gm-Gm: In particular, R1f! %Qc jGm is lisse, and tamely
ramified at both 0 and N; cf. [Ka-ESDE, pp. 322–323]. By the Lefschetz Trace
formula, we haveX

a in E�

cEð7aÞw2;EðaÞ#fx in Btr¼0 with f ðxÞ ¼ ag

¼
X

a in E�

cEð7aÞw2;EðaÞðq � TraceðFrobE;a j R1f! %QcÞÞ

¼ qGðc7;E ; w2;EÞ

�
X

a in E�

cEð7aÞw2;EðaÞ TraceðFrobE;a j R1f! %QcÞ

¼ � qw2;Eð�1Þð�Gðc�7;E ; w2;EÞÞ

�
X

a in E�

TraceðFrobE;a jLc7;E
#Lw2;E#R1f! %QcÞ

¼ �qw2;Eð�1ÞA

� TraceðFrobE j H2
c ðGm#E %E;Lc7;E

#Lw2;E#R1f! %QcÞÞ

þ TraceðFrobE j H1
c ðGm#E %E;Lc7;E

#Lw2;E#R1f! %QcÞÞ:

As noted above, R1f! %Qc jGm is lisse, and tamely ramified at both 0 and N: So the

lisse sheaf Lc7;E
#Lw2;E#R1f! %Qc on Gm is totally wild at N (and tame at 0).
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Therefore we have

H2
c ðGm#E %E;Lc7;E

#Lw2;E#R1f! %QcÞ ¼ 0:

The group H1
c ðGm#E %E;Lc7;E

#Lw2;E#R1f! %QcÞ is mixed of weight p2; and its

dimension is

� wcðGm#E %E;Lc7;E
#Lw2;E#R1f! %QcÞ

¼ SwanNðLc7;E
#Lw2;E#R1f! %QcÞ

¼ rankðR1f! %Qc jGmÞpCð2; 7Þ;

for Cð2; 7Þ the constant of the Uniformity Lemma above.
Thus we have X

x in Btr¼0

cEð7s3ðxÞs2ðxÞ2Þw2;Eðs3ðxÞs2ðxÞ2Þ

¼ �qw2;Eð�1ÞA þ Oð#EÞ:

But we have

A2 ¼ qw2;Eð�1Þ;

cf. 1.2.3. This concludes the proof of the G2 Inclusion Theorem. &

(4.12) G2 Theorem ([Ka-ESDE, 9.1.1]). Let p be a prime which is either 5, 11, or a

prime p415: For any finite field k of characteristic p, for any prime cap; and for any

choice of nontrivial additive character c of k, the lisse sheaf F7 has

Ggeom ¼ G2;

and the lisse sheaf G7 has

Ggeom ¼ Garith ¼ G2:

Proof. We first note that the two assertions are equivalent. Indeed, since F7 and G7

have the same Ggeom; the second assertion implies the first. Since Garith for G7 lies in

G2 by Theorem (4.8), for G7 we have inclusions GgeomCGarithCG2: So the first

assertion implies the second. We will prove the first.
For p415; this is proven in [Ka-ESDE, 9.1.1]. In fact, a slight modification of the

argument given there divides into two parts. One first uses the hypothesis p415 to
insure, via [Ka-MG, Proposition 5], that F7 is Lie-irreducible. One then shows, via
Gabber’s theorem on prime-dimensional representations [Ka-ESDE, 1.6], that in any

characteristic pa2; pa7 for which F7 is Lie irreducible, G0
geom is either SO(7) or G2

or the image PSL(2) of SL(2) in Sym6ðstd2Þ: Since Ggeom lies in G2 by the G2

Inclusion Theorem (4.8), either Ggeom is G2; or G0
geom is the image PSL(2) of SL(2) in
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Sym6ðstd2Þ; in which case Ggeom lies in the normalizer in G2 of this PSL(2). But

PSL(2) is its own normalizer in G2; indeed it is its own normalizer in SO(7) (because
every automorphism of PSL(2) is inner, PSL(2) is an irreducible subgroup of SO(7),
and SO(7) contains no nontrivial scalars). So either Ggeom is G2 or it is PSL(2). The

PSL(2) case is ruled out just as in the proof of Theorem (3.7).
It remains to show that for p ¼ 5 or 11, F7 is Lie-irreducible. By Lemma (3.4), we

may take for k the prime field Fp: By Lemma (3.5), if F7 is not Lie-irreducible, then

it has finite Ggeom; and a power of every FrobE;t jF7 is scalar. Suppose that Ggeom is

finite. Because G7 :¼ F7#ð�Gðc�7; w2ÞÞ
�deg has trivial determinant, every eigen-

value of FrobE;t jF7 will be of the form

ða root of unityÞð�Gðc�7;E ; w2;EÞÞ

¼ ða root of unityÞð#EÞ1=2:

Consequently, for every finite extension E of Fp; and for every t in E;

TraceðFrobE;t jF7Þ is divisible by ð#EÞ1=2 as an algebraic integer.

But the sum

TraceðFrobE;t jF7Þ ¼ �
X

x in E�

w2;EðxÞcEðx7 þ txÞ

lies in the ring Z½zp	; and the field QðzpÞ has a unique p-adic valuation P: If we

normalize the valuation by

ordP;Eð#EÞ ¼ 1;

then the finiteness of Ggeom for F7 implies that for every ðE; tÞ as above we have

ordP;EðTraceðFrobE;t jF7ÞÞX1=2:

In the case p ¼ 11; one sees by a direct calculation that

ordP;F11ðTraceðFrobF11;1 jF7ÞÞ ¼ 3=10:

In the case p ¼ 5; one sees by a direct calculation that

ordP;F25ðTraceðFrobF25;1 jF7ÞÞ ¼ 1=4:

In neither case do we have divisibility by ð#EÞ1=2 in Zp½zp	; much less in the ring of
algebraic integers. Therefore Ggeom is not finite in either case, and hence F7 is Lie-

irreducible in both characteristics 5 and 11, as required.
Let us explain briefly how to do such calculations. In Zp½zp	; the quantity p :¼

zp � 1 is a uniformizing parameter, the residue field is Fp; ordP;Fp
ðpÞ ¼ 1=ðp � 1Þ; and

