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Given a noetherian ring R, we denote by (Sch/R) the category of separated R-
schemes of finite type, morphisms being the R-morphisms. We denote by K0(Sch/R)
its Grothendieck group. By definition, K0(Sch/R) is the quotient of the free abelian
group on elements [X], one for each separated R-scheme of finite type, by the sub-
group generated by all the relation elements

[X]− [Y ], whenever Xred ∼= Y red,

and
[X]− [X \ Z]− [Z], whenever Z ⊂ X is a closed subscheme.

It follows easily that if X is a finite union of locally closed subschemes Zi, then
in K0(Sch/R) we have the inclusion-exclusion relation

[X] =
∑

i

[Zi]−
∑
i<j

[Zi ∩ Zj ] + . . . .

For any ring homomorphism R −→ R′ of noetherian rings, the “extension of
scalars” morphism from (Sch/R) to (Sch/R′) which sends X/R to X ⊗R R′/R′,
extends to a group homomorphism from K0(Sch/R) to K0(Sch/R′).

Suppose A is an abelian group, and ρ is an “additive function” from (Sch/R)
to A, i.e., a rule which assigns to each X ∈ (Sch/R) an element ρ(X) ∈ A, such
that ρ(X) depends only on the isomorphism class of Xred, and such that whenever
Z ⊂ X is a closed subscheme, we have

ρ(X) = ρ(X − Z) + ρ(Z).

Then ρ extends uniquely to a group homomorphism from K0(Sch/R) to A, by
defining ρ(

∑
i[Xi]) =

∑
i ρ(Xi).

When R=C, we have the following simple lemma, which we record now for later
use.

Lemma 1. Every element of K0(Sch/C) is of the form [S] − [T ], with S and T
both projective smooth (but not necessarily connected) C-schemes.

Proof. To show this, we argue as follows. It is enough to show that for any separated
C-scheme of finite type X, [X] is of this type. For then −[X] = [T ]− [S], and

[S1]− [T1] + [S2]− [T2] = [S1 t S2]− [T1 t T2],

and the disjoint union of two projective smooth schemes is again one. [Indeed, if we
embed each in a large projective space, say Si ⊂ PNi and pick a point ai ∈ PNi \Si,
then S1 × a2 and a1 × S2 are disjoint in PN1 × PN2 .]

We first remark that for any X as above, [X] is of the form [V ] − [W ] with V
and W affine. This follows from inclusion-exclusion by taking a finite covering of
X by affine open sets, and noting that the disjoint union of two affine schemes of
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finite type is again an affine scheme of finite type. So it suffices to prove our claim
for affine X. Embedding X as a closed subscheme of some affine space AN and
using the relation

[X] = [AN ]− [AN \X],
it now suffices to prove our claim for smooth quasiaffine X. By resolution, we can
find a projective smooth compactification Z of X, such that Z \ X is a union of
smooth divisors Di in Z with normal crossings. Then by inclusion-exclusion we
have

[X] = [Z]−
∑

i

[Di] +
∑
i,j

[Di ∩Dj ] + . . . .

In this expression, each summand on the right hand side is projective and smooth.
Taking for S the disjoint union of the summands with a plus sign and for T the
disjoint union of the summands with a minus sign, we get the desired expression of
our [X] as [S]− [T ], with S and T both projective and smooth. �

Now take for R a finite field Fq. For each integer n ≥ 1, the function on (Sch/Fq)
given by X 7→ #X(Fqn) is visibly an additive function from (Sch/Fq) to Z. Its
extension to K0(Sch/Fq) will be denoted

γ 7→ #γ(Fqn).

We can also put these all functions together, to form the zeta function. Recall that
the zeta function Z(X/Fq, t) of X/Fq is the power series (in fact it is a rational func-
tion) defined by Z(X/Fq, t) = exp(

∑
n≥1 #X(Fqn)tn/n). Then X 7→ Z(X/Fq, t) is

an additive function with values in the multiplicative group Q(t)×. We denote by

γ 7→ Zeta(γ/Fq, t)

its extension to K0(Sch/Fq). We say that an element γ ∈ K0(Sch/Fq) is zeta-trivial
if Zeta(γ/Fq, t) = 1, i.e., if #γ(Fqn) = 0 for all n ≥ 1. We say that two elements
of K0(Sch/Fq) are zeta-equivalent if they have the same zeta functions, i.e., if their
difference is zeta-trivial.