Zp½zp	=ðpÞ ¼ Zp½zp	=ðpp�1ÞDFp½p	=ðpp�1Þ:
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For ordp :¼ ðp � 1ÞordP;Fp
(i.e., ordpðpÞ ¼ 1Þ; we are to show that

ordpðTraceðFrobF11;1 jF7ÞÞ ¼ 3; for p ¼ 11;

ordpðTraceðFrobF25;1 jF7ÞÞ ¼ 2; for p ¼ 5:

Now for any element f in Zp½zp	; with image mod pX
i¼0 to p�2

aipi; coefficients ai in Fp

in the ring Fp½p	=ðpp�1Þ; we have

ordpð f ÞXp � 1 if and only if all ai ¼ 0;

and, if some aia0; then

ordpð f Þ ¼ Minimum i such that aia0:

So the problem is to calculate the image in Zp½zp	=ðpp�1ÞDFp½p	=ðpp�1Þ of the sum

TraceðFrobE;t jF7Þ ¼ �
X

x in E�

w2;EðxÞcEðx7 þ txÞ:

We may assume that cð1Þ ¼ zp ¼ 1þ p: ThenX
x in E�

w2;EðxÞcEðx7 þ txÞ

¼
X

x in E�

w2ðNE=Fp
ðxÞÞcðTraceE=Fp

ðx7 þ txÞÞ

¼
X

x in E�

w2ðNE=Fp
ðxÞÞð1þ pÞðTraceE=Fp ðx7þtxÞÞ


X

x in E�

xð#E�1Þ=2
X

i¼0 to p�2
BinomðTraceE=Fp

ðx7 þ txÞ; iÞpi;

in Zp½zp	=ðpp�1ÞDFp½p	=ðpp�1Þ: We have written Binomðx; iÞ for the ith binomial

coefficient as a function of its ‘‘numerator’’:

Binomðx; iÞ :¼ 1; i ¼ 0;

:¼ xðx � 1Þyðx � ði � 1ÞÞ=i!; for 1pipp � 2:

Thus the coefficients ai in the expansion of �TraceðFrobE;t jF7Þ are the quantities in
Fp given by

ai ¼
X

x in E�

xð#E�1Þ=2 BinomðTraceE=Fp
ðx7 þ txÞ; iÞ:
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But the power sums over E� are given byX
x in E�

xk ¼ � 1 in Fp; if k  0 mod ð#E � 1Þ;

¼ 0; otherwise:

Thus a0 ¼ 0: To compute ai for 1pipp � 2 we first write #E as pd ; second we
expand

TraceE=Fp
ðx7 þ txÞ ¼

X
k¼0 to d�1

ðx7pk þ tpk

xpkÞ

as a polynomial in x with coefficients in Fp½t	; third we expand BinomðTraceE=Fp
ðx7 þ

txÞ; iÞ as a polynomial in x with coefficients in Fp½t	; and finally we sum up the

coefficients of all monomials of the form xk; with k of the form

ð#E � 1Þ=2þ rð#E � 1Þ;

for r ¼ 0; 1; 2;y : We leave to the reader the verification that this calculation leads
to the asserted conclusions

ordpðTraceðFrobF11;1 jF7ÞÞ ¼ 3; for p ¼ 11;

ordpðTraceðFrobF25;1 jF7ÞÞ ¼ 2; for p ¼ 5: &

(4.13) Theorem. For any finite field k of characteristic 13, for any prime ca13; and for

any choice of nontrivial additive character c of k; consider the lisse sheaf G7 on A1=k

and its corresponding representation r : p1ðA1=kÞ-SOð7Þ: Denote by Garith the

Zariski closure in SOð7Þ of rðp1ðA1=kÞÞ: Then

Garith ¼ Ggeom ¼ the finite subgroup PSLð2; F13Þ of G2;

where PSLð2; F13Þ is viewed inside G2 by one of its two seven-dimensional irreducible

representations (both of which have image in G2; cf. [Co-Wa]).

Proof. We first treat the case when k is the prime field F13; and c is (the image under
i of) the C-valued additive character x/expð2pix=13Þ: Because

p ¼ 1347 ¼ rankðG7Þ;

Lemma (3.5) tells us that either G7 is Lie-irreducible, or its Ggeom is a finite primitive

irreducible subgroup of SO(7), and indeed of G2; by the G2 Inclusion Theorem (4.8),
As explained in the proof of Theorem (4.12) above, if G7 is Lie-irreducible, then its
Ggeom is G2: If Ggeom is G2; then Garith lies in the normalizer of G2 inside SO(7), and
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this normalizer is just G2 itself, cf. Lemma (4.4). So if Ggeom is not finite, we have

Ggeom ¼ Garith ¼ G2:

If Ggeom is finite, then Garith is finite, by [Ka-ESDE, 8.14.3.1], and Ggeom is a normal

subgroup of Garith: Therefore, if Ggeom is finite, then Garith is itself a finite primitive

irreducible subgroup of G2: Every rðFrobE;tÞ then lies in Garith; and, by Chebotarev,
every element of Garith is of this form. But

TraceðrðFrobE;tÞÞ :¼TraceðFrobE;t jG7Þ

:¼ð1=Gðc�7;E ; w2;EÞÞ
X

x in E�

w2;EðxÞcEðx7 þ txÞ

visibly has values in the field Qðz13Þ of 13th roots of unity. We claim that
TraceðrðFrobF13;1ÞÞ does not lie in Q: Indeed, using the fact that for x nonzero in

F13; x is a square if and only if x6 ¼ 1 in F13; we readily compute

TraceðrðFrobF13;1ÞÞ

¼ ð�1=Sqrtð13ÞÞ
X

x in F�13

w2ðxÞcðx7 þ xÞ

¼ ð�1=Sqrtð13ÞÞ
X

x in F�13

w2ðxÞcððx6 þ 1ÞxÞ

¼ ð�1=Sqrtð13ÞÞ
X

x in F�13;x a square

cð2xÞ

þ ð�1=Sqrtð13ÞÞ
X

x in F�13;x nonsquare

ð�1Þcð0Þ

¼ ð�1=Sqrtð13ÞÞð1=2Þ
X

u in F�13

cð2u2Þ þ 6=Sqrtð13Þ

¼ ð�1=2 Sqrtð13ÞÞ �1þ
X

u in F13

cð2u2Þ
 !

þ 12=2 Sqrtð13Þ

¼ ð�1=2 Sqrtð13ÞÞð�1þ Gðc2; w2ÞÞ þ 12=2 Sqrtð13Þ

¼ ð�1=2 Sqrtð13ÞÞð�1þ w2ð2ÞGðc; w2ÞÞ þ 12=2 Sqrtð13Þ

¼ ð�1=2 Sqrtð13ÞÞð�1� Gðc; w2ÞÞ þ 12=2 Sqrtð13Þ

¼ ð1=2 Sqrtð13ÞÞð13þ Sqrtð13ÞÞ

¼ ð1þ Sqrtð13ÞÞ=2:
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Thus if Ggeom is not G2; then Garith is a finite primitive irreducible subgroup of G2; the

character of whose given seven-dimensional representation has values in the field
Qðz13Þ; and not all of the character values lie in Q:
On the other hand, the finite primitive irreducible subgroups G of G2 have been

classified by Cohen–Wales [Co-Wa]. The list of possibilities, in Atlas notation, is

L2ð13Þ ði:e: PSLð2; F13ÞÞ
L2ð8Þ ði:e: PSLð2; F8ÞÞ
L2ð7Þ:2 ði:e:; PGLð2; F7ÞÞ
U3ð3Þ or U3ð3Þ:2 ði:e: U3ð3Þ or G2ð2ÞÞ

Of these, only the first has a seven-dimensional irreducible representation whose
character takes values, some irrational, in the field Qðz13Þ: [In fact, L2ð13Þ has two
seven-dimensional irreducible representations, and both have this property.] Indeed,
all seven-dimensional irreducible representations of the other groups have character
values lying in the following fields:

L2ð8Þ Qðz9Þ
L2ð7Þ:2 Q

U3ð3Þ Qðz4Þ
U3ð3Þ:2 Q:

But the intersection of Qðz13Þ with any of the fields Q; Qðz4Þ; Qðz9Þ is Q itself. So if
Ggeom is not G2; then Garith is the finite group PSLð2; F13Þ: Conveniently, this group is
simple. As Ggeom is an irreducible (and hence nontrivial) normal subgroup of Garith;

we see that if Garith is PSLð2; F13Þ; then Ggeom ¼ Garith ¼ PSLð2; F13Þ:
To summarize our situation so far: with k ¼ F13 and c the image under i of

x/expð2pix=13Þ; Garith and Ggeom for the lisse sheaf G7 on A1=k are on a very short

list:

either Garith ¼ Ggeom ¼ G2;

or Garith ¼ Ggeom ¼ PSLð2; F13Þ:

We now explain how to rule out the G2 possibility. We do this through a
consideration of fourth moments, cf. [Ka-LFM, 112–113]. For G2 in its seven-
dimensional representation std7; we have

M4ðG2; std7Þ ¼ 4:

We focus on M4 because for PSLð2; F13Þ; in either of its irreducible seven-
dimensional representations, we have (using the ATLAS [CCNPW-Atlas] character
tables available in GAP [GAP])

M4ðPSLð2; F13Þ; std7Þ ¼ 5:
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On the other hand, we have

M4ðGgeom;G7Þ ¼ dim H2
c ðA1#k

%k; ðG7Þ#4Þ ð�1Þ:

Suppose now that Garith ¼ Ggeom ¼ G2: Then

H2
c ðA1#k

%k; ðG7Þ#4Þ ð�1Þ

is four-dimensional, and Frobk acts on it as the identity. Thus for any finite
extension field E=k; we have

TraceðFrobE ;H2
c ðA1#k

%k; ðG7Þ#4Þð�1ÞÞ ¼ 4:

The group H1
c ðA1#k

%k; ðG7Þ#4Þ ð�1Þ is mixed of weight p� 1: Using the Euler–

Poincare formula, we see that

dim H1
c ðA1#k

%k; ðG7Þ#4Þ ð�1Þ ¼ 4� wðA1#k
%k; ðG7Þ#4Þ

¼ 4þ SwanNððG7Þ#4Þ � rankððG7Þ#4Þ:

Because G7 has all N-slopes p7=6; we have

SwanNððG7Þ#4Þpð7=6Þ rankððG7Þ#4Þ:

Thus we have

dim H1
c ðA1#k

%k; ðG7Þ#4Þð�1Þp 4þ ð1=6Þ rankððG7Þ#4Þ

p 4þ 74=6 ¼ 4þ 2401=6 ¼ 404:166y:

Thus we have

dim H1
c ðA1#k

%k; ðG7Þ#4Þð�1Þp404:

From the Lefschetz Trace formula, we now find that for any finite extension E=k; we
have the estimate

j4� ð1=#EÞ
X

t in E

ðTraceðFrobE;t jG7ÞÞ4j

¼ jTraceðFrobE j H1
c ðA1#k

%k; ðG7Þ#4Þð�1Þjp404=Sqrtð#EÞ;

and consequently the upper bound

jð1=#EÞ
X

t in E

ðTraceðFrobE;t jG7ÞÞ4jp4þ 404=Sqrtð#EÞ:
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Since F7 is G7#ð�Gðc�7; w2ÞÞ
deg; we can rewrite this as

jð1=#EÞ3
X

t in E

ðTraceðFrobE;t jF7ÞÞ4jp4þ 404=Sqrtð#EÞ:

Taking for E the field of cardinality 135; we have Sqrtð#EÞ ¼ 609:338y; so for this
field, we find the estimate

jð1=#EÞ3
X

t in E

ðTraceðFrobE;t jF7ÞÞ4jp4:6631:

But machine calculation shows that for this field, we have

ð1=#EÞ3
X

t in E

ðTraceðFrobE;t jF7ÞÞ4 ¼ 4:9992y :

This rules out the G2 possibility, and so concludes the proof that for

ðF13; x/expð2pix=13ÞÞ; any ca13 and any i : %QcCC; G7 has

Garith ¼ Ggeom ¼ PSLð2; F13Þ:

Once we have treated that case, we argue as follows. For any finite extension k of
F13; any ca13 and any nontrivial additive character c of k; G7 has the same Ggeom;

namely PSLð2; F13Þ; and its Garith is a finite (by [Ka-ESDE, 8.14.3.1]) group inside G2

(by (4.8)) which contains Ggeom as a normal subgroup. Since Ggeom is a finite

primitive irreducible subgroup of G2; a fortiori Garith is itself a finite primitive
irreducible subgroup of G2: Every element of Garith has trace in the field Qðz13Þ; and
already Ggeom ¼ PSLð2; F13Þ contains elements whose trace does not lie in Q: So by

the previous classification argument, we conclude that Garith ¼ PSLð2; F13Þ: &

(4.14) Theorem. For k the prime field F3 of characteristic 3, for any prime ca3; and

for any choice of nontrivial additive character c of k; consider the lisse sheaf G7 on