We say that an element γ ∈ K0(Sch/Fq) is polynomial-count if there exists a
(necessarily unique) polynomial Pγ/Fq

(t) =
∑

i ait
i ∈ C[t] such that for every finite

extension Fqn/Fq, we have

#γ(Fqn) = Pγ/Fq
(qn).

If γ/Fq is polynomial-count, its counting polynomial Pγ/Fq
(t) lies in Z[t]. [To see

this, we argue as follows. On the one hand, from the series definition of the zeta
function, and the polynomial formula for the number of rational points, we have

(td/dt)log(Z(γ/Fq, t)) =
∑

i

aiq
it/(1− qit).

As the zeta function is a rational function, say
∏

i (1− αit)/
∏

j (1− βjt) in lowest
terms, we first see by comparing logarithmic derivatives that each of its zeroes and
poles is a non-negative power of 1/q. Thus for some integers bn, the zeta function
is of the form

∏
n≥0 (1− qnt)−bn . Again comparing logarithmic derivatives, we see

that we have an = bn for each n.]
Equivalently, an element γ ∈ K0(Sch/Fq) is polynomial-count if it is zeta-

equivalent to a Z-linear combination of classes of affine spaces [Ai], or, equiva-
lently, to a Z-linear combination of classes of projective spaces [Pi] (since [Ai] =
[Pi] − [Pi−1], with the convention that P−1 is the empty scheme). If γ/Fq is
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polynomial-count, then so is its extension of scalars from Fq to any finite exten-
sion field, with the same counting polynomial. [But an element γ/Fq which is not
polynomial-count can become polynomial-count after extension of scalars, e.g., a
nonsplit torus over Fq, or, even more simply, the zero locus of a square-free poly-
nomial f(z) ∈ Fq[z] which does not factor completely over Fq.]

Now let R be a ring which is finitely generated as a Z-algebra. We say that an
element γ ∈ K0(Sch/R) is zeta-trivial if, for every finite field k, and for every ring
homomorphism φ : R −→ k, the element γφ,k/k in K0(Sch/k) deduced from γ by
extension of scalars is zeta-trivial. And we say that two elements are zeta-equivalent
if their difference is zeta-trivial.

We say that an element γ ∈ K0(Sch/R) is strongly polynomial-count with (nec-
essarily unique) counting polynomial Pγ/R(t) ∈ Z[t] if, for every finite field k, and
for every ring homomorphism φ : R −→ k, the element γφ,k/k in K0(Sch/k) de-
duced from γ by extension of scalars is polynomial-count with counting polynomial
Pγ/R(t).

We say that an element γ ∈ K0(Sch/R) is fibrewise polynomial-count if, for every
ring homomorphism φ : R −→ k, the element γφ,k/k in K0(Sch/k) deduced from γ
by extension of scalars is polynomial-count (but we allow its counting polynomial
to vary with the choice of (k, φ)).

All of these notions, zeta-triviality, zeta equivalence, being strongly or fibrewise
polynomial-count, are stable by extension of scalars of finitely generated rings.

We now pass to the complex numbers C. Given an element γ ∈ K0(Sch/C), by
a “spreading out” of γ/C, we mean an element γR ∈ K0(Sch/R), R a subring of C
which is finitely generated as a Z-algebra, which gives back γ/C after extension of
scalars from R to C. It is standard that such spreadings out exist, and that given
two spreadings out γR ∈ K0(Sch/R) and γR′ ∈ K0(Sch/R′), then over some larger
finitely generated ring R′′ containing both R and R′, the two spreadings out will
agree in K0(Sch/R′′).

We say that an element γ ∈ K0(Sch/C) is zeta-trivial if it admits a spreading
out γR ∈ K0(Sch/R) which is zeta-trivial. One sees easily, by taking spreadings
out to a common R, that the zeta-trivial elements form a subgroup of K0(Sch/C).

We say that two elements are zeta-equivalent if their difference is zeta-trivial.
We say that an element is strongly polynomial-count, with counting polynomial
Pγ(t) ∈ Z[t], (respectively fibrewise polynomial-count) if it admits a spreading out
which has this property.