A1=k and its corresponding representation r : p1ðA1=kÞ-SOð7Þ: Denote by Garith the

Zariski closure in SOð7Þ of rðp1ðA1=kÞÞ: Then

Garith ¼ the finite subgroup G2ð2Þ ¼ U3ð3Þ:2 of G2;

Ggeom ¼ the finite subgroup U3ð3Þ of G2:

Proof. Our first task is to prove that Ggeom is finite. By Lemma (3.5), either Ggeom is

G2; or it is a finite irreducible subgroup of G2 (thanks to 4.8). We rule out the G2

possibility by a consideration of sixth moments. For G2 in its seven-dimensional
representation std7; simpLie [MPR] tells us that

M6ðG2; std7Þ ¼ 35:
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[We focus on M6 because for U3ð3Þ in the unique seven-dimensional representation
std7 which lands it in G2; we have (using the ATLAS [CCNPW-Atlas] character
tables in GAP [GAP])

M6ðU3ð3Þ; std7Þ ¼ 41;

and this is the lowest moment that distinguishes U3ð3Þ from G2 itself.]
If Ggeom is G2; then, exactly as explained in the proof of Theorem (4.13) above, we

have denoting by [x] the integral part (floor) of the real number x;

dim H1
c ðA1#k

%k; ðG7Þ#6Þð�1Þ

p½35þ ð1=6Þ76	 ¼ ½19643:1666:::	 ¼ 19643;

and hence we have the estimate, for any finite extension E=F3;

jð1=#EÞ
X

t in E

ðTraceðFrobE;t jG7ÞÞ6jp35þ 19643=Sqrtð#EÞ:

Taking E to be the field of 316 elements, the error term is

19643=Sqrtð#EÞ ¼ 19643=38 ¼ 2:9939yo3:

So if Ggeom is G2; we have

jð1=#EÞ
X

t in E

ðTraceðFrobE;t jG7ÞÞ6jo38;

for E the field of 316 elements. But machine calculation, for which I am indebted to
Chris Hall, shows that as t varies over this E; the values assumed by
TraceðFrobE;t jG7Þ and their frequencies are given by the following table:

Value How many times assumed

�2 398763
�1 13899820
0 19474298
1 4782969
2 3586680
3 897080
7 7111.

Thus we find

ð1=#EÞ
X

t in E

ðTraceðFrobE;t jG7ÞÞ6 ¼ 1764324500=316 ¼ 40:98y :
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Therefore Ggeom is not G2; and hence is a finite irreducible subgroup of G2: Then

Garith is also finite, so Garith is itself a finite irreducible subgroup of G2:
We now show that Ggeom is a primitive irreducible subgroup of G2 (i.e., primitive

as a subgroup of GLð7Þ). Suppose not. By Cohen–Wales [Co-Wa, p. 448], an
imprimitive irreducible finite subgroup of G2 is either L2ð7ÞDL3ð2Þ ¼ GLð3; F2Þ; or a
possibly nonsplit extension of a three-dimensional F2-space by some subgroup of
L3ð2Þ: So we have a group homomorphism

Ggeom-L2ð7Þ;

which is either injective, or whose kernel is a group of order prime to p ¼ 3: This
leads to a contradiction, as follows. The group L2ð7Þ has two irreducible three
dimensional representations, both of which are necessarily faithful (because L2ð7Þ is
a simple group). Pick one, say L; and consider the lisse sheaf G7ðLÞ of rank 3 on

A1= %F3 corresponding to the composite homomorphism

p1geomðA1=F3Þ!
r

Ggeom!L GLð3Þ:

By [Ka-ESDE, 7.2.4], G7ðLÞ has the same highest N-slope as G7; namely 7=6: But
any N-slope occurs with multiplicity some multiple of its denominator, so an N-

slope 7=6 cannot occur in any lisse sheaf on A1= %F3 of rank less than six. Therefore
Ggeom is primitive.

Since Ggeom is primitive, a fortiori Garith is primitive. Already over the field of 34

elements, direct calculation shows that both 72 occur as traces of Frobenius
elements. Of the primitive irreducible subgroups of G2 [Co-Wa, Theorem p. 449],
namely L2ð13Þ;L2ð8Þ;L2ð7Þ:2;U3ð3Þ and U3ð3Þ:2; only the last two contain both
elements of trace 2 and elements of trace �2 in a seven-dimensional representation
which lands them in G2: Therefore Garith is either U3ð3Þ or U3ð3Þ:2: Now U3ð3Þ is a
simple group, and it is the only nontrivial proper normal subgroup of U3ð3Þ:2: So we
have either

Ggeom ¼ Garith ¼ U3ð3Þ:2;

or

Ggeom ¼ Garith ¼ U3ð3Þ;

or

Ggeom ¼ U3ð3Þ; Garith ¼ U3ð3Þ:2:

We first show that Ggeom cannot be U3ð3Þ:2: Indeed, we have (using the ATLAS

[CCNPW-Atlas] character tables available in GAP [GAP]) M6ðU3ð3Þ:2; std7Þ ¼ 36;

and the calculation over the field of 316 elements which ruled out G2 also rules out
this possibility. Thus if Ggeom is primitive, it is U3ð3Þ: Supposing this to be the case,
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we next show GarithaGgeom: For if not, then we would have

Ggeom ¼ Garith ¼ U3ð3Þ:

In this case, we would have, for any finite extension E=F3; the estimate

jM6ðU3ð3Þ; std7Þ � ð1=#EÞ
X

t in E

ðTraceðFrobE;t jG7ÞÞ6j

p½41þ ð1=6Þ76	=Sqrtð#EÞ ¼ 19649=Sqrtð#EÞ:

Taking for E the field of 315 elements, the error term is

19649=37:5 ¼ 5:187::::o6;

and hence for this field we would have

ð1=#EÞ
X

t in E

ðTraceðFrobE;t jG7ÞÞ6435:

But machine calculation, for which I am indebted to Chris Hall, shows that as t

varies over this E; the values assumed by TraceðFrobE;t jG7Þ and their frequencies

are given by the following table:

Value How many times assumed

�1 5380840
0 4782969
1 3587227
3 597871

Thus we find

ð1=#EÞ
X

t in E

ðTraceðFrobE;t jG7ÞÞ6 ¼ 444816026=315 ¼ 30:999y :

Therefore we conclude that

Ggeom ¼ U3ð3Þ; Garith ¼ U3ð3Þ:2: &

(4.15) Corollary. Let k be a finite field of characteristic 3, c any prime ca3; and c a

nontrivial additive character c of k: Consider the lisse sheaf G7 ¼ G7ðk;cÞ on A1=k:
Then its Ggeom and Garith are given by the following recipe.

(1) If degðk=F3Þ is odd, then

Garith ¼ U3ð3Þ:2;

Ggeom ¼ U3ð3Þ:
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(2) If degðk=F3Þ is even, then

Ggeom ¼ Garith ¼ U3ð3Þ:

Proof. First consider the case when c is obtained by composition with the trace

from a nontrivial additive character of the prime field F3: Then G7ðk;cÞ on A1=k is

the pullback of the lisse sheaf G7 on A1=F3 considered in the previous theorem, for
which Ggeom is U3ð3Þ; of index two in Garith ¼ U3ð3Þ:2: So the assertion is obvious in

this case.
In the general case, the nontrivial additive character is of the form ca; with c as in

the case above, and a some element of kx: Consider first the case in which a is a

seventh power in kx; i.e., a ¼ b7 for some b in kx: We claim that there exists an

isomorphism of lisse sheave on A1=k;

G7ðcb7 ; kÞD½t/b6t	�G7ðc; kÞ:

To show this, it suffices to show that both sides have the same trace function, since
this by Chebotarev implies that they have isomorphic semisimplifications as

p1ðA1=kÞ-representations, and both are p1ðA1=kÞ-irreducible. For E=k a finite
extension, and t in E; we readily calculate

TraceðFrobE;t jG7ðcb7 ; kÞÞ

¼ ð1=Gðc�7b7;E ; w2;EÞÞ
X

x in E

cðb7TraceE=kðx7 þ txÞÞw2;EðxÞ

¼ w2;Eðb7Þ 1=Gðc�7;E ; w2;EÞ
� 	

�
X

x in E

cðTraceE=kððbxÞ7 þ b6tðbxÞÞÞw2;EðxÞ

¼ w2;EðbÞ 1=Gðc�7;E ; w2;EÞ
� 	

�
X

x in E

cðTraceE=kðx7 þ b6txÞÞw2;Eðb�1xÞ

¼ 1=Gðc�7;E ; w2;EÞ
� 	 X

x in E

cðTraceE=kðx7 þ b6txÞÞw2;EðxÞ

¼ TraceðFrobE;b6t jG7ðc; kÞÞ

¼ TraceðFrobE;t j ½t/b6t	�G7ðc; kÞÞ:

Therefore there exists an isomorphism of lisse sheave on A1=k;

G7ðcb7 ; kÞD½t/b6t	�G7ðc; kÞ:

Now G7ðc; kÞ and ½t/b6t	�G7ðc; kÞ have the same Garith as each other, and the same
Ggeom as each other. So the corollary holds for G7ðcb7 ; kÞ:
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To treat the general case, we reduce to the previous case, as follows. By Lemma
(3.4), we know that Ggeom is U3ð3Þ: We also know that Garith is a finite subgroup of

G2 which contains Ggeom; and hence Garith is either U3ð3Þ or is U3ð3Þ:2: Thus Garith is

either equal to Ggeom; or Garith contains Ggeom with index two. To determine which

case we are in, we may pass from k to any finite extension of odd degree, and
look there. But any a in k� becomes a seventh power in an odd degree extension
of k: [If k contains no nontrivial seventh roots of unity, every element a of k� is
a seventh power. If k contains the seventh roots of unity, then either a is already a

seventh power, or the polynomial X 7 � a is irreducible over k; in which case a
becomes a seventh power in an extension of odd degree seven.] So we are reduced to
the previous case. &

(4.16) Remark. One cannot fail to be struck by the fact that in the two characteristics
p ¼ 3 and p ¼ 13 for which G7 has a finite Ggeom; that finite group is the Fp points

of a Chevalley group, i.e., U3ð3Þ ¼ PSUð3; F3Þ in characteristic 3, and L2ð13Þ ¼
PSLð2; F13Þ in characteristic 13. This raises two obvious questions.
(1) Can one give conceptual, rather than computational, proofs of the results for

characteristics 3 and 13?

(2) Can one find a ‘‘diophantinely meaningful’’ lisse sheaf of rank seven on A1=F8
with Ggeom ¼ L2ð8Þ? On A1=F7 with Ggeom ¼ L2ð7Þ:2?

5. Application to explicit G2 equidistribution

(5.1). Given a finite field k of characteristic p ¼ 5; p ¼ 11; or p415; a nontrivial
C-valued additive character of k; and an element t in k; we define a conjugacy
class

Wðk;c; tÞ

in UG2 as follows. Pick any prime cap; and any field embedding i : %Qc-C: Then i
induces an isomorphism mpð %QcÞDmpðCÞ; so there is a unique %Qc-valued additive

character *c of k which, after i; becomes the chosen c: Using this *c; we construct the
lisse %Qc-sheaf G7 on A1=k; with its corresponding representation

r : p1ðA1=kÞ-G2ð %QcÞ: ð5:1:1Þ

For t in k ¼ A1ðkÞ; the element rðFrobk;tÞ in G2ð %QcÞ is in fact semisimple [because

H1
c ðGm#k

%k;Lw2ðxÞ#Lcðx7þtxÞÞ is a direct factor of H1ðC#k
%k; %QcÞ; for C the

complete nonsingular model of the curve in A3 defined by y2 ¼ x; zq � z ¼ x7 þ tx	:
The element irðFrobk;tÞ in G2ðCÞ has its eigenvalues on the unit circle, so, being

semisimple lies in a compact subgroup of G2ðCÞ; and hence is conjugate to an
element of the chosen maximal compact subgroup UG2: There is a general argument
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of Deligne, given in [Ka-GKM, 3.3], which assures us that the resulting element of
UG2 is itself unique up to UG2-conjugacy. The resulting conjugacy class we define to
be Wðk;c; tÞ: In the case at hand, we can use Lemma (4.2) to give a more down to
earth description of this conjugacy class. It is the unique conjugacy class whose
characteristic polynomial is given by

detð1� TWðk;c; tÞÞ

¼ iLðGm=k;Lw2ðxÞ#LcðxnþtxÞ;T=ð�Gð *c�7; w2ÞÞÞ

¼ exp
X
mX1

ðSðm; k;c; tÞ=ð�Gðc�7; w2ÞÞ
mÞTm=mÞ

 !
; ð5:1:2Þ

where we write km=k for the extension of degree m; and where we write Sðm; k;c; tÞ
for the complex number

Sðm; k;c; tÞ :¼
X

x in km; xa0

w2;km
ðxÞckm

ðx7 þ txÞ: ð5:1:3Þ

(5.2). Applying Deligne’s general equidistribution theorem, in the form [Ka-GKM,
3.6], to this situation, and remembering that G7 has highest N-break 7=6 at N; we
get the following theorem.