Given X/C a separated scheme of finite type, its E-polynomial E(X;x, y) ∈
Z[x, y] is defined as follows. The compact cohomology groups Hc

i(Xan, Q) carry
Deligne’s mixed Hodge structure, cf. [De-Hodge II] and [De-Hodge III, 8.3.8], and
one defines

E(X;x, y) =
∑
p,q

ep,qx
pyq,

where the coefficients ep,q are the virtual Hodge numbers, defined in terms of the
pure Hodge structures which are the associated gradeds for the weight filtration on
the compact cohomology as follows:

ep,q :=
∑

i

(−1)ihp,q(grp+q
W (Hc

i(Xan, C))).

Notice that the value of E(X;x, y) at the point (1, 1) is just the (compact, or
ordinary, they are equal, by [Lau]) Euler characteristic of X. One knows that
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the formation of the E-polynomial is additive (because the excision long exact
sequence is an exact sequence in the abelian category of mixed Hodge structures,
cf. [De-Hodge III, 8.3.9]). So we can speak of the E-polynomial E(γ;x, y) attached
to an element γ ∈ K0(Sch/C).

Theorem 1. We have the following results.
(1) If γ ∈ K0(Sch/C) is zeta-trivial, then

E(γ;x, y) = 0.

(2) If γ1 ∈ K0(Sch/C) and γ2 ∈ K0(Sch/C) are zeta-equivalent, then

E(γ1;x, y) = E(γ2;x, y).

In particular, if X and Y in (Sch/C) are zeta-equivalent, then

E(X;x, y) = E(Y ;x, y).

(3) If γ ∈ K0(Sch/C) is strongly polynomial-count, with counting polynomial
Pγ(t) ∈ Z[t], then

E(γ;x, y) = Pγ(xy).
In particular, if X ∈ (Sch/C) is strongly polynomial-count, with counting
polynomial PX(t) ∈ Z[t], then

E(X;x, y) = PX(xy).

Proof. Assertion (2) is an immediate consequence of (1), by the additivity of the
E-polynomial. Statement (3) results from (2) as follows. If γ ∈ K0(Sch/C) is
strongly polynomial-count, with counting polynomial Pγ(t) =

∑
i ait

i ∈ Z[t], then
by definition γ is zeta-equivalent to

∑
i ai[Ai] ∈ K0(Sch/C). So we are reduced to

noting that E(Ai;x, y) = xiyi, which one sees by writing [Ai] = [Pi] − [Pi−1] and
using the basic standard fact that E(Pi;x, y) =

∑
0≤j≤i xjyj . So it remains only to

prove assertion (1) of the theorem. By lemma 1, every element γ ∈ K0(Sch/C) is
of the form [X]− [Y ], with X and Y are projective smooth C-schemes. So assertion
(1) results from the following theorem, which is proven, but not quite stated, in
[Wang]. [What Wang proves is that “K-equivalent” projective smooth connected C-
schemes have the same Hodge numbers, through the intermediary of using motivic
integration to show that K-equivalent projective smooth connected C-schemes are
zeta-equivalent.] �

Theorem 2. Suppose X and Y are projective smooth C-schemes which are zeta-
equivalent. Then

E(X;x, y) = E(Y ;x, y).

Proof. Pick spreadings out X/R and Y/R over a common R which are zeta-
equivalent. At the expense of inverting some nonzero element in R, we may further
assume that both X/R and Y/R are projective and smooth, and that R is smooth
over Z. We denote the structural morphisms of X/R and Y/R by

f : X −→ Spec(R), g : Y −→ Spec(R).

One knows [Ka-RLS, 5.9.3] that, for any finitely generated subring R ⊂ C, there
exists an integer N ≥ 1 such that for all primes ` which are prime to N, there exists a
finite extension E/Q`, with ring of integers O and an injective ring homomorphism
from R to O. Fix one such prime number `, which we choose larger than both
dim(X) and dim(Y ), and one such inclusion of R into O.
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Over Spec(R[1/`]), the Q`-sheaves Rif?Q` and Rig?Q` are lisse, and pure of
weight i [De-Weil II, 3.3.9]. By the Lefschetz Trace Formula and proper base
change, for each finite field k, and for each k-valued point φ of Spec(R[1/`]), we
have

Zeta(Xk,φ/k, t) =
∏

i

det(1− tFrobk,φ|Rif?Q`)(−1)i+1

and
Zeta(Yk,φ/k, t) =

∏
i

det(1− tFrobk,φ|Rig?Q`)(−1)i+1

By the assumed zeta-equivalence, we have, for each finite field k, and for each
k-valued point φ of Spec(R[1/`]), the equality of rational functions

Zeta(Xk,φ/k, t) = Zeta(Yk,φ/k, t).