(5.3) Theorem. In any sequence of data ðki;ciÞ; with

ki a finite field of characteristic p ¼ 5; p ¼ 11; or p415;

ci a nontrivial C-valued additive character of ki;

in which #ki-N; the #ki conjugacy classes fWðki;ci; tÞgt in ki
become equidistributed

for normalized (total mass one) Haar measure in the space UG#
2 of conjugacy classes

of UG2: For any continuous central function

h : UG2-C;

we have the integration formulaZ
UG2

hðAÞ dA ¼ lim
i-N

ð1=#kiÞ
X

t in ki

hðWðki;ci; tÞÞ:

More precisely, for k a finite field of characteristic p ¼ 5; p ¼ 11; or p415; c a

nontrivial C-valued additive character of k; and L a nontrivial unitary representation of

UG2; we have the estimate

jð1=#kÞ
X

t in k

TraceðLðWðk;c; tÞÞÞjpdimðLÞ=6 Sqrtð#kÞ
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(5.4) Remark. We get the constant in this last estimate as follows. The representation
L extends to a representation of G2; so we can form the lisse sheaf LðG7Þ: It has
Hi

cðA1#k
%k; LðG7ÞÞ ¼ 0 for ia1; andX

t in k

TraceðLðWðk;c; tÞÞÞ

¼ i
X

i

ð�1Þi TraceðFrobk j H1
c ðA1#k

%k; LðG7ÞÞÞ

¼ �i TraceðFrobk j H1
c ðA1#k

%k; LðG7ÞÞÞ: ð5:4:1Þ

By Deligne [De-WeilII, 3.3.1], we have

jiTraceðFrobk j H1
c ðA1#k

%k; LðG7ÞÞÞj

ph1cðA1#k
%k; LðG7ÞÞ Sqrtð#kÞ

¼ �wcðA1#k
%k; LðG7ÞÞ Sqrtð#kÞ: ð5:4:2Þ

By the Euler Poincare formula, we have

wcðA1#k
%k; LðG7ÞÞ ¼ rankðLðG7ÞÞ � SwanNðLðG7ÞÞ; ð5:4:3Þ

i.e., we have

h1cðA1#k
%k; LðG7ÞÞ ¼ SwanNðLðG7ÞÞ � rankðLðG7ÞÞ: ð5:4:4Þ

Because G7 has highest N-break 7/6 at N; we have

SwanNðLðG7ÞÞpð7=6Þ dimðLÞ: ð5:4:5Þ

So we have

h1cðA1#k
%k; LðG7ÞÞpð7=6Þ dimðLÞ � dimðLÞ ¼ dimðLÞ=6: ð5:4:6Þ

(5.5). We now take the ‘‘direct image’’ of this result by the trace (in the seven-
dimensional representation)

Trace : UG2-½�7; 7	:

As I learned from Serre [Se], the traces of elements of UG2 all lie in the closed
interval ½�2; 7	: Indeed, from the known shape of a maximal torus in G2; namely all
matrices of the form Diagð1; a; 1=a; b; 1=b; ab; 1=abÞ; these traces are precisely the
image of the map

½0; 2p	 � ½0; 2p	-R;

ðx; yÞ/1þ 2 CosðxÞ þ 2 CosðyÞ þ 2 Cosðx þ yÞ:
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It is then a calculus exercise to see that the maximum, 7, occurs at ð0; 0Þ; and that the
minimum, �2; occurs at ð2p=3; 2p=3Þ and at ð4p=3; 4p=3Þ:

(5.6). Denote by

mG2; trace :¼ Trace�ðnormalized Haar measure on UG2Þ ð5:6:1Þ

the direct image probability measure on ½�2; 7	: Thus for hðxÞ a continuous C-valued
function on ½�2; 7	;Z

½�2;7	
hðxÞ dmG2; trace :¼

Z
UG2

hðTraceðAÞÞ dA: ð5:6:2Þ

(5.7) Corollary. In any sequence of data ðki;ciÞ as in Theorem (4.8) above, the #ki

real numbers

f�Sð1; ki;ci; tÞ=ð�Gðc�7; w2ÞÞgt in ki
;

become equidistributed in ½�2; 7	 for the measure mG2; trace:

(5.8). For each prime p ¼ 5; p ¼ 11; or p415; take for c the additive character of
Fp given by

cðxÞ :¼ expð2pix=pÞ: ð5:8:1Þ

Then for t in Fp; we have

� Sð1; Fp;c; tÞ=ð�Gðc�7; w2ÞÞ

¼ ð1=Gðc�7; w2ÞÞ
X

x in Fp; xa0

w2ðxÞcðx7 þ txÞ: ð5:8:2Þ

On the other hand,

Gðc�7; w2Þ ¼ w2ð�7ÞGðc; w2Þ: ð5:8:3Þ

In the classical notation, and using quadratic reciprocity, we have

w2ð�7Þ ¼ ð�7=pÞ ¼ ðp=7Þ: ð5:8:4Þ

By Gauss, we have

Gðc; w2Þ ¼ SqrtðpÞ; if p  1 mod 4;

¼ i SqrtðpÞ; if p  3 mod 4: ð5:8:5Þ
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Thus for p  1 mod 4; we have

� Sð1; Fp;c; tÞ=ð�Gðc�7; w2ÞÞ

¼ ðp=7Þp�1=2
X

x in F�p

ðx=pÞCosð2pðx7 þ txÞ=pÞ: ð5:8:6Þ

For p  3 mod 4; we have

� Sð1; Fp;c; tÞ=ð�Gðc�7; w2ÞÞ

¼ ðp=7Þp�1=2
X

x in F�p

ðx=pÞ Sinð2pðx7 þ txÞ=pÞ: ð5:8:7Þ

(5.9) Corollary. As p-N; the p real numbers

fðp=7Þp�1=2
X

x in F�p

ðx=pÞCosð2pðx7 þ txÞ=pÞgt mod p; if p  1 mod 4;

fðp=7Þp�1=2
X

x in F�p

ðx=pÞ Sinð2pðx7 þ txÞ=pÞgt mod p; if p  3 mod 4;

become equidistributed in ½�2; 7	 for the measure mG2;trace on the closed interval ½�2; 7	:

(5.10). We do not know an explicit formula for the measure mG2; trace on ½�2; 7	:
However, most of its mass is concentrated in the interval ½�2; 2	: More precisely, we
have the following tail estimate.

(5.11) Tail Estimate. For any real t in ð0; 7	; we have the estimate

mG2; traceð½t; 7	ÞpMinð1=t2; 4=t4; 35=t6; 455=t8Þ:

In particular, we have the estimates

mG2; traceð½2; 7	Þp1=22o1=4;

mG2; traceð½3; 7	Þp4=34o1=20;

mG2; traceð½4; 7	Þp455=48o1=144;

mG2; traceð½5; 7	Þp455=58o1=858;

mG2; traceð½6; 7	Þp455=68o1=3691:
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Proof. The first few even moments M2k :¼ M2kðG2; std7Þ of G2 in its seven
dimensional representation std7 are given (with help from simpLie [MPR]) by

M2 ¼ 1; M4 ¼ 4; M6 ¼ 35; M8 ¼ 455:

By the unitarian trick, we have

M2k ¼
Z
UG2

ðTraceðAÞÞ2k
dA ¼

Z
½�2;7	

x2k dmG2; trace:

Now for any probability measure m on R; with even moments

m2kðmÞ :¼
Z
R

x2k dm;

and for any real t40; we have the inequality

m2kðmÞ :¼
Z
R

x2k dmX
Z
jxjXt

x2k dmXt2kmðfx with jxjXtgÞ;

and the consequent Chebychev inequality

mðfx with jxjXtgÞpm2kðmÞ=t2k:

Applying this with m the measure mG2; trace; we find the asserted inequality. &

6. Application to explicit SOðnÞ equidistribution

(6.1). The results are entirely analogous to those in the G2 case. We state them
explicitly for ease of later reference.

(6.2). Fix an odd integer n ¼ 2d þ 1X3; na7: Recall that

eðnÞ :¼ ð�1Þd : ð6:2:1Þ

A compact form of SOðnÞ is the real group SOðn;RÞ for the quadratic form
P

iðxiÞ2:
Because n is odd, conjugacy classes in SOðn;RÞ are determined by their characteristic
polynomials.

(6.3). Let us say that a characteristic p is ‘‘good for n’’ if the following condition
6.3.1 holds.

(6.3.1). For any finite field k of characteristic p; for any prime cap; and for any

nontrivial Qc-valued additive character c of k; the lisse sheaf Fn on A1=k has
Ggeom ¼ SOðnÞ:
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(6.4). We know that, given an odd nX3; all but finitely many p are good for n; but in
general we do not know exactly which are not.

(6.5). Given a finite field k of characteristic p which is good for n; a nontrivial
C-valued additive character of k; and an element t in k; we define a conjugacy
class

Wðk;c; tÞ

in SOðn;RÞ just as we did in the G2 case. It is the unique conjugacy class whose
characteristic polynomial is given by

detð1� TWðk;c; tÞÞ

¼ exp
X
mX1

ðSðm; k;c; tÞ=ð�GðceðnÞn; w2ÞÞmÞTm=m

 !
; ð6:5:1Þ

where we write km=k for the extension of degree m; and where we write Sðm; k;c; tÞ
for the complex number

Sðm; k;c; tÞ :¼
X

x in km; xa0

w2;km
ðxÞckm

ðxn þ txÞ: ð6:5:2Þ

Applying Deligne’s general equidistribution theorem to this situation in the form
[Ka-GKM, 3.6], and remembering that Gn has highest N-break n=ðn � 1Þ at N; we
get the following theorem.

(6.6) Theorem. In any sequence of data ðki;ciÞ; with

ki a finite field of characteristic p which is good for n;

ci a nontrivial C-valued additive character of ki;

in which #ki-N; the #ki conjugacy classes fWðki;ci; tÞgt in ki
become equidistributed

for normalized (total mass one) Haar measure in the space SOðn;RÞ# of conjugacy

classes of SOðn;RÞ: For any continuous central function

h : SOðn;RÞ-C;

we have the integration formulaZ
SOðn; RÞ

hðAÞ dA ¼ lim
i-N

ð1=#kiÞ
X
t in ki

hðWðki;ci; tÞÞ:

More precisely, for k a finite field of characteristic p42n þ 1 not dividing the integer
2nN1ðn � 1ÞN2ðn � 1Þ;c a nontrivial C-valued additive character of k; and L a
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nontrivial unitary representation of SOðnÞ we have the estimate

ð1=#kÞ
X
t in k

TraceðLðWðk;c; tÞÞÞ
�����

�����pdimðLÞ=ððn � 1Þ Sqrtð#kÞÞ:

(6.7). We now take the ‘‘direct image’’ of this result by the trace

Trace : SOðn; RÞ-½2� n; n	;

and define

mSOðnÞ; trace :¼ Trace�ðnormalized Haar measure on SOðn;RÞÞ: ð6:7:1Þ

(6.8) Corollary. In any sequence of data ðki;ciÞ as in Theorem (5.6) above, the #ki

real numbers

f�Sð1; ki;ci; tÞ=ð�Gðc�7; w2ÞÞgt in ki
;

become equidistributed in ½2� n; n	 for the measure mSOðnÞ; trace:

(6.9). For each prime p which is good for n; take for c the additive character of Fp

given by

cðxÞ :¼ expð2pix=pÞ: ð6:9:1Þ

Then for t in Fp; we have

� Sð1; Fp;c; tÞ=ð�GðceðnÞn; w2ÞÞ

¼ ð1=GðceðnÞn; w2ÞÞ
X

x in Fp; xa0

w2ðxÞcðxn þ txÞ: ð6:9:2Þ

On the other hand,

GðceðnÞn; w2Þ ¼ w2ðeðnÞnÞGðc; w2Þ: ð6:9:3Þ

In the classical notation, and using quadratic reciprocity, we have

w2ðeðnÞnÞ ¼ ðeðnÞn=pÞ ¼ ðp=nÞ; ð6:9:4Þ

where ðp=nÞ is the extended Jacobi symbol: for n with prime factorization n ¼Q
iðciÞeðiÞ;