Separating the reciprocal zeroes and poles by absolute value, we infer by purity
that for every i, we have

det(1− tFrobk,φ|Rif?Q`) = det(1− tFrobk,φ|Rig?Q`).

Therefore by Chebotarev the virtual semisimple representations of π1(Spec(R[1/`]))
given by (Rif?Q`)ss and (Rig?Q`)ss are equal:

(Rif?Q`)ss ∼= (Rig?Q`)ss.

Now make use of the inclusion of R into O, which maps R[1/`] to E. The
pullbacks XO and YO of X/R and Y/R to O are proper and smooth over O.
Thus their generic fibres, XE and YE are projective and smooth over E, of dimen-
sion strictly less than `, and they have good reduction. Via the chosen map from
Spec(E) to Spec(R[1/`]), we may pull back the representations Rif?Q` and Rig?Q`

of π1(Spec(R[1/`])) to π1(Spec(E)), the galois group GalE := Gal(Esep/E). Their
pullbacks are the etale cohomology groups Hi(XEsep , Q`) and Hi(YEsep , Q`) re-
spectively, viewed as representations of GalE . These representations of GalE need
not be semisimple, but their semisimplifications are isomorphic:

Hi(XEsep , Q`)ss ∼= Hi(YEsep , Q`)ss.

By a fundamental result of Fontaine-Messing [F-M, Theorems A and B] (which
applies in the case of good reduction, E/Q` unramified, and dimension less than
`) and Faltings [Fal, 4.1] (which treats the general case, of a projective smooth
generic fibre), we know that Hi(XEsep , Q`) and Hi(YEsep , Q`) are Hodge-Tate rep-
resentations of GalE , with Hodge-Tate numbers exactly the Hodge numbers of the
complex projective smooth varieties X and Y respectively (i.e., the dimension of
the GalE-invariants in Ha(XEsep , Q`)(b)⊗C` under the semilinear action of GalE
is the Hodge number Hb,a−b(X), and similarly for Y ). By an elementary argu-
ment of Wang [Wang, 5.1], the semisimplification of a Hodge-Tate representation is
also Hodge-Tate, with the same Hodge-Tate numbers. So the theorem of Fontaine-
Messing and Faltings tells us that for all i, Hi(X) and Hi(Y ) have the same Hodge
numbers. This is precisely the required statement, that E(X;x, y) = E(Y ;x, y). �

The reader may wonder why we introduced the notion of being fibrewise polynomial-
count, for an element γ ∈ K0(Sch/C). In fact, this notion is entirely superfluous,
as shown by the following Theorem.

Theorem 3. Suppose γ ∈ K0(Sch/C) is fibrewise polynomial-count. Then it is
strongly polynomial-count.
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Proof. Write γ as [X]−[Y ], with X and Y projective smooth C-schemes. Repeat the
first paragraph of the proof of the previous theorem. Extending R if necessary, we
may assume that the element [X/R]− [Y/R] ∈ K0(Sch/R) is fibrewise polynomial-
count. So for each finite field k and each ring homomorphism φ : R −→ k, there
exists a polynomial Pk,φ =

∑
n an,k,φtn ∈ Z[t] such that

Zeta(Xk,φ/k, t)/Zeta(Yk,φ/k, t) =
∏
n

(1− (#k)nt)−an,k,φ .

Writing the cohomological expressions of the zeta functions and using purity, we
see that the coefficient an,k,φ is just the difference of the 2n’th `-adic Betti numbers
of Xk,φ⊗k and Yk,φ⊗k, which is in turn the difference of the ranks of the two lisse
sheaves R2nf?Q` and R2ng?Q`. This last difference is independent of the particular
choice of (k, φ). �
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