ðp=nÞ :¼
Y

i

ðp=ciÞeðiÞ: ð6:9:5Þ
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For p  1 mod 4; we have

� Sð1; Fp;c; tÞ=ð�GðceðnÞn; w2ÞÞ

¼ ðp=nÞp�1=2
X

x in F�p

ðx=pÞCosð2pðxn þ txÞ=pÞ: ð6:9:6Þ

For p  3 mod 4; we have

� Sð1; Fp;c; tÞ=ð�GðceðnÞn; w2ÞÞ

¼ ðp=nÞp�1=2
X

x in F�p

ðx=pÞ Sinð2pðxn þ txÞ=pÞ: ð6:9:7Þ

6.10. Corollary. As p-N; the p real numbers

ðp=nÞp�1=2
X

x in F�p

ðx=pÞCosð2pðxn þ txÞ=pÞ

8<
:

9=
;

t mod p

; if p  1 mod 4;

ðp=nÞp�1=2
X

x in F�p

ðx=pÞ Sinð2pðxn þ txÞ=pÞ

8<
:

9=
;

t mod p

; if p  3 mod 4;

become equidistributed in ½2� n; n	 for the measure mSOðnÞ; trace:

(6.11). We do not know an explicit formula for the measure mSOðnÞ; trace on ½�2�
n; n	: However, most of its mass is concentrated in the interval ð�2; 2Þ: To formulate
more precise tail estimates, recall that for an positive even integer 2k; we define

ð2kÞ!! :¼
Y

c¼1 to k

ð2k þ 1� 2cÞ ¼ ð2k � 1Þð2k � 3Þyð3Þð1Þ:

One knows [Rains, Theorem 3.4] that the even moments of SOðnÞ in its standard
representation stdn are given by

M2k :¼ M2kðSOðnÞ; stdnÞ ¼ ð2kÞ!!; for kpn:

[This is proven for OðnÞ in [Rains, Theorem 3.4]; as n is odd, OðnÞ is SOðnÞ � f71g;
so the two groups have the same even moments.] By exactly the same Chebychev
argument as in the proof of 5.11, we find

(6.12) Tail Estimate. For any odd nX3; and any real t40; we have the estimate

mSOðnÞ; traceðfx with jxjXtgÞp Min
k¼1 to n

ðð2kÞ!!=t2kÞ:
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In particular, for odd nX5 we have the estimates

mSOðnÞ; traceðfx with jxjX2gÞp3=24o1=5;

mSOðnÞ; traceðfx with jxjX3gÞpð3Þð5Þð7Þ=38o1=62;

mSOðnÞ; traceðfx with jxjX4gÞpð3Þð5Þð7Þð9Þ=410o1=1109;

7. Application to the Katz–Sarnak measures mð�; cÞ

(7.1). A second flavor of application of our Fn results is to the eigenvalue location
measures nð�; cÞ of [Ka-Sar, 13.1]. Here rX1 is an integer, c ðcð1Þ;y; cðrÞÞ in Zr is
an ‘‘offset vector’’, i.e.

0ocð1Þocð2Þo?ocðrÞ: ð7:1:1Þ

For n ¼ 2d þ 1 with dXcðrÞ; the eigenvalues of an element A of SOðn;RÞ are of the
form

1; e7ijð1Þ; eijð2Þ;y; e7ijðdÞ; ð7:1:2Þ

for a unique sequence of angles

0pjð1Þpjð2Þp?pjðdÞpp: ð7:1:3Þ

Formation of any given jðiÞ defines a continuous central function on SOðn;RÞ;

A/jðiÞðAÞ: ð7:1:4Þ

We rescale this function, and call it WðiÞ:

WðiÞðAÞ :¼ njðiÞðAÞ=2p: ð7:1:5Þ

Given the offset vector c; we define the continuous central function

Fc : SOðn;RÞ-Rr;

FcðAÞ :¼ ðWðcð1ÞÞðAÞ;y; WðcðrÞÞðAÞÞ: ð7:1:6Þ

We then define the probability measure nðc; SOðn;RÞÞ on Rn to be

nðc; SOðn;RÞÞ :¼ ðFcÞ�ðnormalized Haarmeasure on SOðn;RÞÞ: ð7:1:7Þ
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(7.2). Given a finite field k of characteristic p which is good for n; and a nontrivial C-
valued additive character c of k; we define the probability measure
nðc; k;c; SOðn;RÞÞ on Rr by averaging over the images, by Fc; of the conjugacy
classes Wðk;c; tÞ; t in k:

nðc; k;c; SOðn;RÞÞ :¼ ð1=#kÞ
X

t in k

dFcðWðk;c;tÞÞ : ð7:2:1Þ

As an immediate consequence of the general equi-distribution theorem, we find the
following corollary.

7.3. Corollary. Fix rX1; and c an offset vector in Zr: Suppose n ¼ 2d þ 1 is an odd

integer with dXcðrÞ: In any sequence of data ðki;ciÞ as in the theorem above, the #ki

points fFcðWðki;ci; tÞÞgt in ki
in Rr become equidistributed for the measure

nðc; SOðn;RÞÞ: In other words, the measures nðc; ki;ci; SOðn;RÞÞ tend weak � to the

measure nðc; SOðn;RÞÞ as i-N:

(7.4). We now take the large n limits, cf. [Ka-Sar, 13.8].

7.5 Theorem. In any sequence of pairs ðki;ciÞ in which charðkiÞ-N; we have the

following double limit formula for the probability measure nð�; cÞ on Rr: For any

bounded continuous C-valued function h on Rr; we have the integration formulaZ
Rr

h dnð�; cÞ ¼ lim
odd n-N

lim
i-N

Z
Rr

h dnðc; ki;ci; SOðn;RÞÞ:

7.6. Remark. We need to have charðkiÞ tending to N to be sure that for each odd n;
charðkiÞ is ‘‘good for n’’ provided that i is sufficiently large. At present, we do not
which, if any, primes p are good for every odd nX3 which is prime to p: We could
avoid these problems by working instead with the sheaves Fn;oddp3 or Fn;odd; since,
by Theorems (3.11) and (3.12), every prime p45 not dividing n is good for them.
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